习题三 数理方法

合集下载

研究生一年级数理统计期末考试习题3-pt

研究生一年级数理统计期末考试习题3-pt

20.1,20.0,19.0,19.9。设这批产品的直径服从
正态分布,试检验这批产品的直径的方差为
0.25(a = 0.05)。
解: H0 :s 2 = 0.25, H1 :s 2 ¹ 0.25
检验统计量为(n - 1)S 2 ,
s
2 0
H
0
的拒绝域为(0,
c2 1-a
(
n
-
1)]
U
[
c
2 a
(n
-
n =6,a =0.05,ta (n - 1) =2.5706,
2
算得检验统计量的观测值为 x - m0 = -0.909,由 s/ n
于检验统计量的观测值未落入 H 0 的拒绝域,故 接受 H 0 。 即认为这批元件符合标准。
4、从某种产品中任意取出 8 个,测量其直径(单
位:mm),数据如下:20.5,19.8,19.7,20.4,
H0的拒绝域为(-¥, -ua ]U [ua , +¥),
2
2
由于u0.025 > u0.005,则
{(-¥, -u0.025 ] U [u0.025 , +¥)} ,
É {(-¥, -u0.005 ] U [u0.005 , +¥)}
{(-u0.025 , u0.025 )} Ì {(-u0.005 , u0.005 )}
粒子数 0 1 2 3 4 5 6 7 8 9 10 11 12 频数 57 203 383 525 532 408 273 139 45 27 10 4 2
试问以上数据是否在水平 0.05 下与泊松分布相 符?
解:H0 : X ~ P(l ) 先对参数l 求其最大似然估计值,

数理统计第三版课后答案师义民

数理统计第三版课后答案师义民

数理统计第三版课后答案师义民引言数理统计是一门应用广泛的学科,可用于各种领域的数据分析和决策支持。

《数理统计第三版》是师义民教授编写的一本经典教材,已经成为数理统计领域的标准教材之一。

本文是对该教材中课后习题的答案解析,旨在帮助读者更好地理解和掌握数理统计的概念和方法。

第一章简介1.1 数理统计的基本概念习题1.1解:数理统计是研究如何利用数学方法来处理收集到的数据,并通过统计模型对总体参数进行估计和假设检验。

1.2 统计数据的表示方法习题1.2解:给定一组数据,可以使用频数表、频率表、累计频数表、累计频率表等形式进行表示和描述。

第二章随机变量及其分布2.1 随机变量习题2.1解:随机变量是指试验结果的某种表示,通常用大写字母表示,如X、Y等。

根据随机变量取值的类别分为离散随机变量和连续随机变量两种。

2.2 随机变量的分布习题2.2解:对于离散随机变量,可以通过概率质量函数(PMF)或概率分布列来描述其分布。

对于连续随机变量,可以通过概率密度函数(PDF)来描述其分布。

2.3 一维随机变量的数学期望和方差习题2.3解:一维随机变量的数学期望和方差是对其分布特征的度量。

数学期望表示随机变量的平均值,方差表示随机变量的离散程度。

第三章多维随机变量及其分布3.1 二维随机变量习题3.1解:二维随机变量是指由两个随机变量组成的向量。

可以通过联合分布函数、边际分布函数和条件分布函数来描述二维随机变量的分布。

3.2 二维随机变量的数学期望和协方差习题3.2解:二维随机变量的数学期望是对其分布特征的度量,协方差表示两个随机变量之间的相关性。

可以通过相关系数来度量协方差的强度和方向。

3.3 二维正态分布习题3.3解:二维正态分布是指由两个相互独立的正态分布组成的二维随机变量。

可以通过联合概率密度函数来描述二维正态分布的分布特征。

结论本文对《数理统计第三版》中的课后习题进行了答案解析,涵盖了数理统计的基本概念、统计数据的表示方法、随机变量及其分布等内容。

曹显兵《概率论与数理统计辅导讲义》练习题三详解

曹显兵《概率论与数理统计辅导讲义》练习题三详解

同理可得,当
1 1 3 z 0 时, FZ ( z ) z , 3 2 4 1 1 FZ ( z ) 当 z 时, . 3 12 z
1 1 , | z | , 2 3 12 z fZ ( z )= FZ ( z )= 1 3, | z | . 3 4
1 1
3. 【详解】 (1) 由题知, 因此





f ( x, y)dxdy c x 2dx 2 ydy
1 x
c 1 2 4c ( x x 6 )dx =1, 2 1 21
c
21 . 4
fX (x)= 0,
(2)当 x <1, 或 x>1 时, 当1x1 时,
4
2
4
= k (10 y y | 2 ) = 8.
2 4
3
因此 (2)
1 k . 8
P{X2,Y3}
2 1 3 dy (6 x y )dx 0 8 2 1 3 1 5 (10 2 y )dy (10 y y 2 | 3 . 2) 2 8 8 8
练习题三
一、填空题 1. 【详解】
1 e y | 0 f ( x, y)dxdy A e2 x dx e y dy A e 2 x | 0 0 0 2 A 1 2





得常数 A=2 .
2 4 P{ X 2, Y 1} 2 e 2 x dx e y dy e2 x | 0 )(1e1 ). e y |1 0 = (1e
a 1 a 1 a 1 a 1 a 1 a 1 7 1 (1 ) 1 (1 ) , 2 2 2 2 2 2 9

数理方法第一章答案

数理方法第一章答案

[i(/4+2k)] i
+2n

(n=0, ± 1, ± 2…;k=0,
±1, ±2…) (4)cosh(1-i) = = -
=cosh1cos1-isinh1sin1 1-8 求出下列多值函数的所有支点并构造其 黎曼面 (1)= i i 解:令=e ,z-a=re 2 2 2i i 则 =z-a,即 e = re 2 所以 =r→= 2=+2n 与 r 一一对应,但与不对应
13求下列复数的值复数的标准形式16利用复数求下列和式sinsincos2n1isin2n17求下列函数值1sin15isin1cos5icos1sin5isin1cosh1cos1isinh1sin118求出下列多值函数的所有支点并构造其黎曼面重复所以只有两支2n可见有无穷多支因为不同n对应不同18光信息1001唐丽红输入求出下列多值函数的所有支点并构造其黎曼面2n可见有无穷多支因为不同n对应不同w
当 n=0, 1=/2 当 n=1, 2=/2+ 当 n=2, 3=/2+2,与 n=0 重复 所以只有两支 图略 (2 )解: ,令 . 则
可见有无穷多支,因为不同 n 对应不同
1-8 (光信息 1001 唐丽红输入)求出下列多值函数的所有支点 并构造其黎曼面 (2)解: 则 ,令 .




所以(1)= (2)=

1-7 求下列函数值 (1)sin(1-5i) =sin1cos5i-cos1sin5i =sin1
i ( 5i ) e i ( 5i ) e z2 )
z1 z1 z2 z2 z2 z1 z1 z2
z1 z 2 ( z1 z2 z1 z2 )

《数学思想方法》复习题三

《数学思想方法》复习题三

《数学思想方法》复习题三1.为什么说《几何原本》是一个封闭的演绎体系?①因为在《几何原本》中,除了推导时所需要的逻辑规则外,每个定理的证明所采用的论据均是公设、公理或前面已经证明过的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上对概念下定义的要求,原则上不再依赖其它东西。

因此《几何原本》是一个封闭的演绎体系。

②另外,《几何原本》的理论体系回避任何与社会生产现实生活有关的应用问题,因此对于社会生活的各个领域来说,它也是封闭的。

③所以,《几何原本》是一个封闭的演绎体系。

2.为什么说最早使用数学模型方法的是中国人?:①因为在中国汉代的古算书《九章算术》中就已经系统地使用了数学模型。

《九章算术》将246个题目归结为九类,即九种不同的数学模型,分列为九章。

②它在每一章中所设置的问题,都是从大量的实际问题中选择具有典型意义的现实原型,然后再通过“术”(即算法)转化成数学模型。

其中有些章就是专门探讨某种数学模型的应用,③例如“勾股”、“方程”等章。

这在世界数学史上是最早的。

因此,我们说最早使用数学模型方法的是中国人。

3.什么是类比猜想?并举一个例子说明。

①人们运用类比法,根据一类事物所具有的某种属性,得出与其类似的事物也具有这种属性的一种推测性的判断,即猜想,这种思想方法称为类比猜想。

②例如,分式与分数非常相似,只不过是用字母替代数而已。

因此,我们可以猜想,分式与分数在定义、基本性质、约分、通分、四则运算等方面都是对应相似的。

4.简述表层类比,并用举例说明。

:①表层类比是根据两个被比较对象的表面形式或结构上的相似所进行的类比。

这种类比可靠性较差,结论具有很大的或然性。

②例如,从类比出是错误的,而类比出在数列极限存在的条件下是正确的。

③又如,由三角形内角平分线性质,类比得到三角形外角平分线性质,就是一种结构上的类比。

5.数学思想方法教学为什么要遵循循序渐进原则?试举例说明。

:①数学思想方法的形成难于知识的理解和一般技能的掌握,它需要学生深入理解事物之间的本质联系。

数理统计习题(汇总)

数理统计习题(汇总)

150 162 175 165
(1) 求 Y 对 X 的线性回归方程; (2) 检验回归方程的显著性; (3) 求回归系数 b 的 95%的置信区间; (4) 取 x 0 =90,求 y 0 的预测值及 95%的预测区间。 8. 为了考察影响某种化工产品转化率的因素 , 选择了三个有关因素: 反应温度 (A)、反应时 间( B)、用碱量(C),而每个因素取三种水平,列表如下: 水平 因子 温度(A) 时间(B) 用碱量(C) 1 80℃( A1 ) 90 分( B1 ) 5%( C1 ) 2 90℃( A2 ) 120 分( B2 ) 6%( C2 ) 3 90℃( A3 ) 150 分( B3 ) 7%( C3 )
X ________, E ( X ) ______, D( X ) ______ .
3. 设 X 1 , X 2 , , X n 相互独立,且 X i N (0,1).(i 1, 2, , n) 则 的________分布。
2 4. 设 X N (0,1).Y ( n). X 与 Y 独 立 ,则 随 机 变 量 T
2
9. 某厂生产一种乐器用的合金弦线,按以往的资料知其抗拉强度(单位: kg cm 2 )服从 正态分布 N (10560,802 ) ,今用新配方生产了一批弦线,欲考察这批弦线的抗拉强度是 否有提高,为此随机抽取 10 根弦线做抗拉试验,测得其抗拉强度均值为 x 10631.4 , 均方差 s 81.00 。 (检验水平 0.05 ) 。 10. 某厂生产一种保险丝,规定保险丝熔化时间的方差不能超过 400。今从一批产品中
2 2 2 sB 1024( h2 ) ,取置信水平为 0.99 ,试求:
(1)
2 1 的区间估计。 2 2

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。

数理方法习题解答(方程部分)0809

数理方法习题解答(方程部分)0809

作业参考答案3、在(,ππ-)这个周期上,2()f x x x =+,试将它展开为傅立叶级数,又在本题所得展开式中置x π=,由此验证222211112346π++++=解:因为2()f x x x =+在(,ππ-)上满足狄氏定理,可以展开为傅立叶级数 又 l π=所以()0101()cos sincos sin k k k k k k k k f x a a x b x l l a a kx b kx ππ∞=∞=⎛⎫=++ ⎪⎝⎭=++∑∑23201111()d 2233a x x x x πππππππ--=+==⎰ 21()cos d k a x x kx xπππ-=+⎰()()22312sin cos sin 2cos sin xkx kx kx kx kx kx kx k k k πππππππππ---=+++-()241k k =- 21()sin d k b x x kx xπππ-=+⎰()()22312sin cos 2sin cos cos xkx kx kx kx kx kx kx k k k πππππππππ---=-+--()121k k +=- 所以 ()()1221142()1cos 1sin 3k k k f x kx kx kk π∞+=⎛⎫=+-+- ⎪⎝⎭∑222,,,x x x x x ππππππ⎧+-<<⎪==-⎨⎪=⎩令x π=代入上式得:()()()()122222211142141cos 1sin 1133k k k k k k kx kx k k kπππ∞∞+==⎛⎫⎛⎫+-+-=+-⨯-= ⎪ ⎪⎝⎭⎝⎭∑∑ 所以有222211112346π++++=得证5.(1)()cos ,(0,),(0)0,()0f x x x f f αππ=∈==作奇延拓,展为奇函数(sin 函数)1()sin k k f x b kx ∞==∑2cos sin d k b x kx x παπ=⎰2sin()sin()d 2k x k xx πααπ-++=⎰0111cos()cos()k x k x k k ππααπαα--⎡⎤=-++⎢⎥-+⎣⎦()()111cos cos 1cos cos 1k k k k παππαππαα--⎡⎤=-+-⎢⎥-+⎣⎦12221(1)cos ()k k k αππα+⎡⎤=+-⎣⎦- 12212()1(1)cos sin ,0()k k kf x kx x k απππα∞+=⎡⎤∴=+-<<⎣⎦-∑6. (1)2cos(/),(0,/2)(),(0)0,()00,(,)lx l x l f x f f l x l π∈⎧''===⎨ ∈⎩ 作偶延拓,展为偶函数(cos 函数)01()cos k k k x f x a a l π∞=⎛⎫=+ ⎪⎝⎭∑/2/200002111cos d cos d sin 2l l l x x x a x x l l l l l πππππ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰ /202cos cos d l k x k x a x l l l ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⎰所以要讨论k =1的情况/221021cos d 2l x a x l l π⎛⎫== ⎪⎝⎭⎰ /202cos cos d l k x k x a x l l l ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⎰/202111cos cos d 2l k k x x x l l l ππ⎡+-⎤⎛⎫⎛⎫= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰ /211111sin sin 11l k k x x k l k l πππ⎡+-⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥+-⎝⎭⎝⎭⎣⎦11111sin sin 1212k k k k πππ⎡+-⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥+-⎝⎭⎝⎭⎣⎦120,212(1),2(41)m k m k m m π+ =+⎧⎪=-⎨ =⎪-⎩121112(1)2()cos cos ,02(41)m m x mf x x x l l m l ππππ+∞=-∴=++<<-∑ (2)()(1/),(0,),(0)0,()0f x a x l x l f f l ''=-∈==作偶延拓,展为偶函数(cos 函数)01()cos k k k x f x a a l π∞=⎛⎫=+ ⎪⎝⎭∑002(1/)d 22l aa a x l x l =-=⎰ 02(1)cos d l k x k x a a x l l l π⎛⎫=- ⎪⎝⎭⎰ 202221sin cos l a l k k k x x x l l k l l l ππππ-⎛⎫=+ ⎪⎝⎭()222202211421(21)k k n a a k n k n ππ=⎧⎪⎡⎤=--=⎨⎣⎦=+⎪+⎩220421()cos ,02(21)n a a n f x x x l n lππ∞=+∴=+<<+∑8.矩形波()f x 在(/2,/2)T T -这个周期上可以表示为0,/2/2(),/2/20,/2/2T x f x H x x T ττττ-<<-⎧⎪=<<-⎨⎪<<⎩试将它展为复数形式的傅立叶级数解:因为()f x 在(/2,/2)T T -上满足狄氏定理,可以展开为复数形式的傅立叶级数 又 2l T =2()k k ix ix lTkkk k f x c ec eππ∞∞=-∞=-∞==∑∑22/2/2/2/211()d d k k T i x i x T Tk T c f x e x He x T T ππττ--==⎰⎰ 2/2/22k ixTH T e T i k πττπ-⎛⎫=⎪-⎝⎭sin 2k k i i TT H e e H k k i k T πτπτπτππ-⎛⎫- ⎪== ⎪ ⎪⎝⎭当k =0时,/2/2/2/211()d d T k T H c f x x H x T T Tτττ--===⎰⎰ 2211()sin sin k k i x i x T Tk k H H k H k f x e e T k T k T ππτπτπτππ-∞=-∞=∴=++∑∑*****************************************************************3.把下列脉冲()f t 展开为傅立叶积分0,(),0,00,t T f t h T t h t T t T⎧⎪<-⎪⎪=--<<⎨⎪<<⎪>⎪⎩解:在(,)t ∈-∞∞,()f t 满足狄氏条件,且绝对可积,所以()f t 可以展开为付氏积分。

数学物理方法姚端正CH3 作业解答

数学物理方法姚端正CH3 作业解答
α ln(1+ z )
= ∑ ak z k , 其中, ak =
k =0

f ( k ) (0) k!
① ②
f '( z) =
α α ln(1+ z ) α e = f ( z) 1+ z 1+ z

f ' (0) = α
同时由①式有: (1 + z ) f ' ( z ) = αf ( z ) 将②式两边再对 z 求导: (1 + z ) f ' ' ( z ) + f ' ( z ) = αf ' ( z )
∞ 1 ∞ 1 1 1 1 1 1 = = ⋅( = )= ∑ ∑ k k +1 z ( z + 1) − 1 z + 1 1 − 1 z + 1 k = 0 ( z + 1) k = 0 ( z + 1) z +1
其中,
1 1 1 1 1 ∞ ( z + 1)k ∞ ( z + 1) k = = ⋅ = ⋅∑ = ∑ k +1 1 − z 2 − ( z + 1) 2 1 − z + 1 2 k = 0 2 k k =0 2 2 f ( z) =
k →∞
lim |
k + ak |= 1 ( k + 1) + a k +1
若 | a |> 1 ,则
lim |
罗比塔法则 k + ak k ( k − 1) a k − 2 1 + ka k −1 罗比塔法则 1 = = | lim | | lim | |= k +1 k k −1 → ∞ → ∞ k k ( k + 1) + a 1 + (k + 1)a ( k + 1) ka |a|

数理方法习题数理方法习题讲解

数理方法习题数理方法习题讲解

u ( x , y ) = ∑ (C n e
n =1
nyπ a
+ Dn e
nyπ a
nπ x ) sin a
PDF created with FinePrint pdfFactory trial version
∴ lim u = 0 ∴ C n = 0
y →∞

l 2 2l (2n + 1)π Bn = ⋅ v0 sin ξ dξ ∫ l (2n + 1)π a 0 2l 2v0l = = (n + 1 ) 2 π 2 a 2
PDF created with FinePrint pdfFactory trial version
Tn = Cn e

n 2π 2 a 2 l
2
t
u ( x, t ) = ∑ Bn e
n =1



n 2π 2 a 2 l2
t
nπ x ⋅ sin l
nπ bx(l − x ) ∴ u ( x, 0) = ∑ Bn ⋅ sin x= 2 l l n =1 2 l bξ (l − ξ ) nπ Bn = ∫ sin ξ dξ = = 2 0 l l l
Z = ∑ An cos λx + Bn sin λx
nπ Z (a ) = 0 ⇒ sin λ a = 0 ⇒ λ = a ∞ nπ Z ( x ) = ∑ Bn sin x a n =1 Z (0) = 0 ⇒ An = 0 n = 1, 2

Yn = An′e

nyπ a
+ Bn′e


nyπ a
8b π 3 (2 R + 1) 3 ( n = 2 k + 1) = 0 ( n为 偶 数 )

概率论与数理统计习题及答案----第3章习题详解

概率论与数理统计习题及答案----第3章习题详解

概率论与数理统计习题及答案----第3章习题详解习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}.【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12(2) 由定义,有(,)(,)d d yx F x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3){01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e)0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰ 5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3)11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y<<=⎰⎰⎰⎰如图 1.542127d (6)d .832x x y y =--=⎰⎰(4)24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y+≤+≤=⎰⎰⎰⎰如图b 240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他所以(,),()()XY f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他.(2)5()(,)d d 25e d d y y xDP Y X f x y x y x y-≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e,0,0,(,)(,)0,x y x yF x yf x yx y-+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X,Y)的概率密度为f(x,y)= 4.8(2),01,0,0,.y x x y x-≤≤≤≤⎧⎨⎩其他求边缘概率密度.【解】()(,)dXf x f x y y+∞-∞=⎰x24.8(2)d 2.4(2),01,=0,.0,y x y x x x⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰12y4.8(2)d 2.4(34),01,=0,.0,y x x y y y y⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图题9图9.设二维随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<-.,0,,其他e yxy求边缘概率密度.【解】()(,)dXf x f x y y+∞-∞=⎰e d e,0,=0,.0,y xxy x+∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰e d e,0,=0,.0,y yxx y y--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧≤≤.,0,1,22其他yxycx(1)试确定常数c;(2)求边缘概率密度.【解】(1)(,)d d(,)d dDf x y x y f x y x y+∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c==⎰⎰得214c=.(2) ()(,)dXf x f x y y+∞-∞=⎰212422121(1),11,d840,0,.xx x xx y y⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰5227d,01,420,0,.yyx y x y y-⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他11.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<.,0,10,,1其他xxy求条件概率密度f Y|X(y|x),f X|Y(x|y).题11图【解】()(,)dXf x f x y y+∞-∞=⎰1d2,01,0,.xxy x x-⎧=<<⎪=⎨⎪⎩⎰其他111d1,10,()(,)d1d1,01,0,.yY yx y yf y f x y x x y y-+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y XXy xf x yf y x xf x⎧<<⎪==⎨⎪⎩其他|1,1,1(,)1(|),1,()10,.X YYy xyf x yf x y y xf y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y.(1)求X与Y的联合概率分布;(2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表 345 {}i P X x =1 3511C 10=3522C 10= 3533C 10= 610 2 0 3511C 10=3522C 10= 310 30 02511C 10=110{}i P Y y =110310610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立? 【解】(1)X 和Y 的边缘分布如下表2 5 8P {Y=y i }YX XYX Y0.4 0.15 0.30 0.350.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率. 【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他;21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩g 独立其他题14图(2) 方程220aXa Y ++=有实根的条件是 2(2)40X Y ∆=-≥故X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}ZXF z P Z z P z Y =≤=≤(1) 当z ≤0时,()0ZF z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zxy zF z x y y x x y x y +∞≥==⎰⎰⎰⎰33610231010=d 2z zy yzy +∞⎛⎫-=⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y xx y x y +∞≥==⎰⎰⎰⎰336231010101=d 12y yzy z +∞⎛⎫-=- ⎪⎝⎭⎰即11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<g g g44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ==17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,…. 证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数, 所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki k i n i k i n k ii kk n ki k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn,Y =μ1′+μ2′+…+μn ′,X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.19.设随机变量(X ,Y )的分布律为0 1 2 3 4 50 1 2 30 0.01 0.03 0.05 0.07 0.090.01 0.02 0.04 0.05 0.06 0.080.01 0.03 0.05 0.05 0.05 0.060.01 0.02 0.04 0.06 0.06 0.05 (1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑X Y{3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑(2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤= 1{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑0,1,2,3,4,5i =所以V 的分布律为V =max(X ,Y ) 0 12345P 0 0.04 0.16 0.28 0.24 0.28(3){}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k i k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是 U =min(X ,Y ) 0 1 2 3 P0.28 0.30 0.25 0.17 (4)类似上述过程,有W =X +Y 0 1 2345678P0 0.00.00.10.10.20.10.10.02 63 94 9 25 20.雷达的圆形屏幕半径为R,设目标出现点(X,Y)在屏幕上服从均匀分布.(1)求P{Y>0|Y>X};(2)设M=max{X,Y},求P{M>0}.题20图【解】因(X,Y)的联合概率密度为22221,,(,)π0,.x y Rf x y R⎧+≤⎪=⎨⎪⎩其他(1){0,}{0|}{}P Y Y XP Y Y XP Y X>>>>=>(,)d(,)dyy xy xf x yf x yσσ>>>=⎰⎰⎰⎰π2π/405π42π/401d dπ1d dπRRr rRr rRθθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y>=>=-≤131{0,0}1(,)d1.44xyP X Y f x yσ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,求(X,Y)关于X 的边缘概率密度在x=2处的值为多少?题21图【解】区域D的面积为22e e0111d ln 2.S x xx===⎰(X,Y)的联合密度函数为211,1e,0,(,)20,.x yf x y x⎧≤≤<≤⎪=⎨⎪⎩其他(X,Y)关于X的边缘密度函数为1/211d,1e,()220,.xXy xf x x⎧=≤≤⎪=⎨⎪⎩⎰其他所以1(2).4Xf=22.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X 和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处.y 1 y 2 y 3 P {X =x i }=p i x 1 x 21/8 1/8P {Y =y j }=p j 1/6 1【解】因21{}{,}jjiji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+==从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}ijiiP X x P Y y P X x Y y =====g ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y === 同理21{},2P Y y == 223{,}8P X x Y y ===YX又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故1y 2y 3y {}i iP X x P ==1x 124 18 112 14 2x18 38 14 34{}j jP Y y p ==161213123.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.YX【解】(1){|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=L .(2){,}{}{|}P X n Y m P X n P Y m X n ======ge C (1),,0,1,2,.!mmn mnnp p n m n n n λλ--=-≤≤=g L24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩推得1{max{,}1}9P X Y ≤=.26. 设二维随机变量(X ,Y )的概率分布为-1 01-1 0 1a 00.20.1 b0.20 0.1c其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值;XY(2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4.由()0.2E X =-,可得0.1a c -+=-.再由{0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===. (2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z -2 -1 01 2P 0.2 0.1 0.30.3 0.1(3)====++=++=. {}{0}0.10.20.10.10.20.4 P X Z P Y b。

《概率论与数理统计》 韩旭里 谢永钦版 习题三及答案

《概率论与数理统计》 韩旭里 谢永钦版 习题三及答案

习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,434636F F F F −−+ππππππsin sin sin sin sin 0sin sin 0sin4346361).4=−−+=i i i i题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+−.,0,0,0,)43(其他y x A y x e 求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+−∞−∞===∫∫∫∫得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v −∞−∞=∫∫(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x −+−−⎧⎧−−>>⎪==⎨⎨⎩⎪⎩∫∫其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y −+−−=<≤<≤==−−≈∫∫5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<−−.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞−∞−∞=−−==∫∫∫∫故 18R = (2) 13{1,3}(,)d d P X Y f x y y x −∞−∞<<=∫∫130213(6)d d 88k x y y x =−−=∫∫ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=∫∫∫∫如图1.542127d (6)d .832x x y y =−−=∫∫(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=∫∫∫∫如图b240212d (6)d .83xx x y y −=−−=∫∫题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>−.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y −⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y i 独立5515e 25e ,00.20,0.20,0,y y x y −−⎧⎧×<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y −≤≤=∫∫∫∫如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x−==−+≈∫∫∫7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>−−−−.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y −+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x −≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞−∞=∫x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧−−≤≤⎪=⎨⎨⎩⎪⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫12y4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧−⎧−+≤≤⎪=⎨⎨⎩⎪⎩∫其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<−.,0,0,其他e y x y 求边缘概率密度. 【解】()(,)d X f x f x y y +∞−∞=∫e d e ,0,=0,.0,y x x y x +∞−−⎧⎧>⎪=⎨⎨⎩⎪⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫0e d e ,0,=0,.0,yy x x y y −−⎧⎧>⎪=⎨⎨⎩⎪⎩∫其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞−∞−∞∫∫∫∫如图2112-14=d d 1.21xx cx y y c ==∫∫得 214c =. (2) ()(,)d X f x f x y y +∞−∞=∫212422121(1),11,d 840,0,.x x x x x y y ⎧⎧−−≤≤⎪⎪==⎨⎨⎪⎪⎩⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫5227d ,01,20,0, .x y x y y ⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y 求条件概率密度f Y |X (y |x ),f X |Y(x |y ).题11图【解】()(,)d X f x f x y y +∞−∞=∫1d 2,01,0,.xxy x x −⎧=<<⎪=⎨⎪⎩∫其他 111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y −+∞−∞⎧=+−<<⎪⎪⎪===−≤<⎨⎪⎪⎪⎩∫∫∫其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1,1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪−⎪⎪==−<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===×=≠===i 故X 与Y 不独立 (1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立?(2) 因{2}{0.4}0.20.8P X P Y ===×i 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立. 14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>−.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y −⎧>⎪==⎨⎪⎩其他. 故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y −⎧<<>⎪=⎨⎪⎩i 独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y Δ=−≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=∫∫21/2001d e d 21(1)(0)]0.1445.x y x y−==Φ−Φ=∫∫15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a ) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==∫∫∫∫ 33610231010=d 2z zy yzy +∞⎛⎞−=⎜⎟⎝⎠∫题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b ) 3366222210101010()d d d d zy Z xy zF z x y y x x y x y +∞≥==∫∫∫∫336231010101=d 12y y zy z +∞⎛⎞−=−⎜⎟⎝⎠∫即 11,1,2(),01,20,.Z z z zf z z ⎧−≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202), 从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥i 之间独立34{180}{180}P X P X ≥≥i 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =−<−<−<−<i i i44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡−⎤⎛⎞=−<=−Φ⎜⎟⎢⎥⎝⎠⎣⎦=−Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=−ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====−==∪∪ ∪ 于是0{}{,},ik P Z i P X k Y i k X Y =====−∑相互独立{}{}ik P X k P Y i k ===−∑i()()ik p k q i k ==−∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====−∑00202(){}2ki ki n i k i n k ii kk n ki k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =−−−+=−=−===−⎛⎞⎛⎞=⎜⎟⎜⎟−⎝⎠⎝⎠⎛⎞⎛⎞=⎜⎟⎜⎟−⎝⎠⎝⎠⎛⎞=⎜⎟⎝⎠∑∑∑i方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则 X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤=10{,}{,},i ik k P X i Y k P X k Y i −=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为V =max (X ,Y ) 0 1 2 3 4 5 P 00.04 0.16 0.28 0.24 0.28(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑ 0,1,2,3,i =于是U =min (X ,Y ) 0 1 2 3 P0.28 0.30 0.25 0.17(4)类似上述过程,有W =X +Y 0 1 2 3 4 5 6 7 8 P0.02 0.06 0.13 0.19 0.24 0.19 0.12 0.0520.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y>X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=∫∫∫∫π2π/405π42π/401d d π1d d πRR r rR r r R θθ=∫∫∫∫3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=−≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=−≤≤=−=−=∫∫21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===∫(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d 1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩∫其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和x 2 1/8P {Y =y j }=p j 1/6 1【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===−= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====i ,从而11111{}{,}.624P X x P X x Y y =×==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1jj P Y y ===∑,故3111{}1623P Y y ==−−=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====−===−=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,mmn mn P Y m X n p p m n n −===−≤≤= .(2) {,}{}{|}P X n Y m P X n P Y m X n ======ie C (1),,0,1,2,.!mm n mnnp p n m n n n λλ−−=−≤≤=i 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎟⎟⎠⎞⎜⎜⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤−=+≤−=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤−+≤−0.3(1)0.7(2).F u F u =−+−由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u ′′′==−+−0.3(1)0.7(2).f u f u =−+−25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= −0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =−,可得0.1a c −+=−.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为−2,−1,0,1,2,{2}{1,1}0.2P Z P X Y =−==−=−=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =−==−=+==−=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===−=+==+==−=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z −2 −1 0 1 2 P0.2 0.1 0.3 0.3 0.1(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.。

数理方法习题解

数理方法习题解

数学物理方法作业解答:习题1.1P6 .1下列式子在复平面上具有这样的意义 (2) | z-a |= | z-b | 解:| z-a | 表示z 到a 点的距离,| z-b |表示b 点的距离 即a 与b 的连线的垂直平分线。

(3) Re(z) > 12解:Re z = x 有 x >1 2Re z > 12表示坐标x 大于12的一切点即x=12的右边平面(8) Re (1z) = 2解:因为z = x+iy所以Re(1z)=Re(1x+iy)=Re(x-iyx2+y2)=xx2+y2=2 得x2+y2- x2=0 即(x-14)2+y2=116=(14)2所以Re(1z)为以(14,0)为圆心,以14为半径的圆P6. 2把下列复数代数式,三角式和指数式几种形式表示出来(1)i解:i = cos(π2)+isin(π2)=eiπ2(2)-1解:-1= cos(π)+isin(π)=e iπ(3) 1+i 23解:1+i 23 =2(cosπ3+isinπ3)=2eiπ3(4)1-cosα+isinα解:1-cosα+isinα=ρ(cosφ+isinφ)= ρe iφ其中ρ=2(1-cosα)2+sinα= 2sin(α2)Φ =arctgsinα1-cosα= arctg(ctgα2)原式=2sin α2[cos arctg(ctgα2)+isin arctg(ctgα2)]=2sin α2eiarctg(ctgα2)(5)z3解:z3 =(x+iy)3 =(x3-3xy2) +i(3x2y-y3) ρ3e i3φ=ρ3(cos3φ+isin3φ)其中ρ=2x2+y2φ =arctgyx(7) 1-i1+i=(1-i)2(1-i)(1+i)=- i =cos3π2+isin3π2=e(i3π2)3.计算下列数值P6.3(1). 2a+ib解:x+iy=2a+ib →(x+iy)2=a+ibX2-y2+i2xy=a+ib得到:{ X2-y2=a →4 X44a X2-b2=0 →x2=a+2a2+b222xy=b } →4y4+4ay2-b2=0→ y2=-a+2a2+b22所以x=+2222a+2a2+b2=+Ay =+2222-a+2a2+b2=+B2a+ib = A+iB →-A-iB →A-iB →-A+iB(2) 3 i解:3i =3e i(π2+2nπ)=e i(π6+2nπ3)=→ e i π6(n=0)→ e i 5π6(n=1)→ e i 3π2(n=2)(3) i i解:i i =[ e i(3π2+2nπ)]i = e-(π2+znπ)(4) ii =ie i(π2+znπ)=π2+znπ(5) cos 5φ解:cos 5φ =Re(cos 5φ+i sin 5φ)=Re(cos 5φ+i sin 5φ)5=Re(cos 5φ+5 cos 4φ(i sin φ)+10 cos 3φ(i sin φ)2+10 cos 2φ(i sin φ)3+10 cos φ(i sin φ)4+(i sin φ)5)= cos 5φ-10cos3φsin2φ+5cosφsin4φ(7) cos φ + cos2φ +cos3φ +.....cosnφ解:原式=Re(e iφ+ e i2φ+ e i3φ+ e i4φ...... e inφ)=Re 1- e inφ1- e iφe iφ→括号中为等比数列,其前n项和为:e iφ1- e inφ1- e iφ=e-iφ2(1- einφ)e-iφ2(1- eiφ)e iφ=e-iφ2- ei(nφ-φ2)e-iφ2- eiφ2e iφφ2=e-iφ2- ei(nφ-φ2)2i12i(e-iφ2- eiφ2e iφ=e-iφ2+ei(nφ-φ2)2i sinφ2e iφ= -e iφ2+ei(nφ+φ22i sinφ2=e i(nφ+φ2) -e iφ22i sinφ2e i(nφ+ φ2)=cos(nφ+φ2)+isin(nφ+φ2)e i φ2=cosφ2+isinφ2故上式=[cos(nφ+φ2)- cosφ2]+i[sin(nφ+φ2)- sinφ2]2i sinφ2=[sin(nφ+φ2)- sinφ2]-i[cos(nφ+φ2)- cosφ2]2 sinφ2→Re 1- e in φ 1- ei φ e i φ=sin(n φ+φ 2 )- sin φ2 2 sin φ 2(8) sin φ + sin2φ +sin3φ +.....+sinn φ 解:原式=Im(e i φ+ ei2φ+ ei3φ+ …..ein φ)=cos φ 2 - cos(n φ+φ 2 )2 sin φ 2习题1.2P8: 验证1.2.11-1.2.14式(1)si (2)c()()(3)|sin |111sin ()()222iz izi x iy i x iy y ix y ixz z e ee e e e e e ii i-+-+--=⎡⎤=-=-=-⎣⎦ 证明:方法一而且)()yy ix ixy ix y ixy ix y ixe e e e e e e e e e e ------+-=-+-(e ① )()y yixix y ix y ix yixyixe e ee e e e e e e e-------+=+--(e②①+②得 )())()2()y y ix ixyyixixyix y ixe e ee e eee e e------+-+-+=-(e(e1111sin 2())())()2222yix y ixy y ix ix y y ix ix z e e e ee e e e e e i i ------⎡⎤∴=⋅⋅-=⋅+-+-+⎣⎦(e (e 1111)())())sin )cos 2222y y ix ix y y ix ix y y y y e e e e e e e x i e x i i ------⎡⎤⎡⎤=+-+-+=+--⎣⎦⎢⎥⎣⎦(e (e (e (e|sin |z ∴==方法二()()111sin ()()()22211(cos sin )(cos sin )(cos (221((2izizi x iy i x iy yix y ixy y y y y yy y y y z e eeeee e ei iix i x e x i x e e e x i e e x i i e e x i e e x -+-+-------=-=-=-⎡⎤⎡⎤=+--=-++⎣⎦⎣⎦⎡⎤=+--⎣⎦ ))sin )sin )cos|sin |z ∴==()()(4)|cos |111cos ()()222izizi x iy i x iy y ix y ix z z e ee e e e e e -+-+--=⎡⎤=+=+=+⎣⎦ 证明:方法一而且)()yy ix ixy ix y ixy ix y ixe e e e e e e e e e e ------++=+++(e ① )()y yixix yixyix yixyixe e ee e e e e e e e--------=--+(e②①+②得 )())()2()yyixixyyixixyix y ixe e ee e eee e e------+++--=+(e(e1111cos 2())())()22221111)())())cos )sin 2222y ix y ix y y ix ix y y ix ixy y ix ix y y ix ix y y y y z e e e e e e e e e e e e e e e e e x i e x ------------⎡⎤∴=⋅⋅+=⋅+++--⎣⎦⎡⎤⎡⎤=+++--=++-⎣⎦⎢⎥⎣⎦(e (e (e (e (e (e|cos |z ∴==方法二()()111cos ()()222izizi x iy i x iy y ix y ix z e ee e e e e e -+-+--⎡⎤=+=+=+⎣⎦11(cos sin )(cos sin )(cos (22y y y y y yx i x e x i x e e e x i e e x ---⎡⎤⎡⎤=++-=++-⎣⎦⎣⎦))sin|cos |z ∴==2(5)z izeeπ+=22(cos 2sin 2)z iziz zee ee i eππππ+==+=证明:(6)(2)sh z i sh π+=z2(2)2211(2)()()22z iz i z iz ish z i eee ee eπππππ+-+--+=-=-证明:1()2z ze e-=-=sh z(7)(2)ch z i π+=ch z2(2)2211(2)()()22z iz i z iz iz i eee ee eπππππ+-+--+=+=+证明:ch 1()2z ze e-=+=ch zP82.计算下列数值。

魏宗舒版《概率论与数理统计教程》第三版_课后习题

魏宗舒版《概率论与数理统计教程》第三版_课后习题

三、回归方程和回归系数的显著性检验
1 . 回归方程的显著性检验
检验多元线性回归方程是否显著,就是检验y与x1,x2,…,xp, 中的某些自变量之间是否有较密切的线性关系。检验假设为
H0:β1=β2=…=βp=0
SR为回归平方和 S R ( yˆi y)2
i
Se为剩余平方和 Se ( yi yˆi ) 2
有效的回归方程。就要检验xj对y的影响是否显著。统计假设为
H0 j : βj=0,1≤j≤p
当假设H0成立时,统计量
Fj

Se
b2j /(n
/ c jj p 1)
服从自由度(1, n-p-1)的F的分布。
若Fj>F,则拒绝假设H0,认为xj是重要的,应保留在回归 方程中;若Fj≤F ,则认为变量xj可以从回归方程中剔除。
不难证明,当一元线性回归的基本假定成立时,统计量
t
y0 yˆ0
~ t(n 2)
S 1 1 (x0 x )2
n
S xx
其中,S Se /(n 2) 为σ的估计。
因此,得到的置信度为1-α的预报区间为


yˆ 0

t
2
S
1
1 n

(x0 x)2 S xx

实际上,对任何一组数据都可 以用上述方法配一条直线。因此, 必须判断y与x 是否真的存在线性 相关关系。
二、回归问题的统计检验
欲检验假设 H0: β1= 0
总平方和 Syy ( yi y)2
回归平方和 SR i ( yˆi y)2 b1Sxy
i
剩余平方和 Se ( yi yˆi )2

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案习题二1■将一硬币抛掷二次,以X表示在二次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和丫的联合分布律.【解】X和丫的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和丫的联合分布律如表:3•设二维随机变量(X, F)的联合分布函数为求二维随机变量(x, y)在长方形域内的概率.4 6 3J【解】如图叫眈怎<今空^求:(1)常数/;F (x, y)sin xsiny,0,0"岁詣其他.・Tt ■兀・兀■兀=sin —_sin ——sin —_sin ——4 3 4 6二#(dl).斗sin OLfeinK ■八■兀—+sinIksin —3 6JT7说明:也可先求出密度函数,再求概率。

4•设随机变量(X, Y)的分布密度f(兀,y)j e-(3.r+4y)x >0, y >0, 其他.(2) 随机变量(X, Y)的分布函数;(3) P{0 «1, 0之<2}.【解】(1)由 f(x,y)dxdy° °Ae(3x4y)dxdy £ 1得A = 12(2) 由定义,有y xF (x, y)f (u, v)dudvy y(3u 4v)12e dudvo o0,(3) P{0 X 1,0 Y 2}P{0 X 1,0 Y 2}5. 设随机变量(X, Y )的概率密度为(1 e 3x )(1 e 4y ) y 0,x 0,0,其他212e (3x 04y)dxdy(1 e 3)(1 e 8)0.9499.f(x ,y)=k(6 x y), 0,x 2,2 y 4,其他.(1)确定常数k ;(2)求 P{X v 1, Y v 3};(3)求 P{X<1.5};(4)求 P{X+Y W 4}.【解】(1)由性质有2 4f(x, y)dxdy ° 2 k(6 x y)dydx 8k 1,31-k(6 x y)dydx86.设X和丫是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为求:(1) X与Y的联合分布密度;(2)P{YN}.(2) P{X 1,Y 3} f (x, y)dydx(3)P{X(4)P{X1.5}x 1.5f (x, y)dxdy 如图 a f (x,y)dxdy1.5 4 10 dx -(6 x y)dy82732Y 4}Xf (x, y)dxdy如图 b f (x,y)dxdy(61 ) y)f Y( y)5e5y, y 0,0, 其他.【解】(1)因X 在(0, 0.2) 上服从均匀分布,所以X 的密度函数为f x (X)10 x 0.2,0.2,0,其他.而f/y)5e 5y , y 0,0,其他.所以f (x, y)X,丫独立 fx(x)gf Y (y)⑵ P(Y X) f (x, y)dxdy 如图 25e 5y dxdyy xD丄 0.2 5e 5y0,25e 5y, 0 x 0.2且 y 0, 0, 其他•0.2 0dx25e -5ydy0.2 5x0 ( 5e5)dx■1=e 0.3679.7.设二维随机变量(X, Y )的联合分布函数为F ( x ,y )(1 e 4x)(1 e 2y), x 0,y 0,0,其他.求(X ,Y )的联合分布密度2[解] f(x,y)x y8e(4x 2y), x 0,y 0,0, 其他.8.设二维随机变量(X, Y )的概率密度为f (x, y)=4.8y(2 x), 0 0,x 1,0 y x,其他.求边缘概率密度.【解】f x(x) f (x,y)dyx0 4.8y(2x)dy0,2.4X2(2 x), 0 x 1,0, 其他.f y(y) f (x,y)dx1=y4-8y(2x)dx 2.4y(3 4y y2), 0 y 1,0, 其他.,题8图9.设二维随机变量题9图X, Y)的概率密度为f (x, y) e y, 0 x y,0, 其他.求边缘概率密度.【解】f x(X) f (x, y)d yx0,e y dy xe , x 0,0, 其他.f Y(y) f (x,y)dxy e y dx0,ye x, y 0,0, 其他.y\i■v=xw p题10图10.设二维随机变量(X, Y)2f (x, y)= J试确定常数c;求边缘概率密度的概率密度为x2y 1,其他.(1)(2)【解】(1)f (x, y)dxdy如图Df (x,y)dxdy1 12-1dx x2cx ydy4c211.214f x(X) f(x,y)dy1 212 , xydyx 40, 212。

《概率论和数理统计》第三版-课后习题及答案解析.

《概率论和数理统计》第三版-课后习题及答案解析.

习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{Λ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22Λ=Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{Λ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i π (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ωπ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207ππx x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8φφ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论与数理统计第三__课后习题答案

概率论与数理统计第三__课后习题答案

习题一:写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{Λ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22Λ=Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{Λ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i π (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ωπ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207ππx x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8φφ;(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题三
一、选择题
1. 设C 为正向圆周11=−z , 则积分∫
=−−C dz z z )3)(1(1 【 】 (A ) ; (B ) ; (C ) 01i π; (D ) i π−。

2. 设C 为正向圆周 ,如果积分
3||=z ∫=C dz z f 0)(,
则=)(z f 【 】 (A) 21−z ; (B) 2)2(1−z ; (C) 21−−z z ; (D) 2)
2(1−−z z 。

3. 设C 为正向闭曲线,则以下曲线中,使积分∫=−−C
i dz z z π)3)(1(1的曲线C 是 【 】 (A )2
1||:=z C ; (B )1|1|:=−z C ; (C )1|3|:=−z C ; (D )。

4||:=z C 4. 设在简单闭曲线C 内解析,在C 上连续,在C 内,则有 【 】
)(z f 0z (A) dz z z z f dz z z z f C C ∫∫−=−2
0'20)(1)()()( ; (B) dz z z z f dz z z z f C C ∫∫−=−0'20)()()(; (C) dz z z z f dz z z z f C C ∫∫−=−0
0201!2)()()(; (D) dz z z z f dz z z z f C C ∫∫−=−0020)()()(。

5. 下列命题中,不正确的是 【 】 (A)积分
dz a
z r a z ∫=−−||1的值与半径的大小无关; (0r r >)(B) 1)(22<+∫C dz iy x ,其中C 为连接i −到i 的线段;
(C)若()f z 在0z 1<<内解析,且沿任何圆周:(0c z r r 1)=<<的积分等于零,
则()f z 在处解析;
0z =(D)设函数)(z g 在区域D 内有定义,且()()f z g z ′=,则在D 内()g z ′存在且解析。

二、填空题
1. 设c 为正向圆周3z =,则积分∫+C dz z z z |
|=____________________。

2. 设C 为正向圆周,则积分2||=z ∫=−C
dz z z ___________)1(sin 2。

3. 设曲线为由点到点的直线段,则积分 C )0,0()2,1(=∫C dz z 2。

4. 设为任意一条绕原点的正向简单闭曲线, C ∫
=C z
t dz z e t f 3)(,则__________)1(=′f 。

5. 设在内解析,在闭圆)(z f 1||<z 1||≤z 上连续,且1)0(',1)0(−==f f ,则积分
∫==++1||._______________)()]1(2[z z
dz z f z z
三、计算题
1. 计算积分z z z z I C z d )1(sin ||22∫=−=
,其中:(1)C 为正向圆周21||=z ;(2)C 为正向圆周。

2||=z 2. 设,计算积分 201322012321)(z z z z f ++++=L dz z z f z z ∫
=1||2011)()(。

3. 计算积分∫
−+C dz z z 22)
1)(1(1,其中:C 为曲线的正向。

)(222y x y x +=+4. 计算积分∫=−+2/3||2
2)2)(1(1z dz z z 。

5. 设,计算积分2||≠a ∫
=−=222sin z iz dz a z z e I 。

四、证明题
1. 设为单连通区域,, 在内除外均解析,且在的邻域内有界。

证明:D D z ∈0)(z f D 0z |)(|z f 0z 0)(=∫C
dz z f ,其中:C 为内任一包含的闭曲线。

D 0z 2. 设函数在上解析,且在)(z f 2||≤z 2||=z 上有|||)(|z z z f ≤−,证明:()81'≤f 。

3. 求积分∫=1||z z
dz z e 的值,从而证明定积分 cos 0
cos(sin )e d πθθθπ=∫。

4. 设函数在全平面上解析,且)(z f )(z f 有界,证明:为常数。

)(z f。

相关文档
最新文档