高二数学2.1.1椭圆及其标准方程
【课件】椭圆及其标准方程(第一课时)+课件高二上学期数学人教A版(2019)选择性必修第一册
由图3.1-3可知, 1 = 2 = , 1 = 2 = ,
令 = = 2 − 2
那么方程⑤就是
2
2
(
>
>0)
⑥
+
=1
2
2
2 = 2 − 2
思考3:为什么2 − 2 要用 2 表示?
简洁,美观,对称,和谐
(3)就一般情况而言,求曲线的方程有哪些步骤?
伸”?由此你能发现椭圆与圆之间的关系吗?
变式.如图,垂直轴,垂足为 ,点在的延长线上,且
3
= .当
2
点在圆 2 + 2 =4上运动时,求点的轨迹方程,并说明轨迹的形状.
相关点法
解:设 , , (0 ,0 ),
因为 (0 ,0 )在圆 2 + 2 =4上,所以02 +02 =4①
将方程④两边同除以2 (2
2
2
+ 2 2=1
−
>c>0,所以2 − 2
− 2 ),得 2
由椭圆的定义可知,2>2c>0,即
④
⑤
> 0.
思考1:为什么要用2,2c而不是 , c表示椭圆的定长与焦距?
为了使焦点和长轴端点的坐标都不出现分数形式
图3.1-3
思考2:观察图3.1-3,你能从中找出表示
因吗?如果本章我们用坐标法来研究圆锥曲线,大家能在回顾用坐
标法研究直线与圆的基础上,猜想本章研究的大致思路与构架吗?
明确:采用坐标法研究圆锥曲线的最大好处是可以程序化地、精确
地计算.
2.1.1 椭圆及其标准方程
高二
学科
数学
课题
2.1.1椭圆及其标准方程
编制人
刘良忠
审定人
高二数学备课组
知识目标
教学活动
基础知识—重点知
识—重难点知识
自学质疑—讨论领悟—展示分享—检测巩固—评价提升
1.掌握椭圆的定义,标准方程的两种形式及推导过程.
2.会根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程.
自学质疑
平面内与两个定点F1,F2的____________________
4、求适合下列条件的椭圆的标准方程.
(1)经过两点(2,-),;
(2)过点(,-),且与椭圆+=1有相同的焦点.
评价提升
(2)焦点在y轴上,且经过两个点(0,2)和(1,0).
类型三椭圆标准方程的识别
【例3】当3<k<9时,指出方程+=1表示的曲线.
检测巩固
1、椭圆+=1的焦点坐标为___________
2、椭圆+=1上一点P到一个焦点的距离为5,则P到另一个焦点的距离为______________
3、若方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是
3.对于一个椭圆的标准方程,怎样判断其焦点所在的坐标轴呢?
展示分享
【例1】1、到两定点F1(-4,0),F2(4,0)的距离之和等于8的点的轨迹是______
2、已知椭圆+=1(a>b>0),F1,F2是它的焦点.AB是过F1的直线与椭圆交于A、B两点,求△ABF2的周长.
(1)两个焦点的坐标分别是(-4,0)和(4,0),且椭圆经过点(5,0);
________的点的轨迹叫做椭圆.这两个定点叫做椭圆的_____________________叫做椭圆的焦距.
高二数学椭圆及其标准方程优质课教案
课题:椭圆及其标准方程一、教学目的学习椭圆的定义,驾驭椭圆标准方程的两种形式及其推导过程;能依据条件确定椭圆的标准方程,驾驭用待定系数法求椭圆的标准方程。
二、教学重点、难点(1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法与定义法求曲线方程。
(2)教学难点:椭圆标准方程的建立与推导。
三、教学过程(一)创设情境,引入概念1、动画演示,生活中的椭圆。
-天体运动轨道是椭圆,有些镜子做成椭圆形态。
2动画演示思索:什么是椭圆?怎样画椭圆?(二)试验探究,形成概念1、动手试验:学生分组动手画出椭圆。
试验探究:保持绳长不变,变更两个图钉之间的间隔,画出的椭圆有什么变更?思索:依据上面探究理论答复,椭圆是满意什么条件的点的轨迹?2、概括椭圆定义引导学生概括椭圆定义椭圆定义:平面内与两个定点21,F F 间隔的与等于常数(大于21F F )的点的轨迹叫椭圆。
老师指出:这两个定点叫椭圆的焦点,两焦点的间隔 叫椭圆的焦距。
思索:焦点为21,F F 的椭圆上任一点M ,有什么性质? 令椭圆上任一点M ,则有)22(22121F F c a a MF MF =>=+ 思索:1、定义中的常数为什么要大于焦距?2、若常数等于焦距,轨迹是线段3、若常数小于焦距,轨迹不存在 注: 定义是推断椭圆的方法定义是椭圆的一特性质(三)研讨探究,推导方程1、学问回忆:利用坐标法求曲线方程的一般方法与步骤是【学情预设】学生可能会建系如下几种状况:方案一:把F 1、F 2建在x 轴上,以F 1F 2的中点为原点; 方案二:把F 1、F 2建在x 轴上,以F 1为原点; 方案三:把F 1、F 2建在x 轴上,以F 2为原点;(学生视察椭圆的几何特征(对称性),如何建系能使方程更M2F1F简洁?) 经过比拟确定方案一. 2.推导标准方程.选取建系方案,让学生动手,尝试推导.按方案一:以过1F 、2F 的直线为x 轴,线段12F F 的垂直平分或线为y 轴,建立平面直角坐标系.设)0(221>=c c F F ,点),(y x M 为椭圆上随意一点,则 {}a MF MF M P 221=+=,∴ 得()()a y c x y c x 22222=++++-, (想一想:下面怎样化简?)(1)老师为打破难点,进展引导设问:我们怎么化简带根式的式子?对于本式是干脆平方好还是整理后再平方好呢?化简,得)()(22222222c a a y a x c a -=+-.(2)b 的引入.由椭圆的定义可知,c a 22>, ∴220a c ->. 让点M 运动到y 轴正半轴上(如图2),由学生视察图形直观获得a ,c 的几何意义,进而自然引进b ,此时设222c a b -=,于是得222222b a y a x b =+, 两边同时除以22b a ,得到方程:()222210x y a b a b+=>>(称为椭圆的标准方程).(3)建立焦点在y 轴上的椭圆的标准方程.要建立焦点在y 轴上的椭圆的标准方程,又不想重复上述图2繁琐的化简过程,如何做?方法:按步骤列出方程,利用两方程构造的异同(构造一样,只是字母x ,y 交换了位置),干脆得到方程()222210y x a b a b+=>>.图1 图34.归纳概括,驾驭特征.(1)椭圆标准方程形式:它们都是二元二次方程,左边是两个分式的平方与,右边是1;(2)椭圆标准方程中三个参数a , b ,c的关系:222c a b -=)0(>>b a ;(3)椭圆焦点的位置由标准方程中分母的大小确定. (四)归纳概括,方程特征1、视察椭圆图形及其标准方程,师生共同总结归纳(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;(2)椭圆标准方程形式:左边是两个分式的平方与,右边是1; (3)椭圆标准方程中三个参数a,b,c 关系:(4)椭圆焦点的位置由标准方程中分母的大小确定; (5)求椭圆标准方程时,可运用待定系数法求出a,b 的值。
人教版高中数学高二选修1-1 椭圆及其标准方程
2.1.1 椭圆及其标准方程问题导学一、椭圆的定义及应用活动与探究1(1)椭圆x 225+y 29=1上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A .5B .6C .4D .10(2)已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B中,若有两边之和是10,则第三边的长度为______.迁移与应用 设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列,则|AB |=______.椭圆的定义能够对一些距离进行相互转化,简化解题过程.因此,解题过程中遇到涉及曲线上的点到焦点的距离问题时,应先考虑是否能够利用椭圆的定义求解.椭圆上一点P 与椭圆的两焦点F 1,F 2构成的△F 1PF 2称为焦点三角形,解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识,对于求焦点三角形的面积,若已知∠F 1PF 2,可利用S =12ab sin C 把|PF 1||PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|及余弦定理求出|PF 1||PF 2|,而无需单独求出,这样可以减少运算量.二、椭圆的标准方程及应用活动与探究2求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为F 1(-4,0),F 2(4,0),并且椭圆上一点P 与两焦点的距离的和等于10;(2)焦点分别为(0,-2),(0,2),经过点(4,32); (3)经过两点(2,-2),⎝⎛⎭⎫-1,142.迁移与应用1.若方程x 25-k +y 2k -3=1表示焦点在x 轴上的椭圆,则k 的取值范围是__________.2.两焦点坐标分别为(3,0)和(-3,0)且经过点(5,0)的椭圆的标准方程为__________.(1)利用待定系数法求椭圆的标准方程的步骤可总结如下:①由焦点坐标确定方程是x 2a 2+y 2b 2=1(a >b >0),还是y 2a 2+x 2b2=1(a >b >0);②运用定义、平方关系等求出a ,b . (2)当焦点不确定时,可设方程为Ax 2+By 2=1(A >0,B >0,且A ≠B ),这样可以避免讨论.三、焦点三角形问题活动与探究3如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.迁移与应用已知P 是椭圆x 225+y 29=1上一点,F 1,F 2是椭圆的两个焦点,∠F 1PF 2=60°,求△F 1PF 2的面积.四、与椭圆有关的轨迹问题活动与探究4(1)已知圆x 2+y 2=9,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且PM →=2MP ′→,求点M 的轨迹.(2)已知在△ABC 中,|BC |=6,周长为16,那么顶点A 在怎样的曲线上运动?迁移与应用如图,在圆C :(x +1)2+y 2=25内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.解决与椭圆有关的轨迹问题,一般有两种方法: (1)定义法用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义.若符合椭圆的定义,则用待定系数法求解即可.(2)相关点法有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.用相关点法求轨迹方程的步骤:①设所求轨迹上的动点P (x ,y ),再设具有某种运动规律f (x ,y )=0上的动点Q (x ′,y ′);②找出P ,Q 之间坐标的关系,并表示为⎩⎪⎨⎪⎧x ′=φ1x ,y ,y ′=φ2x ,y ;③将x ′,y ′代入f (x ,y )=0, 即得所求轨迹方程. 答案: 课前·预习导学 【预习导引】1.距离之和 常数 两个定点 两焦点间的距离 |MF 1|+|MF 2|=2a预习交流1 (1)提示:当2a =|F 1F 2|时,点M 的轨迹是线段F 1F 2;当2a <|F 1F 2|时,点M 的轨迹不存在.(2)提示:B2.x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b2=1(a >b >0) F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c )a2=b2+c2预习交流2(1)提示:相同点:它们都有a>b>0,a2=b2+c2,焦距都是2c,椭圆上的点到两焦点距离的和均为2a.方程右边为1,左边是两个非负分式的和,并且分母不相等.不同点:两类椭圆的焦点位置不同,即焦点所在坐标轴不同,因此焦点坐标也不相同,焦点在x轴上的椭圆两焦点坐标分别为(-c,0)和(c,0),焦点在y轴上的椭圆两焦点坐标分别为(0,-c)和(0,c).当椭圆焦点在x轴上时,含x2项的分母大;当椭圆焦点在y轴上时,含y2项的分母大.(2)提示:534(4,0),(-4,0)课堂·合作探究【问题导学】活动与探究1(1)思路分析:求出a→|PF1|+|PF2|=2a>|F1F2|→求出P到另一个焦点的距离A解析:点P到椭圆的两个焦点的距离之和为2a=10,10-5=5.(2)思路分析:结合图形,利用定义求第三边.6解析:由已知a2=16,a=4.从而由椭圆定义得|AF1|+|AF2|=2a=8,|BF1|+|BF2|=2a=8,∴△AF1B的周长为|AF1|+|AB|+|BF1|=16.又知三角形有两边之和为10,∴第三边的长度为6.迁移与应用43解析:由椭圆定义知|AF2|+|AB|+|BF2|=4,又2|AB|=|AF2|+|BF2|,所以|AB|=43.活动与探究2思路分析:(1)由已知可得a,c的值,由b2=a2-c2可求出b,再根据焦点位置写出椭圆的方程.(2)利用两点间的距离公式求出2a ,再写方程;也可用待定系数法.(3)利用待定系数法,但需讨论焦点的位置.也可利用椭圆的一般方程Ax 2+By 2=1(A >0,B >0, A ≠B )直接求A ,B 得方程.解:(1)由题意可知椭圆的焦点在x 轴上,且c =4,2a =10, 所以a =5,b =a 2-c 2=25-16=3.所以椭圆的标准方程为x 225+y 29=1.(2)(方法一)因为椭圆的焦点在y 轴上, 所以可设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).由椭圆的定义知2a =(4-0)2+(32+2)2+(4-0)2+(32-2)2=12,所以a =6. 又c =2,所以b =a 2-c 2=42. 所以椭圆的标准方程为y 236+x 232=1.(方法二)因为椭圆的焦点在y 轴上, 所以可设其标准方程为y 2a 2+x 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧18a 2+16b 2=1,a 2=b 2+4,解得⎩⎪⎨⎪⎧a 2=36,b 2=32.所以椭圆的标准方程为y 236+x 232=1.(3)(方法一)若椭圆的焦点在x 轴上, 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由已知条件得⎩⎨⎧4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎨⎧1a 2=18,1b 2=14.所以所求椭圆的标准方程为x 28+y 24=1.同理可得:焦点在y 轴上的椭圆不存在.综上,所求椭圆的标准方程为x 28+y 24=1.(方法二)设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 将两点(2,-2),⎝⎛⎭⎫-1,142代入, 得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1,解得⎩⎨⎧A =18,B =14,所以所求椭圆的标准方程为x 28+y 24=1.迁移与应用1.(3,4) 解析:由已知得⎩⎪⎨⎪⎧5-k >k -3,k -3>0,解得3<k <4.2.x 225+y 216=1 解析:易知c =3,a =5,则b 2=a 2-c 2=16. 又椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 225+y 216=1.活动与探究3 思路分析:由余弦定理和椭圆定义分别建立|PF 1|,|PF 2|的方程,求出|PF 1|,|PF 2|后,再求△PF 1F 2的面积.解:由已知a =2,b =3, 所以c =a 2-b 2=4-3=1,|F 1F 2|=2c =2,在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|,① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|,② 将②代入①解得|PF 1|=65.∴12PF F S ∆=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335,即△PF1F2的面积是353.迁移与应用解:在椭圆x225+y29=1中,a=5,b=3,c=4,则|F1F2|=8,|PF1|+|PF2|=10.①由余弦定理,得|PF1|2+|PF2|2-2|PF1||PF2|·cos 60°=64.②①2-②得|PF1||PF2|=12.∴S=12|PF1|·|PF2|·sin 60°=12×12×32=33.活动与探究4(1)思路分析:先设出M的坐标(x,y),用x,y表示出点P的坐标代入圆方程即可.解:设点M的坐标为(x,y),点P的坐标为(x0,y0),则x0=x,y0=3y.因为P(x0,y0)在圆x2+y2=9上,所以x20+y20=9.将x0=x,y0=3y代入圆方程,得x2+9y2=9.即x29+y2=1.又y≠0,所以点M的轨迹是一个椭圆,且除去(3,0)和(-3,0)两点.(2)思路分析:利用椭圆的定义解决,最后要注意检验.解:由|AB|+|BC|+|AC|=16,|BC|=6,可得|AB|+|AC|=10>6=|BC|,故顶点A在以B,C为焦点,到两焦点距离的和等于10的一个椭圆上运动,且除去BC 直线与椭圆的两个交点.迁移与应用解:由题意知M 在线段CQ 上,从而有|CQ |=|MQ |+|MC |. 又M 在AQ 的垂直平分线上,连接AM ,则|MA |=|MQ |, ∴|MA |+|MC |=|CQ |=5>|AC |=2.∴M 的轨迹是以C (-1,0),A (1,0)为焦点的椭圆,且2a =5, ∴a =52,c =1,b 2=a 2-c 2=214.∴M 的轨迹方程为x 2254+y 2214=1,即4x 225+4y 221=1.当堂检测1.设P 是椭圆22=12516x y +上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( ) A .4 B .5 C .8 D .10 答案:D 解析:由椭圆定义知|PF 1|+|PF 2|=2a . ∵a 2=25,∴2a =10. ∴|PF 1|+|PF 2|=10.2.椭圆22=1167x y +的焦点坐标为( ) A .(-4,0)和(4,0) B .(0,)和(0) C .(-3,0)和(3,0) D .(0,-9)和(0,9)答案:C 解析:由已知椭圆的焦点在x 轴上,且a 2=16,b 2=7, ∴c 2=9,c =3.∴椭圆的焦点坐标为(-3,0)和(3,0).3.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .抛物线D .无法确定答案:A解析:由题意得|PF1|+|PF2|=2a(a为大于零的常数,且2a>|F1F2|),|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a.∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.4.已知P是椭圆22=12516x y+上一点,F1,F2为焦点,且∠F1PF2=90°,则△PF1F2的面积是______.答案:16解析:由椭圆定义知:|PF1|+|PF2|=2a=10,①又∵∠F1PF2=90°,∴|PF1|2+|PF2|2=|F1F2|2=4c2=36.②①2-②得|PF1|·|PF2|=32.∴S=12|PF1|·|PF2|=16.5.已知椭圆22=1259x y+上一点M到左焦点F1的距离为6,N是MF1的中点,则|ON|=______.答案:2解析:设右焦点为F2,连接F2M,∵O为F1F2的中点,N是MF1的中点,∴|ON|=12|MF2|.又∵|MF1|+|MF2|=2a=10,|MF1|=6,∴|MF2|=4,∴|ON|=2.。
1、2-1-1椭圆及其标准方程
选修1-1 2.1.1椭圆及其标准方程一、选择题1.(2008·上海)设P 是椭圆x 225+y 216=1上的点,若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10[答案] D[解析] ∵椭圆长轴2a =10,∴|PF 1|+|PF 2|=2a =10.∴选D.2.椭圆的两个焦点分别为F 1(-8,0),F 2(8,0),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为( )A.x 236+y 2100=1 B.x 2400+y 2226=1 C.x 2100+y 2361 D.x 220+y 212=1 [答案] C[解析] 由c =8,a =10,所以b =6.故标准方程为x 2100+y 236=1.所以选C. 3.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 的值为( )A .-1B .1 C. 5D .- 5[答案] B[解析] 椭圆方程5x 2+ky 2=5可化为:x 2+y 25k =1, 又∵焦点是(0,2),∴a 2=5k ,b 2=1,c 2=5k-1=4, ∴k =1.4.两个焦点的坐标分别为(-2,0),(2,0),并且经过P ⎝⎛⎭⎫52,-32的椭圆的标准方程是( ) A.x 210+y 26=1 B.y 210+x 26=1 C.x 294+y 2254=1 D.y 294+x 2254=1 [答案] A[解析] 设F 1(-2,0),F 2(2,0),设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由题意得, |PF 1|+|PF 2|=⎝⎛⎭⎫52+22+94+⎝⎛⎭⎫52-22+94=210=2a ,∴a =10, 又c =2,∴b 2=6,椭圆的方程为x 210+y 26=1. 5.已知方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .-9<m <25B .8<m <25C .16<m <25D .m >8 [答案] B[解析] 由题意得⎩⎪⎨⎪⎧ m +9>025-m >0m +9>25-m,解得8<m <25.6.椭圆mx 2+ny 2+mn =0(m <n <0)的焦点坐标是( )A .(0,±m -n )B .(±m -n ,0)C .(0,±n -m )D .(±n -m ,0)[答案] C[解析] 椭圆方程mx 2+ny 2+mn =0可化为x 2-n +y 2-m=1, ∵m <n <0,∴-m >-n ,椭圆的焦点在y 轴上,排除B 、D ,又n >m ,∴m -n 无意义,排除A ,故选C.7.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .射线D .直线 [答案] A[解析] ∵|PQ |=|PF 2|且|PF 1|+|PF 2|=2a ,又∵F 1、P 、Q 三点共线,∴|PF 1|+|PQ |=|F 1Q |=2a .即动点Q 在以F 1为圆心以2a 为半径的圆上. 8.AB 为过椭圆x 2a 2+y 2b2=1中心的弦,F (c,0)为椭圆的左焦点,则△AFB 的面积最大值是( )A .b 2B .bcC .abD .ac[答案] B [解析] ∵S △ABF =S △AOF +S △BOF =12|OF |·|y A -y B |, 当A 、B 为短轴两个端点时,|y A -y B |最大,最大值为2b .∴△ABF 面积的最大值为bc .9.已知椭圆的方程为x 28+y 2m 2=1,焦点在x 轴上,其焦距为( ) A .28-m 2B .222-|m |C .2m 2-8D .2|m |-2 2 [答案] A[解析] 因为焦点在x 轴上,所以a 2=8,b 2=m 2,因此c =8-m 2,焦距2c =28-m 2.10.(2009·陕西文,7)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案] C[解析] 本小题主要考查椭圆的基本概念和充要条件的概念.方程mx 2+ny 2=1表示焦点在y 轴上的椭圆⇔1n >1m >0⇔m >n >0.故选C. 二、填空题11.设椭圆x 2m 2+y 24=1过点(-2,3),那么焦距等于________. [答案] 4 3[解析] ∵椭圆x 2m 2+y 241过点(-2,3), ∴m 2=16,∴c 2=16-4=12,2c =4 3.12.△ABC 两个顶点坐标是A (-4,0)、B (4,0),周长是18,则顶点C 的轨迹方程是________.[答案] x 225+y 29=1(y ≠0) [解析] 设C 的坐标为(x ,y ),由题意知|CA |+|CB |=18-8=10>|AB |=8,由椭圆定义得点C 的轨迹是以A 、B 为焦点,长轴长为10的椭圆.∴a =5,c =4,b =3.∴顶点C 的轨迹方程为x 225+y 29=1(y ≠0). 13.已知点P 是椭圆x 25+y 24=1上一点,以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.[答案] (152,1)或(152,-1)或(-152,1)或(-152,-1) [解析] 设P 点的纵坐标为y p ,则S △PF 1F 2=12×|F 1F 2|×|y p |=1,由c 2=a 2-b 2得c 2=5-4=1,所以c =1,所以12×2×|y p |=1,所以|y p |=±1,代入椭圆方程求得横坐标. 14.椭圆x 212+y 23=1的两个焦点为F 1、F 2,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 1|是|PF 2|的______________倍.[答案] 7[解析] 如图,PF 1的中点M 在y 轴上,O 为F 1F 2的中点,∴OM ∥PF 2,∴PF 2⊥x 轴,|PF 2|=b 2a =32, |PF 1|+|PF 2|=2a =43,∴|PF 1|=43-32=723=7|PF 2|. 三、解答题15.求焦点在坐标轴上,且经过A (-3,-2)和B (-23,1)两点的椭圆的标准方程.[解析] 设所求椭圆方程为:Ax 2+By 2=1(A >0,B >0) 将A (-3,-2)和B (-23,1)的坐标代入方程得⎩⎪⎨⎪⎧ 3A +4B =112A +B =1,解得⎩⎨⎧A =115B =15. ∴所求椭圆的标准方程为:x 215+y 25=1. 16.若一个动点P (x ,y )到两个定点A (-1,0),A ′(1,0)的距离之和为定值m ,试求点P的轨迹方程.[解析] 因为|P A |+|P A ′|=m ,|AA ′|=2,|P A |+|P A ′|≥|AA ′|,所以m ≥2.①当m =2时,P 点的轨迹就是线段AA ′,所以其方程为y =0(-1≤x ≤1).②当m >2时,由椭圆的定义知,点P 的轨迹是以A ,A ′为焦点的椭圆,因为2c =2,2a =m ,所以a =m 2,c =1,b 2=a 2-c 2=m 241,所以点P 的轨迹方程为x 2m 24+y 2m 24-1=1. 17.求以椭圆9x 2+5y 2=45的焦点为焦点,且经过点M (2,6)的椭圆的标准方程.[解析] 由9x 2+5y 2=45,得y 29+x 25=1. 其焦点F 1(0,2)、F 2(0,-2).设所求椭圆方程为y 2a 2+x 2b 2=1. 又∵点M (2,6)在椭圆上,∴6a 2+4b 2=1① 又a 2-b 2=4②解①②得a 2=12,b 2=8.故所求椭圆方程为y 212+x 28=1. 18.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.[解析] 设|PF 1|=m ,|PF 2|=n .根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中,由余弦定理得m 2+n 2-2mn cos π3=122, ∴m 2+n 2-mn =144,∴(m +n )2-3mn =144,∴mn =2563, ∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2 =12×2563×32=6433.。
【重点推荐】2019高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程作业1 北师大版选修1-1
2.1.1 椭圆及其标准方程[基础达标]1.椭圆2x 2+y 2=8的焦点坐标是( ) A .(±2,0) B .(0,±2) C .(±23,0) D .(0,±23)解析:选B.椭圆标准方程为x 24+y 28=1,∴椭圆焦点在y 轴上,且c 2=8-4=4, ∴焦点坐标为(0,±2).2.椭圆x 225+y 2m=1的一个焦点坐标为(3,0),那么m 的值为( )A .-16B .-4C .16D .4解析:选C.焦点在x 轴且c =3,由25=m +9,∴m =16.3.已知方程x 2k +1+y23-k=1(k∈R )表示焦点在x 轴上的椭圆,则k 的取值范围是( )A .k <1或k >3B .1<k <3C .k >1D .k <3 解析:选B.由题意知k +1>3-k >0,∴1<k <3.4.过点(-3,2)且与x 29+y 24=1有相同焦点的椭圆的方程是( )A.x 215+y 210=1B.x 2225+y 2100=1C.x 210+y 215=1 D.x 2100+y 2225=1 解析:选A.c 2=9-4=5,由题意可设所求椭圆方程为x 2b 2+5+y 2b 2=1,代入(-3,2)得9b 2+5+4b 2=1,∴b 2=10,椭圆方程为x 215+y 210=1. 5.如图,椭圆x 225+y 29=1上的点M 到焦点F 1的距离为2,N 为MF 1的中点,则|ON |(O 为坐标原点)的值为( )A .8B .2C .4 D.32解析:选C.由椭圆定义知|MF 1|+|MF 2|=2a =10,又|MF 1|=2,∴|MF 2|=8,由于N 为MF 1的中点,ON 为中位线,∴|ON |=12|MF 2|=4.6.已知两定点F 1(-1,0),F 2(1,0),且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则动点P 的轨迹方程是________.解析:由题意得:|PF 1|+|PF 2|=2|F 1F 2|=4>|F 1F 2|=2, ∴动点P 是以F 1、F 2为焦点的椭圆,且a =2,c =1,∴b 2=a 2-c 2=3,轨迹方程为x 24+y 23=1.答案:x 24+y 23=17.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.解析:由于|AB |+|F 2A |+|F 2B |=4a =20,∴|AB |=20-(|F 2A |+|F 2B |)=20-12=8. 答案:88.若方程x 2k -2+y 25-k=1表示椭圆,则实数k 的取值范围是________.解析:由方程x 2k -2+y 25-k=1表示椭圆,可得⎩⎪⎨⎪⎧k -2>0,5-k >0,k -2≠5-k ,解得2<k <5且k ≠72.即当2<k <72或72<k <5时,方程x 2k -2+y 25-k=1表示椭圆.答案:(2,72)∪(72,5)9.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上的一点,(1)PF 1⊥PF 2,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值. (2)当∠F 1PF 2为钝角时,|PF 2|的取值范围.解:(1)∵PF 1⊥PF 2,∴∠F 1PF 2为直角,则|F 1F 2|2=|PF 1|2+|PF 2|2.∴⎩⎪⎨⎪⎧20=|PF 1|2+|PF 2|2,|PF 1|+|PF 2|=6, 解得|PF 1|=4,|PF 2|=2,∴|PF 1||PF 2|=2.(2)设|PF 1|=r 1,|PF 2|=r 2,则r 1+r 2=6. ∵∠F 1PF 2为钝角,∴cos ∠F 1PF 2<0.又∵cos ∠F 1PF 2=r 21+r 22-202r 1r 2<0,∴r 21+r 22<20,∴r 1r 2>8,∴(6-r 2)r 2>8,∴2<r 2<4.即|PF 2|的取值范围是(2,4).10.(1)等腰直角三角形ABC 中,斜边BC 长为42,一个椭圆以C 为其中一个焦点,另一个焦点在线段AB 上,且椭圆经过A ,B 两点,求该椭圆的标准方程.(2)在△ABC 中, ∠A ,∠B ,∠C 所对的三边分别是a ,b ,c ,且|BC |=2,求满足b ,a ,c 成等差数列且c >a >b 的顶点A 的轨迹.解:(1)如图,设椭圆的方程为x 2a2+y 2b2=1(a >b >0),有|AM |+|AC |=2a ,|BM |+|BC |=2a , 两式相加,得8+42=4a ,∴a =2+2,|AM |=2a -|AC |=4+22-4=2 2.在直角三角形AMC 中,∵|MC |2=|AM |2+|AC |2=8+16=24, ∴c 2=6,b 2=4 2. 故所求椭圆的标准方程为x 26+42+y 242=1.(2)由已知条件可得b +c =2a ,则|AC |+|AB |=2|BC |=4>|BC |,结合椭圆的定义知点A 在以B ,C 为焦点的一个椭圆上,且椭圆的焦距为2.以BC 所在的直线为x 轴,BC 的中点为原点O ,建立平面直角坐标系,如图所示.设顶点A 所在的椭圆方程为x 2m 2+y 2n 2=1(m >n >0),则m =2,n 2=22-12=3,从而椭圆方程为x 24+y 23=1.又c >a >b 且A 是△ABC 的顶点,结合图形,易知x >0,y ≠0.故顶点A 的轨迹是椭圆x 24+y 23=1的右半部分(x >0,y ≠0).[能力提升]1.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P关于y 轴对称,O 为坐标原点,若BP →=2PA →,且OQ →·AB →=1,则P 点的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:选A.由题意Q 坐标为(-x ,y )(x >0,y >0),设A (x 0,0),B (0,y 0), 由BP →=2PA →得(x ,y -y 0)=2(x 0-x ,-y ),∴⎩⎪⎨⎪⎧x =2x 0-2xy -y 0=-2y ,即⎩⎪⎨⎪⎧y 0=3y x 0=32x . 由OQ →·AB →=1得(-x ,y )·(-x 0,y 0)=1,∴x 0x +y 0y =1,把⎩⎪⎨⎪⎧y 0=3y x 0=32x 代入上述得32x 2+3y 2=1(x >0,y >0).2.设α∈(0,π2),方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是________.解析:方程x 2sin α+y 2cos α=1可化为x 21sin α+y 21cos α=1.∵椭圆的焦点在y 轴上,∴1cos α>1sin α>0.又∵α∈(0,π2),∴sin α>cos α>0, ∴π4<α<π2. 答案:(π4,π2)3.已知F 1,F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上一点.(1)若∠F 1PF 2=π3,求△F 1PF 2的面积;(2)求|PF 1|·|PF 2|的最大值.解:(1)设|PF 1|=m ,|PF 2|=n (m >0,n >0). 根据椭圆的定义,得m +n =20. 在△F 1PF 2中,由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos∠F 1PF 2=|F 1F 2|2,即m 2+n 2-2mn ·cos π3=122,∴m 2+n 2-mn =144,即(m +n )2-3mn =144.∴202-3mn =144,即mn =2563.又∵S △F 1PF 2=12|PF 1|·|PF 2|·sin∠F 1PF 2=12mn ·sin π3,∴S △F 1PF 2=12×2563×32=6433.(2)∵a =10,∴根据椭圆的定义,得|PF 1|+|PF 2|=20.∵|PF 1|+|PF 2|≥2|PF 1|·|PF 2|,∴|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=⎝ ⎛⎭⎪⎫2022=100,当且仅当|PF 1|=|PF 2|时,等号成立, ∴|PF 1|·|PF 2|的最大值是100.4.(2014·玉溪一中高二期末)已知F 1,F 2为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,O 是坐标原点,过F 2作垂直于x 轴的直线MF 2交椭圆于M ,设|MF 2|=d .(1)证明:d ,b ,a 成等比数列;(2)若M 的坐标为()2,1,求椭圆C 的方程;(3)在(2)的椭圆中,过F 1的直线l 与椭圆C 交于A 、B 两点,若OA →·OB →=0,求直线l 的方程.解:(1)证明:由条件知M 点的坐标为()c ,y 0,其中|y 0|=d ,∴c 2a 2+d 2b2=1,d =b ·1-c 2a 2=b 2a ,∴d b =ba,即d ,b ,a 成等比数列. (2)由条件知c =2,d =1,∴⎩⎪⎨⎪⎧b 2=a ·1a 2=b 2+2,∴⎩⎨⎧a =2b =2,∴椭圆方程为x 24+y 22=1.(3)设点A (x 1,y 1)、B (x 2,y 2),当l ⊥x 轴时,A (-2,-1)、B (-2,1),所以OA →·OB →≠0. 设直线l 的方程为y =k (x +2),代入椭圆方程得(1+2k 2)x 2+42k 2x +4k 2-4=0.所以⎩⎪⎨⎪⎧x 1+x 2=-42k21+2k 2,x 1·x 2=4k 2-41+2k2,由OA →·OB →=0得x 1·x 2+y 1·y 2=0, x 1·x 2+k 2(x 1+2)(x 2+2)=(1+k 2)x 1·x 2+2k 2(x 1+x 2)+2k 2=0,代入得(1+k 2)(4k 2-4)1+2k 2-42k 2·2k 21+2k2+2k 2=0,解得k =± 2. 所以直线l 的方程为y =±2(x +2).。
高二数学 2.1.1椭圆及其标准方程导学案(1)新人教A版选修1-1
高中数学 2.1.1椭圆及其标准方程(1)导学案 【自主学习】(认真自学课本P32-P34) 新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .思考:若将常数记为2a 当122a F F =时,其轨迹为 ;122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .应用椭圆的定义注意两点:①分清动点和定点; ②看是否满足常数122a F F >.新知2:焦点在x 轴上的椭圆的标准方程()222210x y a b a b+=>> 其中222a b c =+ 若焦点在y 轴上,两个焦点坐标 ,则此时椭圆的标准方程是 .【预习自测】1、设P 是椭圆1162522=+y x 上的一点,21,F F 是椭圆的两个焦点,=+21PF PF _________________________2、 椭圆的焦点坐标为(-6,0),(6,0),=+21PF PF 20则其方程为3、 椭圆221259x y +=的焦点坐标____________________________。
【合作探究】例1.(教材P34例1)已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点⎪⎭⎫ ⎝⎛--23,25,求它的标准方程 .例2.焦点在x 轴上的椭圆过点 ()2,0-,(2,0),(0,1),求它的标准方程.【目标检测】1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2. 如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ).A .4 B .14 C .12 D .83. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是 ( ).A .23B .6C .43D .124. 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,15a c ==y 轴上;⑶10,25a b c +==。
高二数学椭圆及其标准方程优秀课件
两边再平方,得
a4 2a2cx c2 x2 a2 x2 2a2cx a2c2 a2 y2,
整理得 (a 2 c 2 ) x 2 a 2 y 2 a 2 (a 2 c 2 ),
两 边 同 除 以 a 2 ( a 2 c 2 ), 得 :
【总结提升】
思考:在平面内动点M到两个定点F1,F2的距离之 和等于常数的点的轨迹是否一定为椭圆?
|MF1|+ |MF2|>|F1F2| |MF1|+ |MF2|=|F1F2| |MF1|+ |MF2|<|F1F2|
椭圆 线段 不存在
在知道了椭圆的 定义及一些根本 的性质之后,我 们怎样用方程来 表示呢?
探究点2 椭圆的标准方程 思考:求曲线的方程的根本步骤是什么呢?
〔1〕建系设点 〔2〕写出点集 〔3〕列出方程 〔4〕化简方程 〔5〕检验
结合椭圆的 定义你能求 出椭圆的方 程吗?
第一步: 如何建立适当的坐标系呢? 建立坐标系的原那么是:对称,简洁
y F1 O
M F2 x
方案一
y
F2 M
O
x
F1
例 4 求满足下列条件的椭圆的标准方程. (1)焦点坐标分别为(0,-2),(0,2),且经过点(4,3 2); (2)a=8,c=6;
[解] (1)由题意得: 2a= 4-02+3 2+22+ 4-02+3 2-22=12, 得 a=6. 又 c=2,∴b2=a2-c2=32.
∴所求的椭圆的方程为3x22 +3y62 =1. (2)∵a=8,c=6,∴b2=a2-c2=64-36=28. 当焦点在 x 轴上时,椭圆方程为6x42 +2y82 =1; 当焦点在 y 轴上时,椭圆的方程为6y42 +2x82 =1. 故所求的椭圆方程为6x42 +2y82 =1 或6y42 +2x82 =1.
高二数学人教A版选修1-1学案第二章2-12-1-1椭圆及其标准方程Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程1.椭圆的定义(1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)椭圆的定义用集合语言叙述为:P={M||MF1|+|MF2|=2a,2a>|F1F2|}.定义中的常数不满足2a>|F1F2|时点的轨迹是什么?提示:(1)当|PF1|+|PF2|=2a<|F1F2|时,P的轨迹不存在.(2)当|PF1|+|PF2|=2a=|F1F2|时,P的轨迹为以F1,F2为端点的线段.2.椭圆的标准方程椭圆标准方程的两种形式焦点位置标准方程焦点焦距焦点在x轴上x2a2+y2b2=1(a>b>0)F1(-c,0),F2(c,0)2c焦点在y轴上y2a2+x2b2=1(a>b>0)F1(0,-c),F2(0,c)2c(1)从椭圆的标准方程如何判断椭圆焦点的位置?提示:判断椭圆焦点在哪个轴上就要判断椭圆标准方程中x2项和y2项的分母哪个更大一些,即“谁大在谁上”.(2)在椭圆的标准方程中a>b>c一定成立吗?提示:不一定,只需a>b,a>c即可,b,c的大小关系不确定.1.辨析记忆(对的打“√”,错的打“×”)(1)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆.()提示:(1)×.因为2a=|F1F2|=8,动点的轨迹是线段F1F2,不是椭圆.(2)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于6的点的轨迹是椭圆.( )提示:(2)×.2a<|F 1F 2|,动点的轨迹不存在.(3)平面内到点F 1(-4,0),F 2(4,0)两点的距离之和等于点M(5,3)到F 1,F 2的距离之和的点的轨迹是椭圆.( ) 提示:(3)√.符合椭圆的定义.(4)平面内到点F 1(-4,0),F 2(4,0)距离相等的点的轨迹是椭圆.( ) 提示:(4)×.平面内到点F 1(-4,0),F 2(4,0)距离相等的点的轨迹是线段F 1F 2的垂直平分线.2.椭圆x 216 +y 225 =1的焦点为F 1,F 2,P 为椭圆上一点,若||PF 1 =2,则||PF 2 =( )A .2B .4C .6D .8【解析】选D.由题意a =5,||PF 1 +||PF 2 =2a , 所以||PF 2 =2a -||PF 1 =10-2=8.3.(教材二次开发:例题改编)设F 1,F 2为定点,||F 1F 2 =6,动点M 满足||MF 1 +||MF 2 =10,则动点M 的轨迹是________.(从以下选择:椭圆.直线.圆.线段)【解析】动点M 满足||MF 1 +||MF 2 =10>6=|F 1F 2|,所以点M 的轨迹是以F 1,F 2为焦点的椭圆. 答案:椭圆类型一 求椭圆的标准方程(数学运算)1.(2021·昆明高二检测)已知椭圆的两个焦点是⎝⎛⎭⎫-3,0 ,⎝⎛⎭⎫3,0 ,且点⎝⎛⎭⎫0,2 在椭圆上,则椭圆的标准方程是( )A .x 213 +y 24 =1 B .x 29 +y 24 =1 C .x 24 +y 213 =1D .x 213 -y 24 =1【解析】选A.由题意,因为椭圆的两个焦点是(-3,0),(3,0),所以c =3,且焦点在x 轴上,又因为椭圆过点⎝⎛⎭⎫0,2 ,所以b =2,根据a 2=b 2+c 2,可得a =13 ,故椭圆的标准方程为x213+y 24 =1.2.已知椭圆C :x 2a 2 +y 2b 2 =1(a>b>0)的左焦点为F(- 3 ,0),且椭圆C 上的点与长轴两端点构成的三角形面积最大值为3 2 ,则椭圆C 的方程为( ) A .x 23 +y 2=1 B .x 24 +y 2=1 C .x 26 +y 23 =1D .x 29 +y 26 =1【解析】选C.因为椭圆C 的左焦点为F(- 3 ,0),所以c = 3 , 又因为椭圆C 上的点与长轴两端点构成的三角形面积的最大值为3 2 ,即12 ×2a×b =ab =3 2 ①又因为a 2=b 2+c 2,即a 2=b 2+3② 由①②解得:a = 6 ,b = 3 , 椭圆C 的方程为x 26 +y 23 =1.3.求中心在原点,焦点在坐标轴上,且经过两点P ⎝ ⎛⎭⎪⎫13,13 ,Q ⎝ ⎛⎭⎪⎫0,-12的椭圆的标准方程.【解析】方法一:(1)当椭圆焦点在x 轴上时,可设椭圆的标准方程为x 2a 2 +y 2b 2 =1(a>b>0).依题意,有⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫132a 2+⎝ ⎛⎭⎪⎫132b 2=1,0+⎝ ⎛⎭⎪⎫-122b2=1,解得⎩⎪⎨⎪⎧a 2=15,b 2=14.由a>b>0,知不合题意,故舍去.(2)当椭圆焦点在y 轴上时,可设椭圆的标准方程为y 2a 2 +x 2b 2 =1(a>b>0).依题意,有⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫132a 2+⎝ ⎛⎭⎪⎫132b 2=1,⎝ ⎛⎭⎪⎫-122a2+0=1,解得⎩⎪⎨⎪⎧a 2=14,b 2=15.所以所求椭圆的标准方程为y 214 +x 215=1.方法二:设椭圆的方程为mx 2+ny 2=1(m>0,n>0,m≠n).则⎩⎨⎧⎝ ⎛⎭⎪⎫132m +⎝ ⎛⎭⎪⎫132n =1,⎝ ⎛⎭⎪⎫-122n =1,解得⎩⎨⎧m =5,n =4.所以所求椭圆的方程为5x 2+4y 2=1, 故椭圆的标准方程为y 214 +x 215=1.1.求曲线方程首先考虑比较简单的定义法,也可以用待定系数法. 2.待定系数法求椭圆标准方程的步骤(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上,还是在两个坐标轴上都有可能. (2)设方程.①依据上述判断设方程为x 2a 2 +y 2b 2 =1(a>b>0)或y 2a 2 +x 2b 2 =1(a>b>0); ②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m>0,n>0且m≠n).(3)找关系:依据已知条件,建立关于a ,b 或m ,n 的方程组.(4)得方程:解方程组,将a ,b 或m ,n 代入所设方程即为所求. 提醒:焦点所在坐标轴不同,其标准方程的形式也不同. 类型二 椭圆中的焦点三角形问题(数学运算)【典例】(1)椭圆x 29 +y 22 =1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,求∠F 1PF 2的大小.(2)已知椭圆x 24 +y 23 =1中,点P 是椭圆上一点,F 1,F 2是椭圆的焦点,且∠PF 1F 2=120°,求△PF 1F 2的面积. 【思路导引】【解析】(1)由x 29 +y 22 =1,知a =3,b = 2 , 所以c =7 ,|PF 2|=2a -|PF 1|=2, 在△F 1PF 2中,由余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2| =-12 ,所以∠F 1PF 2=120°.(2)由x 24 +y 23 =1,知a =2,b = 3 ,所以c =a 2-b 2 =1,|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos ∠PF 1F 2, 即|PF 2|2=|PF 1|2+4+2|PF 1|.① 由椭圆定义得|PF 1|+|PF 2|=2a =4.② 由①②联立得|PF 1|=65 .所以12PFF S =12 |PF 1||F 1F 2|sin ∠PF 1F 2 =12 ×65 ×2×32 =335 .1.椭圆定义的应用(1)实现椭圆上的点与两个焦点连线长度之间的相互转化. (2)将椭圆上的点与两焦点连线的和看成一个整体,求解定值问题. 2.椭圆定义解题的整体思想对于椭圆上一点P 与椭圆的两焦点F 1,F 2构成的△F 1PF 2,如果已知∠F 1PF 2,可利用S =12 |PF 1||PF 2|sin ∠F 1PF 2把|PF 1|·|PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|及余弦定理求出|PF 1|·|PF 2|,而无需单独求出|PF 1|和|PF 2|,这样可以减少运算量.1.已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左,右焦点为F 1,F 2,离心率为33 ,过点F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3 ,则C 的方程为________.【解析】由题意及椭圆的定义知4a =4 3 , 则a = 3 .又c a =c 3 =33 ,所以c =1.所以b 2=2. 所以C 的方程为x 23 +y 22 =1. 答案:x 23 +y 22 =12.已知P 是椭圆y 25 +x 24 =1上的一点,F 1,F 2是椭圆的两个焦点且∠F 1PF 2=30°,则△F 1PF 2的面积是________. 【解析】由椭圆方程知a =5 ,b =2, 所以c =a 2-b 2 =1,所以|F 1F 2|=2,又由椭圆定义知|PF 1|+|PF 2|=2a =2 5 . 在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2- 2|PF 1|·|PF 2|·cos ∠F 1PF 2, 即4=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-2|PF 1|·|PF 2|cos 30°, 即4=20-(2+ 3 )|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=16(2- 3 ),12PFF S=12 |PF 1|·|PF 2|sin ∠F 1PF 2=12 ×16(2- 3 )×12 =8-43 . 答案:8-4 3【拓展延伸】椭圆中的焦点三角形:椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.解关于椭圆的焦点三角形的问题,通常要利用椭圆的定义,结合正弦定理、余弦定理等知识求解. 【拓展训练】在椭圆C :x 2a 2 +y 2b 2 =1(a>b>0)的焦点三角形PF 1F 2中,∠F 1PF 2=α,点P 的坐标为(x 0,y 0),求证:△PF 1F 2的面积S △PF 1F 2=c|y 0|=b 2tan α2 .【证明】12PFF SS △PF 1F 2=12 |F 1F 2||y 0|=c|y 0|.在△PF 1F 2中,根据椭圆定义,得|PF 1|+|PF 2|=2a. 两边平方,得|PF 1|2+|PF 2|2+2|PF 1||PF 2|=4a 2.① 根据余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2| cos α=4c 2.②, ①-②,得(1+cos α)|PF 1||PF 2|=2b 2, 所以|PF 1||PF 2|=2b 21+cos α.根据三角形的面积公式得12PFF S =12 |PF 1||PF 2|sin α =12 ·2b 21+cos α ·sin α=b 2·sin α1+cos α. 又因为sin α1+cos α =2sin α2cos α22cos 2α2 =sin α2cos α2=tan α2 , 所以12PFF S =b 2tan α2 . 类型三 与椭圆有关的轨迹问题(直观想象、数学运算)定义法【典例】一个动圆与圆Q 1:(x +3)2+y 2=1外切,与圆Q 2:(x -3)2+y 2=81内切,试求这个动圆圆心的轨迹方程.【思路导引】由圆的相切,及动圆圆心与两个定圆圆心、半径的关系得轨迹.【解析】由已知,得两定圆的圆心和半径分别为Q 1(-3,0),R 1=1;Q 2(3,0),R 2=9.设动圆圆心为M(x ,y),半径为R ,如图.由题设有|MQ 1|=1+R ,|MQ 2|=9-R ,所以|MQ 1|+|MQ 2|=10>|Q 1Q 2|=6.由椭圆的定义知点M在以Q1,Q2为焦点的椭圆上,且a=5,c=3. 所以b2=a2-c2=25-9=16,故动圆圆心的轨迹方程为x225+y216=1.若将“圆Q1:(x+3)2+y2=1”改为“圆Q1:(x+3)2+y2=9”,试求这个动圆圆心的轨迹方程.【解析】由已知,得两定圆的圆心和半径分别为Q1(-3,0),R1=3;Q2(3,0),R2=9.设动圆圆心为M(x,y),半径为R.由题设有|MQ1|=3+R,|MQ2|=9-R,所以|MQ1|+|MQ2|=12>|Q1Q2|=6.由椭圆的定义知点M在以Q1,Q2为焦点的椭圆上,且a=6,c=3.所以b2=a2-c2=36-9=27,椭圆方程为x236+y227=1,又当M在点(-6,0)时,不存在圆符合题意,所以x≠-6,故动圆圆心的轨迹方程为x236+y227=1(x≠-6).代入法(相关点法)【典例】已知P是椭圆x24+y28=1上一动点;O为坐标原点,则线段OP的中点Q的轨迹方程为________.【思路导引】点Q为OP的中点⇒点Q与点P的坐标关系⇒代入法求解.【解析】设Q(x ,y),P(x 0,y 0),由点Q 是线段OP 的中点知x 0=2x ,y 0=2y , 又x 20 4 +y 20 8 =1,所以(2x )24 +(2y )28 =1,即x 2+y 22 =1.答案:x 2+y 22 =11.对定义法求轨迹方程的认识如果能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法.定义法在我们后续要学习的圆锥曲线的问题中被广泛使用,是一种重要的解题方法.2.代入法(相关点法)若所求轨迹上的动点P(x ,y)与另一个已知曲线C :F(x ,y)=0上的动点Q(x 1,y 1)存在着某种联系,可以把点Q 的坐标用点P 的坐标表示出来,然后代入已知曲线C 的方程 F(x ,y)=0,化简即得所求轨迹方程,这种求轨迹方程的方法叫做代入法(又称相关点法).1.已知动圆M 过定点A(-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.【解析】设动圆M 的半径为r ,则|MA|=r ,|MB|=8-r ,所以|MA|+|MB|=8,且8>|AB|=6,所以动点M 的轨迹是椭圆,且焦点分别是A(-3,0),B(3,0),且2a =8,所以a =4,c =3,b 2=a 2-c 2=16-9=7.所以所求动圆圆心M 的轨迹方程是x 216 +y 27 =1.2.(2021·洛阳高二检测)已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且||F 1F 2 是||PF 1 与||PF 2 的等差中项.(1)求此椭圆方程;(2)若点P 满足∠F 1PF 2=60°,求△PF 1F 2的面积.【解析】(1)设所求椭圆方程为x 2a 2 +y 2b 2 =1(a>0,b>0),根据已知可得||F 1F 2 =2,所以||PF 1 +||PF 2 =4=2a ,所以a =2,b 2=a 2-c 2=4-1=3,所以此椭圆方程为x 24 +y 23 =1;(2)在△PF 1F 2中,设||PF 1 =m ,||PF 2 =n ,由余弦定理得4=m 2+n 2-2mn·cos 60°,所以4=(m +n)2-2mn -2mn·cos 60°=16-3mn ,mn =4,所以12PFF S S △PF 1F 2=12 mn·sin 60°=12 ×4×32 =3 .1.若方程x 220+a +y 24-a =1表示椭圆,则实数a 的取值范围是() A .⎝⎛⎭⎫-20,4B .⎝⎛⎭⎫-20,-8 ∪⎝⎛⎭⎫-8,4C .⎝⎛⎭⎫-∞,-20 ∪⎝⎛⎭⎫4,+∞D .⎝⎛⎭⎫-∞,-20 ∪⎝⎛⎭⎫-8,+∞【解析】选B.因为方程x 220+a +y 24-a=1表示椭圆, 所以有⎩⎪⎨⎪⎧20+a>0,4-a>0,20+a≠4-a ⇒⎩⎪⎨⎪⎧a>-20,a<4,a≠-8⇒-20<a<-8或-8<a<4.2.椭圆的两个焦点坐标分别为F 1(0,-8),F 2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为( )A .x 2100 +y 236 =1B .y 2400 +x 2336 =1C .y 2100 +x 236 =1D .y 220 +x 212 =1【解析】选C.由已知c =8,2a =20,所以a =10,b 2=a 2-c 2=36,故椭圆的方程为y 2100 +x 236 =1. 3.若方程x 2m +y 21-m=1表示焦点在y 轴上的椭圆,则实数m 的取值范围为________.【解析】由题可知,方程x 2m +y 21-m=1表示焦点在y 轴上的椭圆,可得1-m>m>0,解得:0<m<12 ,所以实数m 的取值范围为⎝⎛⎭⎪⎫0,12 . 答案:⎝ ⎛⎭⎪⎫0,12 4.如果方程x 2a 2 +y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.【解析】由于椭圆的焦点在x 轴上,所以⎩⎨⎧a 2>a +6,a +6>0,即⎩⎨⎧(a +2)(a -3)>0,a>-6. 解得a>3或-6<a<-2. 答案:(3,+∞)∪(-6,-2)关闭Word 文档返回原板块。
2021-2022高二人教版数学选修1-1练习:2.1.1椭圆及其标准方程 Word版含答案
►基础梳理1.椭圆的定义及标准方程.(1)平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两点间的距离叫做椭圆的焦距.(2)椭圆的标准方程(请同学们自己填写表中空白的内容):焦点在x 轴上 焦点在y 轴上标准方程 x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0)焦点 (±c ,0) (0,±c )a ,b ,c 的关系:c 2=a 2-b 22.只有当||PF 1+||PF 2=2a >||F 1F 2时,点P 的轨迹才是椭圆; 当||PF 1+||PF 2=2a =||F 1F 2时,点P 的轨迹是线段F 1F 2; 当||PF 1+||PF 2=2a <||F 1F 2时,点P 的轨迹不存在. 3.正确理解椭圆的两种标准形式. (1)要熟记a ,b ,c 三个量的关系.椭圆方程中,a 表示椭圆上的点M 到两焦点间距离和的一半,正数a ,b ,c 恰构成一个直角三角形的三条边,a 是斜边,所以a >b ,a >c ,且a 2=b 2+c 2,其中c 是焦距的一半,叫做半焦距.(2)通过标准方程可以推断焦点的位置,其方法是:看x 2,y 2的分母大小,哪个分母大,焦点就在哪个坐标轴上.4.用待定系数法求椭圆标准方程的步骤.(1)作推断:依据条件推断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:①依据上述推断设方程为x 2a 2+y 2b 2=1或x 2b 2+y 2a2=1.②在不能确定焦点位置的状况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,依据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求.,►自测自评1.到两定点F 1(-4,0)和F 2(4,0)的距离之和为8的点M 的轨迹是线段F 1F 2.2.椭圆的焦点坐标为(4,0),(-4,0),椭圆上一点到两焦点的距离之和为10,则椭圆的标准方程为x 225+y 29=1. 3.已知a =4,c =3,焦点在y 轴上的椭圆的标准方程为x 27+y 216=1.4.椭圆x 225+y 29=1的焦点坐标为(4,0),(-4,0).1.已知两定点F 1(-2,0),F 2(2,0),点P 是平面上一动点,且|PF 1|+|PF 2|=6,则点P 的轨迹是(C ) A .圆 B .直线 C .椭圆 D .线段2.若椭圆的两焦点为(-2,0),(2,0),且过点⎝⎛⎭⎫52,-32,则该椭圆的方程是(D ) A.y 28+x 24=1 B.y 210+x26=1 C.y 24+x 28=1 D.y 26+x 210=1 解析:由题意知,所求椭圆的焦点在x 轴上,可以排解A 、B ;再把点⎝⎛⎭⎫52,-32代入方程,可知应选D. 3.过椭圆4x 2+2y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点F 2构成△ABF 2,那么△ABF 2的周长是______.答案:2 24.写出适合下列条件的椭圆的标准方程: (1)a =4,b =3焦点在x 轴上; (2)a =5,c =2焦点在y 轴上;(3)求中心在原点,焦点在坐标轴上,且经过点⎝⎛⎭⎫63,3和点⎝⎛⎭⎫223,1.答案:(1)x 216+y 29=1;(2)y 225+x 221=1;(3)x 2+y 29=1.5.设F 1、F 2分别为椭圆C :x 2a 2+y2b2=1,(a >b >0)的左右两焦点,若椭圆C上的点A ⎝⎛⎭⎫1,32到F 1、F 2两点的距离之和为4,求椭圆C 的方程及焦点坐标.解析:椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1,F 2两点的距离之和是4,得2a =4,即a =2.又A ⎝⎛⎭⎫1,32在椭圆C 上, ∴122+⎝⎛⎭⎫322b 2=1,解得b 2=3. ∴c 2=a 2-b 2=1.∴椭圆C 的方程为x 24+y 23=1,焦点坐标为F (±1,0).。
人教A版高二数学《椭圆及其标准方程》课件
设M(x, y)是椭圆上任意一点,
M
椭圆的焦距2c(c>0),M
与F1和F2的距离的和等于正 常数2a (2a>2c) ,则F1、F2的坐 标分别是(c,0)、(c,0) .
F1 0 F x
2
由椭圆的定义得,限制条件:| MF1 | | MF2 | 2a
代入坐标 | MF1 | (x c)2 y2 ,| MF2 | (x c)2 y2
点 焦点的位 x2 , y2 项中哪个分母大,焦点就在哪一条
置的判定
坐标轴上.
15
x2 变式1:椭圆的方程为:3
y2 7
1
,
则
a=____7_,b=____3___,c=___2____,焦点坐
标为:(0_,_2_)和__(__0_,-_2_)_焦距等于_____4_____;曲
线上一点P到焦点F2的距离为3,则点P到另 一个焦点F1的距离等于___2__7___3_,则 △F1PF2的周长为_2__7___4_____ y
25 16
25 16
思考:求合适下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是(-4,0)和(4,0),且椭
圆经过点(5,0).
y
解:因为椭圆的焦点在 x 轴上,设
x2 a2
y2 b2
1(a
>
b>
0).
由椭圆的定义知
F1 O
F2 P x
2a (5 4)2 (0 0)2 (5 4)2 (0 0)2 10,
所以 a 5.
又因为 c 4,所以 b2 a2 c2 25 16 9.
因此,所求椭圆的标准方程为
x2 y2 1. 25 9
定义法 20
2024-2025学年高二数学选择性必修第一册(配北师大版)课件1.1椭圆及其标准方程
5 2
21
2 2 25
a= ,b =a -c = -1= .
2
4
4
2
2
4
4
故点 M 的轨迹方程为 25 + 21 =1.
探究点三
【例3】 已知P为椭圆
求△F1PF2的面积.
椭圆中的焦点三角形问题
2
12
+
2
=1上一点,F1,F2是椭圆的焦点,∠F1PF2=60°,
3
解 由已知得 a=2√3,b=√3,所以 c= 2 - 2 =
12-3=3,从而|F1F2|=2c=6,
在△PF1F2 中,|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos 60°,即
36=|PF1|2+|PF2|2-|PF1|·|PF2|.①
由椭圆的定义得|PF1|+|PF2|=4√3,
即 48=|PF1|2+|PF2|2+2|PF1|·|PF2|.②
2
5
+ (2 + 2)
+
3 2
(- 2)
2
5
+ (2 -2) =2√10,即
b2=a2-c2=6,
2
2
所以所求椭圆的标准方程为10 + 6 =1.
a=√10,又 c=2,所以
(3)经过点 P
1 1
,
3 3
,Q
1
0,2
.
解 (方法一)①当椭圆焦点在 x 轴上时,可设椭圆的标准方程为
2
2
+
2
分类讨论,但要注意a>b>0这一条件.
(3)当已知椭圆经过两点,求椭圆的标准方程时,把椭圆的方程设成
《椭圆及其标准方程》优秀教学设计
§2.1.1椭圆及其标准方程一、教学背景分析(一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.(二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略.(三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍.二、教学目标设计:(一)知识目标:掌握椭圆的定义、标准方程及其几何图形;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法.(二)能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力.(三)情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神.三、教学重点、难点:(一)教学重点:①.了解椭圆的实际背景,经历从具体情景中抽象出椭圆的过程,理解椭圆标准方程的推导与化简;②.掌握椭圆的定义、标准方程及其几何图形;③椭圆标准方程的形式与图形、焦点坐标的对应关系;④根据条件求椭圆的标准方程。
(二)教学难点:①椭圆标准方程的推导与化简;②应用标准方程的形式与图形、焦点坐标对应关系解题。
高中数学人教A版选修(1-1) 2.1 教学课件 《2.1.1 椭圆及其标准方程》(人民教育出版社)
人民教育出版社 高二年级|选修1-1
【自主解答】 (1)由于动点到F1、F2的距离之和恰巧等于 F1F2的长度,故此动点的轨迹是线段F1F2.
(2)由椭圆的定义,|AF1|+|AF2|=2a,|BF1|+|BF1|=2a, ∴|AF1|+|BF1|+|AF2|+|BF2|=|AF1|+|BF1|+|AB|=4a= 20, ∴△ABF1的周长为20. 【答案】 (1)线段F1F2 (2)20
(1)已知 F1(-4,0),F2(4,0),则到 F1、F2 两点的距 离之和等于 8 的点的轨迹是________;
(2)椭圆1x62 +2y52 =1 的两焦点分别为 F1、F2,过 F2 的直线交 椭圆于 A、B 两点,则△ABF1 的周长为________.
【思路探究】 (1)动点的轨迹是椭圆吗?(2)怎样用椭圆 的定义求△ABF1的周长?
【解】 设P(x0,y0),AP的中点M(x,y),则
x=x0-2 5, y=y20,
即xy00= =22xy+ ,5, 代入椭圆方程2x52 +1y62 =1,
得2x2+552+y42=1, 所以AP中点M的轨迹方程是2x2+552+y42=1.
人民教育出版社 高二年级|选修1-1
人民教育出版社 高二年级|选修1-1
【自主解答】 (1)∵椭圆的焦点在x轴上, ∴设它的标准方程为ax22+by22=1(a>b>0), ∴2a= 5+42+ 5-42=10, ∴a=5.又c=4,∴b2=a2-c2=25-16=9, 故所求椭圆的标准方程为2x52 +y92=1.
人民教育出版社 高二年级|选修1-1
人民教育出版社 高二年级|选修1-1
1.定义是判断点的轨迹是否为椭圆的重要依据,根据椭圆 的定义可知,集合 P={M||MF1|+|MF2|=2a},|F1F2|=2c,a>0, c>0,且 a、c 为常数.
高中数学选修2-1第二章第一节《椭圆及其标准方程》说
课题:椭圆及其标准方程(—)教材: 人教版高中数学选修2-1第二章第一节《椭圆及其标准方程》一、教材分析(一) 教材的地位和作用圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。
同时,圆锥曲线也是体现数形结合思想的重要素材。
在本章中,椭圆的学习为后面研究双曲线、抛物线提供基本模式和理论基础。
因此这节课有承前启后的作用,是本章和本节的重点内容之一。
(二) 教学目标1. 知识与技能目标:掌握椭圆的定义和标准方程,理解椭圆标准方程的推导。
2. 过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。
3. 情感态度与价值观目标:通过实验、观察、推理、类比、归纳等教学活动,使学生体验到数学学习活动充满着探索和创造,提高了学生的学习热情并体会数学的简洁美、对称美。
(三) 教学的重点与难点1. 教学重点:椭圆的定义及其标准方程。
2. 教学难点:椭圆标准方程的推导。
在学习本课《椭圆及其标准方程》前,学生已学习了直线与圆的方程,对曲线和方程的概念有了一些了解与运用的经验,用坐标法研究几何问题也有了初步的认识。
但由于学生学习解析几何时间还不长、学习程度也较浅,学生对坐标法解决几何问题掌握还不够。
另外,学生对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。
二、学情分析学生对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍.三、教法和学法(一) 教法:在教法上,主要采用探究性教学法和启发式教学法。
椭圆标准方程
第 1 页共 4 页第 2页共4页第 3 页 共 4 页 第 4页 共4页例2、已知B 、C 是两个定点, |BC | =6, 且△ ABC 的周长等于16, 求顶点A 的轨迹方程。
例3、如图,设A ,B 的坐标分别为()10,0-,()10,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程.[当堂检测]1下列说法中正确的是( )A .平面内与两个定点的距离和等于常数的点的轨迹叫做椭圆B .平面内与两个定点的距离和等于常数的点的轨迹是一条线段C .平面内与两个定点的距离和等于常数的点的轨迹是一个椭圆或一条直线D 平面内与两个定点的距离和等于常数的点的轨迹存在,则轨迹是一个椭圆或者是一条线段 2.下列哪些是椭圆方程?如果是,请指出其焦点所在的坐标轴.,4002516)1(22=+y x ,12516)2(22=-x y ,144)3(22=+y x ,194)4(22-=+xy .243)5(22=+y x 3.椭圆4x 2+9y 2=1的焦点坐标是( )A .( B.(0, C.( D .5(,0)36±4.椭圆2214x y m +=的焦距等于2,则m 的值为( ) A .3 B .5 C .3或5 D .85.若方程16222=++a y ax 表示焦点在轴上的椭圆,则实数的取值范围是( ) A.a>3 B 、a<-2 C 、a>3或a<-2 D、a>3或-6<a<-26.已知椭圆两焦点的坐标分别为(0,4),(0,4)-,且椭圆经过点(5,0),求椭圆的方程。
【课堂小结】【学习反思】反思自己课堂上的表现,明确改进措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少? .
2.圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?
3.椭圆的定义: ---------------------------------------------------------------点叫做椭圆的 ------------- ,两焦点的距离叫做 ---------------- 。
们的斜率之积为
4 9 ,求点 M 的轨迹方程.
分析:若设点 M x, y ,则直线 AM , BM 的斜率就可以用含 x, y 的
式子表示,由于直线 AM , BM 的斜率之积是
4 9 ,因此,可以求出 x, y 之
间的关系式,即得到点 M 的轨迹方程.
三、反思总结
1. 椭圆方程得标准形式为: 2. 求动点轨迹方程的步骤是什么?
x2 y2 得: a 2 b2 1 a b 0
3.例题
例 Hale Waihona Puke 已知椭圆两个焦点的坐标分别是 方程.
53
2,0 , 2,0 ,并且经过点
, 2 2 ,求它的标准
5, 3 设椭圆的标准方程为 ----- --------------- ,因点 2 2 在椭圆上,
代入化简可得标准方程。
例 2 如图,在圆 x2 y 2 4 上任取一点 P ,过点 P 作 x 轴的垂线段 PD , D 为垂
5、若关于 x、y 的方程 x2sin α-y2cos α=1 所表示的曲线是椭圆, 则方程 (x+cos α )2+(y+sin
α)2=1 所表 示的圆的圆心在( )
A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限
6、已知椭圆的焦点是 F1( -1 , 0),F2( 1,0),点 P 为椭圆上一点,且 |F1F2| 是 |PF1| 与
轨迹叫做椭圆 .这两个定
4. 椭圆标准方程的推导: ①建系;以 ----------- 为 轴, ----------- 为 轴,建立直角坐标系,则
的坐标分别为:
-------------------②写出点集;设 P( )为椭圆上任意一点,根据椭圆定义知:
------------------------------
则|AF1|+|BF1| 的值为( )
A 、 11
B 、 10
的两焦点, 过点 F2 的直线交椭圆于点 A、B,若 |AB|=5 ,
C、9
D、 16
10 、已知椭圆的标准方程是
, M1、 M2为椭圆上的点。
( 1)点 M1( 4, 2.4 )与焦点的距离分别是 ________,______; ( 2)点 M2到一个焦点的距离等于 3,则它到另一焦点的距离等于
课后练习与提高
A、5
B 、5 或 8 C、 3 或 5
D 、 20
2、如果方程 x2+ky2=2 表示焦点在 y 轴上的椭圆,那么实数 k 的取值范围是( )
A 、 (0,+ ∞ )
B 、 (0,2)
C 、 (1,+ ∞ )
(0,1)
D、
A、2
B、3
C、5
D、7
A 、 2a
B 、4a
C 、 8a
D 、2a+2b
足.当点 P 在圆上运动时,线段 PD 的中点 M 的轨迹是什么?
分析:点 P 在圆 x2 y2 4 上运动, 由点 P 移动引起点 M 的运动, 则称点 M 是点 P 的伴随点,因点 M 为线段 PD 的中点,则点 M 的坐标可由点 P 来表示,从而能求 点 M 的轨迹方程
例 3 如图,设 A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点 M ,且它
2.圆的定义是: 在平面上, 到定点的距离 等于定长的点的轨迹; 那么当动点满足哪些条件时 轨迹仍然是圆?
(①平面上到两个定点 (距离为 2d)距离的平方和等于定值 a(a> 2d2)的点的轨迹是圆;
|PF2| 的等差中项,则椭圆的方程是(
)
7、已知椭圆
上一点 P到其一个焦点的距离为 3,则点 P 到另一个焦点的距离
为( )
A、2 B、3
C、5
D、7
8、如果椭圆 E: 4x2+y2=k 上两点间的距离最大是 8,则 k 值为( )
A 、 32
B 、 16
C、8
D、 4
9、已知 F1、F2 是椭圆
疑惑点
疑惑内容
1.思考:
课内探究学案
(1)动点是在怎样的条件下运动的? (2)动点运动出的轨迹是什么? 得出结论: 在平面上到两个定点 F1, F2 距离之和等于定值 2a 的点的轨迹为
2.推导椭圆的标准方程.
1)建系:以 F1, F2 所在直线为 x 轴,线段 F1F2 的中点为原点建立直角坐标系,并设 椭圆上任意一点的坐标为 M(x , y),
③坐标化;
④化简(注意根式的处理和令 a2-c2=b2)
类 似 的 , 焦 点 在 ----- 轴 上 的 椭 圆 方 程 为 : -------------------------- 其 中 焦 点 坐 标 为 :
--------------------------
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
四、当堂检测
1. 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是( -4 , 0),( 4, 0),椭圆 上一点 P 到两焦点距离的和等于 10;
(2)两个焦点的坐标分别是( 0, -2 ),( 0, 2),并且椭圆经过点 2. 平面内两个定点的距离为 8,动点 M到两个定点的距离的和为 10,求动点 M的轨迹方程。
_________.
2.1.1 椭圆及其标准方程
一、复习并引入新课
思考问题:
1.在解析几何中,我们通常把动点按照某种规律运动形成的轨迹叫做曲线.曲线和方程的关 系是什么?
(如果曲线上任意一点的坐标都是方程 f(x , y)=0 的解,同时以方程 f(x , y)=0 的解为坐标 的点又都在曲线上,那么方程就是曲线的方程,曲线就是方程的曲线.)
设两定点坐标为:
F1(-c, 0) ,F2(c, 0), 2)则 M 满足: |MF1|+|MF2|=2a , 思考:我们要化简方程就是要化去方程中的根式,你学过什么办法?
a4-2a2cx+c2x2=a2x2-2a2cx+a2c2+a2y2 ,整理得: (a2-c2)x2+a2y2=a2(a2-c2) . b2=a2-c2