晶型药物常用的检测 分析 方法

合集下载

晶型药物常用的检测分析方法

晶型药物常用的检测分析方法

晶型药物常用的检测分析方法(2012-02-08 13:54:05)物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同的晶体结构。

同一物质具有两种或两种以上的空间排列和晶胞参数,形成多种晶型的现象称为多晶现象(polymorphism)。

虽然在一定的温度和压力下,只有一种晶型在热力学上是稳定的,但由于从亚稳态转变为稳态的过程通常非常缓慢,因此许多结晶药物都存在多晶现象。

固体多晶型包括构象型多晶型、构型型多晶型、色多晶型和假多晶型。

药物分子通常有不同的固体形态,包括盐类,多晶,共晶,无定形,水合物和溶剂合物;同一药物分子的不同晶型,在晶体结构,稳定性,可生产性和生物利用度等性质方面可能会有显著差异,从而直接影响药物的疗效以及可开发性。

如果没有很好的评估并选择最佳的药物晶型进行研发,可能会在临床后期发生晶型的变化,从而导致药物延期上市而蒙受巨大的经济损失,如果上市后因为晶型变化而导致药物被迫撤市,损失就更为惨重。

因此,药物晶型研究和药物固态研发在制药业具有举足轻重的意义。

由于药物晶型的重要性,美国药监局(FDA)和中国药监局(SFDA)在药物申报中对此提出了明确规定,要求对药物多晶型现象进行研究并提供相应数据。

正因如此,任何一个新药的研发,都要进行全面系统的多晶型筛选,找到尽可能多的晶型,然后使用各种固态方法对这些晶型进行深入研究,从而找到最适合开发的晶型;选定最佳晶型后,下一步就是开发能始终如一生产该晶型的化学工艺;最后一步是根据制剂对原料药固态性质的要求,对结晶工艺进行优化和控制,确定生产具有这些固态性质的最佳工艺参数,从而保证生产得到的晶型具有理想的物理性质,比如晶体表象,粒径分布,比表面积等。

这种通过实验设计来保证质量的方法必须对药物晶型具有非常全面深刻的理解才能实现。

原研药公司对药物分子的晶型申请专利,可以延长药物的专利保护,从而使自己的产品具有更长时间的市场独享权。

4药物多晶型及分析方法

4药物多晶型及分析方法
第四章 药物多晶型及其分析方法
➢ 第一节 药物多晶型 ➢ 第二节 X射线粉末衍射法 ➢ 第三节 热分析法 ➢ 第四节 其他药物晶型分析法
一、概念
第一节 药物多晶型
药物的多晶型:同一化学组成的药物,具有两种或两 种以上的空间排列和晶胞参数,形成多种晶型的现象。
合成药物:甾体激素67% 、巴比妥63% 、磺胺40% 抗生素:无味氯霉素、利福霉素类、四环素类、半

安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。20.12.2002:32:1802:32Dec-2020-Dec-20
吸收速率 1.4倍
Khalil S等. J Pharm Sci,61,1615,1972
并非所有药物多晶型均显示出显著的生物利用度差 异。
例:法莫替丁有两种晶型A、B,分别压片,人体口服 给药,A晶型片剂口服生物利用度为46.8%,B晶型片 剂口服生物利用度49.1%,经统计学处理,表明无显著 性差异。

相信相信得力量。20.12.202020年12月 20日星 期日2时32分18秒20.12.20
谢谢大家!

踏实,奋斗,坚持,专业,努力成就 未来。20.12.2020.12.20Sunday, December 20, 2020

弄虚作假要不得,踏实肯干第一名。02:32:1802:32:1802:3212/20/2020 2:32:18 AM
四、多晶型的产生及其影响因素
• 结晶是一个复杂的过程,物质在结晶时由于受各种因 素影响,使分子内或分子间键合方式发生改变,致使 分子或原子在晶格空间排列不同,从而形成不同的晶 体结构。
1、结晶工艺和条件
温度、压力、冷却速度、溶剂 、干燥工艺条件、研磨 微粉化等。

药物晶型略谈

药物晶型略谈

12
• • • •
公司: Abbott 药名:利托那韦(Norvir) 剂型:胶囊 教训:1998年,晶型发生变 化,药 品退市,直接经济损失上亿美元
13
晶型专利的重要性
不同层次的专利保护 • New Chemical Entity • Enantiomer • Salt Form • Crystal Form (Polymorph) • Formulation • Process • 申请晶型专利保护的重要性 • Innovative Drug Companies: a way to extend the life of its intellectual property right. • Generic Drug Companies: a way to enter the game early; Prepare to enter generic market without undue delay; Enjoy independently protectable IP(intellectual property) right.
准晶体:一种介于晶体和非晶体之间的固体。
以色列科学家丹尼尔· 舍特曼因发现准晶体而获得2011年诺贝尔化学奖。
准晶是一种介于晶体和非晶体之间的固体。准晶具有完全有序的结构, 然而又不具有晶体所应有的平移对称性 。
6
固态药物分类
7
晶体的特征
•1.长程有序:晶体内部原子在至少在微米级范围内的规则排列。 •玻璃:短程有序、长程无序。 •2.均一性:晶体内部各个部分的宏观性质是相同的。
11


药物晶型的重要性
Most drugs are developed as crystalline. • 晶型研究的重要性

晶型检测方法

晶型检测方法

晶型检测方法
晶型检测是一种用于确定化合物的晶体形态的方法。

晶型对于药物制造、材料科学和物理化学等领域具有重要的意义。

晶型的不同形态可能会对其物理化学性质和制备工艺产生影响,因此晶型检测是必不可少的。

目前常用的晶型检测方法主要包括:X射线衍射、热分析、红外光谱、核磁共振等。

其中,X射线衍射是最常用的方法,可以确定晶体结构和晶格参数。

热分析可以通过测量样品在不同温度下的热性质来检测晶型转变。

红外光谱则可以通过分析样品吸收的红外光谱来识别晶型。

核磁共振则可以通过测量样品的核磁共振信号来确定晶型。

晶型检测方法的选择取决于样品的性质和需要确定的信息。

在实际应用中,常常需要综合使用多种方法进行检测,以确保结果的准确性和可靠性。

- 1 -。

药物多晶现象及其常用鉴别方法

药物多晶现象及其常用鉴别方法

药物多晶现象及其常用鉴别方法药学0301 夏文俊 3031901020摘要:依据文献资料进行分析归纳,介绍了药物的多晶型现象,研究药物多晶型的主要手段,鉴别多晶型药物的常用方法。

关键词:多晶型、热分析、X-射线粉末衍射法等1 物质的多晶型现象同一种元素或化合物在不同条件下生成结构、形态、物性完全不同的晶体的现象称为多晶现象。

McCrone在1965年提出的多晶型概念,主要强调了同一种分子在不同固态晶格中的不同填充、排列方式。

在药学领域中,同一种药物,由于结晶条件的不同,可以生成完全不同类型的晶体,这种现象称为药物的多晶型现象亦称同质异晶现象。

有机药物中多晶型现象是普遍存在的。

通过对美国药典(20版)片剂样品统计,大约有40%的药物存在多晶型现象。

中国药典(2000版)共收载化学药品1699种,其中固体药物制剂约有1336种,有许多药物存在晶型问题。

多晶型现象是影响固体药物质量和疗效的重要因素之一,晶型不同会对生物利用度、药效、毒副作用、制剂工艺及稳定性等诸多方面产生影响,故对多晶型进行准确、快速的鉴别很有必要。

2药物多晶型研究的现状在制药工业中,一种疗效好的新晶型可以作为一个附加专利,延长原有药物的专利寿命。

近年来国际上许多固体药物的专利诉讼都涉及到晶型问题,从中不难看出多晶型在制药业中的重要作用。

近年来我国对药物晶型问题的重视程度虽有提高,但目前在固体药物的研究和新药审批法规和标准尚不明确,晶型研究的随意性与偶然性较大。

在中国2000版药典中,对于固体药物晶型鉴别和检查的技术与方法收载甚少,且在上千个品种中仅列有甲苯咪唑等几个品种。

因此,急需加紧制定和规范固体药物晶型研究的有效方法和定量检测分析技术。

3 药物晶型常用鉴别技术60年代至今,晶型研究方法有:热载台显微镜检查法,热分析法(包括差热分析法、差示扫描量热法以及热重分析法),比色法,红外分光光度法,溶解度测定法,密度测定法(包括浮集法、比重计法及膨胀测量法),X射线粉末衍射法以及X射线单晶衍射法等。

药学中的药物微观结构分析

药学中的药物微观结构分析

药学中的药物微观结构分析药物微观结构分析是药学领域中非常重要的研究内容之一。

通过对药物的微观结构进行分析,可以全面了解药物的成分和相互作用等重要信息,为药物的研发和应用提供科学依据。

本文将介绍药物微观结构分析的方法和应用。

一、药物微观结构的分析方法1. 光学显微镜观察分析光学显微镜是最常用的药物微观结构分析工具之一。

通过光学显微镜可以观察到药物的形态结构,例如晶体形态、晶格结构等。

同时,还可以观察药物与其他成分之间的相互作用,比如溶解度、晶型转变等。

2. 扫描电子显微镜(SEM)观察分析扫描电子显微镜具有极高的分辨率,可以观察到药物的表面形态结构和微观形貌特征。

通过SEM分析,可以获得药物的表面形貌、孔隙结构以及晶体的形态特征等信息。

此外,还可以进行元素分析,以了解药物中各元素的分布情况。

3. 透射电子显微镜(TEM)观察分析透射电子显微镜可以观察到药物的内部结构和晶体结构。

通过TEM分析,可以获得药物的微观晶体结构、晶胞参数、晶粒尺寸等信息。

此外,还可以进行成分分析,以确定药物的化学组成。

4. X射线衍射(XRD)分析X射线衍射是一种常用的药物微观结构分析方法。

通过测定药物的衍射谱,可以确定药物的结晶相、晶胞参数、晶格结构等信息。

同时,还可以研究药物的晶型转变、晶体稳定性等问题。

5. 核磁共振(NMR)分析核磁共振是一种非常重要的分析方法,对药物微观结构的分析具有重要意义。

通过核磁共振技术,可以获得药物的分子结构、分子间作用力等信息,为药物的设计和优化提供重要依据。

二、药物微观结构分析的应用1. 药物研发药物微观结构分析为药物研发提供了重要的科学依据。

通过对药物微观结构的分析,可以了解药物的成分和相互作用,优化药物的药效和安全性。

2. 质量控制药物微观结构分析在药物的质量控制中扮演着重要角色。

通过分析药物的微观结构,可以确定药物的纯度、结晶性和稳定性等参数,确保药物的质量符合标准。

3. 药物相互作用研究药物微观结构的分析还可以用于研究药物之间的相互作用。

原料药晶型研究思路

原料药晶型研究思路

原料药晶型研究思路
原料药晶型指的是同一个化合物在晶体结构上的不同形态,包括多晶型、单晶型、亚型等。

晶型的不同可能会影响药物的性质,如溶解度、稳定性、生物利用度等,因此在药物研发中,晶型研究非常重要。

以下是原料药晶型研究的思路:
1.药物合成和优化。

首先,需要对目标化合物进行合成和优化,在保证化合物纯度的前提下,才能进行后续晶型研究。

合成和优化的过程中可能会出现多晶型,需要进行鉴定和分离。

2.晶体学分析。

晶体学分析是研究晶体结构的重要手段,可以通过X射线衍射、红外光谱、拉曼光谱等技术对晶体结构进行分析。

X射线衍射是最常用的晶体学技术,可以确定晶体中原子的排列方式、晶格参数等信息。

3.晶型鉴定和筛选。

通过晶体学分析,可以确定化合物的晶型。

晶型鉴定的工作往往需要进行筛选,从多个晶型中选出最优的一种。

需要考虑的因素包括稳定性、生物利用度、溶解度、物理和化学性质的差异等。

4.晶型控制和应用。

对于确定的晶型,需要进行晶型控制,保证药物的质量、稳定性和效果。

晶型的不同可能会影响药物的物理化学性质,因此需要控制晶型的制备工艺和条件,以及存储和输送等环节。

总之,原料药晶型研究是药物研发过程中至关重要的一步,需要进行严谨的晶体学分析和晶型鉴定,以确保药物的质量和稳定性。

药品晶型研究

药品晶型研究

南通诚记化工贸易公司安捷伦柱型:原厂货号:规格柱适用特点单价RMBSB-C18 USP 883975-902 4.6*150 低PH和纯水系 3467SB-C18 USP 880975-902 4.6*250 低PH和纯水系 3860Eclipse XDB-C18 993967-902 4.6*150 同上Eclipse XDB-C18 990967-902 4.6*250 同上RX-C18 883967-902 4.6*150 同上RX-C18 880967-902 4.6*250 同上ZORBAX SB-Aq 883975-914 4.6*150 同上ZORBAX SB-Aq 880975-914 4.6*250 同上4.6*250和4.6*150的单价各是多少?岛津的同类价格呢?如价格(要发票的)适宜,再联系。

FAX:083 1-3322518.色谱柱填料形状与粒径基质:硅胶、二氧化铝、聚合物填料等形状:球形和无定形* 无定形:易制备、价格低;但涡流扩散大,渗透性差,比较难填装出稳定的柱床,一般用来做制备柱。

* 球形:涡流扩散小,渗透性好,可填装出稳定的柱床。

填料粒度大小与柱效、柱压的关系:* 柱效与填料大小成反比* 柱压与填料的二次方成正比* 常规分离柱:5微米;快速分离柱:1.8微米、3.5微米色谱柱化学性质:键合类型、碳覆盖率、封端硅胶的化学性质—键合类型键合类型包括:* 单体键合:键合相分子与基体单点相连* 聚合体键合:键合相分子与基体多点相连键合类型对色谱分离的影响:* 单体键合:提高传质速率,加快色谱柱平衡* 双体键合:增加色谱柱稳定性,增加色谱柱的载样量硅胶的化学性质—封端封端:键合步骤之后,用小分子硅烷将裸露的硅羟基键合,以便获得更大的覆盖率。

封端多用于反相色谱键合中。

封端可消除或减少可能发生的二级反应。

没有封端的反相色谱填料通常比封端的有复杂多样的选择性。

碱性物质在不封端的填料上,容易产生拖尾。

浅析不同的药物结晶性检查技术

浅析不同的药物结晶性检查技术

浅析不同的药物结晶性检查技术摘要:本文首先介绍了结晶性检查的意义和应用以及基本原理,然后介绍了偏光显微镜,差示扫描量热法及X射线衍射分析技术。

本文是在《中国药典2020版》四部通则0981结晶性检查法的基础上进行的部分技术补充和分析,为药物研究提供了一定的参考依据。

关键词:药物结晶性检查、偏光显微镜、差示扫描量热法、X射线衍射分析技术、药物研究一、药物结晶性检查技术概述(一)结晶性检查的意义和应用结晶性检查是药物研究和制造过程中的重要环节之一。

通过对药物的结晶性进行检查和分析,可以获得关于药物晶体结构和性质的重要信息,为药物的设计、制备和性能优化提供科学依据。

结晶性检查可以评估药物的结晶度和晶体完整性。

药物的结晶度是指晶体中药物分子的有序程度,影响着药物的物理性质和药效。

通过对药物晶体的结晶度进行检查,可以评估药物的晶体质量和稳定性,为制药工艺的优化和药物质量的控制提供依据。

结晶性检查对于药物的研发和质量控制也具有重要的应用价值。

通过对药物晶体的观察和分析,可以揭示药物的结晶机制和晶体生长规律,为药物的合成和晶体工程提供理论基础。

同时,结晶性检查还可以用于药物的溶解度预测、药物的相转变控制、药物的纯度检验等方面,为药物的质量控制和生产提供重要参考。

(二)结晶性检查的基本原理结晶性检查的基本原理是基于药物的物理性质、化学性质和结晶条件,通过分析药物的结晶特性来了解药物的晶体结构、晶型和晶体形态等重要的物理化学特征。

结晶性是指物质在一定条件下形成晶体的倾向。

药物的结晶性质受到多种因素的影响,包括物理性质、化学性质、结晶条件等。

药物的分子结构和形态决定了其在结晶过程中的排列方式和晶体形成的方式。

例如,分子间的相互作用力(如氢键、范德华力等)会影响药物分子的排布方式,从而影响晶体的形态和结晶性质。

药物的化学性质影响晶体的稳定性和晶体结构的形成。

一些药物具有多晶形态或可溶性多晶性,它们在不同溶剂条件下可能形成不同的晶体结构。

晶型药物的检测方法

晶型药物的检测方法

29
二、常用检测方法 4、红外光谱技术
中红外光谱法(MIR):定性、定量分析
制备方法:石蜡糊法、漫反射法、KBr压片法、衰减全反射法
近红外光谱法(NIR) : 780~2526 cm-1,定性识别、半定量分析
✓优缺点:
优点: 操作简便快捷,需要样品量少;
缺点: 不同晶型样品在红外图谱上特征性差异较小,难以区分;(分子内作用力较弱) 吸收图谱差异可来自于样品纯度、压片过程中的转晶现象等。
1、晶型药物鉴别和产品质量控制的定量
数据;
检测手段;(种类、纯度、含量)
2、得到每种晶型药物纯品的专
2、固体化学原料药的晶型检查分析;
属 性 粉 末 X- 衍 射 图 谱 和 数 据 ,
3、固体化学药物制剂中晶型种类及晶型
作为100%对照;
含量的定量分析
3、以理论计算得纯品数据位依
4、对固体晶型药物有序到无序状态变化
• 测定相变点 • 定性鉴别药物或其多晶型 • 纯度检查 • 测定热化学参数或物质的量
Document number
24
二、常用检测方法
热流率(dH/dt)为纵坐标、 时间(t)或温度(T)为横 坐标。
曲线离开基线的位移即代表 样品吸热或放热的速率 (mJ·s-1),而曲线中峰或 谷包围的面积即代表热量的 变化。
6
二、常用检测方法
光学显微镜:
原理:将微小物体放大 用途:观察晶型样品外形变化 eg:在已知一种药物不同晶型物质的外 形特征后,可分析判断药物的晶型种类。
Document number
7
二、常用检测方法
偏光显微镜:
原理:增加了偏光镜,双折射、消光角 用途:通过测定消光角,鉴别所属晶系

实验五χ射线粉末法测定药物的多晶型

实验五χ射线粉末法测定药物的多晶型

实验五χ射线粉末法测定药物的多晶型一、实验目的1.熟悉χ-射线粉末衍射法确定药物多晶型的差不多原理与方法2.把握x-射线粉末衍射图谱的分析与处理方法二、差不多原理χ-射线衍射是研究药物多晶型的要紧手段之一,它有单晶法和粉末χ-射线衍射法两种。

可用于区别晶态与非晶态、混合物与化合物。

可通过给出晶胞参数,如原子间距离、环平面距离、双面夹角等确定药物晶型与结构。

粉末法研究的对象不是单晶体,而是许多取向随机的小晶体的总和。

此法准确度高,辨论能力强。

每一种晶体的粉末图谱,几乎同人的指纹一样,其衍射线的分布位置和强度有着特点性规律,因而成为物相鉴定的基础。

它在药物多晶的定性与定量方面都起着决定性作用。

当χ-射线(电磁波)射入晶体后,在晶体内产生周期性变化的电磁场,迫使晶体内原子中的电子和原子核跟着发生周期振动。

原子核的这种振动比电子要弱得多,因此可忽略不记。

振动的电子就成为一个新的发射电磁波波源,以球面波方式往各个方向散发出频率相同的电磁波,入射χ-射线虽按一定方向射入晶体,但和晶体内电子发生作用后,就由电子向各个方向发射射线。

当波长为λ的χ-射线射到这族平面点阵时,每一个平面阵都对χ-射线产生散射,如图5-1。

图5-1 晶体的Bragg-衍射先考虑任一平面点阵1对χ-射线的散射作用:χ-射线射到同一点阵平面的点阵点上,假如入射的χ-射线与点阵平面的交角为θ,而散射线在相当于平面镜反射方向上的交角也是θ,则射到相邻两个点阵点上的入射线和散射线所通过的光程相等,即PP'=QQ'=RR'。

依照光的干涉原理,它互相加强,同时入射线、散射线和点阵平面的法线在同一平面上。

再考虑整个平面点阵族对χ-射线的作用:相邻两个平面点阵间的间距为d,射到面1和面2上的χ-射线的光程差为CB+BD,而CB=BD=dsinθ,即相邻两个点阵平面上光程差为2dsinθ。

依照衍射条件,光程差必须是波长λ的整数倍才能产生衍射,如此就得到χ-射线衍射(或Bragg衍射)差不多公式:2dsinθ =nλ(5-1)θ为衍射角或Bragg角,随n不同而异,n是1,2,3……等整数。

药物晶型及相关分析手段介绍

药物晶型及相关分析手段介绍

药物晶型及相关分析手段介绍前言1832年Woehler和Liebig发现苯甲酰胺化合物存在两种不同的晶型,至此,国内外开始重视并研究药物的不同晶型及其晶型差异,尤其在NCE的开发过程中。

同一种药物,由于结晶过程的差异(如温度、压力、溶剂),可以生成完全不同类型的晶体,这种现象称为药物的多晶型现象,也称“同质异晶”现象。

多晶现象在有机药物中是非常普遍的。

同一个化合物含有2个或2个以上的晶格结构,形成多种晶型的现象称为多晶型现象;与晶型相对应的则是无定型,即它的分子是无规则排列、没有一定的晶格常数的形态(见下图)。

对于固体药物而言,不同晶型的同种药物,其理化性质如稳定性、溶解性、吸湿性、形状、颜色、流动性、密度等可能存在显著差异,因此有时可能会在大批量生产或制剂过程中产生不同程度影响;更主要的是,不同质异晶有时会在生物利用度、药效等方面可能会存在显著区别,如服用相同剂量的阿司匹林,服用晶型II的血药浓度高于晶型I的70%。

因此,在进行药物研究前弄清其晶型及相应的影响是非常有必要的。

X射线粉末衍射(XRPD)1895年,伦琴发现了X射线;1912年劳厄、弗里德里希和克里平发现晶体的X射线衍射现象,揭示了X射线的本质和晶体的原子结构特征,为晶体结构分析奠定了基础。

当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,这就是X射线衍射的基本原理。

XRD用于药物研究方法一般是两种方法:X射线单晶衍射法和X 射线粉末衍射法。

单晶法是研究和确认化学药物多晶型中最基础最可靠的方法,但单晶样品难获得(需要获得大于0.1mm的单晶体);XRPD一般可用于检测化学药物的纯度、晶型稳定性、识别药物制剂总原料药含量、晶型变化等,样品较易获得,且图谱一般具有较强专属性。

晶型药物的检测方法

晶型药物的检测方法
Document number 10
二、常用检测方法
扫描隧道显微镜:
用途:直接观测到晶体内部的微观晶格变化和原子结构、晶面分子
排列、晶面缺陷等。
Document number 11
二、常用检测方法
2、X-射线衍射技术(XRD)
利用原子对X-射线的衍射效应,完成对物质结构、物质成分、 物质晶型的研究。 特点:
基于热力学原理和物质热力学性质而建立的分析方法。 特点: 1、试样用量少(0.1-10mg) 2、适用于多种形态的试样 3、试样不需要预处理 4、操作简单 热分析仪器构成:温度控制系统、气氛控制系统、测量系统与记录系统
Document number
18
二、常用检测方法
3、热分析技术
热重分析法
差示扫描量热法
升华、分解过程和量值,也可有效区分物质是否含有结晶溶剂或
结晶水成分。
Document number
21
二、常用检测方法
TG曲线:
程序控温下,质量随温度的变化。 m=f(T)。 测量条件:发生质量变化。 纵坐标:质量或其百分数
Document number
22
DTG曲线:
TG曲线 热重曲线是一种台阶形曲线,分辨率 不高。在其基础上通过微分处理,得到 微分热重曲线(DTG)dm/dt=f(T)
原理:在温度程序控制下,测量样品与惰性物质参比物之间热 量差与温度变化之间关系的技术。
应用:分析样品的熔融分解状态、混晶物质状态、转晶物质状
态等。
• 测定相变点
• 定性鉴别药物或其多晶型 • 纯度检查 • 测定热化学参数或物质的量
Document number
24
二、常用检测方法

药物晶型常用的检测分析方法

药物晶型常用的检测分析方法

药物晶型常用的检测分析方法物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同的晶体结构。

同一物质具有两种或两种以上的空间排列和晶胞参数,形成多种晶型的现象称为多晶现象(polymorphism)。

虽然在一定的温度和压力下,只有一种晶型在热力学上是稳定的,但由于从亚稳态转变为稳态的过程通常非常缓慢,因此许多结晶药物都存在多晶现象。

固体多晶型包括构象型多晶型、构型型多晶型、色多晶型和假多晶型。

物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同的晶体结构。

同一物质具有两种或两种以上的空间排列和晶胞参数,形成多种晶型的现象称为多晶现象(polymorphism)。

虽然在一定的温度和压力下,只有一种晶型在热力学上是稳定的,但由于从亚稳态转变为稳态的过程通常非常缓慢,因此许多结晶药物都存在多晶现象。

固体多晶型包括构象型多晶型、构型型多晶型、色多晶型和假多晶型。

药物分子通常有不同的固体形态,包括盐类,多晶,共晶,无定形,水合物和溶剂合物;同一药物分子的不同晶型,在晶体结构,稳定性,可生产性和生物利用度等性质方面可能会有显著差异,从而直接影响药物的疗效以及可开发性。

如果没有很好的评估并选择最佳的药物晶型进行研发,可能会在临床后期发生晶型的变化,从而导致药物延期上市而蒙受巨大的经济损失,如果上市后因为晶型变化而导致药物被迫撤市,损失就更为惨重。

因此,药物晶型研究和药物固态研发在制药业具有举足轻重的意义。

由于药物晶型的重要性,美国药监局(FDA)和中国药监局(SFDA)在药物申报中对此提出了明确规定,要求对药物多晶型现象进行研究并提供相应数据。

正因如此,任何一个新药的研发,都要进行全面系统的多晶型筛选,找到尽可能多的晶型,然后使用各种固态方法对这些晶型进行深入研究,从而找到最适合开发的晶型;选定最佳晶型后,下一步就是开发能始终如一生产该晶型的化学工艺;最后一步是根据制剂对原料药固态性质的要求,对结晶工艺进行优化和控制,确定生产具有这些固态性质的最佳工艺参数,从而保证生产得到的晶型具有理想的物理性质,比如晶体表象,粒径分布,比表面积等。

药物晶型研究讲座

药物晶型研究讲座

DTA和DSC较为相似,各种物质都有自己特有的差热曲线,
因此差热分析法是固体晶型物质特性量值分析的手段之一。
熔点法分为毛细管法和熔点仪法。一般来说,晶型物质 的稳定性越强其熔点值也越高。通过检测不同晶型物质的
熔点值差距,可以预测出不同晶型物质的稳定性关系。
拉曼光谱法
固态核磁共振技术
十一、晶型药物的吸收
非手性化学物质,化学药物的分子构象可以发生变化,可
以存在不同的分子内和分子间作用力(例如:氢键、盐键、 配位键、范德华力等)。
每种化学物质均存在不同的理化性质。当我们研究 的化学药物对象具有以下情况时,需要注意该药物可能存 在多晶型问题: 1.药物分子对于各种常用有机溶剂溶解度较差时; 2.药物分子骨架柔性较大而易于形成多构象时 3.药物分子存在长侧链柔性较大的取代基时 4.药物分子骨架构象稳定且含有较小或较少的极性基团 时 5.药物分子中不存在手性碳原子或存在多个手性碳原子 时 6.药物是以盐类或配位形成药物基本组成单元时 7.药物样品异吸湿时等。
7.相同化学药物,在不同的重结晶溶剂条件下,由于 晶体中所含有的药物分子立体手性参数变化而产生不同的
晶型固体物质。
8.相同化学药物,在不同的重结晶溶剂条件下,由于
晶体中所含有的药物分子自身构象参数变化而产生不同的
晶型固体物质。
9.相同化学药物,在与各种有机酸或无机酸成盐时,由于 晶体中所含有盐种类不同、成盐数量与盐键等参数变化而产 生不同的晶型固体物质。
包含药物相关因素和机体相关因素。对于晶型药物的 吸收,自身晶型的变化是重要的影响因素。 溶解度:不同晶型的药物在溶解度上的差异使其吸收的
情况有所不同。
溶出速率:固体药物必须经过药物溶出,才能吸收,发 挥其治疗作用,若溶出速率小,则吸收慢,血药浓度就难 以达到治疗的有效浓度。

9种最常见的药物晶型检测方法

9种最常见的药物晶型检测方法

9种最常见的药物晶型检测方法药物分子通常有不同的固体形态,包括盐类,多晶,共晶,无定形,水合物和溶剂合物;同一药物分子的不同晶型,在晶体结构,稳定性,可生产性和生物利用度等性质方面可能会有显著差异,从而直接影响药物的疗效以及可开发性。

如果没有很好的评估并选择最佳的药物晶型进行研发,可能会在临床后期发生晶型的变化,从而导致药物延期上市而蒙受经济损失,如果上市后因为晶型变化而导致药物被迫撤市,损失就很严重。

因此,药物晶型研究和药物固态研发在制药业具有举足轻重的意义。

一、X-射线衍射法(X-ray diffraction)X-射线衍射是研究药物晶型的主要手段,该方法可用于区别晶态和非晶态,鉴别晶体的品种,区别混合物和化合物,测定药物晶型结构,测定晶胞参数(如原子间的距离、环平面的距离、双面夹角等),还可用于不同晶型的比较。

X-射线衍射法又分为粉末衍射和单晶衍射两种,前者主要用于结晶物质的鉴别及纯度检查,后者主要用于分子量和晶体结构的测定。

1、单晶衍射单晶衍射是国际上公认的确证多晶型的最可靠方法,利用该方法可获得对晶体的各晶胞参数,进而确定结晶构型和分子排列,达到对晶型的深度认知。

而且该方法还可用于结晶水/溶剂的测定,以及对成盐药物碱基、酸根间成键关系的确认。

然而,由于较难得到足够大小和纯度的单晶,因此该方法在实际操作中存在一定困难。

2、粉末衍射粉末衍射是研究药物多晶型的最常用的方法。

粉末法研究的对象不是单晶体,而是众多取向随机的小晶体的总和。

每一种晶体的粉末X-射线衍射图谱就如同人的指纹,利用该方法所测得的每一种晶体的衍射线强度和分布都有着特殊的规律,以此利用所测得的图谱,可获得出晶型变化、结晶度、晶构状态、是否有混晶等信息。

该方法不必制备单晶,使得实验过程更为简便,但在应用该方法时,应注意粉末的细度,而且在制备样品时需特别注意研磨过筛时不可发生晶型的转变。

二、红外吸收光谱法不同晶型药物分子中的某些化学键键长、键角会有所不同,致使其振动-转动跃迁能级不同,与其相应的红外光谱的某些主要特征如吸收带频率、峰形、峰位、峰强度等也会出现差异,因此红外光谱可用于药物多晶型研究。

药物晶型基本知识

药物晶型基本知识

药物晶型基本知识摘要:一、药物晶型的概念1.药物晶型的定义2.药物晶型的重要性二、药物晶型的类型1.分子晶体2.离子晶体3.金属晶体4.共价晶体三、药物晶型的性质1.物理性质a.晶格结构b.形状c.尺寸d.颜色e.熔点f.溶解度2.化学性质a.稳定性b.反应性四、药物晶型的研究方法1.X 射线衍射2.红外光谱3.核磁共振4.热分析法五、药物晶型的应用1.药物的生物利用度2.药物的稳定性和有效期3.药物的制备和生产正文:药物晶型是药物科学研究中的一个重要领域,它涉及到药物的物理、化学和生物学性质,对药物的应用和效果有着直接的影响。

药物晶型是指药物分子在固态中以一定的规律排列形成的晶体结构。

药物晶型的类型主要有分子晶体、离子晶体、金属晶体和共价晶体。

其中,分子晶体是由分子间的范德华力或氢键力相互结合形成的晶体;离子晶体是由正负离子间的电静力吸引力形成的晶体;金属晶体是由金属离子间的金属键力形成的晶体;共价晶体是由共价键力将分子或离子结合在一起的晶体。

药物晶型的性质对其应用有着重要的影响。

物理性质如晶格结构、形状、尺寸、颜色、熔点和溶解度等,化学性质如稳定性、反应性等,都会直接影响药物的效果和生物利用度。

因此,研究药物晶型的性质是药物研发的重要环节。

药物晶型的研究方法主要有X 射线衍射、红外光谱、核磁共振和热分析法等。

其中,X 射线衍射可以确定药物晶型的结构;红外光谱可以确定药物晶型中的化学键;核磁共振可以确定药物晶型中的原子位置;热分析法可以确定药物晶型的稳定性。

药物晶型在药物的应用中有着广泛的应用。

药物的生物利用度、稳定性和有效期、制备和生产等环节,都与药物晶型有关。

药物晶型

药物晶型
药物晶型多态性对临床疗效的影响是目前药学界比较的问题。同一种药物在疗效上存在差异,其原因除了因 生产工艺不同而产生的质量差异外,另一个可能原因就是药物
晶型对生物利用度的影响。药物因晶型不同(晶型自由能差异以及分子间作用力不同)导致其生物利用度不 同,进而影响药物在体内的吸收,产生药效差异。有研究表明,造成仿制药与原研药、不同企业生产的同种药物、 同一企业同种药物的不同生产批次临床疗效差异的原因,大多数是由于固体药物的晶型物质存在状态变化。如, 那格列奈的S晶型与临床使用的H晶型溶解度均明显>B晶型;阿司匹林有晶型Ⅰ和晶型 Ⅱ,相同给药剂量下服用 Ⅱ型的血药浓度超出Ⅰ型达70%。
参考文献
【1】《药物晶型的分析方法》李志万 (国家药品监督管理局药品审评中心,北京 ) 【2】《药物晶型多态性及其测定、评价方法》金朝辉,顾锦建,郑明琳,赵淼文章编号 1001-0408(2016) 30-4318-03 【3】《晶型药物质量控制》专业资料医药卫生谢谢观看
1.1粉末衍射粉末衍射是研究药物多晶型的最常用的方法。粉末法研究的对象不是单晶体,而是众多取向随 机的小晶体的总和。每一种晶体的粉末X-射线衍射图谱就如同人的指纹,利用该方法所测得的每一种晶体的衍射 线强度和分布都有着特殊的规律,以此利用所测得的图谱,可获得出晶型变化、结晶度、晶构状态、是否有混晶 等信息。该方法不必制备单晶,使得实验过程更为简便,但在应用该方法时,应注意粉末的细度,而且在制备样 品时需特别注意研磨过筛时不可发生晶型的转变。
1.2单晶衍射单晶衍射是国际上公认的确证多晶型的最可靠方法,利用该方法可获得对晶体的各晶胞参数, 进而确定结晶构型和分子排列,达到对晶型的深度认知。而且该方法还可用于结晶水/溶剂的测定,以及对成盐药 物碱基、酸根间成键关系的确认。然而,由于较难得到足够大小和纯度的单晶,因此该方法在实际操作中存在一 定困难。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DTA和DSC较为相似,所不同的是,DTA是通过同步测量样品与惰性参比物的温度差来判定物质的内在变化。各种物质都有自己的差热曲线,因此DTA是物质物理特性分析的一种重要手段。
TGA是在程序控制下,测定物质的质量随温度变化的一种技术,适用于检查晶体中溶剂的丧失或样品升华、分解的过程,可推测晶体中含结晶水或结晶溶剂的情况,从而可快速区分无水晶型与假多晶型。热分析法所需样品量少,方法简便,灵敏度高,重现性好,在药物多晶型分析中较为常用。
原研药公司对药物分子的晶型申请专利,可以延长药物的专利保护,从而使自己的产品具有更长时间的市场独享权。而对于仿制药公司来说,为了确保仿制药和原研药在生物利用度上的等同性,也需要对原料药的晶型进行研究,以确保原料药和制剂的质量,正因为如此美国药监局在ANDA申报中也对仿制药多晶型控制有明确的指南;另外,开发出药物的新晶型从而能够打破原研药公司对晶型的专利保护,提早将仿制药推向市场,也是近年来仿制药公司一个至关重要的策略,而且如果能找到在稳定性,生物利用度,以及生产工艺方面具有优越性的新晶型,还可以申请晶型专利保护,从而大大提升自己的市场竞争力。总之,不管是新药开发,还是仿制药生产,药物晶型研究都是必不可少的中心环节。
7扫描隧道显微镜法
扫描隧道显微镜可使人类能够直接观察到晶体表面上的单个原子及其排列状态,并能够研究其相应的物理和化学特性;可以直接观测晶体的晶格和原子结构、晶面分子原子排列、晶面缺陷等。因此STM用于药物多晶型研究非常有利,具有广阔的应用前景。
8溶解度方法
如前所叙,药物的不同晶型的自由能不同,导致了其溶解度不同,一般说来,自由能越大,晶型越不稳定,溶解度越大;反之则小。在实践中常测定各晶型再不同温度下的溶解度,并绘制出溶解度(Cs)-温度(T)曲线。通过测定Cs-T曲线,可以区分出不同的晶型,如有相交的曲线,还可得到其热力学转变温度(Tp)
2红外吸收光谱法
不同晶型药物分子中的某些化学键键长、键角会有所不同,致使其振动-转动跃迁能级不同,与其相应的红外光谱的某些主要特征如吸收带频率、峰形、峰位、峰强度等也会出现差异,因此红外光谱可用于药物多晶型研究。目前已知的由于晶型不同引起红外光谱不同的药物有甲苯咪唑等20多个品种。红外光谱法常用的样品制备方法有KBr压片法、石蜡糊法、漫反射法以及衰减全反射法(attenuatedtotalreflection,ATR)等。考虑到研磨可能会导致药物晶型的改变,所以在用红外光谱法进行药物晶型测定时多采用石蜡油糊法,或采用扩散反射红外傅里叶变化光谱法(DRIFT)。近些年来,随着计算机及分析软件的发展,近红外傅里叶变换拉曼光谱法(NIR-FTRS)也应用在药物多晶型的定性、定量研究中,它融合了NIR速度快、不破坏样品,不需试剂、可透过玻璃或石英在线测定的优势[6]和拉曼光谱不需专门制备样品以及对固体药物晶型变化灵敏的特点,可视为传统红外光谱法研究药物多晶型的一种延伸。红外光谱法较为简便、快速,然而对于部分晶型不同而红外图谱相同或差别不大的药物,红外光谱就难以区分了,如苯乙阿托品的晶型I和晶型II的红外光谱一致;而且有时图谱的差异也可能是由于样品纯度不够,晶体的大小,研磨过程的转晶等导致的分析结果偏差。这时就需要同时采取其他方法共同确定样品的晶型。
药物分子通常有不同的固体形态,包括盐类,多晶,共晶,无定形,水合物和溶剂合物;同一药物分子的不同晶型,在晶体结构,稳定性,可生产性和生物利用度等性质方面可能会有显著差异,从而直接影响药物的疗效以及可开发性。如果没有很好的评估并选择最佳的药物晶型进行研发,可能会在临床后期发生晶型的变化,从而导致药物延期上市而蒙受巨大的经济损失,如果上市后因为晶型变化而导致药物被迫撤市,损失就更为惨重。因此,药物晶型研究和药物固态研发在制药业具有举足轻重的意义。
3熔点法和显微镜法
如上所述,药物晶型不同,熔点可能会有差异,除常见的毛细管法和熔点测定仪方法外,热载台显微镜也是通过熔点研究药物多晶型存在的常见方法之一,该方法能直接观察晶体的相变、熔化、分解、重结晶等热力学动态过程,因此利用该工具照药典规定进行熔点测定可初步判定药物是否存在多晶现象。部分药物多晶型之间熔点相差幅度较小,甚至无差别,故以熔点差异确定多晶型,只是初步检测方法之一。一般来说,晶型稳定性越高熔点也越高;两种晶型的熔点差距大小,可以相对地估计出它之间的稳定性关系。如果两种晶型熔点相差不到1℃时,则这两种晶型在结晶过程中就可以同时析出,且两者的相对稳定性较难判别。两者熔点越接近,不稳定的晶型越不易得到。
6核磁共振法
不同晶型结构中分子中的原子所处化学环境存在细微差异,类似核对施加的外磁场即产生不同的响应,致使类似核在不同化学位移处发生共振,因此其13C-NMR谱图不同,通过对不同晶型图谱的对比,即可判断药物是否存在多晶现象,通过与已知晶型的13C-NMR比较,也可获得测试样品的具体晶型。尤其是近年来出现的固态13C-NMR、高效质子去耦合、交叉极化(CP)、幻角自旋(CAS)等新技术的应用,使得我们能获得高分辨率的13C-NMR谱,这种谱图能给出有关动力学和局部化学环境的详细原子水平的信息,因此利这种高分辨率的13C-NMR谱图可进行多晶型的混晶分析以及某种特征晶型的测定。
"同样的化学药物,为什么有的厂商的产品效果好,另外厂商的产品效果就差不少?"临床上,这个问题困扰过不少医生和患者。在日前举行的中国医学科学院药物研究所药物晶型研究中心成立暨晶型药物研讨会上,与会专家告诉公众,这种药效差异有可能是药物晶型不同造成的。
专家指出,在药物原料成分、化学纯度等都达到国际标准要求的背景下,药物晶型是影响我国仿制药物质量水平的主要因素。
目前鉴别晶型主要是针对不同的晶型具有不同的理化特性及光谱学特征来进行的,现将几种常用且特征性强、区分度高的方法介绍如下,以供参考。
1X-射线衍射法(X-raydiffraction)
X-射线衍射是研究药物晶型的主要手段,该方法可用于区别晶态和非晶态,鉴别晶体的品种,区别混合物和化合物,测定药物晶型结构,测定晶胞参数(如原子间的距离、环平面的距离、双面夹角等),还可用于不同晶型的比较。X-射线衍射法又分为粉末衍射和单晶衍射两种,前者主要用于结晶物质的鉴别及纯度检查,后者主要用于分子量和晶体结构的测定。
"药品也存在多晶型现象。如果因晶型不同,药物的吸收、疗效、质量也会出现不同,这样的药物就可以称为晶型药物。"吕扬说,晶型药物的研究应涵盖所有固体药物,包括化学药、生物药、植物药,不仅包括片剂、胶囊等口服固体药物,还包括粉针剂等固体注射制剂以及悬浮剂等。
据介绍,在《美国药典》(30版)中,规定了晶型检查的药物品种193种。在《欧洲药典》(5版)中规定了晶型检查的品种共103种。而在《中国药典》(2005版)中,规定了晶型检查的品种有2种,仅占总数的0.3%.
9药物多晶型计算机辅助预测
近年来,随着计算机技术的发展,计算机辅助预测药物晶型也有了较大进展。例如,在固体药物结构已知的前提下,运用商业程序PolymorphPredictor,通过计算点阵能量最小化方法寻找能量上可能的晶体结构和分子排列规律,并将它们按能量大小排列,计算出不同洁净条件下的最可能生成的晶型。但该方法在药物中的成功率目前还较低。
晶型药物常用的检测 分析 方法
物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同的晶体结构。同一物质具有两种或两种以上的空间排列和晶胞参数,形成多种晶型的现象称为多晶现象(polymorphism)。虽然在一定的温度和压力下,只有一种晶型在热力学上是稳定的,但由于从亚稳态转变为稳态的过程通常非常缓慢,因此许多结晶药物都存在多晶现象。固体多晶型包括构象型多晶型、构型型多晶型、色多晶型和假多晶型。
5偏光显微镜法
偏光显微镜除了含有一般光学显微镜的结构外,最主要的特点是装有两个偏光零件,即装在载物台下方的起偏镜(又称下偏光镜)和装在镜筒中的分析镜(又称上偏光镜)。两镜均由人工合成偏光片组成,通过角度的调整,可将射入光源转换成正交偏光。正因为如此,该方法主要适用于透明固体药物。透明固体药物的观测一般是在正交偏光下进行。由于晶体结构不同和偏光射入时的双折射作用,在偏光显微镜上、下偏光镜的正交作用下,晶体样品置于载物台上旋转360ordm;时,则晶体显现短暂的隐失和闪亮,晶体隐失时晶体与偏振器振动力向所成的交角称为消光角,通过不同的消光角,即可决定晶体所属的晶型。偏光显微镜法还可研究晶型间的相变,可以准确测定晶体熔点;对于具有各项向异性的动植物材料(如纤维蛋白、淀粉粒)的结构,具有特殊的鉴定作用。
由于药物晶型的重要性,美国药监局(FDA)和中国药监局(SFDA)在药物申报中对此提出了明确规定,要求对药物多晶型现象进行研究并提供相应数据。正因如此,任何一个新药的研发,都要进行全面系统的多晶型筛选,找到尽可能多的晶型,然后使用各种固态方法对这些晶型进行深入研究,从而找到最适合开发的晶型;选定最佳晶型后,下一步就是开发能始终如一生产该晶型的化学工艺;最后一步是根据制剂对原料药固态性质的要求,对结晶工艺进行优化和控制,确定生产具有这些固态性质的最佳工艺参数,从而保证生产得到的晶型具有理想的物理性质,比如晶体表象,粒径分布,比表面积等。这种通过实验设计来保证质量的方法必须对药物晶型具有非常全面深刻的理解才能实现。
11结语
上述所提及的药物晶型确定方法多数仅能反映药物不同晶型某一方面的物理性质,因此,不同测试手段的综合运用,可达到对药物晶型的全面认识。近年来出现的红外与热显微镜法,以及差示扫描量热法与热台显微镜法联用方法即是该思路的一种体现。
相关阅读:
一种国产尼莫地平的生物利用度约为进口药的1/3,原因正是晶型不同。"这就意味着,吃3片这种国产尼莫地平,才顶得上1片进口尼莫地平的效果。上述常见的的几种方法外,还可根据不同晶型药物因分子或原子在晶格空间排列不同所导致在密度、折射率、吉布斯自由能等方面的差异,通过测定药物的密度、折光率或采用磁性异向仪和膨胀计等仪器进行不同晶型的确定;对于存在色多晶型药物,还可通过观察药物的颜色,推测药物动物晶型。另外随着科学技术的进步,随着对化学物质细微结构认识的加深,相信还会有新的技术手段可用于药物晶型的研究。
相关文档
最新文档