八年级数学中心对称(北师版)(基础)(含答案)
八年级上册数学综合复习题基础题北师版(含答案)
八年级上册数学综合复习题基础题北师版一、单选题(共7道,每道3分)1.下列生活中的现象,属于平移的是()A.抽屉的拉开B.汽车刮雨器的运动C.坐在秋千上人的运动D.投影片的文字经投影变换到屏幕答案:A试题难度:三颗星知识点:平移的定义2.下列说法正确的是()A.49的平方根是-7B.的算术平方根是4C.a²的算术平方根是aD.的立方根是a答案:D试题难度:三颗星知识点:立方根3.第二象限内的点(m,n)到x轴的距离是()A.mB.-mC.nD.-n答案:C试题难度:三颗星知识点:点的坐标4.下列选项正确的是()A.一个多边形的内角相等,则它的边一定都相等B.一组对边平行,另一组对边相等的四边形是等腰梯形C.正方形既是矩形,又是菱形D.矩形的对角线一定互相垂直答案:C试题难度:三颗星知识点:四边形的性质与判定5.如图,有一个直角三角形纸片,两直角边AC=3,BC=4,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则AD等于()A. B.C. D.答案:A试题难度:三颗星知识点:折叠问题6.下列字母是中心对称图形的是()A.UB.HC.MD.E答案:B试题难度:三颗星知识点:中心对称图形7.已知一次函数y=(a-1)x-b的图象如图所示,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.a<1,b>0D.a<1,b<0答案:A试题难度:三颗星知识点:一次函数图象与系数的关系二、填空题(共8道,每道3分)1.若无理数a满足3.2<a<4,请你写出一个满足条件的无理数a:.答案:、、、或试题难度:三颗星知识点:无理数2.若一个正数的平方根是2a+1和-a-2,则这个正数是.答案:9试题难度:三颗星知识点:平方根3.已知m<0,那么点P(-m²-1,m-2)关于原点的对称点在第象限,其坐标为.答案:(m²+1,2-m)试题难度:三颗星知识点:点的坐标4.如图,在梯形ABCD中,AD//BC,AE//DC交BC于E,已知梯形的周长为30cm,AD=5cm,则△ABE的周长为.答案:20cm试题难度:三颗星知识点:梯形性质5.等腰梯形上底为6cm,下底为8cm,高为cm,则腰长为.答案:2cm试题难度:三颗星知识点:梯形性质6.如图,在平面直角坐标系中,□ABCD的顶点A、D的坐标分别是(0,0),(2,3),AB=5,则顶点C的坐标为.答案:(7,3)试题难度:三颗星知识点:坐标与图形性质7.若2,4,2x,4y四个数的平均数是5,而5,7,4x,6y四个数的平均数是9,则x2+y2= .答案:13试题难度:三颗星知识点:平均数8.在直角坐标系中,A(2,0),B(-4,0),△ABC为等边三角形,则C点的坐标为.答案:(-1,)或(-1,)试题难度:三颗星知识点:点的坐标三、计算题(共1道,每道8分)1.(1)(2)答案:(1)(2)试题难度:三颗星知识点:二次根式的混合运算四、解答题(共5道,每道7分)1.一辆卡车装满货物后,高4米,宽2.8米.这辆卡车能通过横截面如图所示(上方是一个半圆)的隧道吗?答案:能通过解:∵卡车在隧道中间位置能通过的可能性最大∴如图,O为EF的中点,OE=1.4m,OG为圆的半径,OG=2m在直角△OEG中GE²=OG²-OE²=2²-1.4²=2.04 ∵(4-2.6)²=1.4²=1.96,2.04>1.96 ∴在相同宽度下隧道的高度高于卡车的高度,卡车能通过该隧道试题难度:三颗星知识点:勾股定理应用之拱桥问题2.如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(3)B出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B 的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.答案:(1)10;(2)1;(3)3;(4)(5)试题难度:三颗星知识点:一次函数的图象3.佳能电脑公司的李经理对2008年11月份电脑的销售情况做了调查,情况如下表:请你回答下列问题:(1)2008年11月份电脑价格(与销售台数无关)组成的数据平均数为,中位数为,本月平均每天销售台(11月份为30天).(2)如果你是该商场的经理,根据以上信息,应该如何组织货源,并说明你的理由.答案:解:(1)平均数=(6000×20+4500×40+3800×60+3000×30)=4120;中位数为:3800;本月平均每天销售的数量为:(20+40+60+30)=5(台);(2)价格为6000元一台的电脑,销售数量的频率=≈0.13;(3)如:多进3800元的电脑,适量进些其他价位的电脑等.故答案为:4120,3800,5.试题难度:三颗星知识点:平均数、中位数、众数4.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品九折销售,乙商品七折销售,调价后两种商品的单价和比原来的单价和降低了20%.甲、乙两种商品原来的单价各是多少?答案:解:设甲单价为x,乙单价为y,根据题意可得:解得:答:甲单价50元,乙单价50元.试题难度:三颗星知识点:二元一次方程应用题5.已知一次函数y=kx+b的图象经过点A(-4,0),B(2,6)两点.(1)求一次函数y=kx+b 的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.答案:解:(1)∵一次函数y=kx+b的图象经过两点A(-4,0)、B(2,6),∴,解得,∴函数解析式为:y=x+4;(2)函数图象如图:(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.试题难度:三颗星知识点:一次函数五、证明题(共1道,每道7分)1.如图,在△ABC中,∠ACB=90°,点E为AB的中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.答案:证明:∵EF⊥BC,∠ACB=90°∴EF∥AC ∵E为Rt△ABC斜边中点∴EC=EA又∵AF=CE ∴∠1=∠2=∠3=∠4=∠5=∠6 从而△AEF和△EAC均为等腰三角形且底角相等∴两顶角∠FAE=∠AEC ∴AF∥EC ∴四边形ACEF是平行四边形(一组对边平行且相等的四边形为平行四边形)试题难度:三颗星知识点:平行四边形的判定。
第9讲 图形的旋转与中心对称八年级数学下册同步讲义(北师大版)
第9讲图形的旋转与中心对称目标导航1、掌握旋转的概念,探索它的基本性质,能够按要求作出简单平面图形旋转后的图形;2、掌握旋转对称图形、中心对称图形和中心对称的概念,理解他们的区别和联系,并会判别给出的图形是旋转对称图形还是中心对称图形;3、会画出给定条件的旋转对称图形或中心对称图形以及会画已知图形关于已知点成中心对称的图形.知识精讲知识点01 生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点.【知识拓展1】(2021秋•建华区期末)时钟的时针从上午的8时到上午10时,时针旋转的旋转角为.【即学即练1】(2021秋•太原期中)几何图形由点、线、面组成,点动成线、线动成面、面动成体.下列现象中能反映“线动成面”的是()A.流星划过夜空B.笔尖在纸上快速滑动C.汽车雨刷的转动D.旋转门的旋转【即学即练2】(2021春•凤翔县期末)下列运动形式属于旋转的是()A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪知识点02 旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.【知识拓展2】(2021秋•泰山区期末)小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180°).若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A.15°或45°B.15°或45°或90°C.45°或90°或135°D.15°或45°或90°或135°【即学即练1】(2021秋•湖北期末)如图,在△ABC中,∠BAC=110°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则旋转角∠ACD的度数为()A.50°B.40°C.30°D.20°【即学即练2】(2021秋•莆田期末)“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图①所示的“三等分角仪”能三等分任意一角.如图②,这个“三等分角仪”由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,点C固定,点D,E可在槽中滑动,OC=CD=DE.若∠BDE=81°,则∠AOB的度数是()A.24°B.27°C.30°D.33°知识点03 旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.【知识拓展3】(2021秋•北仑区期末)下列正多边形,绕其中心旋转72°后,能和自身重合的是()A.B.C.D.【即学即练1】(2021秋•荆门期末)把如图的五角星绕着它的中心旋转一定角度后与自身重合,则这个旋转角度可能是()A.36°B.72°C.90°D.108°【即学即练2】(2021秋•丰润区期末)如图,五角星的五个顶点等分圆周,把这个图形绕着圆心顺时针旋转一定的角度后能与自身重合,那么这个角度至少为()A.60°B.72°C.75°D.90°知识点04中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.【知识拓展4】(2021秋•淮南月考)如图,△ABC与△A′B'C'关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.∠ABC=∠A'C'B'C.点B的对称点是B′D.BC∥B'C'【即学即练1】(2021秋•黄陂区期中)如图,点A,B分别是两个半圆的圆心,则该图案的对称中心是()A.点A B.点BC.线段AB的中点D.无法确定【即学即练2】(2021春•清苑区期末)如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′知识点05中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.【知识拓展5】(2021秋•交城县期末)下列交通标志中,是中心对称图形的是()A.向右和向左转弯B.靠左侧道路行驶C.禁止驶入D.环岛行驶【即学即练1】(2021秋•铅山县期末)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.知识点06关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.【知识拓展6】(2021秋•沙河口区期末)在平面直角坐标系中,点P、点Q关于原点对称,若点P的坐标是(2,3),则点Q的坐标是.【即学即练1】(2021秋•新吴区期末)若点P(a,2)点Q(﹣4,b)关于原点对称,则点M (a,b)在第象限.【即学即练2】(2021秋•开州区期末)平面直角坐标系中点P(7,﹣9)关于原点对称的点的坐标是()A.(﹣9,7)B.(﹣7,9)C.(7,9)D.(﹣7,﹣9)知识点07作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.【知识拓展7】(2021秋•南开区期末)如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等.(1)直接写出点D的坐标;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为.【即学即练1】(2021秋•南沙区期末)如图,将△ABC绕点A顺时针旋转α,得到△ADE,若点D 恰好在CB的延长线上,则∠CDE等于()A.αB.90°+C.90°﹣D.180°﹣2α【即学即练2】(2021秋•铅山县期末)如图,在平面直角坐标系中,点A、B的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)求四边形AOA1B1的面积.例题1.(2020·浙江八年级期末)如图,在Rt ABC 中,90C ∠=︒,点P 为AC 边上的一点,将线段AP 绕点A 顺时针方向旋转(点P 对应点'',P AP AP =).当AP 旋转至AP AB'⊥时,点'B P P ,,恰好在同一直线上,此时作'⊥P E AC 于点E .(1)求证:∠=∠CBP ABP ;(2)若4,8AB BC AC -==,求PBC 的面积;(3)在(2)的条件下,点N 为边BC 上一动点,点M 为边BP 上一个动点,连接MC MN ,,求MC MN +的最小值.能力拓展【变式1】(2021·河南郑州市·八年级期末)一副直角三角尺叠放如图1所示,现将45︒的三角尺ADE 固定不动,将含30的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角60CAE ∠=︒时,//BC DE .求其它所有可能符合条件的角()0180CAE CAE ∠︒<∠<︒的度数,画出对应的图形并证明.【变式2】(2021·内蒙古呼伦贝尔市·八年级期末)已知:如图1,AOB 和COD 都是等边三角形.(1)求证:①AC=BD ;②∠APB=60°;(2)如图2,在AOB 和COD 中,OA =OB ,OC =OD ,∠AOB=∠COD=α,则AC 与BD 间的等量关系为 ,∠APB的大小为模块三、中心对称例题1.(2020·辽宁锦州市·八年级期末)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上.请回答下列问题:(1)作出△ABC 向左平移4个单位长度后得到111A B C △,并写出1A 的坐标;(2)作出△ABC 关于原点O 对称的222A B C △并写出22B C ,点的坐标.【变式1】(2021·山东济南市·八年级期末)如图网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)△AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.【变式2】(2021·山东烟台市·八年级期末)如图所示,网格中每个小正方冠的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案.解答下列问题:(1)图①中的三个图案面积都是,且都具有一个共同特征:都是对称图形;(2)请在图②中设计出一个面积与图①阴影部分面积相同,且具备上述共同特征的图案,要求所画图案不能与图①中所给出的图案相同.分层提分题组A 基础过关练一.选择题(共8小题)1.(2021秋•澄海区期末)如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A.25°B.35°C.40°D.85°2.(2021秋•崆峒区期末)2022年2月4日﹣2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片.旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转()A.180°B.120°C.90°D.60°3.(2021秋•雨花区期末)如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是()A.点A与点D是对应点B.BO=EOC.∠ACB=∠FED D.AB∥DE4.(2021秋•沙河口区期末)下列图案是一些电视台的台标,是中心对称图形的是()A.B.C.D.5.(2021秋•澄海区期末)在平面直角坐标系中,点A(1,﹣2)和点B(m,2)关于原点对称,则m的值为()A.2B.﹣2C.1D.﹣16.(2021秋•铅山县期末)如图,将△ABC绕点A逆时针旋转80°,得到△ADE,若点D在线段BC的延长线上,则∠PDE的度数为()A.60°B.80°C.100°D.120°7.(2021秋•绥滨县期末)已知,如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长是()A.1.5cm B.3cm C.5cm D.2.5cm8.(2021秋•澄海区期末)如图,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′刚好落在BC边上,且AB′=CB′,若∠C=20°,则△ABC旋转的角度为()A.60°B.80°C.100°D.120°二.填空题(共1小题)9.(2021秋•杜尔伯特县期末)时针从数字“9”到“12”按时针方向旋转了90°.三.解答题(共9小题)10.(2021秋•大洼区期末)如图,将Rt△ABO绕点O顺时针旋转90°,在所给的直角坐标系中画出旋转后的Rt△A1B1O.11.(2021秋•昆明期末)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,3),B(﹣2,4),C(﹣1,1).(1)以x轴为对称轴画出△ABC的对称图形△A'B'C';(2)画出△ABC绕点C按顺时针旋转90°后的△A″B″C;(3)直接写出A'、A″点的坐标.12.(2021秋•尧都区期末)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1),(2,1),将△BOC绕点O逆时针旋转90度,得到△B1OC1,画出△B1OC1,并写出B、C两点的对应点B1、C1的坐标,13.(2021秋•富县期中)如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.若∠B=21°,∠ACB=26°,求出旋转的度数,并指出旋转中心.14.(2021秋•新丰县期中)如图,在边长为1的小正方形格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)以原点O为对称中心,画出△AOB关于原点对称的△A1OB1.15.(2020秋•定南县期末)已知点P(2x+y,1)与点Q(﹣7,x﹣y)关于原点对称,求x,y的值.16.(2021春•绿园区期末)如图,将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,过点A作AF∥BE,交DE的延长线于点F,试问:∠B与∠F相等吗?为什么?17.(2021春•商河县校级期末)如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.18.(2020春•肇源县期末)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C (4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于原点对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.题组B 能力提升练一.选择题(共5小题)1.(2021秋•椒江区期末)如图,△DEC是由△ABC绕点C顺时针旋转30°所得,边DE,AC相交于点F.若∠A=35°,则∠EFC的度数为()A.50°B.55°C.60°D.65°2.(2021秋•铜官区期末)如图,将△ABC绕点C逆时针旋转α,得到△DEC,若点A恰好在DE的延长线上,则∠BAD的度数为()A.α﹣30°B.180°﹣αC.90°D.3.(2021秋•句容市期末)如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是()A.B.1C.2D.4.(2021秋•宜州区期末)如图,将Rt△ABC绕点A顺时针旋转40°,得到Rt△AB′C′,点C′恰好落在斜边AB上,连接BB′,则∠ABB′的度数为()A.50°B.60°C.70°D.80°5.(2021秋•绵阳期末)如图,将△ABC绕点B顺时针旋转角α,得到△A1BC1,此时点A,点B,点C1在一条直线上,若∠A1BC=22°,则旋转角α=()A.79°B.80°C.78°D.81°二.填空题(共5小题)6.(2021秋•廉江市期末)如图,△DEC与△ABC关于点C成中心对称,AB=3,AC=1,∠D=90°,则AE的长是.7.(2021秋•山亭区期末)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为.8.(2021秋•滨城区期末)已知A(2x+1,3),B(﹣5,3y﹣3)关于原点对称,则x+y =.9.(2021秋•海门市期末)点M(﹣3,2)关于原点对称的点的坐标是.10.(2015秋•天津期末)点A(﹣2,3)与点B(a,b)关于坐标原点对称,则a+b的值为.三.解答题(共8小题)11.(2021秋•沙河口区期末)如图,正方形网格中每个小正方形的边长都是1.将△ABC绕点P逆时针旋转90°后得到△A'B'C',其中A和A',B和B',C和C'是对应点.(1)画出△A'B'C';(2)在该网格中建立平面直角坐标系,点P,A坐标分别为P(0,1),A(1,1),直接写出该坐标系下A',B',C'的坐标.12.(2021秋•喀什地区期末)如图,在每个小正方形边长都是1的方格纸中,点O,A,B都在格点上.(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)求线段OB旋转到OB1时所扫过的扇形面积.13.(2021秋•芝罘区期末)如图,△ABC的顶点坐标分别为A(4,5),B(2,2),C(5,2).(1)将△ABC绕点(0,1)顺时针旋转180°,请画出旋转后的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A对应点A2坐标为(1,﹣2),请画出平移后的△A2B2C2,若△ABC内部一点P的坐标为(a,b),则点P的对应点P2的坐标是;(3)将△A1B1C1绕某一点M旋转可得到△A2B2C2,请画出点M的位置(保留痕迹),并直接写出点M的坐标.14.(2021秋•晋安区校级月考)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O对称.求证:AE=CF.15.(2021•鄂温克族自治旗二模)如图,△ABC中,BC=2AB,D,E分别是边BC,AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=5,AD+BF=14,求四边形ABDF的面积S.16.(2021春•宽城区期末)如图,在△ABC中,AD是BC边上的中线,△A'BD与△ACD关于点D成中心对称.(1)直接写出图中所有相等的线段.(2)若AB=5,AC=3,求线段AD的取值范围.17.(2021秋•桓台县期末)如图,在直角坐标系内,已知点A(﹣1,0).(1)图中点B的坐标是;(2)点B关于原点对称的点D的坐标是;点A关于y轴对称的点C的坐标是;(3)四边形ABCD的面积是;(4)在y轴上找一点F,使S△ADF=S△ABC.那么点F的坐标为.18.(2021秋•建安区期中)数学兴趣小组活动时,提出了如下问题:如图1,在△ABC中若AB=5,AC=3,求BC边上的中线AD的取值范围.解决方法:延长AD到E.使得DE=AD.再连接BE(或将MCD绕点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.迁移应用:请参考上述解题方法,证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.(1)求证:BE+CF>EF;(2)若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.题组C 培优拔尖练一.填空题(共5小题)1.(2021秋•新抚区期末)如图,△ABC是边长为3的等边三角形,E在AC上且AE=2,D是直线BC 上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,连接DF,AF,下列结论:①DF的最小值为;②AF的最小值是1+;③当CD=1时,DE∥AB;④当DE∥AB时,DE=1.正确结论的题号是.2.(2021秋•思明区校级期中)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A、C的对应点分别为点A′、C′,连接AA′、CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.则DE的最小值为.3.(2021•西湖区校级三模)如图,已知Rt△ACB,∠ACB=90°,∠B=60°,AC=4,点D在CB所在直线上运动,以AD为边作等边三角形ADE,则CB=.在点D运动过程中,CE的最小值.4.(2021春•龙岗区期末)如图,等腰△ABC中,∠BAC=150°,D是AB上一点,AD=1,BD=4,E点在边BC上,若点E绕点D逆时针旋转15°的对应点F恰好在AC上,则BE的长度为.5.(2019春•市南区期中)如图,一“L”型纸片是由5个边长都是10cm的正方形拼接而成,过点I的直线分别与AE,JN交于点P,Q,且“L”型纸片被直线PQ分成面积相等的上下两部分,将该纸片沿BG,CH,DI,IJ折成一个无盖的正方体盒子后,点P,Q之间的距离为cm.二.解答题(共7小题)6.(2021秋•沙坪坝区校级期末)(1)如图1,在6×6正方形网格中,有一格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),其面积为7cm2,则这个方格纸的面积等于cm2;(2)若点M是图1中不同于点C的一个格点,且△ABC的面积与△ABM的面积相等,则满足条件的点M有个;(3)如图2,在12×12正方形网格中,每个小正方形的边长为1,给定了点D,E的位置,请先画一个△DEF,使DF,EF的长分别为,2,再画△DEF关于点O成中心对称的△D'E'F'.7.(2021秋•阳东区期中)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.8.(2019春•港南区期中)如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.9.(2017•中原区校级三模)有这样一个问题:探究函数y=的图象与性质.下面是小强的探究过程,请补充完整:(1)函数y=的自变量x的取值范围;(2)如表是y与x的几组对应值.x…﹣5 ﹣4 ﹣3 ﹣2 0 1 2 3 …y…﹣2 0 …﹣﹣﹣如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.①观察图中各点的位置发现:点A1和B1,A2和B2,A3和B3,A4和B4均关于某点中心对称,则该点的坐标为;②小文分析函数y=的表达式发现:当x<﹣1时,该函数的最大值为﹣2,则该函数图象在直线x=﹣1左侧的最高点的坐标为;(3)小强补充了该函数图象上两个点(﹣,),(﹣,﹣),①在上图中描出这两个点,并画出该函数的图象;②写出该函数的一条性质:.10.(2021秋•渝中区校级期末)已知,如图1,直线AB∥CD,E为直线AB上方一点,连接ED、BE,ED与AB交于P点.(1)若∠ABE=110°,∠CDE=70°,则∠E=;(2)如图1所示,作∠CDE的平分线交AB于点F,点M为CD上一点,∠BFM的平分线交CD于点H,过点H作HG⊥FH交FM的延长线于点G,GF∥BE,且2∠E=3∠DFH+20°,求∠EDF+∠G的度数.(3)如图2,在(2)的条件下,∠FDC=25°,将△FHG绕点F顺时针旋转,速度为每秒钟3°,记旋转中的△FHG为△FH′G′,同时∠FDE绕着点D顺时针旋转,速度为每秒钟5°,记旋转中的∠FDE为∠F′DE′,当∠FDE旋转一周时,整个运动停止.设运动时间为t(秒),则当△FH′G′其中一条边与∠F′DE′的其中一条边互相垂直时,直接写出t的值.11.(2021秋•南川区期中)在△ABC中,AB=10,AC=8,∠ACB=30°,将△ABC绕A按逆时针方向旋转,得到△ADE.(1)如图1,点F为BC与DE的交点,连接AF.求证:FA平分∠DFC;(2)如图2,点P为线段AB中点,点G是线段BC上的动点,在△ABC绕A按逆时针方向旋转的过程中,点G的对应点是点G1,求线段PG1长度的最大值与最小值.12.(2019春•宁波期中)知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四边形DEFC(填“>”“<”“=”);(2)如图②,两个正方形如图所示摆放,O为小正方形对角线的交点,求作过点O的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用三种方法分割).。
北师大版八年级数学下册课件-中心对称
中心对称与中心对称图形的联系与区分
区分:
中心对称指两个全等图形的相互位置关系, 中心对称图形指一个图形本身成中心对称.
联系:
如果将中心对称图形的两个图形看成一个整 体,则它们是中心对称图形.
如果将中心对称图形对称的部分看成两个图 形,则它们成中心对称.
讲授新课
讲授新课
我们平时见过的几何图形中,有哪些是 中心对称图形?并指出对称中心.
O
讲授新课
注意:
平行四边形不是轴对称图形! 是A中心对称图形D
O
B
C
课堂小结
请同学们试着小结本节课
讲授新课
A
O
B C
C1 B1
A1
讲授新课
A
C1
B1
O
B
(1)关于中心对称C 的两个图形是全A等1 形;
(2)关于中心对称的两个图形,对称点所连线段 都经过对称中心,而且被对称中心平分.
讲授新课
作图
(1)如图,选择点O为对称中心,画出点A关 于点O的对称点A′;
A
O
A′
画法:连接AO并延长到A′,使OA′=OA,得到点 A的对称点A′.
北师版 八年级 下册
第三章 图形的平移和旋转
3 中心对称
讲授新课
讲授新课
讲授新课
中心对称与轴对A称的联系与区分C1 B1
B
轴对称
O
C
A1
中心对称
1 有一条对称轴——直线 有一个对称中心——点
2 图形沿轴对折(翻转180°) 图形绕中心旋转180°
3 翻转后和另一个图形重合 旋转后和另一个图形重合
3. 顺次连接A′、B′、C′各点.
北师大版数学八年级下册3.3《中心对称》教学设计
北师大版数学八年级下册3.3《中心对称》教学设计一. 教材分析北师大版数学八年级下册3.3《中心对称》是学生在学习了平面几何的基本概念和性质之后的内容。
本节课主要介绍中心对称的概念,性质及其在实际问题中的应用。
通过学习,学生能够理解中心对称的定义,掌握中心对称的性质,并能运用中心对称解决一些几何问题。
二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念和性质,具备了一定的几何思维和解决问题的能力。
但是,对于中心对称这一概念,学生可能比较陌生,需要通过实例和练习来理解和掌握。
同时,学生可能对于如何运用中心对称解决实际问题存在一定的困难。
三. 教学目标1.知识与技能:理解中心对称的定义,掌握中心对称的性质,能够运用中心对称解决一些几何问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的几何思维和解决问题的能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极向上的学习态度。
四. 教学重难点1.重点:中心对称的定义和性质。
2.难点:如何运用中心对称解决实际问题。
五. 教学方法1.讲授法:通过讲解中心对称的定义和性质,引导学生理解和掌握。
2.案例分析法:通过分析实际问题,引导学生运用中心对称解决几何问题。
3.小组讨论法:通过小组讨论,引导学生交流思想,共同解决问题。
六. 教学准备1.教具:多媒体课件、几何图形、黑板。
2.学具:学生手册、练习册。
七. 教学过程1.导入(5分钟)通过多媒体课件,展示一些生活中的中心对称现象,如旋转门、时钟等,引导学生观察和思考,引出中心对称的概念。
2.呈现(10分钟)讲解中心对称的定义和性质,引导学生理解和掌握。
3.操练(10分钟)通过一些练习题,让学生运用中心对称解决几何问题,巩固所学知识。
4.巩固(10分钟)让学生分组讨论,分析实际问题,运用中心对称解决。
引导学生交流思想,共同解决问题。
5.拓展(10分钟)通过一些综合性的练习题,提高学生的解题能力,拓展学生的思维。
北师大版数学八年级下册3.3《中心对称》教案
北师大版数学八年级下册3.3《中心对称》教案一. 教材分析《中心对称》是北师大版数学八年级下册第3.3节的内容,本节主要让学生了解中心对称的概念,理解中心对称图形的性质,并学会运用中心对称解决一些实际问题。
教材通过实例引入中心对称的概念,然后引导学生探究中心对称图形的性质,最后通过一些练习题巩固所学知识。
二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,如点、线、角等,并掌握了一些基本的几何性质。
同时,学生也学习了图形的轴对称,对对称概念有一定的理解。
但是,中心对称与轴对称有所不同,学生可能需要一定的时间来理解和掌握。
三. 教学目标1.让学生了解中心对称的概念,理解中心对称图形的性质。
2.培养学生运用中心对称解决实际问题的能力。
3.培养学生合作探究的学习精神,提高学生的几何思维能力。
四. 教学重难点1.中心对称的概念和性质。
2.运用中心对称解决实际问题。
五. 教学方法采用问题驱动法、合作探究法、案例教学法等,引导学生通过实例认识中心对称,探究中心对称图形的性质,并运用中心对称解决实际问题。
六. 教学准备1.准备一些中心对称的实例,如圆、平行四边形等。
2.准备一些中心对称图形的性质的练习题。
3.准备一些实际问题,如在实际图形中寻找中心对称等。
七. 教学过程1.导入(5分钟)通过展示一些实例,如圆、平行四边形等,引导学生观察这些图形的特征,让学生初步认识中心对称。
2.呈现(10分钟)呈现中心对称的定义和性质,引导学生理解和记忆。
3.操练(10分钟)让学生通过练习题,运用中心对称的性质解决问题,巩固所学知识。
4.巩固(5分钟)通过一些实际问题,让学生运用中心对称解决实际问题,加深对中心对称的理解。
5.拓展(5分钟)引导学生思考中心对称在实际生活中的应用,让学生学会学以致用。
6.小结(5分钟)让学生总结本节课所学的内容,加深对中心对称的理解。
7.家庭作业(5分钟)布置一些有关中心对称的练习题,让学生课后巩固所学知识。
北师大版八年级上册数学课本课后练习题答案
八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm2。
1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。
北师大版八年级下册数学《3.3 中心对称》教案
北师大版八年级下册数学《3.3 中心对称》教案一. 教材分析北师大版八年级下册数学《3.3 中心对称》一课,是在学生已经掌握了平面几何的基本知识,图形变换的基础知识上进行的一课。
本节课主要让学生了解中心对称的概念,理解中心对称的性质,能运用中心对称解决一些简单的问题。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,图形变换的基础知识,对图形变换有一定的理解。
但是,对于中心对称的概念和性质,以及如何运用中心对称解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解中心对称的概念,通过实际操作,让学生感受中心对称的性质,提高学生解决实际问题的能力。
三. 教学目标1.了解中心对称的概念,理解中心对称的性质。
2.能运用中心对称解决一些简单的问题。
3.培养学生的观察能力,动手操作能力,提高学生解决实际问题的能力。
四. 教学重难点1.中心对称的概念和性质。
2.如何运用中心对称解决实际问题。
五. 教学方法采用问题驱动法,引导学生通过观察,操作,思考,总结中心对称的概念和性质。
通过实例,让学生了解如何运用中心对称解决实际问题。
六. 教学准备1.教学PPT。
2.中心对称的图片和实例。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些图片和实例,如蜜蜂的蜂窝,让学生观察并思考:这些图形有什么共同的特点?引导学生发现这些图形都是中心对称的,从而引出中心对称的概念。
2.呈现(10分钟)讲解中心对称的概念,以及中心对称的性质。
通过PPT展示中心的定义,对称点的定义,对称性质的证明等,让学生理解和掌握中心对称的概念和性质。
3.操练(10分钟)让学生分组进行动手操作,每组选择一个中心,画出中心对称的图形。
然后,让学生观察和分析中心对称的性质,如对称点的坐标关系,对称图形的形状等。
4.巩固(10分钟)让学生解决一些实际问题,如已知一个图形的一个点,求这个图形的另一个点等。
通过这些问题,让学生运用中心对称的知识,提高解决问题的能力。
北师大版八年级下册数学基础巩固训练:3.3 中心对称(包含答案)
第三章图形的平移与旋转3.3 中心对称知识要点把一个图形绕着某一个点旋转,如果它能够与另一个图形,那么称这两个图形关于这个点对称或中心对称,这个点叫做,这两个图形中的对应点叫做关于中心的.基础训练1.下列说法错误的是()A. 成中心对称的两个图形全等B. 成中心对称的两个图形中,对称点的连线被对称轴平分C. 中心对称图形的对称中心是对称点连线的中心D. 中心对称图形绕对称中心旋转180°后,都能与自身重合2. 若两个图形关于某点成中心对称,则以下说法:①这两个图形一定全等;②对称点的连线一定经过对称中心;③对称点与旋转中心的连线所成的角都是旋转角;④一定存在某条直线,沿该直线折叠后的两个图形能互相重合.正确的是()A.①②③B.①③④C.①②④D.①②③④3. 关于中心对称的两个图形,对应线段的关系是()A. 相等B. 平行C. 相等且平行D. 相等且平行或在同一条直线上4. 下列图形是中心对称图形的是()5.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′6. 下列图形是中心对称图形的是()7. 如图,四边形ABCD与四边形FGHE关于点O成中心对称,则下列说法错误的是()A. AD∥EF,AB∥GFB. BO=GOC. CD=HE,BC=GHD. DO=HO8. 如图,已知该图形是中心对称图形,则对称中心是()A. 点CB. 点DC. 线段BC的中点D. 线段FC的中点9. 如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等.其中正确的有()A.1个B.2个C.3个D.4个10.如图,△ABC与△DEF关于O点成中心对称,则AB DE,BC∥,AC=.第10题第11题第12题11.如图,在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1关于某一点中心对称,则对称中心的坐标为.12.下面4张扑克牌中,属于中心对称图形的有个.13.如图,已知△ABC和点O,在图中画出△A′B′C′,使△A′B′C′与△ABC关于点O成中心对称.中考链接14. (2019无锡)下列图案中,是中心对称图形但不是轴对称图形的是( )15.(2019深圳)下列图形中是轴对称图形的是 ()16.(2019广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()17. (2019绥化)下列图形中,属于中心对称图形的是( )18.(2018深圳)下列图形中,是中心对称图形的是 ()答案1.B2.A3.D4.C5.D6.A7.D8.D9.D10. = EF DF11. (2,1)12. 113. 解:如答图,△A′B′C′即为所求.14.C15.A16.C17.C18.D。
2020八年级数学下册 3.3 中心对称教案 (新版)北师大版
1.能从具体实例中分析出平移现象的共性,直观认识平移,并通过抽象、归纳出平移的概念。
2.借助实验或者说理概括出平移的基本性质。
3.会进行简单的平移画图,并能够说出画图的依据。
重点
识别中心对称图形和成中心对称的两个图形的基本特征;熟练地画出已知图形关于某一点成中心对称的图形.
难点
画出已知图形关于某一点成中心对称的图形.
3、如图所示的两个图形成中心对称,你能找到对称中心吗?
以小组为单位,学生之间互相讨论,整理知识。
1、通过观察成中心对称的两个图形。归纳出中心对称的概念。
2、通过观察成中心对称的两个图形。找出中心对称的特征。
3、通过比较中心对称与轴对称的联系与区别,加深对概念的理解。
4、通过练习,巩固提高力
展
学生展示成果,教师巡视。
心点O的对称点为;
(3)你能从图中找到等量关系吗?
(4)请找出图中的平行 线段;
2、中心对称的特征:
(1) 在成中心对称的两个图形中,连结_________的线段都经过________中心,并且被对称中心_______;
(2)反之,如果两个图形的对应点连结的线段都经过某一点,并且被这点_____,那么这两个图形一定关于这点成中心对称。
各小组推荐代表在黑板上展示,其他学生观察,如果有不同,可说出自己的结论。
学生展示讨论成果,提高学习积极性
评
1、中心对称的定义,
2、中心对称的性质,
3、中心对称图形的概念,
4、中心对称与轴对称的区别于联系。
学生认真听讲,并做笔记
引导学生小结本课的知识及数学方法,使知识系统化
检
1、下列图形中不是轴对称而是中心对称图形的是( )
学生认真回忆并作答
《中心对称图形》教学案例(北师大)
《中心对称图形》教学案例(北师大)课题:义务教育课程标准实验教科书数学(北师大版)八年级上册第四章第8节初中数学课的教学应结合具体的数学内容采用“问题情境——建立模型——解释、应用与拓展”的模式展开,让学生经历了知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,增强学好数学的愿望和信心。
特别对于抽象的概念教学,要关注概念的实际背景与形成过程,帮助学生克服记忆概念的学习方式。
现以《中心对称图形》为例,阐述如何“创设问题情境、建立知识模型”的过程。
一、教学目标:1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。
2.了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。
二、教学重、难点:理解中心对称图形的概念及其基本性质。
三、教学过程:(一)创设问题情境1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。
【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O 后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。
课堂反应:学生非常安静,目不转睛地盯着老师做动作。
每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。
师重复以上活动2次后提问:(1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?(2)你能说明为什么老师要把抽出的这张牌旋转180O 吗?(小组讨论)反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。
(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。
北师大版数学八年级下册中心对称课件
A. 2
B. 4
A
C. 6
D. 8
D O
B
当堂小结
中 中 概念 旋转角是 180°
心 心 性质 对应点的连线经过对称中心,且
对对
被对称中心平分
称 和
称 作图 作中心对称图形; 找出对称中心
中 心 对
称 图
中 定义 绕着某一点旋转 180° 能与本身重
心
合的一个图形
对 称
性质
经过对称中心的直线把原图形分 成面积相等的两部分
A
O
顺次连接 E,B',C',D',A. D'
图与形五边EB形'CA'DB'CAD就E是成以中点心O对为称对的称图中形心. 、C'
C
D E B'
议一议 视察图,这些图形有什么共同特征?你还能举出一些 类似的图形吗?
把一个图形绕某一个定点旋转 180°,如果旋转后 的图形能和本来的图形重合,那么这个图形叫做中心 对称图形,这个定点就是对称中心.
活动探究
C
(1) 对应点到旋转中心 A 的距离是否相等?
B O● B′
A′
OA = OA′、OB = OB′、OC = OC′. 相等. C′
(2) 对应点与旋转中心所连线段的夹角是否等于旋转角? ∠AOA′ = ∠BOB′ = ∠COC′ = 180°. 相等.
(3) 旋转前、后的图形全等?△ABC≌△A′B′C′. 全等.
想一想 (1) 在你所学过的平面图形中,哪些图形是中心对称图形? (2) 在上面例题中,图形 ABCDEB'C'D' 是中心对称图形 吗?
边数是偶数的正多边形都是中心对称图形 图形 ABCDEB'C'D' 是中心对称图形
八年级下册数学北师大版第一章
八年级下册数学北师大版第一章1. 中心对称定义:如果一个图形绕某一点旋转180度,能与另一个图形重合,则这两个图形为中心对称图形。
性质:中心对称图形必定是旋转180度后重合的图形。
2. 中心对称图形定义:一个图形绕某一点旋转180度能够与自身重合,则这个图形叫做中心对称图形。
性质:中心对称图形的所有点都关于某一点对称。
3. 轴对称与轴对称图形定义:如果一个图形沿着某条直线对折,两侧的图形能完全重合,则这个图形称为轴对称图形。
性质:轴对称图形的对称轴两侧的图形是全等的。
4. 轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
如果两个图形关于某直线对称,那么它们的对应线段(或延长)相等。
如果两个图形关于某直线对称,那么它们的对应角相等。
5. 全等三角形定义:两个三角形能够完全重合,则这两个三角形称为全等三角形。
性质:全等三角形的对应边相等,对应角相等。
6. 三角形全等的判定边边边(SSS):如果两个三角形的三边分别相等,那么这两个三角形全等。
边角边(SAS):如果两个三角形的两边及其夹角分别相等,那么这两个三角形全等。
角边角(ASA):如果两个三角形的两角及其夹边分别相等,那么这两个三角形全等。
角角边(AAS):如果两个三角形的两角及其对边分别相等,那么这两个三角形全等。
7. 直角三角形全等的判定斜边直角边(HL):如果两个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等。
8. 角的平分线性质角的平分线上的点到这个角的两边的距离相等。
9. 平行四边形定义:两组相对边平行或相等的四边形叫做平行四边形。
性质:对边平行、对角相等、对角线互相平分。
10. 矩形、菱形、正方形定义:有一个角是直角的平行四边形叫做矩形;一组邻边相等的平行四边形叫做菱形;有一个角是直角的菱形叫做正方形。
性质:矩形、菱形、正方形都是特殊的平行四边形,它们都具有平行四边形的所有性质,此外还有各自特殊的性质。
八年级数学下册 第03讲 中心对称与中心对称图形(知识解读+达标检测)(解析版)5
第03讲中心对称与中心对称图形【题型1中心对称图形】【题型2中心对称的性质】【题型3利用中心对称的性质-找对称中心】【题型4利用中心对称的性质-求边长长度】【题型5利用中心对称的性质-求点坐标】【题型6利用中心对称的性质-求面积】【题型7利用中心对称的性质-作图】考点:中心对称(两个图形)1.概念把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;2.性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3.判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4.作图步骤:(1)连接原图形上所有的特殊点和对称中心。
(2)将以上所连线段延长找对称点,使得特殊点与对称中心的距离和对称点与对称中心的距离相等。
(3)将对称点按原图形的形状顺次连接起来,即可得出关于中心对称的图形5.中心对称图形(一个图形)把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
【题型1中心对称图形】【典例1】(2023秋•南沙区期末)剪纸是我国源远流长的传统工艺,下列剪纸中是中心对称图形的是()A.B.C.D.【答案】A【解答】解:选项B、C、D中的图形都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项A中的图形能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:A.【变式1-1】(2023秋•蒙城县校级期末)下列图形中,是中心对称图形的是()A.B.C.D.【答案】C【解答】解:A、B、D中的图形不是中心对称图形,故A、B、D不符合题意;C中的图形是中心对称图形,故C符合题意.故选:C.【变式1-2】(2023秋•清河区校级期末)四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A.该图是轴对称图形,不是中心对称图形,故此选项不合题意;B.该图是轴对称图形,不是中心对称图形,故此选项不合题意;C.该图不是轴对称图形,也不是中心对称图形,故此选项不合题意;D.该图既是轴对称图形,又是中心对称图形,故此选项合题意;故选:D.【变式1-3】(2023秋•沙坪坝区校级期末)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A、图形不是轴对称图形,也不是中心对称图形,故A不符合题意;B、图形是中心对称图形,不是轴对称图形,故B不符合题意;C、图形是中心对称图形,不是轴对称图形,故C不符合题意;D、图形既是中心对称图形,也是轴对称图形,故D符合题意.故选:D.【题型2中心对称的性质】【典例2】(2022秋•浦北县期末)如图,△ABC与△A'B'C'关于点O成中心对称,则下列结论不成立的是()A.点A与点A'是对称点B.BO=B'OC.AB=A'B'D.∠ACB=∠C'A'B'【答案】D【解答】解:∵△ABC与△A'B'C'关于点O成中心对称,∴点A与点A'是对称点,BO=B'O,AB=A'B',∴A,B,C正确,故选:D.【变式2-1】(2023春•内江期末)如图,△ADE与△CDB关于点D成中心对称,连结AB,以下结论错误的是()A.AD=CD B.∠C=∠EC.AE=CB D.S△ADE=S△ADB【答案】B【解答】解:∵△ADE与△CDB关于点D成中心对称,∴AD=CD,BD=ED,AE=CB,∠E=∠CBD,∵BD=ED,=S△ADE,∴S△ABD故选:B.【变式2-2】(2023春•泉港区期末)如图,△AOD与△BOC关于点O成中心对称,连结AB、CD,以下结论错误的是()A.OA=OB B.△AOD≌△COBC.AD=BC D.S△ACD=S△BCD【答案】A【解答】解:∵△AOD与△BOC关于点O成中心对称,∴△AOD≌△COB,故选项B正确;∴AD=BC,故选项C正确;但不一定OA=OB,故选项A不正确;∵△AOD≌△COB,=S△BCO,∴S△AOD+S△COD=S△BCD+S△COD,即S△ACD=S△BCD,故选项D正确,∴S△AOD故选:A.【变式2-3】(2023秋•安新县期中)如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)△ADC和△EDB成中心对称;(2)已知△ADC的面积为4,则△ABE的面积是8.【答案】(1)△EDB;(2)8.【解答】解:(1)根据中心对称图形的性质可得;△ADC和△EDB成中心对称,故答案为:△EDB;(2)由(1)得:△ADC和△EDB成中心对称,∴线段BD是△ABC的中线,=S△ACD=4,∴S△ABD∵D是△ABC边BC的中点,=2S△EDB=8,∴S△ABE故答案为:8.【题型3利用中心对称的性质-找对称中心】【典例3】(2023秋•张北县期中)如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N【答案】C【解答】解:AD、CF、BE相交于点M,∴点M是△ABC与△DEF的对称中心,故选:C.【变式3-1】(2023春•渭南期末)如图,在平面直角坐标系xOy中,△ABC经过中心对称变换得到△A′B′C′,那么对称中心的坐标为()A.(0,0)B.(﹣1,0)C.(﹣1,﹣1)D.(0,﹣1)【答案】B【解答】解:由图可知,点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,所以△ABC与△A′B′C′关于点(﹣1,0)成中心对称,故选:B.【变式3-2】(2023春•高碑店市期末)如图,△ABC与△DEF关于某点成中心对称,则其对称中心是()A.点P B.点Q C.点M D.点N【答案】C【解答】解:如图,连接BE、CF,发现其交于点M,根据中心对称的性质可知点M即为其对称中心.故选C.【题型4利用中心对称的性质-求边长长度】【典例4】(2023秋•仪陇县期中)如图,菱形ABCD的对角线AC、BD交于点O,AC=2,BD=8,将△BOC绕着点C旋转180°得到△B′O′C,连接AB',则AB'的长是()A.3B.4C.5D.7【答案】C【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OC=AC,OB=BD,∵AC=2,BD=8,∴OC=1,OB=4,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠O′=∠BOC=90°,CO′=OC=1,O′B′=OB=4,∴AO′=AC+O′C=3,∴AB′==5.故选:C.【变式4-1】(2022秋•广宗县期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为()A.4B.C.D.【答案】A【解答】解:∵在Rt△ABC中,∠B=30°,AC=1,∴AB=2AC=2,∴BB′=2AB=4.故选:A.【变式4-2】(2023秋•富县期末)如图,△ABC与△AB'C'关于点A对称,若∠C=90°,∠B=30°,AC=1,则BB'的长为4.【答案】4.【解答】解:如图,∵△ABC与△AB'C'关于点A对称,∴△ABC≌△AB′C′,∴AB=AB′,∵∠C=90°,∠B=30°,AC=1,∴AB=2AC=2,∴BB′=2AB=4,故答案为:4.【变式4-3】(2023秋•前郭县期中)如图,△AOB与△COD关于点O成中心对称,已知∠BAO=90°,AB=4,AO=3,则AD的长为2.【答案】2.【解答】解:∵△AOB与△COD关于点O成中心对称,∴AO=CO=3,CD=AB=4,∠C=∠BAO=90°,∴AD=,故答案为:2.【题型5利用中心对称的性质-求点坐标】【典例5】(2023秋•青岛月考)如图,线段AB与线段CD关于点P对称,若点A(3,3)、B(5,1)、D(﹣3,﹣1),则点C的坐标为()A.(﹣3,﹣3)B.(﹣1,﹣3)C.(﹣4,﹣2)D.(﹣2,﹣4)【答案】B【解答】解:∵B(5,1)、D(﹣3,﹣1)关于点P对称,=1,=0,∴点P的坐标为(1,0).设点C(x,y),∵A(3,3),∴=1,=0,∴x=﹣1,y=﹣3.∴C(﹣1,﹣3).故选:B.【变式5-1】(2022•市南区校级二模)如图,在平面直角坐标系中,△ABC与△A'B'C'关于D (﹣1,0)成中心对称.已知点A的坐标为(﹣3,﹣2),则点A'的坐标是()A.(1,3)B.(1,2)C.(3,2)D.(2,3)【答案】B【解答】解:设点A'的坐标是(a,b),根据题意知:=﹣1,=0.解得a=1,b=2.即点A'的坐标是(1,2),故选:B.【变式5-2】(2022春•青州市期末)如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(﹣2,3),则点A'的坐标为()A.(2,﹣3)B.(﹣1,2)C.(2,﹣2)D.(2,﹣1)【答案】D【解答】解:设A′(m,n),∵AC=CA′,A(﹣2,3),C(0,1),∴=0,=1,∴m=2,n=﹣1,∴A′(2,﹣1),故选:D.【题型6利用中心对称的性质-求面积】【典例6】(2022秋•乌鲁木齐县校级期中)如图,正方形边长为a,则阴影部分面积为.【答案】见试题解答内容【解答】解:由题意得:S阴影=S正方形=,故答案为:.【变式6-1】(2022春•南关区期末)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A1,AB⊥a于点B,A1D⊥b于点D,若OB=5,OD=3,则阴影部分的面积之和为15.【答案】15.【解答】解:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=5,OD=3,∴AB=3,∴图形①与图形②面积相等,∴阴影部分的面积之和=长方形ABOE的面积=3×5=15.故答案为:15.【变式6-2】(2023春•徐汇区期末)如图,长为6,宽为3的矩形ABCD,阴影部分的面积为9.【答案】9.【解答】解:因为O为矩形的对称中心,则阴影部分的面积是矩形面积的一半,因为矩形面积为6×3=18,所以阴影部分的面积为9.故答案为:9.【变式6-3】(2023秋•东湖区期中)如图为某公园中心对称的观赏鱼池,阴影部分为观赏喂鱼台,已知OA=OB=2米.求阴影部分的面积.【答案】8π平方米.【解答】解:因为观赏鱼池是中心对称,且OA=OB=2米,所以阴影部分相当于2个以点O为圆心,OA长为半径的圆,所以阴影部分的面积为2×π×22=8π(平方米),答:阴影部分的面积为8π平方米.【题型7利用中心对称的性质-作图】【典例7】(2023秋•浦北县期末)如图,△ABC和△DEF关于点O成中心对称.(1)找出它们的对称中心O;(2)若AB=6,AC=5,BC=4,求△DEF的周长.【答案】(1)见解析;(2)15.【解答】解:(1)如图所示,点O即为所求;(2)∵△ABC和△DEF关于点O成中心对称,∴△ABC≌△DEF,∴AB=DE=6,AC=DF=5,BC=EF=4,∴△DEF的周长=DE+DF+EF=6+5+4=15;答:△DEF的周长为15.【变式7-1】(2023春•雁塔区校级期末)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),(4,2),C(3,5).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于原点成中心对称,并写出点A1,B1,C1的坐标.(2)求△A1B1C1的面积?【答案】见试题解答内容【解答】解:(1)如图所示,△A1B1C1即为所求.A1(﹣1,﹣4),B1(﹣4,﹣2),C1(﹣3,﹣5);(2)根据中心对称的性质可得S=3×3﹣=9﹣﹣1﹣3=.【变式7-2】(2022秋•沙河市期末)如图所示,三角形ABC和三角形A′B′C′关于某一点成中心对称,一同学不小心把墨水泼在纸上,只能看到三角形ABC和线段BC的对应线段B′C′,请你帮该同学找到对称中心O,且补全三角形A′B′C′.【答案】见试题解答内容【解答】解:如图,△A′B′C′即为所求;一.选择题(共10小题)1.(2023秋•江海区期末)下列环保标志,既是轴对称图形,也是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A、是轴对称图形,不是中心对称图形,则此项不符合题意;B、是轴对称图形,不是中心对称图形,则此项不符合题意;C、不是轴对称图形,也不是中心对称图形,则此项不符合题意;D、是轴对称图形,也是中心对称图形,则此项符合题意;故选:D.2.(2023秋•长海县期末)平面直角坐标系内与点P(﹣1,2)关于原点对称的点的坐标是()A.(1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,﹣1)【答案】A【解答】解:与点P(﹣1,2)关于原点对称的点的坐标是(1,﹣2).故选:A.3.(2023秋•武汉期中)已知点A(a,2023)与点A′(2024,b)是关于原点O的对称点,则a﹣b的值为()A.﹣1B.1C.﹣4047D.4047【答案】A【解答】解:∵点A(a,2023)与点A'(2024,b)是关于原点O的对称点,∴a=﹣2024,b=﹣2023,∴a﹣b=﹣2024﹣(﹣2023)=﹣1.故选:A.4.(2023秋•莱州市期末)下列各图中,四边形ABCD是正方形,其中阴影部分两个三角形成中心对称的是()A.B.C.D.【答案】A【解答】解:根据中心对称的定义可知,选项A中阴影部分两个三角形成中心对称.故选:A.5.(2022春•相城区校级期中)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC 绕着点C旋转180°得到△B'O'C,若AC=2,AB′=5,则菱形ABCD的边长是()A.3B.4C.D.【答案】D【解答】解:∵四边形ABCD是菱形,且△BOC绕着点C旋转180°得到△B'O'C,AC =2,∴OA=OC=O'C=1,OB⊥OC,BC=B′C,∴O'B'⊥O'C,O'A=AC+O'C=2+1=3,∵AB′=5,∴,∴,∴,即菱形ABCD的边长是,故选:D.6.(2022秋•五华县期中)如图是北师大版九年级上册数学教材第25页第4题内容的变式,如图,三个边长相同的正方形重叠在一起,O1、O2是其中两个正方形的中心,阴影部分的面积和是8,则正方形的边长为()A.2B.4C.8D.2【答案】B【解答】解:如图所示,连接O1B、O1C,∵∠BO1F+∠FO1C=90°,∠FO1C+∠CO1G=90°,∴∠BO1F=∠CO1G,∵四边形ABCD是正方形,∴∠O1BF=∠O1CG=45°,在△O1BF和△O1CG中,,∴△O1BF≌△O1CG(ASA),∴=,,∴两个正方形重叠阴影部分的面积是S正方形ABCD,同理,另外两个正方形重叠阴影部分的面积也是S正方形ABCD,∴阴影部分的面积和=8=S正方形ABCD=16,∴S正方形ABCD∴正方形ABCD的边长==4,故选:B.7.(2023秋•德城区期中)如图,已知△ABC与△A'B'C'关于点O成中心对称,则下列判断不正确的是()A.∠ABC=∠A'B'C'B.∠BOC=∠B'A'C'C.AB=A'B'D.OA=OA'【答案】B【解答】解:∵△ABC与△A'B'C'关于点O成中心对称,∴△ABC≌△A′B′C′,∴∠ABC=∠A′B′C′,AB=A′B′,OA=OA′,故A,C,D正确,故选:B.8.(2023秋•泽州县期中)如图,在平面直角坐标系中,OA=AB=5,点B到y轴的距离为4,将△OAB关于原点对称得到△O′A′B′,再将△O′A′B′向左平移5个单位长度得到△O″A″B″,则点B″的坐标为()A.(﹣8,﹣8)B.(﹣8,﹣9)C.(﹣9,﹣9)D.(﹣9,﹣8)【答案】D【解答】解:如图,作BC⊥y轴于点C,∵点B到y轴的距离为4,∴BC=4,∴AC==3,∴OC=5+3=8,∴点B的坐标为(4,8),∴点B关于原点对称的点B′的坐标为(﹣4,﹣8),∴点B″的坐标为(﹣9,﹣8).故选:D.9.(2023秋•邯郸期末)如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N【答案】C【解答】解:AD、CF、BE相交于点M,∴点M是△ABC与△DEF的对称中心,故选:C.10.(2023秋•仪陇县期中)如图,菱形ABCD的对角线AC、BD交于点O,AC=2,BD=8,将△BOC绕着点C旋转180°得到△B′O′C,连接AB',则AB'的长是()A.3B.4C.5D.7【答案】C【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OC=AC,OB=BD,∵AC=2,BD=8,∴OC=1,OB=4,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠O′=∠BOC=90°,CO′=OC=1,O′B′=OB=4,∴AO′=AC+O′C=3,∴AB′==5.故选:C.二.填空题(共6小题)11.(2023春•徐汇区期末)如图,长为6,宽为3的矩形ABCD,阴影部分的面积为9.【答案】9.【解答】解:因为O为矩形的对称中心,则阴影部分的面积是矩形面积的一半,因为矩形面积为6×3=18,所以阴影部分的面积为9.故答案为:9.12.(2023春•青冈县期末)如图,△ABC与△DEC关于点C成中心对称,AG为△ABC的=5.高,若CE=5,AG=2,则S△DEC【答案】5.【解答】解:∵△ABC与△DEC关于点C成中心对称,AG=2,=S△ABC,∴CE=BC,S△DEC∴,=5,∴S△DEC故答案为:5.13.(2023•靖江市校级模拟)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图所示,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为60(答案不唯一)度.(写出一个即可)【答案】见试题解答内容【解答】解:360°÷6=60°,则这个图案绕着它的中心旋转60°后能够与它本身重合,故答案为:60(答案不唯一).14.(2023秋•开平市期末)如图,△AB'C'是△ABC绕点A旋转180°后得到的,已知∠B =90°,AB=1,∠C=30°,则CC'的长为4.【答案】4.【解答】解:在Rt△ABC中,sin C=,则,得AC=2.又因为△AB'C'是△ABC绕点A旋转180°后得到的,所以AC′=AC,且C,A,C′三点共线,所以CC′=2AC=4.故答案为:4.15.(2023秋•前郭县期中)如图,△AOB与△COD关于点O成中心对称,已知∠BAO=90°,AB=4,AO=3,则AD的长为2.【答案】2.【解答】解:∵△AOB与△COD关于点O成中心对称,∴AO=CO=3,CD=AB=4,∠C=∠BAO=90°,∴AD=,故答案为:2.16.(2023秋•二道区校级月考)如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标为(1,3),点B的坐标为(3,1),点M的坐标为(a,b),点N的坐标为(c,d),则a+c的值为﹣2.【答案】﹣2.【解答】解:由图形可知,点A和点N关于x轴成轴对称,点M和点B关于坐标原点O 成中心对称,因为点A的坐标为(1,3),点B的坐标为(3,1),所以a=﹣3,c=1,a+c=﹣3+1=﹣2,故答案为:﹣2.三.解答题(共3小题)17.(2023秋•新民市期末)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是4;(2)若点D与点C关于原点对称,则点D的坐标为(﹣4,﹣3);(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)4;(2)(﹣4,﹣3);(3)(10,0)或(﹣6,0).【解答】解:(1)如图所示:△ABC的面积是:3×4﹣;故答案为:4;(2)点D与点C关于原点对称,则点D的坐标为:(﹣4,﹣3);故答案为:(﹣4,﹣3);(3)∵P为x轴上一点,△ABP的面积为4,∴BP=8,∴点P的横坐标为:2+8=10或2﹣8=﹣6,故P点坐标为:(10,0)或(﹣6,0).18.(2023秋•荔湾区校级期中)如图,△AGB与△CGD关于点G中心对称,若点E,F分别在GA,GC上,且AE=CF,求证:BF=DE.【答案】证明见解析.【解答】证明:∵△AGB与△CGD关于点G中心对称,∴BG=DG,AG=CG,∵AE=CF,∴AG﹣AE=CG﹣CF,∴EG=FG,又∵∠DGE=∠BGF,∴△DGE≌△BGF(SAS),∴BF=DE.19.(2022春•余江区期中)(1)如图1,在等边三角形ABC中,AB=2,BD是AC边上的高,延长BC至点E,使CE=CD,求BE的长;(2)如图2,将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,过点A作AF∥BE,交DE的延长线于点F,求证:∠B=∠F.【答案】(1)BE的长为3;(2)见解析.【解答】(1)解:∵等边三角形ABC中,BD是AC边上的高,∴AB=BC=AC=2,∠ADB=∠CDB=90°,DB=DB,∴△ADB≌△CDB(HL),∴AD=CD=AC=AB=1,∵CE=CD,∴CE=CD=1,∴BE=BC+CE=3,∴BE的长为3;(2)证明:∵将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,∴B、C、E在同一直线上,且△ABC≌△DEC,∴∠B=∠CED,∵AF//BE,∴∠F=∠CED,∴∠B=∠F.。
2021-2022学年北师大版八年级数学下册《3-3中心对称》同步练习题(附答案)
2021-2022学年北师大版八年级数学下册《3-3中心对称》同步练习题(附答案)一.选择题1.栖霞市文明城市建设中,大力开展“垃圾分类”知识宣传活动,活动中推出下列图标(不包含文字),则其中是中心对称图形的是()A.可回收物B.有害垃圾C.厨余垃圾D.其他垃圾2.在以下四个标志中,既是轴对称图形又是中心对称图形的有()A.B.C.D.3.在平面直角坐标系中,点P(﹣2,﹣4)关于原点对称的点的坐标是()A.(2,﹣4)B.(2,4)C.(﹣2,4)D.(﹣2,﹣4)4.已知点A(a+b,4)与点B(﹣2,a﹣b)关于原点对称,则a与b的值分别为()A.﹣3;1B.﹣1;3C.1;﹣3D.3;﹣15.如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是()A.点A与点D是对应点B.BO=EOC.∠ACB=∠FED D.AB∥DE6.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′7.在平面直角坐标系xOy中,△ABC与△A'B'C'关于原点O成中心对称的是()A.B.C.D.8.如图,已知△ABC与△DEF成中心对称,则对称中心是()A.点C B.点DC.线段BC的中点D.线段FC的中点二.填空题9.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.10.如图,△ABC和△DEC关于点C成中心对称,若AC=,AB=1,∠BAC=90°,则AE的长是.11.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=4,OD=3,则阴影部分的面积之和为.12.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则直线l的函数关系式为.13.如图中阴影部分是由4个完全相同的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在处(填写区域对应的序号).14.直角坐标系中,已知点A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A3,点A3关于y轴对称点A4,点A4关于原点对称点A5…,按此规律,则点A2020的坐标为.三.解答题(共6小题)15.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.16.作出与△ABC关于点E成中心对称的图形.17.如图,已知四边形ABCD和点P,画四边形A'B'C'D',使四边形A'B'C'D'与四边形ABCD 关于点P成中心对称.18.如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O对称.求证:AE=CF.19.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)分别写出△ABC各个顶点的坐标;(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;(3)求线段BC的长.20.课外兴趣小组活动时,老师提出了如下问题:(1)如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC 边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF,若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.参考答案一.选择题1.解:A.不是中心对称图形,故本选项不合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不合题意.故选:B.2.解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.既是轴对称图形,又是中心对称图形,故此选项符合题意;C.是轴对称图形,不是中心对称图形,故此选项不合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:B.3.解:点P(﹣2,﹣4)关于原点对称的点的坐标是(2,4),故选:B.4.解:∵点A(a+b,4)与点B(﹣2,a﹣b)关于原点对称,∴解得.故选:B.5.解:根据旋转的性质可知,点A与点D是对应点,BO=EO,AB∥DE,∠ACB=∠DFE≠∠FDE.故选:C.6.解:∵△ABC与△A′B′C′关于点O成中心对称,∴点A与点A′是对称点,BO=B′O,AB∥A′B′,故A,B,C正确,故选:D.7.解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(﹣,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;故选:D.8.解:△ABC与△DEF成中心对称,则对称中心是线段FC的中点,故选:D.二.填空题9.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.10.解:∵△ABC和△DEC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=1,AC=CD=,∠D=BAC=90°,∴AD=DE=1,∴AE===.故答案为:.11.解:如图,∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB ⊥a于点B,A'D⊥b于点D,OB=4,OD=3,∴AB=3,∴图形①与图形②面积相等,∴阴影部分的面积之和=长方形ABOE的面积=3×4=12.故答案为:12.12.解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC 于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线方程为y=kx,则3=k,k=,∴直线l解析式为y=x,故答案为:y=x.13.解:把正方形添加在②处,使它与阴影部分组成的新图形是中心对称图形,故答案为:②.14.解:∵点A(3,2),∴点A关于y轴的对称点为A1是(﹣3,2);点A1关于原点的对称点为A2是(3,﹣2);点A2关于x轴的对称点为A3是(3,2),显然此为一循环,……按此规律,2020÷3=673…1,∴点A2020的坐标是(﹣3,2).故答案为:(﹣3,2).三.解答题15.解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).16.解:依次寻找点A、B、C关于点E的中心对称点,顺次连接,所作图形如下所示:17.解:如图,四边形A'B'C'D'为所作.18.证明:如图,连接AD、BC,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵点E、F关于点O中心对称,∴OF=OE,∴AO﹣EO=CO﹣FO,∴AE=CF.19.解:(1)A(﹣4,3),C(﹣2,5),B(3,0);(2)如图所示:点A′的坐标为:(﹣4,﹣3),B′的坐标为:(﹣3,0),点C′的坐标为:(2,﹣5);(3)线段BC的长为:=5.20.解:(1)延长FD到G,使得DG=DF,连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),∴CF=BG,DF=DG,∵DE⊥DF,∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF.(2)若∠A=90°,则∠EBC+∠FCB=90°,由(1)知∠FCD=∠DBG,EF=EG,∴∠EBC+∠DBG=90°,即∠EBG=90°,∴在Rt△EBG中,BE2+BG2=EG2,∴BE2+CF2=EF2.。
3.3.2 中心对称图形课件 2021-2022学年北师大版八年级数学下册
• 第2课时 中心对称图形
1. 中心对称图形的定义 2. 中心对称图形的性质 3. 中心对称图形的作图
我们上节课学习了中心对称的相关知识,中心对 称是指两个图形的关系,而把这两个图形看作一个整 体是什么图形呢?是我们这节课所要学习的中心对称 图形.
(1)如图,将线段AB绕它的中点旋转180°,你有什么发现?
在生活中,有许多中心对称图形,你能举出一些例子吗?
补法
归纳 对于这种由两个中心对称图形组成的复合图形, 平分面积时,关键找到它们的对称中心,再过对称 中心作直线.
知识小结
中 心 对 称
中心对称和 中心对称图
形
概念 性质 作图
旋转角是180°
对应点的连线经过对称中心,且 被对称中心平分
应用1:作中心对称图形; 应用2:找出对称中心.
有下列图形:①线段,②三角形,③平行四边形,④正方形, ⑤圆,⑥等腰梯形.其中不是中心对称图形的是_②__⑥_____(填 序号). 易错点:对中心对称图形识别不清
错解: ①②③
诊断: 错解的原因是对一些常见的图形不能正确分析.根据中心对称 图形的概念,可知线段绕其中点旋转180°,平行四边形绕其 对角线的交点旋转180°,正方形绕其对角线的交点旋转180°, 圆绕其圆心旋转180°,都能与自身重合,都是中心对称图形, 只有三角形和等腰梯形,找不到对称中心,故不是中心对称图 形.
3.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2 个长方形后仍是中心对称图形.若只知道原住房平面图长方形的 周长,则分割后不用测量就能知道周长的图形的标号为A( ) A.①② B.②③ C.①③ D.①②③
知识点3:中心对称图形的作图
【例4】如图,在中方心格对纸称中图,形选的择作标图有序号①②③④中的一个小正 方形涂黑,与阴影部分构成中心对称图形,该小正方形的序 号是____②______.
八年级数学图案设计——平移、轴对称、旋转(北师版)(基础)(含答案)
图案设计——平移、轴对称、旋转(北师版)(基础)一、单选题(共10道,每道10分)1.观察下面图案,在A,B,C,D四幅图案中,能通过如图的平移得到的是( )A. B.C. D.答案:B解题思路:解题要点:平移的性质:平移后的图形与原图形的形状和大小完全相同;平移后的图形中的每一点,都是由原图形中的某一点平移后得到的,这两个点是对应点.连接各组对应点的线段平行(或在同一条直线上)且相等.解题过程:A.对应点所连线段相交,不能通过平移得到,故A错误;B.对应点所连线段平行,能通过平移得到,故B正确;C.对应点所连线段相交,不能通过平移得到,故C错误;D.对应点所连线段相交,不能通过平移得到,故D错误.试题难度:三颗星知识点:略2.下列大学校徽中哪一个可以看成是由图案自身的一部分经平移后得到的( )A. B.C. D.答案:C解题思路:A.是一个轴对称图形,不能由平移得到,故A错误;B.是一个轴对称图形,不能由平移得到,故B错误;C.是由图案自身的一部分经平移后得到,故C正确;D.不能由图案自身的一部分经平移得到,故D错误.试题难度:三颗星知识点:略3.如图,图①,图②,图③,图④这四个图形中,可以由图A平移得到的是( )A.①B.②C.③D.④答案:C解题思路:解题要点:平移的定义:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.解题过程:根据平移的定义可知,图①,图②,图③,图④这四个图形中,可以由图A平移得到的是图③试题难度:三颗星知识点:略4.如图,在网格中,每个小方格的边长均为1个单位,将图形E平移到另一个位置后能与图形F组合成一个正方形,下面平移步骤正确的是( )A.先把图形E向右平移4个单位,再向上平移3个单位B.先把图形E向右平移5个单位,再向上平移2个单位C.先把图形E向右平移5个单位,再向上平移3个单位D.先把图形E向右平移6个单位,再向上平移2个单位答案:D解题思路:根据题意将图形E平移到另一个位置后能与图形F组合成一个正方形,则一组对应点为A,A',点A向右平移6个单位,再向上平移2个单位可到达点A',所以平移步骤正确的是先把图形E向右平移6个单位,再向上平移2个单位.试题难度:三颗星知识点:略5.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的有( )个.A.2B.3C.4D.5答案:B解题思路:解题要点:轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.解题过程:根据轴对称图形的定义可知,在方格纸中,选择②④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形,即符合题意的小正方形有3个.试题难度:三颗星知识点:略6.如图,若将直角坐标系中“鱼”形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以-1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为( )A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半答案:C解题思路:∵图案的每个“顶点”的纵坐标保持不变,横坐标都乘以-1∴对应点的纵坐标相同,横坐标互为相反数∴所得图案与原图案关于y轴对称试题难度:三颗星知识点:略7.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有( )种A.1B.2C.3D.4答案:C解题思路:如图所示,满足题意的涂色方式有3种试题难度:三颗星知识点:略8.下列四个图形中,若以其中一部分作为基本图案,无论用旋转还是平移都不能得到的图案是( )A. B.C. D.答案:C解题思路:A.可以通过平移得到,故A错误;B.可以通过旋转得到,故B错误;C.无论用旋转还是平移都不能得到,故C正确;D.可以通过平移得到,故D错误.试题难度:三颗星知识点:略9.下列3个图形中,能通过旋转得到如图所示图形的有( )A.①②B.①③C.②③D.①②③答案:D解题思路:如图1所示:①通过旋转可以得到如图所示的图形,故①正确;如图2所示:②绕最长边中点旋转180°得到①,然后再通过旋转得到如图所示的图形,故②正确;如图3所示:③通过旋转可以得到如图所示的图形,故③正确.试题难度:三颗星知识点:略10.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是( )A. B.C. D.答案:A解题思路:解题要点:轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.解题过程:风车应做成中心对称图形,并且不是轴对称图形A.是中心对称图形,并且不是轴对称图形,故A正确;B.不是中心对称图形,是轴对称图形,故B错误;C.是中心对称图形,也是轴对称图形,故C错误;D.不是中心对称图形,是轴对称图形,故D错误.试题难度:三颗星知识点:略。
北师大版八年级数学(下册).3中心对称(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“中心对称在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例解释:
对于对称中心的确定,可以让学生通过折叠图形、观察对称点的方法来寻找对称中心,通过动手操作来降低理解难度。
在应用中心对称性质解决几何问题时,教师应提供多个不同难度的例题,逐步引导学生如何将性质应用到问题中,以突破难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《中心对称》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过图形通过某个点旋转180度后与原图形完全重合的情况?”(如镜子中的反射)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同
一、教学内容
本节课选自北师大版八年级数学(下册)第三章“图形的变换”中的第3节“中心对称”。教学内容主要包括以下两个方面:
1.中心对称的概念:介绍中心对称的定义,使学生理解中心对称的性质,并能够识别和绘制中心对称图形。
2.中心对称的性质与判定:探讨中心对称图形的性质,如对称点的特征、对称轴的性质等;掌握中心对称的判定方法,并能运用到实际问题中。
2.提升学生的逻辑推理能力:引导学生从特殊到一般,通过实例探究、归纳总结中心对称的性质与判定方法,培养学生的逻辑思维和推理能力。
3.增强学生的几何直观:让学生在观察、操作中心对称图形的过程中,体会几何图形之间的关系,提高几何直观和几何审美。
2022-2023学年北师大版数学八年级下册课时练习3
北师大版数学八年级下册课时练习3.3《中心对称》一、选择题1.下列图形是轴对称图形而不是中心对称图形的是( )A. B. C. D.2.下面的图形中,既是轴对称图形又是中心对称图形的是( )3.下列图形中,既可以通过轴对称变换,又可以通过旋转变换得到的图形是( )A. B. C. D.4.如图,△ABC与△A′B′C′成中心对称,则下列说法不正确的是()A.S△ACB =S△A′B′C′B.AB=A′B′C.AB∥A′B′,A′C′∥AC,BC∥B′C′D.S△A′B′O =S△ACO5.下列汉字或字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.6.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个7.老师要求同学们课后自作既是轴对称又是中心对称的图形,结果有以下几个,其中符合条件的有( )A.1个B.2个C.3个D.4个8.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A.1个B.2个C.3个D.4个二、填空题9.如果点A(1﹣x,y﹣1)在第二象限,那么点B(x﹣1,y﹣1)关于原点对称的点C在第象限.10.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是 .11.在下列图形:①圆②等边三角形③矩形④平行四边形中,既是中心对称图形又是轴对称图形的是(填写序号).12.如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P的坐标为.13.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是.14.将七个边长都为1的正方形如图所示摆放,点A1、A2、A3、A4、A5、A6分别是六个正方形的中心,则这七个正方形重叠形成的重叠部分的面积是.三、作图题15.如图,在下面4×4的网格中已涂黑了三个方格,请按下面要求再涂黑一个方格.(1)使阴影图案只是中心对称图形;(2)使阴影图案只是轴对称图形;(3)使阴影图案既是中心对称图形,又是轴对称图形.四、解答题16.如图,△ABO与△CDO关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.17.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点A逆时针旋转90°得到△A2B2C2,(2)回答下列问题:①△A1B1C1中顶点A1坐标为;②若P(a,b)为△ABC内的一点,则按照(1)中①作图,点P对应的点P1的坐标为 .18.如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为点B关于y轴对称的点坐标为点C关于原点对称的点坐标为(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.19.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.20.如图①,已知△ABC与△ADE关于点A成中心对称,∠B=50°,△ABC的面积为24,BC边上的高为5,若将△ADE向下折叠,如图②点D落在BC的G点处,点E落在CB的延长线的H点处,且BH=4,则∠BAG是多少度,△ABG的面积是多少.参考答案1.C2.C3.D4.D5.C6.C7.B8.B.9.答案为:三;10.答案为:②11.答案为:①③12.答案为:(-1,-1)13.答案为:点N.14.答案为:1.5;15.如图(1)是中心对称图形的图案;如图(2)是轴对称图形的图案;如图(3)既是中心对称图形,又是轴对称图形的图案.16.证明:∵△ABO与△CDO关于O点中心对称,∴OB=OD,OA=OC.∵AF=CE,∴OF=OE.∵在△DOF和△BOE中,∴△DOF≌△BOE(SAS).∴FD=BE.17.解:(1)如图所示: (2)① (1,-2)② (-a,-b)18.解:(1)点A关于x轴对称的点坐标为 (-1,-3)点B关于y轴对称的点坐标为 (-2,0)点C关于原点对称的点坐标为(3, 1)(2)△ABC的面积是919.解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8.20.解:依题意有AD=AB=AG,AE=AH=AC.又∠B=50°,则∠BAG=180°-50°×2=80°;作AD⊥BC于D,根据三角形的面积公式得到BC=9.6.根据等腰三角形的三线合一,可以证明CG=BH=4,则BG=5.6.根据三角形的面积公式得△ABG的面积是14.。
2024北师大版数学八年级下册3.3《中心对称》教案
2024北师大版数学八年级下册3.3《中心对称》教案一. 教材分析《中心对称》是北师大版数学八年级下册第3章第3节的内容。
本节主要介绍中心对称的概念,性质以及中心对称图形的判定。
通过学习,学生能够理解中心对称的定义,掌握中心对称的性质,并能运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。
二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,对图形的变换有一定的了解。
但中心对称的概念和性质较为抽象,学生可能难以理解。
因此,在教学过程中,教师需要借助实物和图形,引导学生从直观的角度去理解和掌握中心对称的概念和性质。
三. 教学目标1.理解中心对称的概念,掌握中心对称的性质。
2.能够运用中心对称解决实际问题。
3.培养学生的观察能力、思考能力和归纳能力。
四. 教学重难点1.中心对称的概念和性质。
2.中心对称图形的判定。
五. 教学方法1.情境教学法:通过实物和图形,引导学生从直观的角度去理解和掌握中心对称的概念和性质。
2.问题驱动法:教师提出问题,引导学生思考和探讨,激发学生的学习兴趣。
3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队协作能力。
六. 教学准备1.准备相关实物的图片和图形,如圆、矩形等。
2.准备中心对称的判定题目。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)利用实物和图形,如圆、矩形等,引导学生观察和思考:这些图形有什么共同的特点?它们是如何通过某种变换得到的?2.呈现(10分钟)介绍中心对称的定义和性质,引导学生从直观的角度去理解和掌握中心对称的概念和性质。
3.操练(10分钟)学生分组讨论,共同完成中心对称图形的判定题目。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师提出问题,引导学生思考和探讨:中心对称的概念和性质在日常生活中有哪些应用?学生分享自己的观点和实例。
5.拓展(10分钟)教师引导学生运用中心对称解决实际问题,如设计图案、解决几何题目等。
3.3中心对称-北师大版八年级数学下册教学设计
教学设计方案一、教学重点1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;二、进门测辨别轴对称图形中心对称图形三、课堂落实要点一、中心对称和中心对称图形1.中心对称图形:把一个图形绕着中心旋转180°后能与自身重合,这种图形叫做中心对称图形,这个中心叫做对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.2.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合.3.中心对称与中心对称图形的区别与联系:要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.1.如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有 ( )A.2个 B.3个 C.4个 D.5个【答案】A【解析】中心对称图形要求绕中心旋转180°与原图形重合。
中国银行、中国工商银行两个图形绕中心旋转180°能与原图形重合,所以选A.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A2.如图,△ABC与△DEF关于点O对称,请你写出两个三角形中的对称点,相等的线段,相等的角.【思路点拨】利用中心对称的定义及性质直接写出即可.【答案与解析】解:对称点为:A和D、B和E、C和F;相等的线段有AC=DF、AB=DE、BC=EF;相等的角有:∠A=∠D,∠B=∠E,∠C=∠F.【总结升华】本题考查了中心对称的性质及定义,中心对称的两个图形的对应角相等,对应边的比相等.类型二、作图3. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件.举一反三【变式】(北京某中学期中)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).【答案】(1)平行四边形的重心是两条对角线的交点.如图,平行四边形ABCD是中心对称图形,对角线的交点O是对称中心,经过点O与对边相交的任何一条线段都以点O为中点(如图中线段PQ),因此点O是各条线段的公共重心,也是平行四边形ABCD的重心.(2)把模板分成两个矩形,连接各自的中心;把模板重新分成两个矩形,得到连接各自中心的第二条线段,点G即为该模板的重心.四、课堂练习1. 选出下列图形中的中心对称图形( )A.①②B.①③C.②③D.③④2.如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个 B.2个 C.3个 D.4个3.在线段、等腰梯形、平行四边形、矩形、菱形、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A.3个B.4个C.5个D.6个4.下列说法正确的是( )A.两个会重合的三角形一定成轴对称B.两个会重合的三角形一定成中心对称C.成轴对称的两个图形中,对称线段平行且相等D.成中心对称的两个图形中,对称线段平行(或在同一条直线上)且相等5.下列英语单词中,是中心对称图形的是()A.SOSB.CEOC.MBAD.SAR6.在下列四种图形变换中,本题图案不包含的变换是( )①中心对称②旋转③轴对称④平移A.①② B.②③C.③④D.①④7.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点的坐标为________.8.将五个边长都为3cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和是cm2.9.绕一定点旋转180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形.小明发现将正六边形绕着它的中心旋转一个小于180°的角,也可以使它与原来的正六边形重合,请你写出小明发现的一个旋转角的度数:_____________________.10.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_____.11.如图所示,△ABC中,∠BAC=120°,∠DAE=60°,AB=AC,△AEC绕点A旋转到△AFB的位置;∠FAD=__________,∠FBD=__________.12.如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为_____________.五、查漏补缺中心对称图形的判断六、课后落实同步习题完成课堂练习1.【答案】B;2.【答案】D;【解析】解:中心对称的两个图形全等,则①②④正确;对称点到对称中心的距离相等,故③正确;故①②③④都正确.故选D.3.【答案】B【解析】既是轴对称图形,又是中心对称图形的图形有线段、矩形、菱形、正方形.4.【答案】D5.【答案】A【解析】是中心对称图形的是A,故选A.6.【答案】D【解析】旋转180°与原图像不能重合,所以①是错误的;平移应该是整个图形通过平移得到新图形,所以④是错误的.7.【答案】(4,0);【解析】8.【答案】9;【解析】解:由中心对称的性质和正方形的性质得,一个阴影部分的面积等于正方形的面积的,所以,四块阴影面积的总和正好等于一个正方形的面积,∵五个正方形的边长都为3cm,∴四块阴影面积的总和为9(cm2),故答案为:9.9.【答案】60°或120°.【解析】正六边形的中心角是360°÷6=60°,所以旋转角是60°的倍数即可.10.【答案】【解析】准确的画图将为我们研究问题提供较好的思维切入点,据题意,画示意图.由图可知,P3与P2关于y轴对称,因此只须求得P2坐标,而我们可以发现△OP0P2为含60°角的直角三角形,所以可以知道,.11.【答案】60°;60°.【解析】因为△AEC绕点A旋转到△AFB的位置,所以△AEC≌△AFB,即∠FAB=∠EAC,∠ACB=∠FBA,又因为∠BAC=120°,∠DAE=60°,所以∠FAD=∠BAD +∠FAB=∠BAD+∠EAC =120°-60°=60°;所以∠FBD=∠ABC+∠FBA=∠ABC+∠ACB=180°-120°=60°.12.【答案】(-2,-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心对称(北师版)(基础)
一、单选题(共10道,每道10分)
1.下列图形中,△A′B′C′与△ABC成中心对称的是( )
A. B.
C. D.
答案:C
解题思路:
解题要点:
中心对称的定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.
解题过程:
A.四边形A′B′C′D′与四边形ABCD是旋转变换,故A错误;
B.△A′B′C′与△ABC成轴对称,故B错误;
C.△A′B′C′与△ABC关于点O成中心对称,故C正确;
D.△A′B′C′与△ABC是旋转变换,故D错误.
试题难度:三颗星知识点:略
2.下列四组图形中,左边的图形与右边的图形成中心对称的有( )
A.1组
B.2组
C.3组
D.4组
答案:A
解题思路:
平移的定义:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移;
轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称;
中心对称的定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.
解题过程:
根据轴对称的定义可知,(1)左边的图形与右边的图形成轴对称
根据平移的定义可知,(2)(3)左边的图形与右边的图形是平移变换
根据中心对称的定义可知,(4)左边的图形与右边的图形成中心对称
试题难度:三颗星知识点:略
3.以下说法中,关于中心对称的描述不正确的是( )
A.把一个图形绕着某一点旋转,如果它能与另一个图形重合,那么就说这两个图形中心对称
B.关于中心对称的两个图形是全等的
C.关于中心对称的两个图形,对称点的连线必过对称中心
D.如果两个图形关于点O对称,点A与A′是对称点,那么OA=OA′.
答案:A
解题思路:
解题要点:
中心对称的定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;
中心对称的性质:中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;
中心对称的两个图形是全等图形.
解题过程:
A.根据中心对称的定义可知,A选项未说明旋转180°,故A错误;
B.根据中心对称的性质可知,B正确;
C.根据中心对称的性质可知,C正确;
D.根据中心对称的性质可知,D正确.
试题难度:三颗星知识点:略
4.关于中心对称的两个图形,对应线段的关系是( )
A.相等
B.平行
C.相等且平行
D.相等且平行或相等且在同一直线上
答案:D
解题思路:
中心对称的性质:中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;
中心对称的两个图形是全等图形.
即中心对称的两个图形,对应线段相等且平行或相等且在同一直线上
试题难度:三颗星知识点:略
5.如图,△ABC与△A′B′C′成中心对称,则下列结论不正确的是( )
A.S△ABC=S△A′B′C′
B.AB=A′B′,AC=A′C′,BC=B′C′
C.AB∥A′B′,AC∥A′C′,BC∥B′C′
D.S△ACO=S△A′B′O
答案:D
解题思路:
解题要点:
中心对称的性质:中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;
中心对称的两个图形是全等图形.
解题过程:
A.根据中心对称的两个图形是全等图形,得△ABC≌△A′B′C′,则S△ABC=S△A′B′C′,故A正确;B.由A知△ABC≌△A′B′C′,可得AB=A′B′,AC=A′C′,BC=B′C′,故B正确;
C.根据对称点到对称中心的距离相等,得△ABO≌△A′B′O,则∠ABO=∠A′B′O,即AB∥A′B′,同理可证AC∥A′C′,BC∥B′C′,故C正确;
D.由C知△ABO≌△A′B′O,则S△A′B′O=S△ABO≠S△ACO,故D错误.
试题难度:三颗星知识点:略
6.如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是( )
A.O1
B.O2
C.O3
D.O4
答案:A
解题思路:
解题要点:
中心对称的性质:中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
解题过程:
如图,连接CH和DE交于点O1,即O1为对称中心
试题难度:三颗星知识点:略
7.下列四个图案中,是中心对称图案的是( )
A. B.
C. D.
答案:A
解题思路:
中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
B,C,D选项都是轴对称图形.A选项为中心对称图形.
故选A
试题难度:三颗星知识点:略
8.下列各图中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
答案:D
解题思路:
中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.
A选项为轴对称图形
B选项为中心对称图形
C选项既不是轴对称图形也不是中心对称图形
D选项既是轴对称图形也是中心对称图形
试题难度:三颗星知识点:略
9.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )
A.①
B.②
C.③
D.④
答案:C
解题思路:
中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
当正方形放在③的位置,它与原来7个小正方形组成的图形是中心对称图形.
试题难度:三颗星知识点:略
10.用一条直线m将如图1的直角铁皮分成面积相等的两部分.图2、图3分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是( )
A.甲正确,乙不正确
B.甲不正确,乙正确
C.甲、乙都正确
D.甲、乙都不正确
答案:C
解题思路:
如图2:
∵矩形ABFG和BCDE都是中心对称图形
直线m经过两个矩形的对角线的交点,
∴直线m将矩形ABFG和BCDE都分割成全等的两部分
∴直线m两旁的图形的面积都是两个矩形面积和的一半,
∴直线m把这个图形分成了面积相等的两部分,即甲做法正确;
如图3:
∵矩形ACDH和GFEH都是中心对称图形
直线m经过两个矩形的对角线的交点,
∴直线m将矩形ACDH和GFEH都分割成全等的两部分
∴直线m两旁的图形的面积都是两个矩形面积差的一半,
∴直线m把这个图形分成了面积相等的两部分,即乙做法正确.
故甲、乙做法都正确.
试题难度:三颗星知识点:略。