最新二阶系统时域响应
32-3 二阶系统时域响应
《自动控制理论》
§3.3 3.3 §3.3.1 3.3
二阶系统的时间响应及动态性能
传递函数标准形式及分类
2 D(s) = s 2 + 2ξωn s + ωn = 0
《自动控制理论》
二阶系统的时域响应
R-L-C电路,其传递函数为: 电路,其传递函数为:
Uc( s) 1 G( s) = = Ur( s) LCs2 + RCs +1
s1, 2 = ± jωn
对应的单位阶跃响应为
c(t ) = 1 − cos ωnt
由此表明系统在无阻尼时,其瞬态响应呈等幅振荡,振荡 由此表明系统在无阻尼时,其瞬态响应呈等幅振荡, 频率为 wn 。 wn
《自动控制理论》
二阶系统的时域响应
(2)临界阻尼 (ξ = 1)
ξ =1时 系统具有两个相等的实根, 当ξ =1时,系统具有两个相等的实根,即 s1, 2 = −ωn 。此时 系统输出的拉氏变换为
《自动控制理论》
§3.3.4 二阶系统阶的动态校正
比例微分(PD)校正 例1. 比例微分 校正
校正前图3-7b所示系统的特征方程为: 所示系统的特征方程为: 校正前图 所示系统的特征方程为
Js 2 + fs + K = 0
对应的
ωn =
K F , ξ= J 2 KJ
(3 - 33)
图3-15 具有PD校正的二阶系统 具有 校正的二阶系统
π −β ωd
(3-18) 18) (3-19) 19)
ξπ
1−ξ 2
π ωd
c(tp) − c(∞) − (3)超调量 Mp = = c(tp) −1 = e c(∞) 1 1 1 ts = (ln + ln ) (4)调整时间 2 ∆ ξ ωd 1− ξ
第3讲 二阶系统的时域分析
18
三、典型二阶系统的动态过程分析
(一)衰减振荡瞬态过程 (0 1):欠阻尼
s 1, 2 ζω n jωn 1 ζ
2
ζω n jωd
c (t ) 1 Fra biblioteke ζωn t 1 ζ 2
sin(ωd t β ) ,
t 0
⒈ 上升时间 t r :根据定义,当 t t r时,c(tr ) 1 。
3
s1, 2 n n 1
2
⒊ 当 1 时,特征方程有一对相等的实根,两个极点位于S平 面负实轴上,系统时间响应无振荡,称为临界阻尼系统,系统 的阶跃响应为非振荡过程。 ⒋ 当 1 时,特征方程有一对不等的实根,两个极点位于S 平面负实轴上,系统时间响应无振荡,称为过阻尼系统,系统 的阶跃响应为非振荡过程。 以上 1 属于非振荡情况
于是有:
tr d
ωd ωn 1 ζ 2
n
n
j n 1 2 j d
n
称为阻尼角
j n 1 2
cos
可见,当阻尼比一定时,系统的响应速度与自然频率成正比; 而当阻尼振荡频率一定时,阻尼比越小,上升时间越短。
2 n 1 C ( s) ( s) R( s) 2 2 s 2 n s n s
2 其中, 由特征方程 s 2 2 n s n 0
可求得两个特征根(即闭环极点)
s1, 2 n n 2 1
6
[分析]:
s1, 2 n n 1
s n n 1 2 2 2 2 s s 2 n s n s 2 n s n
5 第五讲 二阶系统时域响应
-
1/(s-1)(s+1)
C
−
Fig. SP 5.3.1
(1) 讨论系统的稳定性。 (2)确定K的范围,使得其闭环极点都在复平 面的左半平面。
解: 传递函数为:
C K (s −1 s +3 )( ) K = = R 1+K (s −1 s +3 (s −1 s +3 +K )( ) )( )
1.0
Tr
Tp
Ts(2%) 调节时间
t
上升时间 峰值时间
图.5.6 典型的二阶阶跃响应
2. 峰值时间或 Tp π π = Tp = ω ω 1−ζ 2 d n
定义为第一个最 超调值所对应的 1.0 时间
c(t) 超调 稳态输出 +2%
t
Tr 上升时间
Tp 峰值时间
Ts(2%) 调节时间
图.5.6 典型二阶阶跃响应
单位阶跃输入时:
C(s) 17 = 2 C(t) R(s) s +6s +25 0.748 0.680 17 25 = 2 25 s +6s +25
0.714 0.646
π Tp = = 0.785s ωd
t 0.785 1.00
图. SP 5.2.3
稳态输出为 0.68
例 5.3
一个控制系统,它有一个开环极点在 复平面的右半平面。
结论 (P81,1-7) :
1.等阻尼线是以原点为中心的径向射 线。 2. 等无阻尼自然频率是以原点为圆心的 圆周。 3.实轴上的单极点表示为一阶系统,它 在阶跃输入作用下不发生振荡。
4. 过阻尼( >1) 二阶系统由位于实轴上 ζ 的两个极点表示。它与等于1或大于1 90o 的阻尼一致,位于一条与虚轴成 的射线上。 5. 位于虚轴的极点产生等幅振荡的时 域响应,与零阻尼一致
二阶系统的时域响应
n n 2 1 C ( s) s1 2 R( s ) s s1 s n n 1
§3-3二阶系统的时域响应 近似传函与原传函的初始值和终值保持不变。
此时系统的单位阶跃响应为:
c(t ) 1 e
系统的响应时间为
( 2 1 ) n t
2
1
2
)0
t t r时,e ntr 0, 故只有
sin( 1 2 nt arct an 1
2
)0
2 1 则必有 1 2 ntr arctan n , n 0,1,2.....
因为上升时间是第一次达到稳态值的时间,故取 n=1,于是§3-3二阶系统的时域
查拉氏变换表,可求得:
c(t ) 1 1 1
2
§ 3-3二阶系统的时域响应
e nt sin( 1 2 nt arct an 1 2
), t 0
欠阻尼时,系统的阶跃响应 c(t ) 的第一项是稳 态分量,第二项是振幅按指数规律衰减的阻尼正 弦振荡,其振荡频率为 d 称为阻尼自然振荡频率。 1 2
2
cos( d t p ) n
e nt 1
2
sin(d t p ) 0
§3-3二阶系统的时域响应 移项并约去公因子后得
1 2 d tan( d t p ) n
到达第一个峰值时 d t p ,从而得
tp d n 1 2
取横坐标为 n t ,不同阻尼比 值下的二阶系统单位阶跃响 应曲线族如图所示:
§3-3二阶系统的时域响应
从图可见: (1) 越小,振荡越厉害,当 增大到1以后,曲线变为欠阻尼系统比临界阻尼系统更快 (2) 达到稳态值。 (3)在无振荡时,临界阻尼系统具有最快的响应。 (4)过阻尼系统过渡过程时间长。
控制系统的时域分析_一二阶时间响应讲述
控制系统的时域分析_一二阶时间响应讲述时域分析是控制系统理论中的重要内容,主要用于分析系统的时间响应。
在时域分析中,我们会关注系统的输入和输出之间的关系,并研究系统在时间上的性能指标和特征。
本文将重点讲述一阶和二阶系统的时间响应。
一、一阶系统的时间响应一阶系统是指系统的传递函数中只有一个一阶多项式的系统,其传递函数形式为:G(s)=K/(Ts+1)其中,K是系统的增益,T是系统的时间常数。
一阶系统的单位阶跃响应是常用的时间响应之一,通过对系统施加一个单位阶跃输入,可以得到系统的响应曲线。
单位阶跃输入可以表示为:u(t)=1由于一阶系统的传递函数是一个一阶多项式,因此它的拉普拉斯变换可以通过部分分式展开得到:G(s)=K/(Ts+1)=A/(s+1/T)通过进行拉普拉斯逆变换,可以得到系统的单位阶跃响应函数y(t):y(t) = K(1 - exp(-t/T))其中,exp(-t/T)为底数为e的指数函数,表示系统的响应曲线在t时刻的衰减程度。
从单位阶跃响应函数可以看出,一阶系统的时间常数T决定了系统的响应速度和衰减程度。
时间常数越小,系统的响应越快速,衰减程度也越快。
二、二阶系统的时间响应二阶系统是指系统的传递函数中有一个二阶多项式的系统,通常可以表示为:G(s) = K / (s^2 + 2ξω_ns+ω_n^2)其中,K是系统的增益,ξ是系统的阻尼比,ω_n是系统的自然频率。
二阶系统的时间常数和质量阻尼比是描述系统性能的重要参数。
时间常数决定了系统响应的速度,质量阻尼比则影响了系统的稳定性和衰减程度。
对于二阶系统的单位阶跃响应,可以通过拉普拉斯逆变换得到响应函数y(t):y(t) = K*(1 - (1-ξ^2)^0.5 * exp(-ξω_nt) * cos((1-ξ^2)^0.5 * ω_nt + φ))其中,φ为相位角,由初始条件和变量确定。
从单位阶跃响应函数可以看出,二阶系统的阻尼比ξ决定了系统的过阻尼、临界阻尼和欠阻尼的响应形式。
二阶系统闭环参数ω和对时域响应ξ的影响
二阶系统闭环参数ω和对时域响应ξ的影响闭环系统的参数ω和ξ对系统的动态响应有着重要的影响。
ω是系统的自然频率,决定了系统的振荡速度;ξ是系统的阻尼比,决定了系统的振荡衰减速度。
本文将从时间域分析闭环系统对ω和ξ的影响,具体表现在系统的稳态误差、超调量、上升时间和振荡周期等方面。
首先,稳态误差是指系统在输入信号稳定后的偏差大小。
对于二阶系统,稳态误差与ω和ξ有关。
当ω较大时,系统的自然频率高,响应速度快,稳态误差较小。
相反,当ω较小时,系统的自然频率低,响应速度慢,稳态误差较大。
对于ξ来说,当ξ较大时,系统的阻尼比高,响应速度快,稳态误差较小。
当ξ较小时,系统的阻尼比低,响应速度慢,稳态误差较大。
其次,超调量是指系统响应的最大偏差值与系统稳定值之间的差别。
对于二阶系统,超调量也与ω和ξ有关。
当ω较大时,系统的自然频率高,响应速度快,超调量较小。
相反,当ω较小时,系统的自然频率低,响应速度慢,超调量较大。
对于ξ来说,当ξ较大时,系统的阻尼比高,响应速度快,超调量较小。
当ξ较小时,系统的阻尼比低,响应速度慢,超调量较大。
再次,上升时间是指系统从0%到100%响应稳定值所需的时间。
在二阶系统中,上升时间与ω和ξ有关。
当ω较大时,系统的自然频率高,响应速度快,上升时间较短。
相反,当ω较小时,系统的自然频率低,响应速度慢,上升时间较长。
对于ξ来说,当ξ较大时,系统的阻尼比高,响应速度快,上升时间较短。
当ξ较小时,系统的阻尼比低,响应速度慢,上升时间较长。
最后,振荡周期是指系统响应从一次峰值到下一次峰值所经历的时间。
对于二阶系统,振荡周期也与ω和ξ有关。
当ω较大时,系统的自然频率高,振荡周期较短。
相反,当ω较小时,系统的自然频率低,振荡周期较长。
对于ξ来说,当ξ较大时,系统的阻尼比高,振荡周期较短。
当ξ较小时,系统的阻尼比低,振荡周期较长。
综上所述,二阶系统的参数ω和ξ对系统的动态响应有着重要的影响。
其中,ω决定了系统的振荡速度,ξ决定了系统的振荡衰减速度。
二阶系统的时域分析.ppt
d ds
[C
(s
)(
s
n
)
2
]s
n
1
2 [C(s) (s n )2 ]sn n
C(t) 1 ent ntent 1 ent (1 nt) (t 0)
j [s]
s1s2
n o
1
C(t) 1
1 是输出响应的单调和振荡过程的分界,通
常称为临界阻尼状态。
o
2020/3/29
3-3二阶系统的时域分析
况,故称为阻尼系数。
2020/3/29
3-3二阶系统的时域分析
10
3.二阶系统的性能指标(1)-上升时间
根据定义,当 t tr时,c(tr ) 1。 令 c(t) 1 et sin (dt+ ) =1
sin
c(t) 1 et sin (dt+ ) , t 0 sin
e t sin (d t+ ) 0 sin
T1 T2
n
T2
1
n
h(t)= 1 -(1临+ω界n阻t)尼0je-ωnt
0<0<ξ<ξ<1 1 S1,2= -ξ ωn ±jj ωn√1-ξξ2 =0
jj 0
0
0
e - h(t)=
ξ=1 0 1
2020/3/2√91-ξ2
-ξωSnt欠1s,2i阻n=(尼ω±d3t-j3+二ωβ阶n)系统的时域分析
为阻尼振荡圆频率。
2020/3/29
3-3二阶系统的时域分析
1 2 是振荡频率。称 d
5
2.二阶系统的单位阶跃响应(4)-过阻尼
极点:s1,2 n n 2 1
阶跃响应:c(t) 1
n
二阶系统的时域响应与极点的关系-概述说明以及解释
二阶系统的时域响应与极点的关系-概述说明以及解释1.引言1.1 概述二阶系统是一类常见的控制系统,其具有两个自由度。
在控制理论中,了解二阶系统的时域响应与极点的关系对于系统分析和设计非常重要。
本文旨在通过探讨二阶系统的时域响应与极点的关系,揭示出其内在的数学规律和工程应用。
在本文中,我们会对二阶系统进行定义和特点的介绍,然后重点关注时域响应与极点之间的联系。
二阶系统的时域响应是指系统在时域上对输入信号的响应情况,它包括了系统的过渡过程、稳定过程和超调量等重要指标。
而系统的极点则是描述系统动态特性的重要参数,它们决定了系统的稳定性、阻尼性和振荡频率等方面。
在本文的后续内容中,我们将通过实例和数学分析,详细探讨二阶系统的时域响应与极点之间的关系。
我们将会介绍不同类型的二阶系统以及它们的特点,在此基础上,深入研究时域响应与极点之间的对应关系。
通过了解二阶系统的时域响应与极点的关系,我们可以更好地理解和分析控制系统的动态特性,为系统设计和性能调整提供理论依据和指导。
对于工程实践中的控制系统设计和优化,这一关系的理解具有重要的实际应用意义。
接下来的内容将重点聚焦于系统的定义和特点,以及时域响应与极点之间的关系,希望读者能够通过本文对二阶系统有更全面、深入的了解。
1.2文章结构1.2 文章结构本文将围绕二阶系统的时域响应与极点的关系展开讨论。
文章分为引言、正文和结论三个部分。
引言部分首先对二阶系统进行概述,介绍了其定义和特点。
随后,本节将阐述文章的结构安排,为读者提供对接下来内容的整体了解。
最后,明确本文的目的,即通过分析二阶系统时域响应与极点之间的关系,探索出对二阶系统的应用和意义。
正文部分将详细探讨二阶系统的时域响应与极点之间的关系。
首先,将对二阶系统的定义和特点进行阐述,以便读者对系统本身有清晰的认识。
然后,我们将深入研究时域响应和极点之间的关系,并通过理论分析和实例说明,阐释二阶系统响应特性与极点位置之间的关联。
第三章二阶系统响应与时域性能指标解析
第三章二阶系统响应与时域性能指标解析在控制系统中,二阶系统是指具有二阶传递函数的系统。
二阶系统在工程实践中非常常见,例如机械系统、电子电路系统等。
了解二阶系统的响应和时域性能指标对于设计和分析控制系统非常重要。
二阶系统的传递函数可以表示为$G(s)=\frac{\omega_n^2}{{s^2+2\zeta\omega_ns+\omega_n^2}}$,其中$\omega_n$是系统的自然频率,$\zeta$是系统的阻尼比。
首先我们从系统的阶跃响应来分析二阶系统的时域性能指标。
阶跃响应是系统对阶跃信号输入的响应。
通过对传递函数分母进行因式分解,我们可以将传递函数改写为$G(s)=\frac{\omega_n^2}{(s+s_1)(s+s_2)}$,其中$s_1 = (-\zeta+\sqrt{\zeta^2-1})\omega_n$,$s_2 = (-\zeta-\sqrt{\zeta^2-1})\omega_n$。
1. 峰值超调量(Percent Overshoot):峰值超调量是指系统过渡过程中输出信号的最大超调量与步变幅度之比。
通过阶跃响应曲线可以直观地看出系统的峰值超调量。
2. 调节时间(Settling Time):调节时间是指系统从初始状态到稳定状态所需的时间。
在阶跃响应曲线中,调节时间可以定义为系统的输出信号在峰值超调之后首次进入指定误差范围内所需的时间。
一般来说,稳定误差范围可以选择输出信号与目标信号之差小于目标值的一些百分比,例如5%。
3. 峰值时间(Peak Time):峰值时间是指系统输出信号首次达到峰值超调量的时间。
在阶跃响应曲线中,峰值时间可以直接读取。
4. 上升时间(Rise Time):上升时间是指系统输出信号从初始状态到达峰值的时间。
在阶跃响应曲线中,上升时间可以定义为系统输出信号从0.1倍峰值超调量到0.9倍峰值超调量之间所需的时间。
二阶系统的阶跃响应曲线具有不同的形态,取决于系统的阻尼比$\zeta$。
典型二阶系统的时域响应与性能分析
典型二阶系统的时域响应与性能分析对于一个典型的二阶系统,其数学模型可以表示为以下形式:m*d^2y/dt^2 + c*dy/dt + ky = u(t)其中,m是系统的质量,c是系统的阻尼系数,k是系统的刚度,y(t)是系统的输出,u(t)是系统的输入。
二阶系统的时域响应描述了在给定输入条件下系统的输出变化情况。
常用的描述二阶系统时域性能的指标包括过渡过程、超调量、峰值时间、稳态误差等。
首先是过渡过程。
过渡过程是指系统输出从初始值到达稳定状态所经历的时间。
过渡过程可以通过系统的阻尼比和固有频率来确定。
阻尼比(Damping Ratio)是指系统的阻尼系数与临界阻尼时的阻尼系数之比,表示系统对阻尼变化的敏感程度。
固有频率(Natural Frequency)是指在没有任何阻尼的情况下,系统的振荡频率。
其次是超调量。
超调量是指系统输出达到峰值时的最大偏离幅度与稳态幅值之间的差值。
超调量可以通过系统的阻尼比来衡量,当阻尼比越小时,超调量越大。
峰值时间是指系统输出达到峰值的时间点,通常用稳定时刻的时间点减去起始时间点来衡量。
峰值时间可以通过系统的阻尼比和固有频率来计算,当阻尼比越小时,峰值时间越长。
稳态误差是指系统输出稳定之后与期望输出之间的差值。
稳态误差可以通过系统的阻尼比来衡量,当阻尼比越小时,稳态误差越大。
在实际应用中,我们经常需要对二阶系统的性能进行分析与优化。
一种常见的方法是通过改变系统的阻尼比、固有频率等参数来获得所需的效果。
例如,如果需要减小超调量,可以通过增加阻尼比的方式来实现;如果需要减小过渡时间,可以通过增加固有频率的方式来实现。
此外,对于二阶系统的分析可以采用频域方法,如Bode图和Nyquist图等。
这些图形可以提供系统的频率响应信息,帮助我们更全面地理解和优化系统性能。
总之,典型二阶系统的时域响应与性能分析是控制系统工程中很重要的一部分。
充分理解和分析二阶系统的时域响应特征和性能指标,可以帮助我们更好地设计和控制系统,提高系统的稳定性和性能。
二阶系统的时域分析
二阶系统的时域分析二阶系统是指系统的传递函数为二次多项式的系统。
在控制工程中,常常会遇到这样一类系统,例如惯性系统、机械系统等。
对于这些二阶系统,我们不仅可以通过频域分析来研究其特性,还可以通过时域分析来了解其动态特性。
在进行二阶系统的时域分析时,可分为稳态分析和暂态分析两个方面。
稳态分析主要关注系统的稳定性、稳定偏差以及稳态响应等问题。
稳定性是指系统在输入信号恒定时是否能够收敛到一些有限的值。
对于二阶系统来说,稳定性分为两种情况:一是欠阻尼情况下的稳定性,二是过阻尼情况下的稳定性。
在欠阻尼情况下,系统的特征根是共轭复根,且位于单位圆内。
此时,系统的稳定性与初始条件无关,即系统总是能够收敛到稳态。
而且系统的稳态响应的振幅会发生一定的振荡,并随着时间逐渐减小。
该振荡的周期与系统的倍率有关,即与特征根的幅值有关。
在过阻尼情况下,系统的特征根是两个实根,分别对应着减震时间常数的倒数,且位于负实轴上。
此时,系统的稳态响应不会有振荡的情况发生,而是指数衰减的趋势。
稳态响应的衰减速率与特征根的位置有关,即与特征根的实部大小有关。
对于稳态偏差问题,我们可以通过查表法或直接计算法来求解。
稳态偏差是指系统在输入信号恒定时的输出值与预期值之间的差距。
通过分析系统的传递函数,我们可以得到系统的静态增益,从而计算出稳态偏差。
在暂态分析中,我们主要关注系统的动态响应,即系统在输入信号改变时的响应情况。
对于二阶系统来说,主要有两种典型的暂态响应情况:一是阻尼振荡响应,二是临界阻尼响应。
阻尼振荡响应是指系统在欠阻尼情况下的响应。
在这种情况下,系统会产生一定幅值的振荡,振荡的周期与系统的阻尼比有关,即与特征根的实部大小有关。
临界阻尼响应是指系统在特征根位于负实轴上时的响应。
此时,系统的响应既没有振荡也没有超调现象,而是以较快的速度趋近于稳态响应。
在实际工程中,我们可以通过使用MATLAB等软件工具来进行二阶系统的时域分析。
通过绘制系统的单位阶跃响应曲线、脉冲响应曲线以及动态响应曲线,并结合特征根分析法,可以对系统的动态特性进行深入研究。
自动控制原理--二阶系统的时域响应
y(t ) L-1[Y (s)]
-n
1 - e-nt (cos d t
1 - 2 sin d t )
s2
1-
e - nt (
1- 2
1 - 2 cos d t sin d t )
j jd
0
1-
e - nt 1 - 2 sin(n
1 - 2 t tg-1
1- 2 )
y(t)
单位阶跃响应( 0<<1 )
esst
2
a K
K
0.25
a 0.187
比例微分控制与输出微分反馈的比较
1、增加阻尼的来源不同:两者都增大了系 统阻尼,但来源不同;
2、对于噪声和元件的敏感程度不同; 3、对开环增益和自然振荡角频率的影响不
同; 4、对动态响应的影响不同。
(1)增加阻尼的来源
• 比例微分的阻尼来自误差信号的速度;
1)
阶跃响应:y(t) 1
1
-1t
e T1
1
-1t
e T2
T2 T1 -1
T1 T2 -1
yt
j
1
0
0
t
单位阶跃响应(>1)
无振荡、无超调
2、临界阻尼 =1
j 0
两个相同的负实根
闭环系统的极点为 s1,2 -n
闭环传递函数为
GB
Y (s) R(s)
(s
n2 n )2
阶跃响应: y(t) 1- e-nt (1 nt)
阻尼振荡频率
衰减振荡
d 1- 2n
4、零阻尼 0
阶跃响应y(t)=1-cos nt
n --无阻尼振荡角频率
j 0
一对纯虚根
第三节二阶系统的时域响应
第三节二阶系统的时域响应⏹二阶系统的数学模型⏹二阶系统的单位阶跃响应⏹二阶系统单位阶跃信号的性能指标⏹二阶系统的动态校正第三节二阶系统的时域响应定义:由二阶微分方程描述的系统称为二阶系统。
例一22()()()()c c c r d u t du t LC RC u t u t dt dt++=R-L-C 电路2()1()()1c r U s G s U s LCs RCs ==++例二:22()()()()c c c r d t d t J F K t K t dt dt θθθθ++=()()2c r s Ks Js FS Kθθ=++将传递函数转换为:2222/()2nn n K Js F K s s s s J JωζωωΦ==++++n KJω=——系统的无阻尼自然振荡角频率式中:112F KJζ=——系统的阻尼比。
一. 二阶系统数学模型1.二阶系统的微分方程一般式为:ζ-阻尼比n ω-无阻尼振荡频率2222()()2()()n n n d c t dc t c t r t dt dtζωωω++=(0)n ω>222()()()2nn nC s s R s s s ωζωω=Φ=++2()(2)nn G s s s ωζω=+3.二阶系统传递函数标准形式:开环:闭环:2. 二阶系统的标准形式结构图:)2(2n ns s ξωω+)(s R )(s C 2(2)n n s s ωξω+二阶系统的特征方程为2220n ns s ζωω++=解方程求得特征根:当输入为阶跃信号时,则微分方程解的形式为:12012()s t s tc t A A e A e=++式中为由r(t)和初始条件确定的待定的系数。
012,,A A A s 1,s 2完全取决于,ωn 两个参数。
ζ21,21n n s ζωωζ=-±-二、二阶系统的单位阶跃响应1.欠阻尼()的情况01ζ<<21(1)ns j ζζω=---22(1)ns j ζζω=-+-[]()()1222()()11sin1111sin , 01n n tn td c t LC s e t et t ξωξωζωβξωβξ---==--+-=-+≥-特征方程的根为:系统输出响应为:21arctanζβζ-=21 dnωζω=-式中称阻尼振荡角频率,或振荡角频率;二阶欠阻尼系统的单位阶跃响应由稳态分量和暂态分组成。
实验三——二阶系统的时域响应及性能分析
实验三——二阶系统的时域响应及性能分析实验三主要研究了二阶系统的时域响应及其性能分析,通过实验得到不同二阶系统的单位阶跃响应和单位脉冲响应,并对其进行分析和性能评估。
首先,实验中使用的二阶系统是由两个一阶系统串联而成,可以通过两个一阶系统的参数来确定二阶系统的性能。
实验中设置了不同的参数组合来得到不同的二阶系统,并测量了这些系统的单位阶跃响应和单位脉冲响应。
实验中,单位阶跃响应是通过给系统输入一个单位阶跃信号,观察系统的输出得到的。
单位脉冲响应是通过给系统输入一个单位脉冲信号,观察系统的输出得到的。
通过测量这两个响应,可以了解二阶系统在时域的性能。
对于单位阶跃响应,实验中测量了系统的超调量、调整时间和稳态误差。
超调量是指单位阶跃响应中最高峰值与稳态值之差与稳态值的比值,可用来评估系统的动态性能。
调整时间是指从单位阶跃信号开始输入到响应达到其稳态值所需要的时间,反映了系统调整过程的快慢。
稳态误差是指系统最终的输出值与期望值之差,用来评估系统的稳态准确性。
对于单位脉冲响应,实验中测量了系统的峰值和时间常数,用来评估系统的动态特性。
峰值是指单位脉冲响应中的最高值,与系统的阻尼比有关。
时间常数是指单位脉冲响应中曲线从0到达其最大值所需要的时间,与系统的阻尼比和自然频率有关。
通过实验数据的测量和分析,可以得到不同参数组合下的二阶系统的性能指标,进而对系统进行评估。
如果超调量小、调整时间短、稳态误差小,表示系统的动态特性优秀,能够快速、准确地响应输入信号;如果峰值小、时间常数短,表示系统的动态特性好,有较快的响应速度和较小的振荡现象。
综上所述,实验三通过对二阶系统的时域响应进行测量和分析,并对性能指标进行评估,可以得到不同二阶系统的动态特性和稳态准确性信息。
这些信息对于系统设计和参数调整具有重要的参考价值。
通过实验的学习,可以更深入地理解掌握二阶系统的性能分析方法,为系统控制和优化提供理论和实践基础。
二阶系统时域响应
响应速度比ζ>1 时快。
④当 1 时:过阻尼系统 s1,2 n n 2 1
系统两个不等负实根:
yt
s1,2 n n 2 1
1
1
1
Y (s) R(s)(s) 1
n2
0
t
s (s s1)(s s2 ) 过阻尼系统单位阶跃响应( >1)
1 c1 c2
4
5
6
d n n
(2)峰值时间 tp
y(t) 1
ent
1 2
sin(d t
),
t
0
dy(t) dt
ent
1 2
n
sin(d t
) d
cos(d t
)
ent n 1 2
sin(d t
)
1
2
cos(d t
)
ent n 1 2
cos
sin(d t
) sin
cos(d t
)
ent n 1 2
③当 =1时,临界阻尼系统
yt
s1,2 n n 2 1
1
1
1
系统两个负实重根: s1 s2 n
Y
(s)
R(s)(s)
1 s
(s
n2 n
)2
1 1 n s s n (s n )2
y(t) 1 ent (1 nt), t 0
0
t
临界阻尼系统单位阶跃响应(
=1)
输出响应无振荡和
1.欠阻尼二阶系统的性能指标
本课程主要对欠阻尼二阶系统的性能指标进行讨论。
其单位阶跃响应曲线: 性能指标有:
y(t) 1
ent
典型二阶系统的时域响应与性能分析
实验二 典型二阶系统的时域响应与性能分析一、实验目的1、研究二阶系统的特征参量(ζ, ωn )对过渡过程的影响。
2、研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
二、实验设备PC 机一台,TD-ACS 教学实验系统一套。
三、实验原理典型二阶系统开环传递函数为:)1()1()(101101+=+=s T s T K s T s T K s G ;其中,开环放大系数01T K K = 。
系统方块图与模拟电路如图2-1与图2-2所示。
图2-1典型二阶系统方块图图2-2模拟电路图先算出临界阻尼、欠阻尼、过阻尼时电电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性。
设R T K K s T T s T 200,2.0,10110=====,系统闭环传递函数为:2222221)()(n n n s s TK s T s T KK s Ts K s R s C ωζωω++=++=++= 其中,自然振荡频率:RT K n 1010==ω 阻尼比:4102521RTKTn===ωζ 典型二阶系统的瞬态性能指标:超调量:21%ζζπδ--=e峰值时间:21ζωπ-=n p t峰值时间的输出值:211)(ζζπ-=+=e t C p调节时间:1)欠阻尼10<<ζ,⎪⎪⎩⎪⎪⎨⎧=∆=∆≈5324,,t n n s ζωζω2)临界阻尼1=ζ,⎪⎪⎩⎪⎪⎨⎧=∆=∆≈575.4284.5,,t nns ωω3)过阻尼1>ζ,⎩⎨⎧=∆=∆≈532411,p ,p t s ,1p -与2p -为二阶系统两个互异的负实根122,1-±-=-ζωζωnn p ,21p p ->>-,过阻尼系统可由距离虚轴较近的极点1p -的一阶系统来近似表示。
四、实验内容与要求1、实验前预先计算出典型二阶系统性能指标的理论值并填入实验对照表2-1中。
2、按模拟电路图接线,将信号源单元的“ST”端插针与“S”端插针用“短路块”短接,使每个运放单元均设置锁零场效应管,此时运放具有锁零功能。
实验三——二阶系统的时域响应及性能分析
实验三 二阶系统的动态响应分析实验指导书一、实验目的1.学习和掌握二阶系统动态性能指标的测试方法。
2.研究典型二阶系统参数对系统动态性能和稳定性的影响。
二、实验内容1.根据二阶系统的工作原理框图(动态结构方框图)建立matlab/simulink 仿真模型; 2.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。
三、实验步骤1.建立由一个积分环节和一个惯性环节组成的二阶闭环系统的模型; 2.观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间; 3.改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响。
4.分析实验结果,完成实验报告。
四、附录1.典型二阶系统典型二阶系统的动态结构方框图如图3.1所示:其开环传递函数为1()(1)KG S S T S =+,10K K T =图3.1图3.2其闭环传递函数为11112111111121222111111()1(1)11212o o o o o o nn n o n n K T s T s K K s K T s T s K T T s T s K T s T s K T T w K s w s w s s T T T w w T ϕξξ+===++++++==++++===自然角频率阻尼比,其中n ω=ξ=取二阶系统的模拟电路如图3.2所示:(1) 比例环节1200()2100G S == (2) 比例积分环节121111()200o o C S G S R R C S s===(3)比例惯性环节 22312111()(1)100(1)x x x x x x R C s R R R C s G s R R C s R R s +===++(4)比例环节4()1R GS R==前向通道传递函数:123442()()()()()12200100(1)11010000(1)x x xx xG s G s G s G s G s R s R s R ss R s s R ==+==++系统的传递函数:4242424110()()11()1011010x xxss R G S s G S ss R s s R φ--+==+++=++210n w -==211502210n x x w R R ξ-===当ξ=1 ,系统为临界阻尼; 当ξ>1,系统为过阻尼; 当0<ξ<1,系统为欠阻尼; 当ξ=0,系统为无阻尼改变元件参数Rx大小,研究不同参数特征下的时域响应。
第06讲二阶系统响应和时域性能指标
tr
1
d
(
)
n
1 ( ) 1 2
1
1 2
结论:当n一定时,阻尼比越大,则上升时间
tr 越长;当 一定时,n 越大,则tr 越短。
2 峰值时间 tp
xo (t) [1
e nt
1 2
暂态响应的暂态分量为一按指数衰减的简谐振动
时间函数;振荡程度与 有关: 越小,振荡越
剧烈。
06-7-20
时域瞬态响应分析
6
2 临界阻尼( 1) 此时,该二阶系统的极点是二重实根,
X 0 (s) n2 Xi (s) (S n )2
X
o(s)
(s
n 2 n )2
1 s
系统性能指标可以在时域里提出,也可以在频 域里提出,时域内的比较直观。时域分析性能指标 是以系统对单位阶跃输入响应的瞬态响应形式给出 的。
时域瞬态响应性能指标包括:
(1)上升时间 t(r Rise Time) :响应曲线从零时刻到首次
到达稳态值的时间,即响应曲线从零时刻上升到达稳态值所 需的时间。如系统无超调,理论上到达稳态值时间需无穷大, 则上升时间定义为响应曲线从稳态值的10%上升到稳态值的 90%所需的时间。
2 n s
2n 2 (s n n
1
2
1)
2n 2 (s n n
1
2
1)
06-7-20
时域瞬态响应分析
15
进行拉氏反变换
x0
(t )
[t
ቤተ መጻሕፍቲ ባይዱ
2 n
2 2 2 2n
二阶系统的时间响应
3)K = 13.5时
n=8.22rad/s,=2.1 ,系统工作于过阻尼状态,
传递函数可以改写为:
G(s)
s2
67.5 34.5s
67.5
(0.481s
1 1)(0.0308s
1)
即系统可以视为由两个时间常数不同的一阶系统串联组
成,其中 T1=0.481s,T2=0.0308s
对于过阻尼系统,tp,Mp,N已无意义,而调整时间ts间可
K=8.9/0.03=297N/m
又由图b)知:
M p e
1 2 100% 0.0029 100% 9.7% 0.03
解得: = 0.6
又由: t p
n
2 12
代入,可得n=1.96rad/s
根据 n
K , C
M 2 KM
解得 M = 77.3Kg,C = 181.8Nm/s
✓ 例题2
单位脉冲信号输入时,系统的响应为:
xo (t) 7 5e6t
求系统的传递函数。
解:由题意Xi(s)=1,所以:
G(s)
X o (s) Xi (s)
X o (s)
L[xo (t)]
L[7 5e6t ]
7 5 2s 42 s s 6 s(s 6)
➢ 例2
已知系统传递函数:
G(s)
2s 1 (s 1)2
1.5 1 2 , 0.05
则
N ts Td
2
12
,
0.02
N 仅与 有关。与Mp 一样直接说明了系统的阻尼特性。 越大,N越小,系统平稳性越好。
====0000....2468
✓ ▪
结论
0
二阶系统的动态性能由n和决定。