2013年秋七年级(人教版)集体备课导学案:1.4有理数的乘除法(1)

合集下载

人教版七年级数学上册导学案:1.4有理数的乘除法

人教版七年级数学上册导学案:1.4有理数的乘除法

课题: 1.4.1 有理数的乘法知识技能1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力;2.能运用法则进行有理数乘法运算;3.培养学生能用乘法解决简单的实际问题.重点难点重点:有理数的乘法法则难点:积的符号的确定导学过程预习导航阅读课本第 28 页至 30 页的部分,完成以下问题.收获和疑惑活动一【新课引入】请学生观察下列式子:(1)(+2)×(+3)=+6(2)(-2)×(+3)=-6(3)(+2)×(-3)=-6(4)(-2)×(-3)=+6可以得出什么结论?根据对有理数乘法的思考,总结填空:正数乘正数积为__正_ 数负数乘正数积为__负__数正数乘负数积为__负__数负数乘负数积为__正__数乘积的绝对值等于各乘数绝对值的__积__问题:当一个因数为0时,积是多少?学生回答:积为0师生归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

注意:1、上面的法则是对于只有两个因子相乘而言的。

2、做乘法的步骤是:先确定积的符号,再确定积的绝对值。

t预习导航活动二【探究新知】(1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少?(2) 商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少?(3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少?〖探索2〗(1)登山队攀登一座高峰,每登高1km,气温下降6℃,登高3km后,气温下降多少?(2)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高3km后,气温上升多少?(3)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高-3km后,气温有什么变化?〖探索3〗(1)2×3=__;(2)-2×3=__;(3)2×(-3)=___;(4)(-2)×(-3)=____;(5)3×0=_____;(6)-3×0=_____.〖法则归纳〗两数相乘,同号得______,异号得_______,并把________相乘.任何数同0相乘,都得______.活动三【讨论交流】1.我们归纳的有理数乘法法则是什么?2.乘积是1的两个数互为倒数吗?预习导航活动四【解决问题】例1:教材例1.解:【巩固练习】1.课本第 30 页练习第1题.2.计算:(1)-3×4; (2)(-112)×(-23);(3)-234×211(4)-199929×0.3.商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?活动五【小结】说说你学习本节课的收获.【作业设计】1.课本P30 练习1、2、3题2. 求下列各数的倒数(1)-3; (2)-15 ; (3)-212 .(4)已知|2x+3|+(y-23)²ºº²=0,求-xy.3.用正、负数分别表示提价与降价,提价记为正,降价记为负,若每件商品降价5元,售出60件后,与按原价销售同样数量的商品相比,销售额有何变化?课题: 1.4.2有理数的除法教学目标1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;2.了解倒数概念,会求给定有理数的倒数;3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法运算,培养学生的运算能力。

七年级数学上册1.4有理数的乘除法导学案(新版)新人教版

七年级数学上册1.4有理数的乘除法导学案(新版)新人教版

七年级数学上册1.4有理数的乘除法导学案(新版)新人教版第一篇:七年级数学上册 1.4 有理数的乘除法导学案 (新版)新人教版1-4有理数的乘除法(3)学习目标:1.会将有理数的除法转化成乘法2.会进行有理数的乘除混合运算3.会求有理数的倒数教学重点:正确进行有理数除法的运算,正确求一个有理数的倒数教学难点:如何进行有理数除法的运算,求一个负数的倒数教学过程:一、复习引入:1、倒数的概念;2、说出下列各数对应的倒数:1、-33、-(-4.5)、|-|423、现实生活中,一周内的每天某时的气温之和可能是正数,可能是0,也可能是负数,如盐城市区某一周上午8时的气温记录如下:周日周一周二周三周四周五周六-3c -3c -2c -3c 0c -2c -1c 问:这周每天上午8时的平均气温是多少?二、探索新知:1、解:[(-3)+(-3)+(-2)+(-3)+0+(-2)+(-1)]÷7,即:(-14)÷7=?(除法是乘法的逆运算)什么乘以7等于-14?因为(-2)×7=-14,所以:(-14)÷7=-2 又因为:(-14)×000°°°°1=-2 71 7所以:(-14)÷7=(-14)×2、有理数除法法则除以一个不等于0的数等于乘以这个数的倒数;0除以任何一个不等于0的数都等于0 有此可见:“除以一个数,等于乘以这个数的倒数”,在引进负数以后同样成立。

问题1、计算:(1)36÷(-9)(2)(48)÷(-6)12)÷(-)236(4)0.25÷(-0.5)(5)(-24)÷(-6)7(2)0÷(-8)(3)(-(6)(-32)÷4×(-8)(7)17×(-6)÷5 ★1、能整除时,将商的符号确定后,直接将绝对值相除;2、不能整除时,将除数变为它的倒数,再用乘法;3、有乘除混合运算时,注意运算顺序。

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。

本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。

通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。

二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。

但是,对于除法运算,学生可能还存在一些困惑和误解。

因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。

三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。

2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。

四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。

2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。

2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。

3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。

六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。

2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。

人教版七年级数学上册《一章 有理数 1.4 有理数的乘除法 1.4 有理数的乘除法(通用)》优质课教案_1

人教版七年级数学上册《一章 有理数  1.4 有理数的乘除法  1.4 有理数的乘除法(通用)》优质课教案_1

1.4.1 有理数的乘法(3)教学目标:一、知识与能力理解有理数除法法则,会进行有理数的除法运算,会求有理数的倒数;学生初步会用已有知识解决新问题。

观察、归纳、推断等方法获得数学猜想。

三、情感态度与价值观体验数学活动充满探索性和创造性。

教学重点:会进行有理数的除法运算;会求有理数的倒数教学难点:理解商的符号及其绝对值与除数和被除数的关系。

教具准备:多媒体课件教学过程:课前展示请同学说一说什么是倒数?并很快说出下列说的倒数教师强调:注意0没有倒数,继续学习新内容“有理数的除法”回顾引入在小学我们学习过除法是乘法的逆运算,前几节课我们学习了有理数的乘法,今天我们继续学习它的逆运算“1.4.2有理数除法”探究新知请看大屏幕,你会填空吗?()(4)8⨯-=()(4)8⨯-=-()(4)0⨯-=请根据这3个乘法算式,写出3个除法算式这是我们前面所学的内容,请直接说出他们的结果1841414⨯⨯⨯(-)=(-8)(-)=0(-)= 学生回答计算结果。

请同学仔细观察后两组算式,从中你有什么发现?由此可 以得出什么结论?学生汇报。

总结有理数除法法则:除以一个不为0的数,等于乘这个 数的倒数,用字母表示成1,(0)a b a b b÷=⋅≠。

例5:(1)(36)913694-÷=-⨯- 123(2)()155125()()25345-÷-=-⨯-=继续观察两组算式,与有理数乘法运算法则对比得出两数 相除的符号法则:两数相除,同号得正,异号得负,并把绝 对值相相除,0除以任何一个不等于0的数,都得0. 例5:计算(1)(36)9(369)4-÷=-÷=- 123(2)()155********-÷-=⨯= 强调:有理数的除法要分情况灵活选择法则,若是整数与 整数相除,一般采用“同号得正,异号得负,并把绝对值 相除”,如果有了分数,则采用“除以一个不为0的数等于 乘这个数的倒数”,再约分。

1.4有理数的乘除法导学案

1.4有理数的乘除法导学案

1.4有理数的乘除法第1课时 有理数的乘法法则主备人: 杨世友出示目标:1.了解有理数乘法的实际意义.2.理解有理数的乘法法则.3.能熟练的进行有理数乘法运算.预习导学:自学指导看书第29、30、31、32页的内容,亲历有理数的乘法法则的推导过程,掌握有理数的乘法法则,并进行两个有理数的乘法运算.有理数的乘法法则:______________________________________________________________________________.通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定__________,再计算__________.乘积为1的两个数互为__________.如-3的倒数是_____,0.5的倒数是_____,-221的倒数是_____. 看书第31、32页的内容,体会几个不等于零的有理数相乘,积的符号的确定方法: 几个不为0的数相乘,积的符号由_____的个数决定.当负因数的个数是_____时,积为正;负因数的个数是_____时,积为负.几个数相乘,如果其中有一个因数是0,积等于_____.自学反馈:1.计算:(-141)×(-54)=1,(+3)×(-2)=-6, 0×(-4)=0,132×(-151)=-2, (-15)×(-31)=5,-│-3│×(-2)=6. 2.计算:(-2)×(-3)×(-5)=-30,(-732)×3×(-231)=1, (-9.89)×(-6.2)×(-26)×(-30.7)×0=0.教师点拨:(1)运用乘法法则,先确定积的符号,再把绝对值相乘;(2)0没有倒数. 合作探究:活动1:小组讨论1.计算:(+5)×(+3)=15,(+5)×(-3)=-15,(-5)×(+3)=-15,(-5)×(-3)=15,(+6)×0=0,6×(-4)=-24,(-6)×4=-24,(-6)×(-4)=24.2.计算:(-1121)×158×(-32)×(-241)=-1151,41×(-16)×(-54)×(-141)×8×(-0.25)=8. 活动2:活学活用1.计算:(1)(-5)×0.2=-1;(2)(-8)×(-0.25)=2;(3)(-321)×(-72)=1; (4)0.1×(-0.01)=-0.001;(5)(-59)×0.01×0=0;(6)(-2)×(-5)×(+65)×(-30)=-250; (7)321×(-74)+(-52)×(-343)=-21. 2.a×(-65)=1则a= -56.一个有理数的倒数的绝对值是7,则这个有理数是±71. 3.判断对错:(1)两数相乘,若积为正数,则这两个因数都是正数.(×)(2)两数相乘,若积为负数,则这两个数异号.(√)(3)两个数的积为0,则两个数都是0.(×)(4)互为相反的数之积一定是负数.(×)(5)正数的倒数是正数,负数的倒数是负数.(√)课堂小结:1.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2.倒数:乘积是1的两个数互为倒数.(负倒数:乘积为-1)3.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.当堂训练:第2课时 有理数的乘法运算律主备人: 杨世友出示目标:1.进一步应用乘法法则进行有理数的乘法运算.2.能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用.3.培养学生通过观察、思考找到合理解决问题的能力.预习导学:自学指导看书第33、34页的内容,学习乘法交换律、结合律和分配律,通过探究,体验由特殊到一般研究问题的演绎思想;通过应用,感受利用运算律优化解题过程,养成观察思考的良好习惯.知识探究乘法的交换律文字表达:______________________________.乘法的交换律字母表达:______________________________.乘法的结合律文字表达:___________________________________.乘法的结合律字母表达:___________________________________.乘法的分配律文字表达:___________________________________.乘法的分配律字母表达:___________________________________.自学反馈:1.计算:(-3)×65×(-59)×(-41)×(-8)×(-1). 解:-92.计算:(1)-43×(8-34-1514); (2)191918×(-15). 解:(1)-4103;(2)-299194. 教师点拨:运用运算律进行简便运算.合作探究:活动1:小组讨论计算:1.(-0.5)×(-163)×(-8)×131; 解:-12.(-10565)×12; 解: -12703.(-43+165-87)×(-24); 解: -5 4.371×(371-731)×227×2221; 解: -45.(32-94+275)×27-1171×8+171×8. 解:3活动2:活学活用1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是(D)A.(-3)×4-3×2-3×3B.(-3)×(-4)-3×2-3×3C.(-3)×(-4)+3×2-3×3D.(-3)×(-4)-3×2+3×32.在运用分配律计算3.96×(-99)时,下列变形较合理的是(C)A.(3+0.96)×(-99)B.(4-0.04)×(-99)C.3.96×(-100+1)D.3.96×(-90-9)3.对于算式2007×(-8)+(-2007)×(-18),逆用分配律写成积的形式是(C)A.2007×(-8-18)B.-2007×(-8-18)C.2007×(-8+18)D.-2007×(-8+18)4.计算1375×163最简便的方法是(D) A.(13+75)×163 B.(14-72)×163 C.(10+375)×163 D.(16-272)×163 5.(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;(2)(143-87-121)×171; (3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27). 解:(1)-10;(2)2119;(3)250. 课堂小结:1.有理数乘法交换律2.有理数乘法结合律3.有理数乘法分配律当堂训练:1.4.2有理数的除法第1课时 有理数的除法法则主备人: 杨世友出示目标1.理解除法的意义,掌握有理数的除法法则.2.能熟练进行有理数的除法运算.3.感受转化、归纳的数学思想.预习导学:自学指导看书学习第35、36页的内容,掌握有理数除法法则,能够化简分数.知识探究1.有理数除法法则____________________________________________________.2.两数相除,____得正,____得负,并把绝对值____.0除以任何________的数仍得0. 自学反馈计算:(1)(-36)÷9=-4;(2)(-2512)÷(-53)=54; (3)2.25÷(-1.5)=-23. 教师点拨:在做除法运算时:先定符号,再算绝对值.若算式中有小数、带分数,一般情况下化成真分数和假分数进行计算.合作探究:活动1:小组讨论1.化简下列分数:(1)312-=-4; (2)=--1245415. 2.计算:(1)(-12575)÷(-5)=2571; (2)-2.5÷85×(-41)=1. 教师点拨:乘除混合运算要先,然后,最后.活动2:活学活用1.计算:(1)-0.125÷(-83); (2)(-251)÷1011; (3)-121÷43×(-0.2)×143÷1.4×(-53). 解:(1)31;(2)-2;(3)-103.2.两个不为零的有理数的和等于0,那么它们的商是(B)A.正数B.-1C.0D.±13.两个不为0的数相除,如果交换它们的位置,商不变,那么(D)A.两数相等B.两数互为相反数C.两数互为倒数D.两数相等或互为相反数课堂小结:1.法则1:a÷b=a·b1.2.法则2:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得0.3.化简分数. 当堂训练:第2课时 有理数的四则混合运算主备人: 杨世友出示目标:1.能熟练地进行有理数的乘除混合运算,能用简便方法计算.2.能熟练地掌握有理数加减乘除混合运算的顺序,并能准确计算.3.能解决有理数加减乘除混合运算应用题.4.了解用计算器进行有理数的加减乘除运算.预习导学:自学指导看书学习第37、38页的内容,掌握有理数乘除混合运算法则,能够解决具体问题. 知识探究有理数加减乘除混合运算法则:________________________________________________________________________. 自学反馈计算:(1)6-(-12)÷(-3);(2)3×(-4)+(-28)÷7;(3)(-48)÷8-(-25)×(-6);(4)42×(-32)+(-43)÷(-0.25). 解:(1)2;(2)-16;(3)-156;(4)-25.教师点拨:在做有理数的乘除混合运算时:①先将除法转化为乘法;②确定积(或商)的符号;③适时运用运算律;④若出现带分数可化为假分数,小数可化为分数计算;⑤注意运算顺序.合作探究:活动1:小组讨论1.计算:-54×(-241)÷(-421)×92=-6. 2.(-7)×(-5)-90÷(-15)=41.3.一架直升飞机从高度450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在高度是多少?解:210米活动2:活学活用1.计算:(1)(-6)÷(-23); (2)(-2476)÷(-6); (3)-141÷0.25÷(-16); (4)(-54)÷(-34)×0; (5)(-3)×(-21)-(-5)÷(-2);(6)∣-521∣÷(31-21)×(-111). 解:(1)4;(2)729;(3)165;(4)0;(5)-1;(6)3. 2.高度每增加1千米,气温大约降低6℃,今测量高空气球所在高度的温度为-7℃,地面温度为17℃,求气球的大约高度.解:4千米3.某探险队利用温度测量湖水的深度,他们利用仪器侧得湖面的温度是12℃,湖底的温度是5℃,已知该湖水温度每降低0.7℃,深度就增加30米,求该湖的深度.解:300米课堂小结:有理数加减乘除混合运算法则:无括号,先算乘除,后算加减;有括号先算括号里面的. 当堂训练:。

七年级数学上册第一章有理数1.4有理数的乘除法1.4.2有理数的除法第1课时有理数的除法法则导学案【人教版】

七年级数学上册第一章有理数1.4有理数的乘除法1.4.2有理数的除法第1课时有理数的除法法则导学案【人教版】

–36 ×(1/6)=
-12/25 ÷ (-3/5)=
(-12/25)×(-5/3)=
-72 ÷9=
-72×(1/9)=
问题 2:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗?
1.情景引入 (见幻灯片 3) 2.探究点 1 新 知讲授 (见幻灯片 413)
有理数除法法则(一):除以一个不等于 0 的数,等于乘这个数的
课堂探究
1、要点探究
探究点 1:有理数的除法及分数化简
问题 1:根据“除法是乘法的逆运算”填空:
(-4)×(-2)=8
8÷(-4)=
6×(-6)=-36
-36÷6=
(-3/5)×(4/5)= -12/25
-12/25 ÷(-3/5)=
-8÷9=-72 8÷(-4)=
-72÷9= 8×(-1/4)=
-36÷ 6=
学生在课前 完成自主学 习部分
一、知识链接 1.填一填:
原数
5
倒数
自主学习
9
7
0
8
-1
1 2
3
2.有理数的乘法法则:
两数相乘,同号________,异号_______,并把_________相乘.
一个数同 0 相乘,仍得________.
3.进行有理数乘法运算的步骤:
(1)确定_____________;
例 1 计算(1)(-36)÷ 9; (2)(- )÷(- ).
25
5
例 2 化简下列各式:
12
45
(1) ;(2)
3
12
3.探究点 2 新 知讲授 (见幻灯片 1415)
探究点 2:有理数的乘除混合运算
例 3 计算

人教新课标版七年级上数学第一章《有理数》导学案:1.4有理数的乘除法

人教新课标版七年级上数学第一章《有理数》导学案:1.4有理数的乘除法

第一章 有理数《有理数的乘法》导学案(1)N0:12班级 小组 姓名 小组评价_________教师评价_______ 一、学习目标1、经历探索有理数乘法法则的过程,发展学生观察、归纳、验证等能力;2、能运用法则进行简单的有理数的乘法运算;3、极度热情、投入学习。

二、自主学习1、阅读课本28-30的内容,回答问题:(1)正数乘正数积为 数;负数乘正数积为 数;正数乘负数积为 数;负数乘负数积为 数;乘积的绝对值等于各乘数绝对值的 (2)当有一个因数是0时,积是小结有理数乘法法则:两数相乘,同号得___,异号得___,并把_________相乘,任何数同0相乘,都得___例如(-5)⨯(-3) 同号两数相乘= +(53⨯) 得正,再把两数的绝对值相乘 =15又如(-7)⨯4=-(74⨯) =-28有理数乘法运算的步骤:做有理数乘法时,先确定积的 ,再确定积的 2、阅读课本29的内容,回答问题:乘积是1的两个数互为___数;乘积是-1的两个数互为 数。

例如3的倒数是31;65的倒数是56;-5的倒数是 ;3、自学检测(1)(5)6-⨯积的符号是 ,积的绝对值是,积是(3)(2)-⨯-积的符号是,积的绝对值是 ,积是(2)(-5)⨯2 =- = (-5)⨯(-2)= + =32×(-29)= - = 0.5 ⨯ (-32) = - = (3)-17的倒数是 ;511的倒数是 ; 3--的倒数是三、合作与探究 1、填空(1)若 ,且 ,则 a 0。

(2)若|a |=3, | b | =5,且 a 、b 异号,则a ·b = 。

(3)-21的倒数是 相反数是 ;35的倒数是 相反数是 (4)绝对值不大于4的所有负整数的积是 2、计算(1)(+6)⨯(-9) (2)23-⨯(-151) (3)-0.5⨯34(4)-5-⨯(-2) (5)-7⨯(-3)⨯(-4)四、达标检测1、下列结论正确的是( )A .两数之积为正,这两数同为正;B .两数之积为负,这两数为异号C .几个数相乘,积的符号由负因数的个数决定D .三数相乘,积为负,这三个数都是负数 2、一个有理数和它的相反数的积 ( )A .符号必为正B .符号必为负C .一定不大小0D .一定不小于0 3、计算:①-5⨯(-3)-12 ②(-4)⨯(6)-(-5)⨯8-0<⋅b a b a <4、计算:①-3×5=________ ②3×(-7)=________③-4×(-6)=_______ ④(-2)×(-3)×(-4)=________5、若a、b互为倒数,c、d互为相反数,则ab c d++=_________五、拓展提高在一个秘密俱乐部中,有一种特殊的算帐方式:a*b=3a-4b,聪明的小明通过计算2*(-4)发现了这一秘密,他是这样计算的:“解2*(-4)=3×2-4×(-4)=22”,假如规定:a*b=2a-3b-1,那么请你求2*(-3)和a*(-3)*(-4)。

人教版初中数学七年级上册1.4有理数的乘除法导学案设计(含答案)

人教版初中数学七年级上册1.4有理数的乘除法导学案设计(含答案)

人教版初中数学七年级上册1.4有理数的乘除法导学案一、【学习目标】1、经历探索有理数乘除法法则和运算律的过程,发展观察、归纳、猜测、验证等能力.2,能运用法则进行简单的有理数乘法和除法运算.3,培养学生的语言表达能力,通过合作学习调动学生学习的积极性,增强学习数学的自信。

二、【学习过程】学习任务一、探索有理数的乘法法则: 1、填空: 3×2= ; (-3)×2= ; 3×(-2)= ; (-3)×(-2)= 。

1、填空的答案:6 —6 —6 6观察发现:正数与正数相乘,仍然得正,负数与负数相乘,也得正;负数与正数相乘,正数与负数相乘,都得到负数。

由此得到有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。

注意:求两个有理数相乘的积,应该先确定积的符号,再确定积中除符号以外的绝对值。

学习任务二、寻找有理数乘法的运算律: 2、填空: (1)3×(-5)= , (-5)×3= ; (2)[(-3)×5] ×2= , (-3)×(5×2)= ;(3)30×(21—32+0.4)=30× = , 30×21+30×(—32)+30×0.4=15—20+ = 。

2、填空的答案:(1)-15 -15; (2)—30 —30;(3)3077 12 7。

从上面的这两组例子我们可以发现:(1)两个数相乘,交换因数的位置,积不变。

可表示成ab=ba ,这就是乘法的交换律。

(2)三个数相乘,先把前面两个数相乘,或者先把后面两个数相乘,积不变。

可表示成(ab)c=a(bc),这就是乘法的结合律。

(3)一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加。

可表示成a (b+c )=ab+ ac ,这就是乘法分配律。

学习任务三、探索有理数的除法法则:3、填空:(—6)÷(—2)= , (—6)×(—21)= ; 8÷(—2)= , 8×(—21)= 。

1.4有理数的乘除法(教案)

1.4有理数的乘除法(教案)
(2)有理数除法法则:同号得正、异号得负、绝对值相除;
举例:计算-12÷4和(-12)÷(-4),学生需掌握法则并能够正确得出结果-3和3。
(3)乘除法在实际问题中的应用:如温度变化、速度与时间等,学生能够将实际问题转化为数学模型,并运用乘除法解决问题。
2.教学难点
(1)乘除法则的灵活运用:学生在面对具体问题时,可能会忽略符号和绝对值的变化,导致计算错误。
5.课后作业布置方面,我根据学生的掌握情况,分层布置作业,使他们在巩固基础知识的同时,提高解决问题的能力。
总体来说,本节课达到了预期的教学目标,但仍有以下方面需要改进:
1.在课堂教学中,要进一步关注学生的学习状态,及时发现并解决他们在学习过程中遇到的问题。
2.加强课堂互动,鼓励更多学生参与到讨论和提问环节,提高他们的学习积极性。
3.对于难点内容,可以适当增加教学时间,让学生有更多的机会消化和吸收。
4.注重课后辅导,针对学生的薄弱环节,进行有针对性的指导,提高他们的整体水平。
在今后的教学中,我将不断总结经验,改进教学方法,努力提高学生的数学素养。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,通过计算不同速度下物体行进的距离,来演示有理数乘除的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数乘除法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《1.4有理数的乘除法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量或者需要解决与比例相关的问题?”(如购物找零、温度变化等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘除法的奥秘。

人教版-数学-七年级上册-《1.4 有理数的乘法与除法(一)》导学案

人教版-数学-七年级上册-《1.4 有理数的乘法与除法(一)》导学案

七年级数学上册《1.4 有理数的乘法与除法(一)》导学案一、学习目标1、有理数乘法法则是什么?2、如何应用有理数乘法法则进行有理数乘法运算?二、学习重点和难点重点: 有理数乘法法则记忆和应用 难点:有理数乘法法则的探索过程,符号法则及对法则的理解三、学习过程:(一)自主学习自学课本,完成下列问题:1、有理数乘法法则:(1)两数相乘, ___________________________ ,并把______________________(2)任何数和零相乘,积都得___________ (以上两条要求熟记)2、用“<”,“>”或“=”填空(1)若0,0a b >>则__0a b ⨯;(2)若0,0a b <<则__0a b ⨯(3)若0,0a b ><则__0a b ⨯;(4)若0,a b =为任意有理数,则__0a b ⨯(二)合作探究计算:()7111122⎛⎫⨯- ⎪⎝⎭ ()()220.25⎛⎫-⨯- ⎪⎝⎭规律方法总结:1、有理数的乘法运算分哪几步?2、一个数与“—1”相乘,所得积与这个数是什么关系?与“1”相乘呢?(三)有效训练计算:()()212273⎛⎫-⨯- ⎪⎝⎭ (2)()142⎡⎤⎛⎫-⨯--⎪⎢⎥⎝⎭⎣⎦ 3(3) 3.517⎛⎫⨯- ⎪⎝⎭(四)拓展提升1、若a 和b 都是整数,且a ×b=6,求a+b 的值2、计算(1)()()()()()12345-⨯+⨯+⨯+⨯+与(1)题比较,直接写出下列各式结果(2) ()()()()()12345-⨯-⨯+⨯+⨯+=_____ (3) ()()()()()12345-⨯-⨯-⨯+⨯+=____(4) ()()()()()12345-⨯-⨯-⨯-⨯+=_____ (5) ()()()()()12345-⨯-⨯-⨯-⨯-=____ 根据以上五个算式,你发现乘积的符号与负因数的个数有何关系?四、学习小结五、达标检测1、从—1, 2,—3,4,—5这五个数中任取两数相乘,所得积最大的是_________, 最小的是_______________2、(1)若0,0a b a ⨯<>则___0b ;(2)若0a b <<则()()___0a b a b +⨯-3、计算()1()()()()321122338333⎛⎫-⨯-⨯-⨯-⎪⎝⎭ -2.52 4、定义运算:()()11a b a b *=-⨯-,请计算(3)4-*的值.六、课后训练1、一个有理数和它的相反数的积是( ) A.正数 B 负数 C 非正数D 非负数2、若00,a b a b ⨯>+<且则a b 与( )A 都为正B 都为负C 同号D 异号3、已知720m n -++=,则___m n ⨯=4、绝对值大于2而小于10的数有_____个,它们乘积的符号是_______5、已知3,2,0,a b b a b ==+>⨯且a 计算的值。

人教版七年级数学上册第一章《有理数》导学案:1.4有理数的乘除法

人教版七年级数学上册第一章《有理数》导学案:1.4有理数的乘除法

《§1.4.1 有理数的乘法( 1)》教教案教课目的: 1.认识有理数乘法的意义,掌握有理数的乘法法例2.掌握倒数的观点,并会利用互为倒数的两数关系进行乘法简易运算3.培育学生察看、归纳、归纳及运算能力教课要点:掌握有理数的乘法法例教课难点:灵巧运用法例进行有理数乘法运算教课流程一、新知研究(仔细阅读课本第28~30 页填写)1.有理数乘法法例:两数相乘,同号得,异号得并把绝对值;任何数同 0 相乘,都得.2.倒数的定义及求法(1)定义:乘积为的两个数互为倒数,0倒数,±1 的倒数是.,漫笔(2)求法:数a(a0) 的倒数为.3.有理数乘法运算的步骤:先确立积的,再求出积的.4.模拟例题做一做:(1) 2( 5)(2) (3)( 4)(3) ( 1.5)8(4) 3( 6)(5) (3)(7)(6) 4 0.25 473二、稳固新知:课本第 30 页练习 1、2、3三、反应测试1.7 (8)2.(5) (6)31.2 9 4.(7)( 4)8355. 1536. 0.4 ( 12)7.10( 3 )10358.( 1) (1 )9. 21( 12)10.( 11)(2)323723四、小结:我学会了;我的疑惑是五、作业:课本第 38 页习题 1、2、3(写在作业本上)课后思虑:请先阅读以下一段内容,而后解答问题。

由于:1211 ,11 1 ,11 1 ,,11 1 ,1 2 232 3 3434910910因此: 11213191(11) (1 1) (1 1)(11 ) 23410223349101111111 12334910 21911010计算:( 1)121112009123342008(2)111113 3 5 5 74951六、学后反省:《§1.4.1 有理数的乘法( 2)》教教案教课目的: 1.掌握含多个有理数相乘的乘法法例2.掌握有理数乘法的运算律,并利用运算律简化运算教课要点:掌握含多个有理数相乘的乘法法例教课难点:灵巧运用法例进行有理数乘法运算教课流程漫笔一、知识回首1.计算(1) 3 15 (2)( 27()3) 0.75()2)(8)3(4( 2.5) 164252.填空:( 1)11 的倒数是2; 1 的相反数的倒数是3;( 2)0.15的倒数是; 1 2 的绝对值的倒数是.9二、新知研究(请仔细阅读课本第31 页到第 33 页,并填写下边内容)1.几个不是 0 的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数;假如一个因数是0,积等于2.有理数的乘法运算律(1)乘法互换律:两个数相乘,互换,。

人教版七年级数学上1.4有理数的乘除法教学设计(5课时)

人教版七年级数学上1.4有理数的乘除法教学设计(5课时)

1.4 有理数的乘除法第1课时有理数的乘法教学目标:1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的水平.2.会实行有理数的乘法运算.教学重点:能按有理数乘法法则实行有理数乘法运算.教学难点:含有负因数的乘法.教与学互动设计:(一)创设情境,导入新课1.阅读课本P28思考及提出的问题.2.全班集中交流以上结论,归纳引出有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.问:法则(1)有没有把所有的有理数都包括在内?指出:正数与0相乘得0,这里规定负数与0相乘也得0.所以得法则(2):任何数与0相乘,都得0.3.通过举例,理解法则问题:由法则(1),如何计算(-5)(-3)的结果?(1)师生共同完成:(-5)(-3)……同号两数相乘……看条件(-5)×(-3)=+()……同号得正……决定符号5×3=15……把绝对值相乘……计算绝对值∴(-5)×(-3)=+15(2)分组类似(1)讨论,归纳:(-7)×4的运算过程及规律.(3)师生共同完成:有理数的乘法与小学里数的乘法在法则和方法步骤方面分别有什么联系?①符号决定以后,有理数的乘法就转化成了小学里数的乘法;②由①可见,小学里数的乘法是有理数乘法的基础.(二)合作交流,解读探究1.计算:(1)(+)×9;(2)(-)×(-2).2.练习、板演并相互纠错课本P30练习第1题.3.比较×9和(-)×(-2)的结果,得出:有理数中乘积是1的两个数互为倒数.指出:因为任何数同0相乘都不等于1,所以0没有倒数.由学生找出练习中哪些题里的两个因数互为倒数,为什么?4.分组讨论:(1)两个互为倒数的数的符号有什么特征?(2)互为倒数的两个数的绝对值有什么关系?(3)如何找一个有理数的倒数?5.课本P30例2分析题意,列算式,计算,写答案.6.练习一种水笔,甲商店每支售价2元,乙商店搞促销,每支只售1.8元.小明在甲商店买这种水笔10支,小华在乙商店也买这种水笔10支.两人所付的钱数哪个少?少多少?(三)应用迁移,巩固提升1.填空题(1)(-1)×(-)= ;(2)(+3)×(-2)= ;(3)0×(-4)= ;(4)1×(-1)= ;(5)-│-3│×(-2)= .2.用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km,气温的变化量为-6℃.攀登5km后,气温有什么变化?3.在整数-5,-3,-1,2,4,6中任取三个数相乘,所得的积的最大值是多少?任取两个数相加,所得的和的最小值又是多少?(四)总结反思,拓展升华引导学生从三个方面理解本节课所学内容:1.有理数的乘法法则.2.多个不为0的因数相乘时,积的符号的确定.3.几个相乘的因数中,只要有一个因数为0,积就确定为0.第2课时有理数的乘法运算律教学目标:使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活使用乘法运算律实行有理数的乘法运算,使之计算简便.教学重难点:熟练使用运算律实行计算.教与学互动设计:(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好.那在学习过程中,大家有没有思考多个有理数相乘该如何来计算?做一做(出示胶片)下列题目你能运算吗?(1)2×3×4×(-5);(2)2×3×(-4)×(-5);(3)2×(-3)×(-4)×(-5);(4)(-2)×(-3)×(-4)×(-5);(5)-1×302×(-2004)×0.由此我们可总结得到什么?(二)合作交流,解读探究交流讨论不难得到结论:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘.几个数相乘,如果其中有因数为0,积等于0.(三)应用迁移,巩固提升【例1】计算(-3)××(-)×(-)×(-8)×(-1).【例2】计算(-1999)×(-2000)×(-2001)×(-2002)×2003×(-2004)×0.导入运算律(1)通过计算:①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5;(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等;(3)用公式的形式表示为:ab=ba;(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论、归纳出乘法结合律;(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式;(6)分组计算、比较:5×[3+(-7)]与5×3+5×(-7)的结果,讨论归纳出乘法分配律;(7)全班交流、规范分配律的两种表达形式:文字语言、公式形式.【例3】用简便方法计算:(1)(-5)×89.2×(-2);(2)(-8)×(-7.2)×(-2.5)×.【例4】用两种方法计算(+-)×12.(四)总结反思,拓展升华本节课我们的成果是探究出有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力,要寻找最佳解题途径,不断总结经验,使自己的能力得到提高.(五)课堂跟踪反馈夯实基础1.计算题:(1)(-)××(-)×(-2);(2)6.878×(-15)+6.878×(-12)-6.878×(-37);(3)×(-16)×(-)×(-1)×8×(-0.25);(4)(-99)×36.提升能力2.若a、b、c为有理数,且│a+1│+│b+2│+│c+3│=0.求(a-1)(b+2)(c-3)的值.第3课时有理数的除法教学目标:1.了解有理数除法的定义.2.经历探索有理数除法法则的过程,会进行有理数的除法运算.3.会化简分数.教学重点:正确应用法则进行有理数的除法运算.教学难点:怎样根据不同的情况来选取适当的方法求商.教与学互动设计:(一)创设情境,导入新课1.小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?(50×20=1000)放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?(1000÷50=20).2.从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?(二)合作交流,解读探究1.比较大小:8÷(-4)8×(-);(-15)÷3(-15)×;(-1)÷(-2)(-1)×(-).小组合作完成上面题目的填空,探讨并归纳出有理数的除法法则.2.运用法则计算:(1)(-15)÷(-3);(2)(-12)÷(-);(3)(-8)÷(-).观察商的符号及绝对值同被除数和除数的关系,探讨归纳有理数除法法则的另一种说法.3.师生共同完成课本P34例5,P35例6、例7.乘除混合运算该怎么做呢?通过课本P36例7的学习,由学生自己叙述计算的方法:先将除法转换为乘法,然后确定积的符号,最后求出结果.(三)应用迁移,巩固提高1.计算:(1)(-36)÷9;(2)(-63)÷(-9);(3)(-)÷;(4)0÷3;(5)1÷(-7);(6)(-6.5)÷0.13;(7)(-)÷(-);(8)0÷(-5).2.化简下列分数:(1);(2);(3);(4).(四)总结反思,拓展升华本节课大家一起学习了有理数除法法则.有理数的除法计算有2种方法:一是根据“除以一个数等于乘以这个数的倒数”,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种方法.(五)课堂跟踪反馈夯实基础1.选择题(1)如果一个数除以它的倒数,商是1,那么这个数是()A.1B.2C.-1D.±1(2)若两个有理数的商是负数,那么这两个数一定是()A.都是正数B.都是负数C.符号相同D.符号不同提升能力2.计算题(1)(-2)÷(-);(2)3.5÷÷(-1);(3)-÷(-7)÷(-);(4)(-1)÷(+)÷(-).第4课时有理数的运算顺序教学目标:掌握有理数加、减、乘、除运算的法则及运算顺序,能够熟练运算.教学重难点:如何按有理数的运算顺序,正确而合理地进行计算.教与学互动设计:(一)创设情境,导入新课观察式子×(-)×÷里有哪种运算,应该按什么运算顺序来计算较简便?(二)合作交流,解读探究引导首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.另外带分数进行乘除运算时,必须化成假分数.注意有理数混合运算的步骤:先乘除,后加减,有括号先算括号里面的.(三)应用迁移,巩固提高【例1】(1)-3÷2÷(-2);(2)-×(-1)÷(-2);(3)-÷×(-)÷(-);(4)20÷(-4)×5+5×(-3)÷15-7.【例2】某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?(四)总结反思,拓展升华引导学生一起小结:①有理数的运算顺序:先乘除,后加减,有括号的先算括号里面的;②要注意认真审题,根据题目意思正确选择途径,仔细运算,注意检查,使结果无误.(五)课堂跟踪反馈夯实基础1.选择题(1)下列各数中互为倒数的是()A.4和-B.-0.75和-C.-1和1D.-5和(2)若a<b<0,那么下列式子成立的是()A.<B.ab<1C.>1D.<12.若a、b互为倒数,c、d互为相反数,m为最大的负整数,则+ab+= .提升能力3.计算题(1)(-4)÷(-2)÷(-1);(2)(-5)÷(-1)××(-2)÷7;(3)1÷(-1)+0÷(-5.6)-(-4.2)×(-1);(4)÷(+-).4.已知a、b互为相反数,c、d互为倒数,x的绝对值为1,求3x-(a+b+cd)-x.。

人教版-数学-七年级上册-- 1.4 有理数的除法(1)导学案

人教版-数学-七年级上册-- 1.4 有理数的除法(1)导学案

课型 学习新知课 主备人 赵宏梅 审定人 肖明 执 教 者 班级 学习小组 学生姓名 【课程目标】能进行有理数的除法运算。

【学习目标】1、会求一个数的倒数。

2、探究、掌握有理数除法法则。

【学法指导】类比学习法 【学习过程】 一、知识链接计算:(1)36÷4 (2)8÷32除法的意义是 。

它与乘法互为 运算。

除法法则是 。

二、自主探究 1、填表:根据除法是乘法的逆运算计算 根据有理数乘法法则计算 算式 商 算式积8÷(-4)8×⎪⎭⎫ ⎝⎛41--8÷(-2)-8×⎪⎭⎫ ⎝⎛21-16÷⎪⎭⎫ ⎝⎛32-16×⎪⎭⎫ ⎝⎛23-2、观察上表你有哪些发现?归纳有理数除法法则组长检查等级: 组长签名:三、交流展示1.说出下列各数的倒数。

(1) –15; (2) 0.25; (3) 313; (4) 525- 2、计算:(1)(-36) ÷ 9 (2)⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛53-2512-(3)911936-÷⎪⎭⎫ ⎝⎛(4)⎪⎭⎫ ⎝⎛⨯÷⋅41-8552-3、化简下列分数 (1)48- (2)637- (3)1524-- (4)26--四、当堂检测1、计算(1) 1211713÷⎪⎭⎫ ⎝⎛- (2)()67624-÷⎪⎭⎫ ⎝⎛-2、计算(1) ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-41221143; (2) ()241125.06⨯-÷-五、学后反思1、这节课我学到了什么?2、我还有哪些疑惑?学习等级 小组评价 教师评价。

1.4有理数的乘除法第一课时教案-人教版数学七年级上第一章

1.4有理数的乘除法第一课时教案-人教版数学七年级上第一章

1.4 有理数的乘除法-第一课时1教学目标:1.1知识与技能①体会有理数乘法的实际意义;②掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算;③理解有理数乘法交换律、结合律和分配律;④能够根据不同的情况运用不同定律来简化运算。

1.2过程与方法①用实例引出有理数乘法的推导过程,用分类讨论的思想归纳出两数及多个数相乘的运算规律,感悟中、小学数学中的乘法运算的重要区别。

②通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。

1.3情感、态度与价值观通过用实例让学生自己探究出有理数乘法法则,及多个数连续相乘的运算方法,使学生感到获得成功的喜悦。

2教学重点、难点、易考点2.1教学重点:①应用法则正确地进行有理数乘法运算;②了解多个有理数相乘的运算方法以及乘法运算律的内容,运用运算律进行乘法运算。

2.2教学难点:①乘法法则的探索过程及对法则的理解;②运用有理数的乘法解决问题。

3专家建议“数学教学是数学活动的教学”。

我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。

也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。

这一节课,介绍了有理数的乘法法则和乘法运算律,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的。

4教学方法问题引入---------探究乘法法则--------有理数乘法的运算律--------交流讨论--------巩固练习5教学用具无6教学过程:6.1问题引入问题1:甲水库的水每天升高3cm,乙水库的水每天下降3cm,4 天后,甲、乙水库水位的总变化量是多少?【教师说明】如果用正号表示水位的上升、用负号表示水位的下降。

那么4 天后,甲水库水位的总变化量是:3+3+3+3 = 3×4 = 12 (cm)乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)×4= -12(cm)问题二:(−3)×4 = −12(−3)×3 =(−3)×2 =(−3)×1=(−3)×0=(−3)×(−1) =(−3)×(−2) =(−3)×(−3) =(−3)×(−4) =【教师说明】第二个因数从4开始到1,第二个因数每减少1,积增加3,第二个因数从0减少到—4,每减少1,积就增加3.6.2交流讨论由上述所列各式,你能看出两有理数相乘与它们的积之间的规律吗?【教师说明】通过对问题二的探究,不难得出,负数乘正数,得负数,并把绝对值相乘,负数乘0,得0,负数乘负数,得正数,并把绝对值相乘。

人教版七年级上册数学教学案:1.4 有理数的乘除法

人教版七年级上册数学教学案:1.4 有理数的乘除法

1.4.1 有理数的乘法(1)第一课时三维目标一、知识与技能经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法.二、过程与方法经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力.三、情感态度与价值观培养学生积极探索精神,感受数学与实际生活的联系.教学重、难点与关键1.重点:应用法则正确地进行有理数乘法运算.2.难点:两负数相乘,•积的符号为正与两负数相加和的符号为负号容易混淆. 3.关键:积的符号的确定.教具准备投影仪.四、教学过程一、引入新课在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?五、新授课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O.l(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中“2cm”记作“+2cm”,“3分后”记作“+3分”.(1)3分后..6cm处.(如课本图1.4-2)..蜗牛应在L上点O右边这可以表示为(+2)×(+3)=+6 ①(2)3分后..6cm处.(如课本图1.4-3)..蜗牛应在L上点O左边这可以表示为(-2)×(+3)=-6 ②(3)3分前..6cm处.(如课本图1.4-4)..蜗牛应在L上点O左边[讲问题(3)时可采用提问式:已知现在蜗牛在点O处,•而蜗牛是一直向右爬行的,那么3分前蜗牛应在什么位置?]这可以表示为(+2)×(-3)=-6 ③(4)蜗牛是向左爬行的,现在在O点,所以3分前..6cm处(•..蜗牛应在L上点O右边如课本图1.4-5).这可以表示为(-2)×(-3)=+6 ④观察①~④,根据你对有理数乘法的思考,完成课本第39页填空.归纳:两个有理数相乘,积仍然由符号和绝对值两部分组成,①、④式都是同号两数相乘,积为正,②、③式是异号两数相乘,积为负,①~④式中的积的绝对值都是这两个因数绝对值的积.也就是两数相乘,同号得正,异号得负,并把绝对值相乘.此外,我们知道2×0=0,那么(-2)×0=?显然(-2)×0=0.这就是说:任何数同0相乘,都得0.综上所述,得有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0.进行有理数的乘法运算,关键是积的符号的确定,计算时分为两步进行:•第一步是确定积的符号,在确定积的符号时要准确运用法则;第二步是求绝对值的积.如:(-5)×(-3),……(同号两数相乘)(-5)×(-3)=+(),……得正5×3=15,……把绝对值相乘所以(-5)×(-3)=15又如:(-7)×4……________(-7)×4=-(),……_________7×4=28,……__________所以(-7)×4=-28例1:计算:(1)(-3)×9;(2)(-12)×(-2);(3)0×(-5317)×(+25.3);(4)123×(-115).例1可以由学生自己完成,计算时,按判定类型、确定积的符号,•求积的绝对值.(3)题直接得0.(4)题化带分数为假分数,以便约分.小学里,两数乘积为1,这两个数叫互为倒数.在有理数中仍然有:乘积是1的两数互为倒数.例如:-12与-2是互为倒数,-35与-53是互为倒数.注意倒数与相反数的区别:两数互为倒数,积为1,它们一定同号;•两数互为相反数,和为零,它们是异号(0除外),另外0没有倒数,而0的相反数为0.数a(a≠0)的倒数是什么?1除以一个数(0除外)得这个数的倒数,所以a(a≠0)的倒数为1a.例2:用正负数表示气温的变化量,上升为正,下降为负,•登山队攀登一座山峰,每登高1km气温的变化量为-6℃,攀登3km后,气温有什么变化?解:本题是关于有理数的乘法问题,根据题意,(-6)×3=-18由于规定下降为负,所以气温下降18℃.六、巩固练习课本第30页练习.1.第2题:降5元记为-5元,那么-5×60=-300(元)与按原价销售的60件商品相比,销售额减少了300元.2.第3题:1和-1的倒数分别是它们的本身;13,-13的倒数分别为3,-3;5,-5•的倒数分别为15,-15;23,-23的倒数分别是32,-32;此外,1与-1,13与-13,5与-5,2 3与-23是互为相反数.七、课堂小结1.强调运用法则进行有理数乘法的步骤.2.比较有理数乘法的符号法则与有理数加法的符号法则的区别,•以达到进一步巩固有理数乘法法则的目的.八、作业布置1.课本第38页习题1.4第1、2、3题.九、板书设计:1.4.1 有理数的乘法(1)第一课时1、两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0.2、随堂练习。

七年级数学上册第一章有理数1.4有理数的乘除法1.4.1有理数的乘法一导学案人教版

七年级数学上册第一章有理数1.4有理数的乘除法1.4.1有理数的乘法一导学案人教版

1.4.1 有理数的乘法(一)1.理解有理数的运算法则,能根据有理数乘法运算法则进行有理数的简单运算;2.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力.有理数乘法法则.一、温故知新1.有理数加法法则内容是什么?2.计算:(1)2+2+2=__6__;(2)(-2)+(-2)+(-2)=__-6__.3.你能将上面两个算式写成乘法算式吗?(1)2×3=6;(2)(-2)×3=-6.二、自主学习1.自学课本P28—P29,回答下列问题.观察:3×3=9,3×2=6,3×1=3,3×0=0.发现规律:随着后一乘数逐次递减1,积逐次递减3,这一规律引入负数仍然成立,所以有:3×(-1)=-3,3×(-2)=-6,3×(-3)=-9,3×(-4)=-12.根据乘法的交换律又有:(-1)×3=-3,(-2)×3=-6,(-3)×3=-9,(-4)×3=-12.从符号和绝对值的角度观察发现:正数乘正数积为正数,正数乘负数积为负数,负数乘正数积为负数,积的绝对值等于各乘数的绝对值的积.利用这个规律计算:(-3)×3=__-9__,(-3)×2=__-6__,(-3)×1=__-3__,(-3)×0=__0____.发现规律:随着后一个数逐次递减1,积逐次增加3按照这个规律填空:(-3)×(-1)=__3__,(-3)×(-2)=__6__,(-3)×(-3)=__9__. 可归纳如下结论:负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积. 由上可知: (1)2×4=__8__; (2)(-2)×4=__-8__;(3)(+2)×(-4)=__-8__;(4)(-2)×(-4)=__8__;(5)两个数相乘,一个数是0时,结果为__0__.观察上面的式子,你有什么发现?能说出有理数乘法法则吗? 归纳有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得__0__. 例题讲解(教师示范书写步骤,格式)例1 计算:(1)(-3)×9; (2)8×(-1);解:原式=-27; 解:原式=-8;(3)(-12)×(-2). 解:原式=1.1.直接说出下列两数相乘所得积的符号.(1)5×(-3);“-”(2)(-4)×6;“-”(3)(-7)×(-9);“+”(4)0.9×8.“+”2.一个有理数与其相反数的积( C )A .符号必定为正B .符号必定为负C .一定不大于零D .一定不小于零3.书本P30第1题例2 计算:(1)6×16; (2)(-17)×(-7); (3)(-34)×(-43). 在有理数中仍然有:乘积为1的两个数互为倒数.1.课本P30练习1,2,3.(直接做在课本上)2.填空:(1)-7的倒数是__-17__,它的相反数是__7__,它的绝对值是__7__; (2)-225的倒数是-512,-2.5的倒数是-25; (3)倒数等于它本身的有理数是__±1__.3.下列说法错误的是( A )A .任何有理数都有倒数B.互为倒数的两个数的积为1 C.互为倒数的两个数同号D.1和-1互为负倒数有理数乘法法则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-4 有理数的乘除法(1)
第13学时
学习目标:1.了解有理数乘法的实际意义,理解有理数的乘法法则;
2. 能熟练地进行有理数的乘法运算.
学习难点:积的符号的确定
教学过程:
一、情境引入:
什么叫乘法运算?
求几个相同加数的和的运算。

如2+2+2+2+2=2×5;
(-2)+(-2)+(-2)+(-2)+(-2)=(-2)×5
像(-2)×5这样带有负数的式子怎么运算?
二、探究学习:
1、在水文观测中,常遇到水位上升与下降的问题,请根据日常生活经验,回答下列问题:
(1)如果水位每天上升4cm,那么3天后的水位比今天高还是低?高(或低)多少?
(2)如果水位每天上升4cm,那么3天前的水位比今天高还是低?高(或低)多少?
(3)如果水位每天下降4cm,那么3天后的水位比今天高还是低?高(或低)多少?
(4)如果水位每天下降4cm,那么3天前的水位比今天高还是低?高(或低)多少?
我们规定水位上升为正,水位下降为负;几天后为正,几天前为负;你能用正数或负数表示上述问题吗?你算的结果与经验一致吗?
3、两个有理数相乘,积的符号怎样确定?积的绝对值怎样确定?小组讨论,总结、归纳得出有理数乘法法则。

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与0相乘都得0。

问题1、计算(1)(- 4)×5;(2)(- 5)×(-7)
解:(1)(- 4)×5;(2)(- 5)×(-7)
= - (4 ×5) (异号得负,绝对值相乘) = + (5 ×7) (同号得正,绝对值相乘)
= - 20 = 35
注:计算时,先定符号,再把绝对值相乘,切勿与加法混淆。

练一练:
4、我们已经学会了两个有理数相乘,那多个有理数相乘又如何运算呢?
(-2)×3×4×5×6=-720
(-2)×(-3)×4×5×6=720
(-2)×(-3)×(-4)×5×6=-720
(-2)×(-3)×(-4)×(-5)×6=720
(-2)×(-3)×(-4)×(-5)×(-6)=-720
积的符号怎样确定?积的绝对值怎样确定?你发现规律了吗?
小组讨论,总结、归纳得:
多个有理数乘法法则:几个不等于0的数相乘,积的符号由负因数的个数来确定。

当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有一个因数为0时,积就为0。

问题2、计算:
(1)-4×12×()-0.5 (2)-37×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭
⎪⎫-724
练一练:
(1)-15×2.5×⎝ ⎛⎭
⎪⎫-716×()-8 (2)-35×⎝ ⎛⎭⎪⎫-56×()-6 【知识巩固】
1.填空
_______×(-2)=-6 ; (-3)×______=9 ;______×(-5)=0。

相关文档
最新文档