椭圆基本知识点总结终审稿)

合集下载

椭圆知识点总结

椭圆知识点总结

椭圆知识点总结第一篇:椭圆的定义和基本性质一、椭圆的定义椭圆是平面上所有到两个定点距离之和恒定的点的轨迹。

这两个定点称为椭圆的焦点,焦点之间的距离称为椭圆的焦距,椭圆的长轴是通过两个焦点的直线段,短轴是长轴的垂直平分线段。

二、椭圆的几何性质1. 椭圆的对称轴:椭圆的中心点是长轴和短轴的交点,长轴和短轴的垂直平分线是椭圆的两个对称轴。

2. 椭圆的离心率:椭圆的离心率是用焦距和椭圆长轴之间的比值表示的。

离心率越小,椭圆越圆;离心率越大,椭圆越扁平。

当离心率等于1时,椭圆变成了一条直线,称为狭义上的椭圆。

3. 椭圆的面积:设椭圆的长轴和短轴长度分别为2a和2b,椭圆的面积为πab。

4. 椭圆的周长:由于椭圆没有公式可以求周长,但可以用参数方程表示,即x=a*cosθ,y=b*sinθ,其中0≤θ≤2π。

通过对参数θ的范围积分可以得到椭圆的周长为4aE(e),其中E(e)为椭圆的第一类完全椭圆积分,e为椭圆的离心率。

5. 椭圆的切线:椭圆的切线与过切点的切线夹角等于该点到两个焦点的距离之差的倒数。

三、椭圆的数学性质1. 椭圆是二次曲线的一种,可以表示为二次方程:Ax²+Bxy+Cy²+Dx+Ey+F=0。

2. 椭圆可以看做是一个椭球在平面上的投影,因此椭圆在三维空间中也有很多有趣的性质,比如椭圆可以看做是一个旋转椭球的轨迹。

3. 椭圆也可以使用矩阵来表示,其中椭圆的矩阵表示为Q=[A B/2;B/2 C],椭圆的参数表示为a²=b²+(b²-A²)/e²,其中e为椭圆的离心率。

总之,椭圆在几何学和代数学中都有着广泛的应用和重要性,为我们的科学探索做出了重要的贡献。

椭圆基本知识点总结

椭圆基本知识点总结

椭圆基本知识点总结椭圆是平面上一条封闭的曲线,具有一对焦点和一条主轴。

下面将对椭圆的基本知识进行总结,包括椭圆的定义、方程、性质、参数方程、焦点、离心率等。

一、椭圆的定义和方程:椭圆是平面上到两个给定点的距离之和等于常数的点的集合。

这两个给定点称为椭圆的焦点,连结两个焦点的直线称为椭圆的主轴,主轴的中点称为椭圆的中心。

将两个焦点之间的距离称为焦距,将两焦点之间的距离称为椭圆的直径。

椭圆的标准方程为:x^2/a^2+y^2/b^2=1,其中a和b分别为椭圆在x轴和y轴上的半轴长,a>b,中心在原点。

二、椭圆的性质:1.对于椭圆上的任意一点P,焦点到P的距离之和等于常数。

设PF1和PF2分别是该点到焦点F1和F2的距离,那么PF1+PF2=2a(常数)。

2.椭圆的离心率e满足0<e<1、离心率e的定义是焦距与半轴长的比值:e=c/a,其中c为焦距。

3.离心率e越小,椭圆的形状越扁平;离心率接近于1,椭圆的形状越接近于长轴为直径的圆。

4. 椭圆的面积为πab,其中π为圆周率。

5.椭圆的边界上的点离中心的距离最远为a,该点称为椭圆的顶点;离中心的距离最近为b,该点称为椭圆的底点。

三、椭圆的参数方程:可以用参数方程来表示椭圆上的点的坐标(x,y)。

常用的参数方程为:x = a * cosθy = b * sinθ其中θ为参数,a和b为椭圆的半轴长。

四、椭圆的焦点和直线:1.椭圆的焦点是椭圆上特殊的两个点,它们与椭圆上的任意一点连线的长度之和是一个常数。

2.椭圆的两条主轴与椭圆相交于中心,相互垂直。

3.过椭圆的焦点F1和F2分别作直线L1和L2,与椭圆的边界交于两点P1和P2,那么直线L1和L2分别是椭圆的两条切线。

4.椭圆的两条主轴与椭圆的焦点、中心之间的连线围成的角称为离心角,它等于直角。

五、椭圆的离心率和焦距:1. 椭圆的离心率e定义为焦距与半轴长之比:e = c/a = sqrt(1 -b^2/a^2),其中c为焦距。

椭圆的相关知识点总结

椭圆的相关知识点总结

椭圆的相关知识点总结一、椭圆的定义椭圆是平面上到两个定点F1、F2的距离之和等于常数2a的点P的轨迹。

这两个定点F1、F2称为椭圆的焦点,常数2a称为椭圆的长轴,长轴的一半a称为椭圆的半长轴。

椭圆的短轴的长度为2b,短轴的一半b称为椭圆的半短轴。

椭圆上到焦点的距离等于常数2a的性质可以用数学语言表示为:|PF1|+|PF2|=2a。

椭圆的离心率e的定义是e=c/a,其中c是焦点到中心的距离。

显然,0<e<1,当e=0时,椭圆退化为一条线段;当e=1时,椭圆退化为一个圆。

二、椭圆的性质1. 焦点离心率椭圆的离心率大于0小于1。

2. 焦点公式椭圆长轴长度为2a,半短轴长度为b。

其中a、b分别是半长轴和半短轴的长度。

焦点坐标为(f1,0)和(-f1,0)。

其中f1=\sqrt{a^2-b^2}。

3. 针焦直线椭圆的焦点圆椭圆的大小只和a、b两轴有关,与焦点的远近无关。

4. 椭圆的直径垂直于直径的直线,称为轴;椭圆的两条轴相互垂直,且它们的交点是中心。

三、椭圆的方程1. 标准方程椭圆的标准方程为(x^2/a^2)+(y^2/b^2)=1,其中a、b分别为半长轴和半短轴的长度。

2. 一般方程椭圆的一般方程为Ax^2+By^2+Cx+Dy+E=0,其中A、B、C、D、E为常数。

一般方程的椭圆可以通过平移和旋转变换为标准方程。

四、椭圆的焦点椭圆的焦点离中心的距离c=\sqrt{a^2-b^2}。

五、椭圆的参数方程设椭圆的焦点为(f,0)和(-f,0),半长轴为a,半短轴为b,则椭圆的参数方程为:x=a\cos t,y=b\sin t,其中0\leq t\leq 2\pi。

六、椭圆的极坐标方程椭圆的极坐标方程可以表示为:r=\frac{a(1-e^2)}{1+e\cos\theta},其中e为椭圆的离心率。

七、椭圆的图形椭圆的图形是一种闭合的曲线,形状类似于椭子。

椭圆的长轴和短轴分别是轴、横轴。

椭圆是关于两条坐标轴对称的曲线。

(完整版)椭圆知识点归纳总结

(完整版)椭圆知识点归纳总结

(完整版)椭圆知识点归纳总结1. 椭圆的定义椭圆是平面上到两个给定点的距离之和等于常数的点的集合。

这两个给定点称为焦点,而常数称为离心率。

椭圆的形状由焦点之间的距离决定,离心率的大小则决定了椭圆的扁平程度。

2. 椭圆的基本性质- 椭圆的长轴是焦点之间的距离,短轴是长轴的垂直中垂线。

- 椭圆的离心率介于0和1之间,且离心率为0时为圆。

- 椭圆有两个对称轴,分别是长轴和短轴的中垂线。

- 椭圆的焦点和任意一点的距离和等于离心率与该点到椭圆两个焦点的距离之和。

- 椭圆的面积为π * a * b,其中a和b分别是长轴和短轴的一半。

3. 椭圆的方程普通椭圆的方程为:(x-h)²/a² + (y-k)²/b² = 1其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半。

4. 椭圆的参数方程椭圆的参数方程为:x = h + a * cos(t)y = k + b * sin(t)其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半,t是参数。

5. 椭圆的焦点与直径- 焦点到定点的距离等于椭圆的常数离心率。

- 椭圆的两个焦点与椭圆的直径的交点相同。

6. 椭圆与其他几何图形关系- 椭圆与直线的关系:给定一条直线,椭圆上离直线距离之和最小的点在直线的垂直线上。

- 椭圆与双曲线的关系:双曲线可以看作是离心率大于1的椭圆。

- 椭圆与抛物线的关系:抛物线可以看作是离心率等于1的椭圆。

7. 椭圆的应用椭圆在现实生活中有广泛的应用,例如:- 天体运动:行星、卫星等的轨道可以近似看作是椭圆。

- 椭圆滤波器:在信号处理中用于清除噪音。

- 光学器件:如折射球面镜、椭圆镜等。

以上是关于椭圆的常见知识点的归纳总结,希望能对你有所帮助。

完整版)椭圆基本知识点总结

完整版)椭圆基本知识点总结

完整版)椭圆基本知识点总结椭圆是平面内一个动点P到两个定点F1、F2的距离之和等于常数(即PF1+PF2=2a>F1F2)时,动点P的轨迹。

这两个定点叫做椭圆的焦点,两焦点的距离叫作椭圆的焦距。

需要注意的是,若PF1+PF2=F1F2,则动点P的轨迹为线段F1F2;若PF1+PF2<F1F2,则动点P的轨迹无图形。

椭圆的标准方程为x^2/a^2+y^2/b^2=1(a>b>0),或者y^2/a^2+x^2/b^2=1(a>b>0)。

其中a和b分别为椭圆的长轴和短轴长,c为焦距满足a^2=b^2+c^2.椭圆的焦点为F1(-c,0),F2(c,0)或者F1(0,-c),F2(0,c)。

椭圆关于x轴、y轴和原点对称。

椭圆的顶点为(±a,0)和(0,±b),长轴长为2a,短轴长为2b,离心率e=c/a(0<e<1)。

椭圆上任意一点P到焦点的距离之和等于2a,即PF1+PF2=2a。

最大角为当P是椭圆的短轴端点时,∠F1PF2为最大角。

求椭圆标准方程的方法是先判断椭圆的焦点在x轴上还是在y轴上,然后设方程为x^2/a^2+y^2/b^2=1(a>b>0)或y^2/a^2+x^2/b^2=1(a>b>0),在不能确定焦点位置的情况下也可设mx^2+ny^2=1(m>0,n>0且m≠n),接着根据已知条件,建立关于a,b,c或m,n的方程组,最后解方程组,代入所设方程即可得到所求的椭圆标准方程。

点与椭圆的位置关系为,若点在椭圆内,则x^2/a^2+y^2/b^21.最后,直线与椭圆的位置关系需要根据直线的斜率和截距来判断。

若直线与椭圆相交,则有两个交点;若直线与椭圆相切,则有一个交点;若直线与椭圆不相交也不相切,则没有交点。

本文介绍了在解决圆锥曲线问题时常用的两个公式:关于直线和椭圆的一元二次方程和弦长公式,以及点差法的步骤。

椭圆的知识点总结

椭圆的知识点总结

椭圆的知识点总结一、椭圆的定义椭圆是平面上的一种特殊曲线,它的定义可以有多种方式。

在解析几何中,我们通常采用焦点-直线之和等于常数的定义来描述椭圆。

具体而言,椭圆定义为到两个固定点(焦点)的距离之和等于常数的点的集合。

这个常数被称为椭圆的长轴长度。

另外,椭圆还有一个短轴,它垂直于长轴且通过长轴的中点。

椭圆的长轴和短轴的长度决定了椭圆的形状。

二、椭圆的性质1. 焦点性质:椭圆有两个焦点,它们位于长轴上,且椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。

2. 直径性质:椭圆的直径是经过焦点的直线段,并且它恰好与椭圆相交于椭圆上的两点。

3. 周长性质:椭圆的周长可以用椭圆的半长轴和半短轴的长度来表示,即2πb+4aE(e),其中a和b分别为椭圆的长轴和短轴的长度,E(e)为第二类椭圆积分。

4. 质心性质:椭圆的质心位于椭圆的中心,且与椭圆的几何中心重合。

椭圆的质心满足椭圆上所有点到该质心的距离之和等于椭圆的长轴长度。

5. 对称性质:椭圆具有关于长轴和短轴的对称性,且同时具有关于两个焦点的对称性。

6. 离心率性质:椭圆的离心率e是一个重要的参数,它刻画了椭圆的形状。

椭圆的离心率满足0<e<1,且e=√(1-b²/a²)。

7. 焦点和直角坐标系的关系:椭圆在直角坐标系中的方程形式可以用来描述椭圆的形状,其一般方程为(x²/a²)+(y²/b²)=1。

三、椭圆的方程椭圆的方程通常以长轴和短轴的长度来表示,其一般方程为(x²/a²)+(y²/b²)=1。

在给定长轴和短轴的情况下,可以通过椭圆的方程来确定椭圆的形状和位置。

四、椭圆的焦点椭圆有两个焦点,它们分别位于长轴的两端。

椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。

焦点是椭圆的重要特性,它们的位置决定了椭圆的形状和方向。

五、椭圆的参数方程椭圆还可以用参数方程来描述。

数学椭圆知识点总结

数学椭圆知识点总结

数学椭圆知识点总结椭圆是数学中有着许多重要性质和应用的一个图形。

下面是对椭圆的一些基本概念、性质和应用的总结。

一、基本概念:1.椭圆的定义:椭圆是平面中到两个给定点距离之和等于常数的点的集合。

2.椭圆的元素:椭圆的两个给定点叫做焦点,连接两焦点的线段长度叫做主轴;主轴的中点叫做椭圆的中心;主轴的一半长度叫做半轴长度;椭圆中心到焦点的距离叫做焦距。

3.椭圆的方程:标准椭圆的方程形式为:(x/a)²+(y/b)²=1其中,a是椭圆的半长轴长度,b是椭圆的半短轴长度。

二、性质:1.对称性:椭圆是关于x轴和y轴对称的。

2.焦点性质:椭圆上的任意一点到两个焦点的距离之和等于椭圆的长轴长度。

3.离心率:椭圆的离心率是一个衡量椭圆圆度的量。

离心率e的取值范围是0到1之间,当e=0时,椭圆退化成一个圆;当e=1时,椭圆退化成一个抛物线。

4.焦半径性质:椭圆的焦半径性质是指在椭圆上取一点P,以焦点为中心,过点P作圆的切线,切点和焦点之间的距离等于焦距。

5.弦长性质:椭圆上取一点P,过点P作两直线段与椭圆相交,分别与圆交于A、B两点,则线段AB的长度等于弦长。

6.空间对称性:椭圆的三维空间图形是椭球,具有空间对称性。

三、应用:1.天体运动:开普勒的椭圆轨道定律描述了行星运动的椭圆轨道特性。

2.光学:反射和折射定律中的焦点性质和弦长性质可以用来解决光学问题。

3.通信:在无线通信中,椭圆是天线和信号传播路径的数学模型,用于研究无线信号的覆盖范围和传播特性。

4.机械工程:在机械零件的设计中,椭圆齿轮和椭圆齿条可以用来实现转动和直线运动的转换。

5.地理测量学:地球的纬度和经度构成的网格是一种椭圆形状的二维曲面,用于定位和测量地球上的位置。

6.统计学:椭圆是多元统计分析中用来表示数据分布形状的图形,如椭圆的主轴和离心率可以用来描述数据的差异和相关性。

总结起来,椭圆是数学中一个重要的图形,具有许多特殊的性质和应用。

椭圆知识点及结论总结

椭圆知识点及结论总结

椭圆知识点及结论总结**一、椭圆的定义**椭圆是指到定点F1和F2的距离之和等于常数2a的点P到定直线l的距离之和相等的点的轨迹。

其中,l为连接F1和F2的连线的垂直平分线。

**二、椭圆的性质**1. 对称性:椭圆具有对称性,其形状关于两轴方向对称,对称轴是长轴和短轴。

2. 焦点和直径关系:椭圆上每一个点到两个焦点的距离之和等于长轴的长度2a。

3. 离心率:椭圆的离心率定义为e=c/a,其中c为焦距,a为长轴长度。

椭圆的离心率在0到1之间。

4. 焦角性质:椭圆上任意一点处的法线与连接该点与两个焦点的连线的夹角相等。

**三、椭圆的方程**椭圆的一般方程为x^2/a^2 + y^2/b^2 = 1其中,a和b分别为长轴和短轴的长度。

当椭圆的中心位于原点时,方程可以简化为x^2/a^2 + y^2/b^2 = 1。

此外,我们还可以通过椭圆的焦点和离心率来描述椭圆的方程。

**四、椭圆的参数方程**椭圆也可以通过参数方程来描述,参数方程为x = a*cos(t)y = b*sin(t)其中,t为参数。

参数方程描述了椭圆上所有点的坐标。

通过参数方程,我们可以更加直观地理解椭圆的形状和特性。

**五、椭圆的应用**1. 天体轨道:行星、卫星等天体的运动轨道大多为椭圆形。

通过研究椭圆轨道,可以更好地了解天体的运动规律和预测其轨道变化。

2. 工程设计:椭圆曲线在工程设计中有着广泛的应用,例如椭圆形的建筑结构、汽车轮胎的设计等。

3. 导弹轨迹:导弹的轨迹可以用椭圆来描述,研究导弹的椭圆轨道可以帮助提高导弹的精准度和命中率。

**结论**通过本文的探讨和分析,我们了解了椭圆的定义、性质、方程及其应用。

椭圆作为一种重要的几何图形,在数学、物理、工程等领域都有着重要的应用价值。

通过对椭圆的深入研究和了解,可以更好地应用椭圆的特性,解决实际问题和推动科学技术的发展。

希望本文能够对读者对椭圆有一个更加全面的了解,并对椭圆的研究和应用提供一些启发和帮助。

椭圆知识点总结

椭圆知识点总结

椭圆知识点总结一、椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别代表椭圆长轴和短轴的一半。

椭圆的焦点到中心的距离是c,满足c^2 = a^2 - b^2。

二、椭圆的性质1. 椭圆对称性:椭圆关于x轴和y轴对称。

2. 焦点性质:椭圆上任意一点到两个焦点的距离之和等于常数2a。

3. 长短轴性质:椭圆的长轴和短轴互相垂直,长轴的长度是2a,短轴的长度是2b。

4. 离心率:椭圆的离心率e定义为c/a,表示椭圆拉伸的程度,离心率介于0到1之间。

5. 参数方程:椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数。

6. 弦长:椭圆上任意一点到两个焦点的距离之和等于常数2a,因此椭圆上任意一条弦的长度小于或等于2a。

7. 焦准线性质:椭圆上任意一点到两个准线的距离之差等于常数2a。

三、椭圆与圆的关系1. 圆是椭圆的特殊情况:当椭圆的长轴和短轴相等时,椭圆就变成了圆。

2. 椭圆的离心率介于0到1之间,当离心率等于0时,椭圆就是一个圆。

因此,椭圆和圆可以看作是同一种几何图形的不同特例。

四、椭圆的应用1. 天体运动:椭圆轨道是描述天体运动的重要数学工具,如行星绕太阳运动、卫星绕地球运动等。

2. 光学:椭圆镜片和椭圆抛物面反射器是光学领域常用的元件,用于聚焦和成像。

3. 工程设计:椭圆的性质在设计椭圆形建筑、椭圆形机械零件、椭圆形轨迹等方面有重要应用。

4. 地理测量:椭圆在地图投影和地理测量中有广泛应用,如椭球面测量、椭圆地图投影等。

五、椭圆的求解1. 椭圆的参数方程可以通过消除参数t来得到椭圆的标准方程。

2. 根据椭圆的焦点性质和准线性质,可以求解椭圆的焦点和准线方程。

3. 椭圆的面积可以通过积分求解,面积公式为S = πab。

4. 椭圆的周长可以通过椭圆的参数方程求解,周长公式为L = 4aE(e),其中E(e)为椭圆的第二类完全椭圆积分。

六、椭圆的变换1. 平移变换:椭圆的平移变换可以用矩阵形式表示,通过平移变换可以将椭圆移动到任意位置。

椭圆的性质及知识点总结

椭圆的性质及知识点总结

椭圆的性质及知识点总结一、椭圆的定义和基本性质1.1 椭圆的定义椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

设d1和d2分别表示P到F1和F2的距离,则椭圆的定义可以用数学表达式表示为|d1 + d2| = 2a 。

1.2 椭圆的基本性质(1)椭圆对称轴:椭圆有两个对称轴,分别称为长轴和短轴。

长轴的端点是两个焦点F1和F2,短轴与长轴垂直并通过椭圆的中心点。

(2)椭圆的焦点和离心率:椭圆的焦点是定义椭圆的两个定点F1和F2,离心率e是一个表示椭圆形状的参数,e的取值范围是0<e<1。

(3)椭圆的三大定律:椭圆有三个基本定律,分别是:(a)椭圆内到两个焦点的距离之和等于长轴的长度;(b)椭圆内到两个焦点的距离之差等于长轴的长度;(c)椭圆的面积等于πab,其中a和b分别是长轴和短轴的长度。

1.3 椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别是长轴和短轴的长度,椭圆的中心点位于原点(0,0)。

二、椭圆的相关知识点2.1 椭圆的离心率椭圆的离心率e的定义是e=c/a,其中c为焦距,a为长半轴的一半。

离心率越接近于0,椭圆形状越圆;离心率越接近于1,椭圆形状越扁。

2.2 椭圆的参数方程椭圆也可以用参数方程表示,参数方程为:x = a * cosθy = b * sinθ其中θ为参数,a和b分别是长轴和短轴的长度。

2.3 椭圆的焦半径椭圆的焦半径是指从椭圆的焦点到该椭圆上的任意一点P的距离,椭圆上各点的焦半径之和等于椭圆的周长。

2.4 椭圆的切线椭圆上的切线有一个特点:与椭圆相切的切线在切点处与切线的法线垂直。

根据这个特点可以求出椭圆上任意一点处的切线方程。

2.5 椭圆的焦点坐标椭圆的焦点坐标可以通过椭圆的离心率和焦距来求解。

焦点坐标为(±ae, 0),a为长轴的一半,e为椭圆的离心率。

2.6 椭圆的面积椭圆的面积可以通过参数法求解,面积为πab,其中a和b分别是长轴和短轴的长度。

椭圆知识点详细总结

椭圆知识点详细总结

椭圆知识点详细总结椭圆是平面上的一个特殊几何图形,其形状和性质具有独特的特点。

在学习椭圆的知识时,我们需要了解它的定义、性质、方程和应用等方面的内容。

一、椭圆的定义和性质:1.定义:在平面上给定一对焦点F1和F2以及一个距离2a(长轴),该点到两个焦点F1和F2的距离之和是常数2a(2a>0)。

以两个焦点F1、F2和连接它们的直线段为轴的点的轨迹,构成了一个椭圆。

2.性质:a)长轴和短轴:椭圆的长轴是两个焦点之间的距离2a,短轴是通过中点M的两条焦半径之间的距离2b。

b)焦点关系:椭圆上的任意一点到两个焦点的距离之和等于常数2a。

c)中点关系:椭圆上任意一点到两个焦点的距离之差等于长轴的长度。

d)准线:椭圆上的点到两条焦半径的距离之和等于准线的长度。

e) 离心率:椭圆的离心率ε的定义为eccentricity=e=c/a,其中c是焦点到中心的距离。

f)焦半径和法线:椭圆上的点到两个焦点的距离之和等于该点到准线的距离,即焦半径等于法线。

二、椭圆的方程和参数方程:1.方程:a)标准方程:椭圆的标准方程为x^2/a^2+y^2/b^2=1,其中a是长轴的长度,b是短轴的长度。

b) 参数方程:椭圆的参数方程为x = a*cosθ, y = b*sinθ,其中θ为参数。

2.其他形式的方程:椭圆还可以通过平移、旋转和缩放等变换得到其他形式的方程。

比如椭圆的中心在坐标原点的方程为x^2/a^2+y^2/b^2=1三、椭圆的性质:1.对称性:椭圆具有相对于两个轴的对称性,即关于x轴和y轴对称。

2.离心角和弧长:任意两个焦点之间的线段所对应的圆心角等于椭圆上的弧的长度。

3.焦点面积和弧长:椭圆上两个焦点和一点的连线所围成的三角形面积等于以该点为焦点的椭圆弧长的一半。

4.弦:椭圆上的弦的长度是准线的长度小于2a。

5.游程:椭圆上两个焦点之间的距离等于椭圆上两个点之间的最短路径长度。

6.光学性质:椭圆是一个反射光线的特殊曲面,具有反射原则和等角反射原理。

椭圆知识点总结归纳

椭圆知识点总结归纳

椭圆知识点总结归纳一、椭圆的定义和基本概念椭圆可以通过平面上的一个固定点F(称为焦点)和一条固定线段2a(称为主轴)上的所有点P的路径定义为椭圆。

具体而言,椭圆的定义如下:给定平面内的一条固定线段2a,再给定一个固定点F(焦点),点S(焦点)到线段上所有的点P的距离之和等于一个常数2a。

即|PF1| + |PF2| = 2a。

一个椭圆可以有很多不同的特点和性质,其中一些重要的概念包括椭圆的长轴、短轴、焦距、离心率等,这些概念对于理解和分析椭圆的性质和特点非常重要。

椭圆上的点P满足以下条件:|PF1| + |PF2| = 2a,其中F1和F2为椭圆的两个焦点,2a为椭圆的长轴的长度。

椭圆也具有一个参数e,叫做离心率,满足e=c/a,其中c为焦距。

二、椭圆的标准方程和参数方程椭圆的标准方程是椭圆上的所有点(x,y)满足以下条件的方程:x^2/a^2 + y^2/b^2 = 1。

其中a和b分别为椭圆的长轴和短轴的长度。

椭圆的参数方程是另一种表示椭圆的方式,通常用参数方程表示的椭圆更容易进行计算和分析。

三、椭圆的性质和特点1. 椭圆的离心率是一个重要的性质,它决定了椭圆的形状。

离心率e的取值范围是0<e<1,当e=0时,椭圆退化为一个点;当e=1时,椭圆退化为一条线段。

2. 椭圆的长轴和短轴的长度分别为2a和2b,其中a>b。

3. 椭圆的焦点和两个顶点都在椭圆的长轴上。

4. 椭圆上的任意点P到两个焦点的距离之和等于椭圆的长轴的长度2a。

5. 椭圆上的对称轴是椭圆的长轴和短轴,对称中心是椭圆的中心。

6. 椭圆与坐标轴的交点分别为(±a, 0)和(0, ±b)。

7. 椭圆上的点P(x,y)与主轴和副轴之间的关系满足x^2/a^2 + y^2/b^2 = 1。

8. 椭圆的周长和面积分别为π(a+b)和πab。

9. 椭圆是一种闭合曲线,不同于抛物线和双曲线,它没有渐近线。

四、椭圆的相关定理和公式1. 椭圆上的点P(x,y)与焦点的距离之和等于椭圆的长轴的长度2a,即|PF1| + |PF2| = 2a。

椭圆的经典知识总结

椭圆的经典知识总结

椭圆的经典知识总结椭圆是一个非常重要的几何形状,广泛应用于数学、物理和工程等领域。

下面将对椭圆的经典知识进行总结,涵盖椭圆的定义、性质以及一些常见的应用。

一、定义和性质:1.椭圆定义:椭圆是平面上到两个给定点(焦点)距离之和等于一定常数(长轴)的点的集合。

2.主要要素:(1)焦点:椭圆的两个焦点是确定椭圆形状的关键要素。

(2)长轴和短轴:椭圆的长轴是连接两个焦点的线段,短轴则是垂直于长轴并通过中心点的线段。

长轴的长度称为椭圆的主轴,短轴的长度则称为次轴。

(3)中心:椭圆的中心是指长轴和短轴的交点。

(4)半焦距:则是焦点到中心的距离。

(5)离心率:椭圆的离心率是一个用来衡量椭圆形状的值,定义为离心距(焦点到中心的距离)与主轴长度之比。

3.离心率和几何性质:(1)离心率的取值范围为0到1之间,当离心率为0时,椭圆退化为一个点;当离心率为1时,椭圆退化为一个抛物线。

(2)在椭圆上的任意一点,到焦点的距离之和等于常数,称为焦散性质。

(3)椭圆的两个焦点到任意一点的距离之差等于长轴的长度。

4.椭圆的方程:椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆中心点的坐标,a和b分别为长轴和短轴的长度,并且a>b。

二、椭圆的性质和应用:1.对称性:(1)椭圆具有对称性,关于中心对称,即中心点是对称中心。

(2)长轴和短轴也是椭圆的对称轴。

2.焦点与直线的关系:(1)焦点到椭圆上的任意一点的距离之和等于该点到椭圆的任意一条切线的长度。

(2)椭圆上的任意一条切线与焦点之间的两条线段的夹角相等。

3.切线和法线:(1)切线是与椭圆一点相切且垂直于切线的直线。

(2)法线是与切线垂直且通过椭圆上切点的直线。

4.面积公式:椭圆的面积为πab,其中a和b分别为长轴和短轴的长度。

5.椭圆的应用:(1)椭圆在天文学中被用来描述行星、彗星和其他天体的轨道。

(2)椭圆也广泛应用于工程学、建筑学和设计中,例如椭圆形的天花板和门窗等。

椭圆基础知识总结

椭圆基础知识总结

椭圆基础知识总结
椭圆在数学中是一种重要的几何形状,它具有许多独特的性质和应用。

以下是
椭圆的基础知识总结。

1. 定义:椭圆是平面上到两个给定点的距离之和等于常数的点的集合。

两个给
定点称为焦点,它们通常标记为F1和F2。

常数称为焦距,通常标记为2a。

2. 参数方程:椭圆的参数方程由以下公式给出:x = a * cos(θ),y = b * sin(θ)。

其中,a和b分别是椭圆的长半轴和短半轴,θ是参数。

3. 方程:椭圆的方程是(x^2/a^2) + (y^2/b^2) = 1。

该方程描述了椭圆上各个点
的位置。

当a=b时,椭圆变为圆。

4. 焦点性质:椭圆上的每个点到焦点F1和F2的距离之和等于常数2a。

这个性质被称为焦点性质,它使得椭圆在通信、导航和天体力学等领域有广泛应用。

5. 长轴、短轴和离心率:椭圆的长轴是沿着椭圆的最长直径,短轴是沿着椭圆
的最短直径。

离心率定义为e = c/a,其中c是焦点到圆心的距离。

6. 焦点到顶点的距离:椭圆上任意一点到其近焦点的距离等于到其远焦点的距
离减去2a。

这是椭圆的重要性质之一。

7. 离心角与焦半径:椭圆上任意一点的离心角是该点处切线和法线之间的角度。

焦半径是从焦点到椭圆上某点的线段。

椭圆具有许多应用,包括通信技术中的椭圆曲线加密算法、地球轨道和卫星运
动的描述、天文学中行星轨道等。

理解椭圆的基础知识有助于我们更好地理解和应用这个几何形状。

椭圆及知识点总结

椭圆及知识点总结

椭圆及知识点总结一、椭圆的定义椭圆是一个平面上距离两个定点的距离之和等于常数的所有点的轨迹。

这两个定点称为焦点,两个焦点到椭圆上任意一点的距离之和等于常数的这个常数称为椭圆的长轴。

椭圆的长度长的半轴即长轴,另一个短的半轴即椭圆的短轴。

椭圆的离心率是一个反映椭圆形状的参数,它等于焦距与长轴之比。

二、椭圆的性质1. 横坐标a,纵坐标b,a>b2. 椭圆两焦点(-c,0)和(c,0)。

3. 椭圆的离心率e,e=c/a。

4. 椭圆的方程为x²/a²+y²/b²=1。

5. 椭圆的周长C=4aE(e),其中E(e)表示第二类椭圆积分。

6. 椭圆的面积S=πab。

三、椭圆的方程椭圆的方程可以通过直角坐标系下的坐标点和离心率来表示,一般来说,椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为坐标系原点的坐标,a为长轴的长度,b为短轴的长度。

还可以通过参数方程来表示椭圆,参数方程为:x=a*cos(t)+hy=b*sin(t)+k其中(t为参数,a、b分别为长短半轴,(h,k)为椭圆的中心点。

四、椭圆的应用1. 天体运动:开普勒定律描述行星和卫星绕太阳和行星绕行星运动的轨道为椭圆。

2. 工程建筑:椭圆的形状被广泛运用在建筑设计中,例如拱门、拱桥的设计。

3. 数学物理:椭圆的性质在物理学和工程学中有着重要的应用,例如在电磁场和引力场的研究中。

五、椭圆的知识点总结1. 椭圆的定义:椭圆是平面上距离两个定点的距离之和等于常数的轨迹。

2. 椭圆的性质:椭圆有特定的横纵坐标、焦点坐标、离心率、方程、周长和面积等特性。

3. 椭圆的方程:椭圆的标准方程和参数方程可以描述椭圆的形状和特性。

4. 椭圆的应用:椭圆在天体运动、工程建筑和数学物理等领域都有着重要的应用价值。

综上所述,椭圆是一种重要的圆锥曲线,具有独特的形状和性质,在数学、物理、工程等领域都有着重要的应用价值。

(完整版)椭圆基本知识点总结

(完整版)椭圆基本知识点总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1; (p 是椭圆上一点)1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab 223.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。

4.焦点三角形的面积2tan221θb S F PF =∆,其中21PF F ∠=θ5. 用待定系数法求椭圆标准方程的步骤.(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:①依据上述判断设方程为2222by a x +=1)0(>>b a 或2222a y b x +=1)0(>>b a②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系: 2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,2222b y a x +>1, 点在椭圆外。

椭圆总结(全)

椭圆总结(全)

椭圆一.知识清单 1.椭圆的两种定义:①平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。

其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。

②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|e dPF =,0<e <1的常数}。

(1=e 为抛物线;1>e 为双曲线)(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线).2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。

其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。

其中22b a c -=注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。

3 参数方程:焦点在x 轴,⎩⎨⎧==θθsin cos b y a x (θ为参数)4 一般方程:)0,0(122>>=+B A By Ax5.性质:对于焦点在x 轴上,中心在原点:12222=+by a x (a >b >0)有以下性质:坐标系下的性质:① 范围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);④椭圆的准线方程:对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称⑤焦半径公式:P (x 0,y 0)为椭圆上任一点。

椭圆基础知识点

椭圆基础知识点

椭圆基础知识点椭圆是数学中的重要概念,广泛应用于物理、工程、几何等领域。

本文将介绍椭圆的基础知识点,包括定义、性质、参数方程、焦点与准线等内容。

一、椭圆的定义椭圆是平面上一条封闭曲线,其上各点到两个定点的距离之和恒定。

这两个定点称为焦点,连接两焦点的线段称为主轴,主轴的中点为椭圆的中心,主轴长度的一半称为半长轴,垂直于主轴的线段称为次轴,次轴长度的一半称为半短轴。

二、椭圆的性质1. 弦长定理:椭圆上任意两点连线的长度之和等于两焦点之间的距离。

2. 焦点定理:椭圆上任意一点到两个焦点的距离之和等于两个焦点之间的距离。

3. 反射定理:从椭圆上一点出发的光线经过反射后,会经过另一个焦点。

4. 离心率:椭圆的离心率e是一个0到1之间的实数,定义为焦距与半长轴之间的比值。

三、椭圆的参数方程椭圆的参数方程可以用参数θ表示,如下所示:x = a * cosθy = b * sinθ其中,a和b分别是椭圆的半长轴和半短轴。

四、椭圆的焦点与准线1. 焦点:椭圆上的焦点是满足椭圆定义的两个定点,记为F1和F2。

焦点与椭圆的离心率e有关,可以通过公式e = c / a计算,其中c为焦距,a为半长轴。

2. 准线:椭圆上到两个焦点距离之和等于椭圆长轴长度的两条直线称为准线,记为L1和L2。

五、应用领域1. 天体运动:行星、卫星等天体围绕太阳、行星等轨道呈椭圆形。

2. 光学:椭圆抛物面反射镜和透镜用于天文望远镜、摄影镜头等光学仪器中。

3. 电子学:椭圆偏振器在液晶显示器等领域有广泛应用。

4. 地理测量:在地球上,纬线和经线的组合形成椭圆,用来表示地球的形状。

六、总结椭圆作为一种几何形状,具有丰富的性质和广泛的应用。

本文介绍了椭圆的定义、性质、参数方程以及焦点与准线等内容。

椭圆在数学、物理、工程等领域中都有重要的应用,对于理解和解决相关问题具有重要意义。

希望本文能够帮助读者对椭圆有更深入的了解。

(完整版)椭圆知识点复习总结

(完整版)椭圆知识点复习总结

椭圆知识点总结复习1. 椭圆的定义:(1)椭圆:焦点在x 轴上时12222=+by a x (222a b c =+)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。

例一:已知线段AB 的两个端点A ,B 分别在x 轴,y 轴上,AB=5,M 是AB上的一个点,且AM=2,点M 随AB 的运动而运动,求点M 的运动轨迹方程2. 椭圆的几何性质:(1)椭圆(以12222=+by a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:ce a=,椭圆⇔01e <<,e 越小,椭圆越圆;e越大,椭圆越扁。

⑥通径22b a例二:设椭圆22221(0)x y a b a b+=>>上一点P 作x 轴的垂线,恰好过椭圆的一个焦点1F ,此时椭圆与x 轴交于点A ,与y 轴交于点B ,且A,B 两点所确定的直线AB 与OP平行,求离心率e2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b+>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b+<3.直线与圆锥曲线的位置关系:(往往设而不求) (1)相交:0∆>⇔直线与椭圆相交;(2)相切:0∆=⇔直线与椭圆相切; (3)相离:0∆<⇔直线与椭圆相离;例三::直线y ―kx ―1=0与椭圆2215x y m+=恒有公共点,则m 的取值范围是_______(答:[1,5)∪(5,+∞));例四:椭圆22221(0)x y a b a b+=>>与过点(2,0),(0,1)A B 的直线有且只有一个公共点T ,且椭圆的离心率2e =(1)求椭圆的方程(2)设12,F F 分别为椭圆的左,右焦点,M 为线段2AF 的中点,求证:1ATM AFT ∠=∠ (3)求证:21212AT AF F =.∆4、焦半径(圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径0r ed a ex ==±,其中d 表示P 到与F 所对应的准线的距离。

椭圆的基本知识

椭圆的基本知识

椭圆的基本知识一、基本知识点知识点一:椭圆的定义:椭圆三定义,简称和比积1、定义1:(和)到两定点的距离之和为定值的点的轨迹叫做椭圆。

这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距,定值为________。

2、定义2:(比)到定点和定直线的距离之比是定值的点的轨迹叫做椭圆。

定点为焦点,定直线为准线,定值为______。

3、定义3:(积)到两定点连线的斜率之积为定值的点的轨迹是椭圆。

两定点是长轴端点,定值为)01(12<<m e m --=。

知识点二:椭圆的标准方程1、当焦点在x 轴上时,椭圆的标准方程为_______________,其中222b ac -=。

2、当焦点在y 轴上时,椭圆的标准方程为_______________,其中222b ac -=。

知识点三:椭圆的参数方程)0(12222>>b a by a x =+的参数方程为________________。

知识点四:椭圆的一些重要性质(1)对称性:椭圆的标准方程是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心就是椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足b y a x ≤≤,。

(3)顶点:①椭圆的对称轴与椭圆的交点为椭圆的顶点;②椭圆)0(12222>>b a by a x =+与坐标轴的四个顶点分别为___________________________。

③椭圆的长轴和短轴。

(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。

②因为0>>c a ,所以e 的取值范围是10<<e 。

(5)焦半径:椭圆上任一点),(00y x P 到焦点的连线段叫做焦半径。

对于焦点在x 轴上的椭圆,左焦半径01ex a r +=,右焦半径02ex a r -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆基本知识点总结公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]
椭圆知识点
知识点一:椭圆的定义
平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质
椭圆:12222=+b y a x )0(>>b a 与 122
22=+b
x a y )0(>>b a 的简单几何性质
标准方程
122
22=+b y a x )0(>>b a 122
22=+b
x a y )0(>>b a 图形
性质 焦点 )0,(1c F -,)0,(2c F
),0(1c F -,),0(2c F
焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤
b x ≤,a y ≤
对称性
关于x 轴、y 轴和原点对称
顶点
)0,(a ±,),0(b ±
),0(a ±,)0,(b ±
轴长
长轴长=a 2,短轴长=b 2
离心率
)10(<<=
e a
c
e c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;
(p 是椭圆上一点)
1.椭圆标准方程中的三个量c b a ,,的几何意义
222c b a +=
2.通径:过焦点且垂直于长轴的弦,其长a
b 2
2
3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。

4.焦点三角形的面积2
tan
2
21θ
b S F PF =∆,其中21PF F ∠=θ
5. 用待定系数法求椭圆标准方程的步骤.
(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:
①依据上述判断设方程为2222b y a x +=1)0(>>b a 或22
22a
y b x +=1)0(>>b a
②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ).
(3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系:
2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,22
22b y a x +>1, 点在椭圆外。

7.直线与椭圆的位置关系
设直线方程y =kx +m ,若直线与椭圆方程联立,消去y 得关于x 的一元二次方程:ax 2+bx +c =0(a ≠0).
(1)Δ>0,直线与椭圆有两个公共点;(2)Δ=0,直线与椭圆有一个公共点; (3)Δ<0,直线与椭圆无公共点. 8.弦长公式:
若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则弦长
221221)()(y y x x AB -+-=221221)()(kx kx x x -+-= 2121x x k -+= 2122124)(1x x x x k -++=
9.点差法:
就是在求解圆锥曲线题目中,交代直线与圆锥曲线相交所截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。

求出直线的斜率,然后利用中点求出直线方程。

步骤:①设直线和圆锥曲线交点为?,,其中点坐标为,则得到关系式

..
②把?,分别代入圆锥曲线的解析式,并作差,利用平方差公式对结
果进行因式分解.其结果为0))(())((21212121=+-++-y y y y n x x x x m ③利用?
求出直线斜率,代入点斜式得直线方程为
.。

相关文档
最新文档