椭圆基本知识点总结讲解学习

合集下载

必修二椭圆知识点总结

必修二椭圆知识点总结

必修二椭圆知识点总结一、椭圆的基本概念1. 定义椭圆是一个点到两个给定点的距离之和等于常数的动点轨迹。

这两个给定点称为焦点,距离之和等于常数称为椭圆的离心率。

2. 公式表示椭圆的一般方程为:$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$其中,$(h,k)$为椭圆的中心,$a$和$b$分别为椭圆长轴、短轴的长度。

二、椭圆的性质1. 焦点、离心率和长短轴之间的关系椭圆上任意一点到两个焦点的距离之和等于长轴的长度,即$2a=2\sqrt{a^2-b^2}$。

离心率$e$的定义为:$e=\frac{c}{a}$其中,$c$为焦点到中心的距离。

2. 椭圆的对称性椭圆以其中心为中心对称,有两个对称轴,分别为长轴和短轴。

长轴上有两个端点,称为顶点;短轴上也有两个端点。

3. 椭圆的参数方程椭圆可以用参数方程表示为:$x=h+a\cos t$$y=k+b\sin t$其中,$(h,k)$为椭圆的中心,$a$和$b$分别为椭圆长轴、短轴的长度。

4. 椭圆的离心角椭圆上任意一点到两个焦点的连线与椭圆长轴的夹角称为椭圆的离心角。

椭圆的离心角范围在0到$\pi$之间。

三、椭圆的相关定理1. 椭圆的偏心率椭圆的偏心率为:$e=\sqrt{1-\frac{b^2}{a^2}}$其中,$a$和$b$分别为椭圆长轴、短轴的长度。

2. 椭圆的焦点、半焦距和离心率的关系椭圆上任意一点到两个焦点的距离之和等于长轴的长度,即$2a=2\sqrt{a^2-b^2}$。

离心率$e$的定义为:$e=\frac{c}{a}$其中,$c$为焦点到中心的距离。

3. 椭圆的切线方程椭圆上一点处的切线方程为:$\frac{xh}{a^2}+\frac{yk}{b^2}=1$四、椭圆的应用1. 物理学中的应用椭圆在天体运动、热力学等领域都有广泛的应用。

例如,行星绕太阳的运动轨迹就是一个椭圆。

2. 工程学中的应用椭圆在工程学中也有着重要的应用,例如在建筑设计、轨道运输等方面。

高三椭圆相关知识点总结

高三椭圆相关知识点总结

高三椭圆相关知识点总结在高三数学学习中,椭圆是一个十分重要且常见的几何图形。

它具有许多独特的性质和特点,对于理解和解决相关题目至关重要。

本文将对高三椭圆的相关知识点进行总结,旨在帮助同学们更好地理解椭圆的性质和应用。

1. 椭圆的定义及公式椭圆是平面上到两个定点F₁和F₂距离之和等于常数2a的动点P的轨迹。

定点F₁和F₂称为椭圆的焦点,两焦点之间的距离为2c,且c²=a²-b²。

椭圆的离心率e=c/a。

椭圆的标准方程为,(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标。

2. 椭圆的性质- 长轴和短轴:椭圆的两焦点距离为2c,且c²=a²-b²,所以椭圆的长轴为2a,短轴为2b。

- 离心率:椭圆的离心率e=c/a,离心率越接近0,椭圆的形状越接近于圆;离心率越接近1,椭圆的形状越扁平。

- 对称性:椭圆关于x轴和y轴都具有对称性,中心对称。

3. 椭圆的方程变形椭圆的方程在数学上经常需要进行变形和化简。

以下是几种常见的椭圆方程变形形式:- 标准方程变形:将标准方程进行代数变形和化简,可以得到不同形式的椭圆方程,如正方形椭圆、长轴平行于y轴的椭圆等。

- 参数方程:将椭圆的方程用参数表示,例如x=a*cosθ,y=b*sinθ,其中θ为参数。

- 三角方程:利用三角函数的性质,将椭圆的方程变形为三角函数的方程,如x²/a²+ y²/b² = 1可以变形为sin²θ/a² + cos²θ/b² = 1。

4. 椭圆的性质与应用- 焦点定理:椭圆上任意一点P到两焦点F₁和F₂的距离之和等于椭圆的长轴长度,即PF₁ + PF₂ = 2a。

- 弦焦定理:椭圆上任意一条弦的两个焦点到弦的距离之和等于常数2a。

- 切线性质:椭圆上的点P处的切线斜率为y/x=-b²x/a²y。

(完整版)椭圆知识点归纳总结

(完整版)椭圆知识点归纳总结

(完整版)椭圆知识点归纳总结1. 椭圆的定义椭圆是平面上到两个给定点的距离之和等于常数的点的集合。

这两个给定点称为焦点,而常数称为离心率。

椭圆的形状由焦点之间的距离决定,离心率的大小则决定了椭圆的扁平程度。

2. 椭圆的基本性质- 椭圆的长轴是焦点之间的距离,短轴是长轴的垂直中垂线。

- 椭圆的离心率介于0和1之间,且离心率为0时为圆。

- 椭圆有两个对称轴,分别是长轴和短轴的中垂线。

- 椭圆的焦点和任意一点的距离和等于离心率与该点到椭圆两个焦点的距离之和。

- 椭圆的面积为π * a * b,其中a和b分别是长轴和短轴的一半。

3. 椭圆的方程普通椭圆的方程为:(x-h)²/a² + (y-k)²/b² = 1其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半。

4. 椭圆的参数方程椭圆的参数方程为:x = h + a * cos(t)y = k + b * sin(t)其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半,t是参数。

5. 椭圆的焦点与直径- 焦点到定点的距离等于椭圆的常数离心率。

- 椭圆的两个焦点与椭圆的直径的交点相同。

6. 椭圆与其他几何图形关系- 椭圆与直线的关系:给定一条直线,椭圆上离直线距离之和最小的点在直线的垂直线上。

- 椭圆与双曲线的关系:双曲线可以看作是离心率大于1的椭圆。

- 椭圆与抛物线的关系:抛物线可以看作是离心率等于1的椭圆。

7. 椭圆的应用椭圆在现实生活中有广泛的应用,例如:- 天体运动:行星、卫星等的轨道可以近似看作是椭圆。

- 椭圆滤波器:在信号处理中用于清除噪音。

- 光学器件:如折射球面镜、椭圆镜等。

以上是关于椭圆的常见知识点的归纳总结,希望能对你有所帮助。

高二椭圆知识点总结

高二椭圆知识点总结

高二椭圆知识点总结一、椭圆的基本概念1.1 椭圆的定义椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。

具体来说,设两点为F₁和F₂,距离之和为常数2a,那么椭圆E的定义:E = {P∈R² | |PF₁| + |PF₂| = 2a}其中,P为椭圆上的点,F₁和F₂为两个固定点,a为椭圆的半长轴。

1.2 椭圆的几何性质椭圆有如下几何性质:(1)椭圆的离心率:椭圆的形状由离心率e来表征。

(2)椭圆的焦点:椭圆的两个焦点分别为F₁和F₂。

(3)椭圆的半长轴和半短轴:半长轴为椭圆的长轴的一半,半短轴为椭圆的短轴的一半。

1.3 椭圆和圆的关系可以看到,当两个焦点重合时,椭圆变成了圆。

这也说明圆是椭圆的一种特殊情况,也就是说圆是椭圆的特例。

二、椭圆的方程和性质2.1 椭圆的标准方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1其中,a为椭圆的半长轴,b为椭圆的半短轴。

2.2 椭圆的参数方程椭圆的参数方程为:x = a*cosθy = b*sinθ其中,θ为参数,a和b分别为椭圆的半长轴和半短轴。

2.3 椭圆的性质椭圆有许多重要的性质,如焦点、离心率、长轴、短轴等。

椭圆的性质对于解析几何的学习非常重要。

在实际应用中,我们可以利用这些性质进行问题的求解和分析。

2.4 椭圆的参数方程与标准方程的转化椭圆的参数方程与标准方程可以相互转化,通过参数方程与三角函数之间的关系,我们可以得到椭圆的标准方程。

三、椭圆的相关计算3.1 椭圆的面积椭圆的面积可以通过参数方程和积分来计算,最终可以得到椭圆的面积公式为:S = πab其中,a和b为椭圆的半长轴和半短轴。

3.2 椭圆的周长椭圆的周长也可以通过参数方程和积分来计算,最终可以得到椭圆的周长公式为:L = 4aE(e)其中,a为椭圆的半长轴,E(e)为椭圆的第二类椭圆积分,e为椭圆的离心率。

3.3 椭圆方程的化简对于一些复杂的椭圆方程,我们可以通过一些方法对椭圆方程进行化简,使得问题的求解变得更加简单。

椭圆的知识点总结

椭圆的知识点总结

椭圆的知识点总结一、椭圆的定义椭圆是平面上的一种特殊曲线,它的定义可以有多种方式。

在解析几何中,我们通常采用焦点-直线之和等于常数的定义来描述椭圆。

具体而言,椭圆定义为到两个固定点(焦点)的距离之和等于常数的点的集合。

这个常数被称为椭圆的长轴长度。

另外,椭圆还有一个短轴,它垂直于长轴且通过长轴的中点。

椭圆的长轴和短轴的长度决定了椭圆的形状。

二、椭圆的性质1. 焦点性质:椭圆有两个焦点,它们位于长轴上,且椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。

2. 直径性质:椭圆的直径是经过焦点的直线段,并且它恰好与椭圆相交于椭圆上的两点。

3. 周长性质:椭圆的周长可以用椭圆的半长轴和半短轴的长度来表示,即2πb+4aE(e),其中a和b分别为椭圆的长轴和短轴的长度,E(e)为第二类椭圆积分。

4. 质心性质:椭圆的质心位于椭圆的中心,且与椭圆的几何中心重合。

椭圆的质心满足椭圆上所有点到该质心的距离之和等于椭圆的长轴长度。

5. 对称性质:椭圆具有关于长轴和短轴的对称性,且同时具有关于两个焦点的对称性。

6. 离心率性质:椭圆的离心率e是一个重要的参数,它刻画了椭圆的形状。

椭圆的离心率满足0<e<1,且e=√(1-b²/a²)。

7. 焦点和直角坐标系的关系:椭圆在直角坐标系中的方程形式可以用来描述椭圆的形状,其一般方程为(x²/a²)+(y²/b²)=1。

三、椭圆的方程椭圆的方程通常以长轴和短轴的长度来表示,其一般方程为(x²/a²)+(y²/b²)=1。

在给定长轴和短轴的情况下,可以通过椭圆的方程来确定椭圆的形状和位置。

四、椭圆的焦点椭圆有两个焦点,它们分别位于长轴的两端。

椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。

焦点是椭圆的重要特性,它们的位置决定了椭圆的形状和方向。

五、椭圆的参数方程椭圆还可以用参数方程来描述。

高二椭圆的全部知识点总结

高二椭圆的全部知识点总结

高二椭圆的全部知识点总结一、椭圆的基本概念1. 椭圆的定义:椭圆是平面上满足到两个固定点的距离之和等于常数的点的集合。

这两个固定点称为椭圆的焦点,常数称为椭圆的长轴长度。

2. 椭圆的几何特征:椭圆是一个闭合曲线,具有对称性。

它的中心点是两个焦点的中点,长轴是过中心点且垂直于长轴的线段。

3. 椭圆的标准方程:椭圆的标准方程是 x²/a² + y²/b² = 1(a>b>0),其中a是长轴的长度,b是短轴的长度。

4. 椭圆的参数方程:椭圆的参数方程是 x = a*cos(t), y = b*sin(t),其中t是参数,a和b是椭圆的半长轴和半短轴。

5. 椭圆的离心率:椭圆的离心率e定义为焦点到中心点的距离与长轴的长度之比。

离心率越接近于1,椭圆越扁平;离心率越接近于0,椭圆越圆。

6. 椭圆的焦点属性:椭圆的焦点具有镜像性质,即以长轴为对称轴,椭圆的任意一点与其关于焦点的镜像点关于长轴中心对称。

7. 椭圆的直径定理:椭圆上任意两点的距离之和为常数,与椭圆的长短轴长度有关。

二、椭圆的性质1. 椭圆的对称性:椭圆具有中心对称性,即任意点关于中心对称的点仍在椭圆上。

2. 椭圆的切线性质:椭圆上任意一点的切线与椭圆的法线垂直,并且焦点到切点的距离和到法线的距离的乘积是常数。

3. 椭圆的切点坐标:椭圆上一点P(x,y)的切线方程为xx1/a² + yy1/b² = 1,其中(x1,y1)是椭圆上的一点。

4. 椭圆的焦点坐标:椭圆上一点P(x,y)到两个焦点的距离之和等于常数2a,即PF1 + PF2= 2a。

5. 椭圆的面积:椭圆的面积为πab,其中a和b分别是椭圆的半长轴和半短轴的长度。

6. 椭圆的离心率与焦距的关系:椭圆的离心率e与焦距c的关系为e = c/a。

7. 椭圆的焦点与直径关系:椭圆的焦点到任意一条直径的两个端点的距离之和等于椭圆的长轴长。

椭圆知识点总结

椭圆知识点总结

椭圆知识点总结一、椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别代表椭圆长轴和短轴的一半。

椭圆的焦点到中心的距离是c,满足c^2 = a^2 - b^2。

二、椭圆的性质1. 椭圆对称性:椭圆关于x轴和y轴对称。

2. 焦点性质:椭圆上任意一点到两个焦点的距离之和等于常数2a。

3. 长短轴性质:椭圆的长轴和短轴互相垂直,长轴的长度是2a,短轴的长度是2b。

4. 离心率:椭圆的离心率e定义为c/a,表示椭圆拉伸的程度,离心率介于0到1之间。

5. 参数方程:椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数。

6. 弦长:椭圆上任意一点到两个焦点的距离之和等于常数2a,因此椭圆上任意一条弦的长度小于或等于2a。

7. 焦准线性质:椭圆上任意一点到两个准线的距离之差等于常数2a。

三、椭圆与圆的关系1. 圆是椭圆的特殊情况:当椭圆的长轴和短轴相等时,椭圆就变成了圆。

2. 椭圆的离心率介于0到1之间,当离心率等于0时,椭圆就是一个圆。

因此,椭圆和圆可以看作是同一种几何图形的不同特例。

四、椭圆的应用1. 天体运动:椭圆轨道是描述天体运动的重要数学工具,如行星绕太阳运动、卫星绕地球运动等。

2. 光学:椭圆镜片和椭圆抛物面反射器是光学领域常用的元件,用于聚焦和成像。

3. 工程设计:椭圆的性质在设计椭圆形建筑、椭圆形机械零件、椭圆形轨迹等方面有重要应用。

4. 地理测量:椭圆在地图投影和地理测量中有广泛应用,如椭球面测量、椭圆地图投影等。

五、椭圆的求解1. 椭圆的参数方程可以通过消除参数t来得到椭圆的标准方程。

2. 根据椭圆的焦点性质和准线性质,可以求解椭圆的焦点和准线方程。

3. 椭圆的面积可以通过积分求解,面积公式为S = πab。

4. 椭圆的周长可以通过椭圆的参数方程求解,周长公式为L = 4aE(e),其中E(e)为椭圆的第二类完全椭圆积分。

六、椭圆的变换1. 平移变换:椭圆的平移变换可以用矩阵形式表示,通过平移变换可以将椭圆移动到任意位置。

椭圆的性质及知识点总结

椭圆的性质及知识点总结

椭圆的性质及知识点总结一、椭圆的定义和基本性质1.1 椭圆的定义椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

设d1和d2分别表示P到F1和F2的距离,则椭圆的定义可以用数学表达式表示为|d1 + d2| = 2a 。

1.2 椭圆的基本性质(1)椭圆对称轴:椭圆有两个对称轴,分别称为长轴和短轴。

长轴的端点是两个焦点F1和F2,短轴与长轴垂直并通过椭圆的中心点。

(2)椭圆的焦点和离心率:椭圆的焦点是定义椭圆的两个定点F1和F2,离心率e是一个表示椭圆形状的参数,e的取值范围是0<e<1。

(3)椭圆的三大定律:椭圆有三个基本定律,分别是:(a)椭圆内到两个焦点的距离之和等于长轴的长度;(b)椭圆内到两个焦点的距离之差等于长轴的长度;(c)椭圆的面积等于πab,其中a和b分别是长轴和短轴的长度。

1.3 椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别是长轴和短轴的长度,椭圆的中心点位于原点(0,0)。

二、椭圆的相关知识点2.1 椭圆的离心率椭圆的离心率e的定义是e=c/a,其中c为焦距,a为长半轴的一半。

离心率越接近于0,椭圆形状越圆;离心率越接近于1,椭圆形状越扁。

2.2 椭圆的参数方程椭圆也可以用参数方程表示,参数方程为:x = a * cosθy = b * sinθ其中θ为参数,a和b分别是长轴和短轴的长度。

2.3 椭圆的焦半径椭圆的焦半径是指从椭圆的焦点到该椭圆上的任意一点P的距离,椭圆上各点的焦半径之和等于椭圆的周长。

2.4 椭圆的切线椭圆上的切线有一个特点:与椭圆相切的切线在切点处与切线的法线垂直。

根据这个特点可以求出椭圆上任意一点处的切线方程。

2.5 椭圆的焦点坐标椭圆的焦点坐标可以通过椭圆的离心率和焦距来求解。

焦点坐标为(±ae, 0),a为长轴的一半,e为椭圆的离心率。

2.6 椭圆的面积椭圆的面积可以通过参数法求解,面积为πab,其中a和b分别是长轴和短轴的长度。

椭圆知识点归纳总结

椭圆知识点归纳总结

椭圆知识点归纳总结椭圆的定义可以用数学表达式表示为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中a和b分别表示椭圆的主轴长度和次轴长度,椭圆的标准方程为椭圆定点到F1、F2的距离之和等于常数2a的定点轨迹的数学描述。

椭圆是一种非常基本的几何图形,具有许多独特的性质和特点。

本文将对椭圆的性质、参数方程、焦点、直径、离心率、焦距、渐近线、面积等方面进行归纳总结。

第一部分:椭圆的基本性质1.1 椭圆的定义和参数1.2 椭圆的性质1.3 椭圆的对称性1.4 椭圆的离心率和焦点第二部分:椭圆的参数方程和一般方程2.1 参数方程和一般方程的含义2.2 椭圆的参数方程2.3 椭圆的一般方程第三部分:椭圆的焦点、直径和离心率3.1 椭圆的焦点特点3.2 椭圆的直径特点3.3 椭圆的离心率特点第四部分:椭圆的焦距和渐近线4.1 椭圆的焦距含义4.2 椭圆的渐近线含义4.3 椭圆的焦距和渐近线的性质第五部分:椭圆的面积和周长5.1 椭圆的面积公式5.2 椭圆的周长公式5.3 椭圆的面积和周长的计算方法第六部分:椭圆的相关定理和实例分析6.1 椭圆的凸性定理和实例分析6.2 椭圆的垂直切线定理和实例分析6.3 椭圆的切线与法线定理和实例分析结论部分:椭圆的应用和拓展7.1 椭圆在日常生活中的应用7.2 椭圆的拓展和推广第一部分:椭圆的基本性质1.1 椭圆的定义和参数椭圆是平面上到两个定点F1、F2的距离之和等于常数2a的点P的轨迹。

这两个定点称为焦点,常数2a称为椭圆的主轴长度。

椭圆的主轴长度决定了椭圆的大小和形状。

椭圆的参数包括主轴长度a、次轴长度b、焦距2c、离心率e等。

其中焦距2c和主轴长度a之间有关系:c^2 = a^2 - b^2。

离心率e的计算公式为:e = c/a。

主轴长度a和次轴长度b决定了椭圆的形状,焦距2c和离心率e描述了椭圆与焦点之间的距离关系。

1.2 椭圆的性质椭圆具有许多特殊的性质,如平行轴定理、离心角定理、矩形椭圆定理等。

数学椭圆知识点总结

数学椭圆知识点总结

数学椭圆知识点总结数学椭圆知识点总结椭圆基础知识梳理知识点一椭圆的定义平面内到两个定点的距离之和等于常数(大于)的点的集合叫做椭圆。

两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

根据椭圆的定义可知:椭圆上的点M满足集合,,且都为常数。

当即时,集合P为椭圆。

当即时,集合P为线段。

当即时,集合P为空集。

知识点二椭圆的标准方程(1),焦点在轴上时,焦点为,焦点。

(2),焦点在轴上时,焦点为,焦点。

知识点三椭圆方程的一般式这种形式的方程在课本中虽然没有明确给出,但在应用中有时比较方便,在此提供出来,作为参考:(其中为同号且不为零的常数,),它包含焦点在轴或轴上两种情形。

方程可变形为。

当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。

一般式,通常也设为,应特别注意均大于0,标准方程为。

知识点四椭圆标准方程的求法1.定义法椭圆标准方程可由定义直接求得,这是求椭圆方程中很重要的方法之一,当问题是以实际问题给出时,一定要注意使实际问题有意义,因此要恰当地表示椭圆的范围。

例1、在△ABC中,A、B、C所对三边分别为,且B(-1,0)C(1,0),求满足,且成等差数列时,顶点A的曲线方程。

变式练习1.在△ABC中,点B(-6,0)、C(0,8),且成等差数列。

(1)求证:顶点A在一个椭圆上运动。

(2)指出这个椭圆的焦点坐标以及焦距。

2.待定系数法首先确定标准方程的类型,并将其用有关参数表示出来,然后结合问题的条件,建立参数满足的等式,求得的值,再代入所设方程,即一定性,二定量,最后写方程。

例2、已知椭圆的中心在原点,且经过点P(3,0),=3b,求椭圆的标准方程。

例3、已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆方程。

变式练习2.求适合下列条件的椭圆的方程;(1)两个焦点分别是(-3,0),(3,0)且经过点(5,0).(2)两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12.3.已知椭圆经过点和点,求椭圆的标准方程。

椭圆及知识点总结

椭圆及知识点总结

椭圆及知识点总结一、椭圆的定义椭圆是一个平面上距离两个定点的距离之和等于常数的所有点的轨迹。

这两个定点称为焦点,两个焦点到椭圆上任意一点的距离之和等于常数的这个常数称为椭圆的长轴。

椭圆的长度长的半轴即长轴,另一个短的半轴即椭圆的短轴。

椭圆的离心率是一个反映椭圆形状的参数,它等于焦距与长轴之比。

二、椭圆的性质1. 横坐标a,纵坐标b,a>b2. 椭圆两焦点(-c,0)和(c,0)。

3. 椭圆的离心率e,e=c/a。

4. 椭圆的方程为x²/a²+y²/b²=1。

5. 椭圆的周长C=4aE(e),其中E(e)表示第二类椭圆积分。

6. 椭圆的面积S=πab。

三、椭圆的方程椭圆的方程可以通过直角坐标系下的坐标点和离心率来表示,一般来说,椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为坐标系原点的坐标,a为长轴的长度,b为短轴的长度。

还可以通过参数方程来表示椭圆,参数方程为:x=a*cos(t)+hy=b*sin(t)+k其中(t为参数,a、b分别为长短半轴,(h,k)为椭圆的中心点。

四、椭圆的应用1. 天体运动:开普勒定律描述行星和卫星绕太阳和行星绕行星运动的轨道为椭圆。

2. 工程建筑:椭圆的形状被广泛运用在建筑设计中,例如拱门、拱桥的设计。

3. 数学物理:椭圆的性质在物理学和工程学中有着重要的应用,例如在电磁场和引力场的研究中。

五、椭圆的知识点总结1. 椭圆的定义:椭圆是平面上距离两个定点的距离之和等于常数的轨迹。

2. 椭圆的性质:椭圆有特定的横纵坐标、焦点坐标、离心率、方程、周长和面积等特性。

3. 椭圆的方程:椭圆的标准方程和参数方程可以描述椭圆的形状和特性。

4. 椭圆的应用:椭圆在天体运动、工程建筑和数学物理等领域都有着重要的应用价值。

综上所述,椭圆是一种重要的圆锥曲线,具有独特的形状和性质,在数学、物理、工程等领域都有着重要的应用价值。

(完整版)椭圆基本知识点总结

(完整版)椭圆基本知识点总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1; (p 是椭圆上一点)1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab 223.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。

4.焦点三角形的面积2tan221θb S F PF =∆,其中21PF F ∠=θ5. 用待定系数法求椭圆标准方程的步骤.(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:①依据上述判断设方程为2222by a x +=1)0(>>b a 或2222a y b x +=1)0(>>b a②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系: 2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,2222b y a x +>1, 点在椭圆外。

椭圆知识点总结_高三数学知识点总结

椭圆知识点总结_高三数学知识点总结

椭圆知识点总结_高三数学知识点总结椭圆是在平面上固定两点F1和F2及这两点之间的一段固定长度2c,对于平面上任意一点P,它到F1和F2的距离之和等于常数2a(a>c)的轨迹。

这个轨迹就是椭圆。

椭圆是一类重要的二次曲线,具有许多重要的性质和特点。

在高三数学中,椭圆是一个重要的知识点,下面对椭圆的知识点进行总结。

一、椭圆的定义和基本性质1. 定义:椭圆是到定点F1和F2的距离之和等于常数2a(a>c)的轨迹。

2. 基本性质:(1)焦点和离心率:椭圆的焦点F1和F2到中心O的距离为c,椭圆的离心率e=c/a。

(2)长轴和短轴:椭圆的长轴2a和短轴2b满足a>b。

(3)焦距:椭圆的焦点之间的距离2c。

二、椭圆的标准方程及性质1. 椭圆标准方程:椭圆的标准方程为(x^2/a^2)+(y^2/b^2)=1,其中a表示长轴的长度,b表示短轴的长度。

1. 椭圆的参数方程:x=a*cosθ,y=b*sinθ。

2. 椭圆的性质:(1)参数方程中θ的取值范围是0≤θ≤2π。

(2)参数方程中θ为0和2π时,点在椭圆的右焦点处,为π/2和3π/2时,点在椭圆的上焦点处,为π和0时,点在椭圆的左焦点处。

1. 椭圆的性质定理一:设P(x,y)为椭圆的上方,由P点到椭圆的两个焦点的距离之和等于椭圆的长轴2a,有|PF1|+|PF2|=2a。

2. 椭圆的性质定理二:设P(x,y)为椭圆的上方,由P点到椭圆的两个焦点的距离之差等于椭圆的短轴2b,有|PF1|-|PF2|=2b。

五、椭圆的方程转化1. 椭圆的直角坐标转参数方程:将椭圆的标准方程中的x和y分别用a*cosθ和b*sinθ代替,得到椭圆的参数方程。

2. 椭圆的参数方程转直角坐标方程:将椭圆的参数方程中的θ值代入x=a*cosθ和y=b*sinθ,得到椭圆的直角坐标方程。

六、椭圆的相关问题1. 椭圆的离心率求解:通过椭圆的长轴和短轴长度求得离心率e=c/a。

文科数学椭圆知识点总结

文科数学椭圆知识点总结

文科数学椭圆知识点总结一、椭圆的基本概念1. 定义:椭圆是一个平面上点的集合,其到两个给定点的距离之和等于常数的情形。

这两个给定点称为焦点,这个常数称为椭圆的半径和。

椭圆是一种特殊的圆锥曲线。

2. 要素:椭圆包括两个焦点F1、F2和椭圆的半长轴a、半短轴b。

定义F1F2=2a,F1P+F2P=2a+b,其中P为椭圆上的任意一点。

二、椭圆的性质1. 关于对称性:椭圆具有关于x轴、y轴和原点的对称性。

对于椭圆上的任意一点P(x, y),都有P(-x, y)、P(x, -y)、P(-x, -y)在椭圆上。

2. 弧长和扇形面积:椭圆的弧长计算公式为L=4aE(e),其中E(e)是第二类椭圆积分,并且扇形的面积计算公式为A=πab。

3. 离心率和焦点:椭圆的离心率e是一个重要的参数,它决定了椭圆的形状。

e=c/a,其中c是焦点到中心的距离,a是半长轴的长。

4. 判别式:在解析几何中,一般地,椭圆方程Ax^2+By^2+Cx+Dy+E=0可以化为标准型x^2/a^2+y^2/b^2=1,其中a、b和离心率e=√(a^2-b^2)/a,可以通过判别式B^2-4AC来判别椭圆方程的类型。

5. 焦直线和其它性质:椭圆的焦直线可以表示为x=a/c或x=-a/c,其中c=√(a^2-b^2)。

椭圆上的任意一点P(x, y)到两个焦点的距离之和等于椭圆的长轴长度。

三、椭圆的方程1. 标准方程:椭圆的标准方程可以表示为 x^2/a^2+y^2/b^2=1,其中a>b>0。

当椭圆的中心位于原点时,方程为x^2/a^2+y^2/b^2=1;当椭圆的中心不位于原点时,方程为(x-h)^2/a^2+(y-k)^2/b^2=1。

2. 参数方程:椭圆的参数方程可以表示为x=a*cos(t),y=b*sin(t),其中t是参数,a、b分别表示椭圆的半长轴和半短轴。

3. 焦点方程和直角坐标方程:椭圆的焦点方程可以表示为x^2+y^2=a^2,e^2=a^2-b^2;椭圆的直角坐标方程可以表示为y=a*√(1-x^2/a^2)。

高中数学椭圆知识点总结及公式大全

高中数学椭圆知识点总结及公式大全

高中数学椭圆知识点总结及公式大全椭圆是几何学中的重要概念,它的知识点包括定义、标准方程、性质等。

以下是椭圆知识点总结及公式大全:一、椭圆的基本概念1. 椭圆的概念:平面内与两个定点F1、F2的距离之和等于常数(大于F1F2)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点之间的距离叫做椭圆的焦距。

2. 椭圆的标准方程:焦点在x轴上时,标准方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (其中 $a > b > 0$ )焦点在y轴上时,标准方程为:$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$ (其中 $a > b > 0$ )二、椭圆的性质1. 范围:椭圆上的任意一点P,它到椭圆两个焦点的距离之和为定值,等于椭圆的长轴的长度。

2. 对称性:椭圆是关于其长轴和短轴对称的。

3. 顶点:椭圆与长轴和短轴的交点称为顶点。

长轴的顶点是$(-a,0),(a,0)$,短轴的顶点是$(0,-b),(0,b)$。

4. 焦点:椭圆的两个焦点位于长轴上,焦距为$2c$,其中$c^2 = a^2 - b^2$。

5. 离心率:椭圆的离心率定义为$e = \frac{c}{a}$,离心率是描述椭圆扁平程度的一个重要指标。

三、椭圆的参数方程椭圆的参数方程可以用角度θ表示,其中x=a×cosθ,y=b×sinθ。

参数方程可以帮助我们更方便地表达椭圆的轨迹。

以上就是关于高中数学中椭圆的全部知识点总结和相关公式,供你参考,建议咨询数学老师或者查看高中数学教辅以获取更准确全面的信息。

椭圆基础知识点

椭圆基础知识点

椭圆基础知识点椭圆是数学中的重要概念,广泛应用于物理、工程、几何等领域。

本文将介绍椭圆的基础知识点,包括定义、性质、参数方程、焦点与准线等内容。

一、椭圆的定义椭圆是平面上一条封闭曲线,其上各点到两个定点的距离之和恒定。

这两个定点称为焦点,连接两焦点的线段称为主轴,主轴的中点为椭圆的中心,主轴长度的一半称为半长轴,垂直于主轴的线段称为次轴,次轴长度的一半称为半短轴。

二、椭圆的性质1. 弦长定理:椭圆上任意两点连线的长度之和等于两焦点之间的距离。

2. 焦点定理:椭圆上任意一点到两个焦点的距离之和等于两个焦点之间的距离。

3. 反射定理:从椭圆上一点出发的光线经过反射后,会经过另一个焦点。

4. 离心率:椭圆的离心率e是一个0到1之间的实数,定义为焦距与半长轴之间的比值。

三、椭圆的参数方程椭圆的参数方程可以用参数θ表示,如下所示:x = a * cosθy = b * sinθ其中,a和b分别是椭圆的半长轴和半短轴。

四、椭圆的焦点与准线1. 焦点:椭圆上的焦点是满足椭圆定义的两个定点,记为F1和F2。

焦点与椭圆的离心率e有关,可以通过公式e = c / a计算,其中c为焦距,a为半长轴。

2. 准线:椭圆上到两个焦点距离之和等于椭圆长轴长度的两条直线称为准线,记为L1和L2。

五、应用领域1. 天体运动:行星、卫星等天体围绕太阳、行星等轨道呈椭圆形。

2. 光学:椭圆抛物面反射镜和透镜用于天文望远镜、摄影镜头等光学仪器中。

3. 电子学:椭圆偏振器在液晶显示器等领域有广泛应用。

4. 地理测量:在地球上,纬线和经线的组合形成椭圆,用来表示地球的形状。

六、总结椭圆作为一种几何形状,具有丰富的性质和广泛的应用。

本文介绍了椭圆的定义、性质、参数方程以及焦点与准线等内容。

椭圆在数学、物理、工程等领域中都有重要的应用,对于理解和解决相关问题具有重要意义。

希望本文能够帮助读者对椭圆有更深入的了解。

数学椭圆涉及知识点总结

数学椭圆涉及知识点总结

数学椭圆涉及知识点总结一、椭圆的定义1.1、直角坐标系下的定义在直角坐标系中,椭圆的定义如下:给定两个固定点F1和F2(称为焦点)以及一个正实数a,且a>0。

椭圆是到两个焦点的距离之和等于常数2a的点的集合,即对于任意点P(x,y),PF1+PF2=2a。

1.2、参数方程的定义椭圆也可以用参数方程来表示。

假设椭圆的焦点在原点,半长轴为a,半短轴为b(a>b>0)。

椭圆上的点可以表示为(x,y)=(a*cosθ, b*sinθ),其中θ是参数。

1.3、其他等价定义除了以上直角坐标系和参数方程的定义之外,椭圆还有许多其他等价的定义,例如:轴对称、封闭曲线等等。

二、椭圆的性质2.1、焦点、顶点和长轴、短轴椭圆有两个焦点和两条主轴。

焦点是椭圆上的两个固定点,两个焦点之间的距离等于2a。

椭圆的两个主轴分别是椭圆的长轴和短轴,其长度分别为2a和2b。

2.2、离心率椭圆的离心率e是一个表示椭圆形状的重要参数,它是焦距与长轴的比值,即e=c/a,其中c是焦点到原点的距离。

离心率是一个小于1的实数,并且与椭圆的形状密切相关。

2.3、焦点、半焦距和半通径椭圆的焦点F1和F2之间的距离是2c,称为焦距。

椭圆的半焦距用c表示,半焦距与长短轴关系为c=sqrt(a^2-b^2)。

半通径是椭圆上的任意点到两个焦点的距离之和的一半。

2.4、椭圆的标准方程椭圆的标准方程是(x^2/a^2)+(y^2/b^2)=1,其中(a>b>0)。

根据标准方程,椭圆的长轴平行于x轴,短轴平行于y轴。

2.5、对称性质椭圆是关于x轴和y轴对称的,且有中心对称性质。

2.6、切线与法线椭圆上任意一点处的切线是垂直于从该点到两个焦点的连线的直线。

而该点处的法线是与切线垂直的直线。

2.7、焦半径定理焦半径定理描述了椭圆上任意一点处的两条焦半径的乘积为常数(等于长短轴的乘积),这是椭圆独特的性质之一。

2.8、面积椭圆的面积是一个重要的性质,其面积等于πab,其中a和b分别是椭圆的长轴和短轴的长度。

椭圆知识点详细总结

椭圆知识点详细总结

椭圆知识点详细总结在数学的世界中,椭圆是一个非常重要的几何图形,它具有独特的性质和广泛的应用。

接下来,让我们一起深入了解椭圆的相关知识。

一、椭圆的定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

用数学语言表示就是:|PF₁| +|PF₂| = 2a(2a > 2c,其中 2c 为焦距)。

二、椭圆的标准方程1、焦点在 x 轴上的椭圆标准方程为:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(a > b > 0),其中 a 为椭圆的长半轴长,b 为椭圆的短半轴长。

2、焦点在 y 轴上的椭圆标准方程为:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(a > b > 0)。

要注意区分焦点所在的坐标轴,根据焦点位置来确定方程的形式。

三、椭圆的性质1、对称性椭圆关于 x 轴、y 轴和原点对称。

2、范围对于焦点在 x 轴上的椭圆,x 的取值范围是a, a,y 的取值范围是b, b;对于焦点在 y 轴上的椭圆,x 的取值范围是b, b,y 的取值范围是a, a。

3、顶点椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为(±a, 0),(0, ±b);焦点在 y 轴上时,顶点坐标为(0, ±a),(±b, 0)。

4、离心率椭圆的离心率 e =\(\frac{c}{a}\)(0 < e < 1),其中 c 为焦距的一半。

离心率反映了椭圆的扁平程度,e 越接近 0,椭圆越接近于圆;e 越接近 1,椭圆越扁。

5、焦半径椭圆上一点 P(x₀, y₀)到焦点 F₁、F₂的距离分别为|PF₁| = a +ex₀,|PF₂| = a ex₀(焦点在 x 轴上);|PF₁| = a + ey₀,|PF₂| = a ey₀(焦点在 y 轴上)。

高三椭圆知识点归纳总结

高三椭圆知识点归纳总结

高三椭圆知识点归纳总结一、椭圆的定义椭圆是平面上到两个定点F1,F2的距离之和等于一定值(2a)的动点P的轨迹所组成的曲线。

两个定点F1,F2称为椭圆的焦点,而线段F1F2的长度为主轴的长度。

二、椭圆的基本性质1. 半长轴与半短轴- 半长轴a:半长轴是椭圆中心到椭圆的边界的最大距离。

- 半短轴b:半短轴是椭圆中心到椭圆的边界的最小距离。

2. 焦距与半长轴的关系- 焦距c:焦距是椭圆的两个焦点之间的距离。

根据焦距和半长轴的关系,可以得出关系式:c^2 = a^2 - b^2。

3. 离心率- 离心率e:离心率是用来衡量椭圆形状的一个参数。

离心率e的值介于0到1之间,离心率越接近于0,椭圆形状越接近于圆形;离心率越接近于1,椭圆形状越扁平。

4. 椭圆的焦点和准线- 焦点F1和F2:椭圆的焦点是定义中的两个定点,焦点到椭圆上任意一点的距离之和等于2a。

- 准线L1和L2:准线是与椭圆的焦点平行且通过椭圆中心的两条直线。

5. 椭圆的方程- 标准方程:以椭圆中心为坐标原点,长轴与x轴平行,且焦点在x轴上的椭圆方程为x^2/a^2 + y^2/b^2 = 1。

- 带有倾斜角度的方程:如果椭圆的长轴与x轴的夹角为α,则椭圆的方程为[(x-h)cosα + (y-k)sinα]^2/a^2 +[(x-h)sinα - (y-k)cosα]^2/b^2 = 1,其中(h, k)表示椭圆中心的坐标。

三、椭圆的相关公式1. 离心率的计算离心率e = c / a,其中c为焦距,a为半长轴的长度。

2. 焦点到直角椭圆弧的距离对于直角椭圆弧的焦点到椭圆上任意一点的距离d,有以下关系:d = a(1 - e*cosθ),其中θ为焦点与椭圆上某点P的连线与半长轴的夹角。

3. 焦半径公式椭圆上任意一点P(x,y)到焦点F1或F2的距离为r,有以下关系:r = |PF1| + |PF2| = 2a。

四、椭圆的相关定理1. 切线与法线- 切线:过椭圆上任意一点的切线与该点与两个焦点的连线之间的夹角等于这两条线段的夹角的一半。

大学数学椭圆知识点总结

大学数学椭圆知识点总结

大学数学椭圆知识点总结一、椭圆的基本概念1.1 椭圆的定义椭圆是平面上的一条曲线,定义为到两个固定点的距离之和为常数的点的轨迹。

这两个固定点称为焦点,常数称为离心率。

椭圆的离心率小于1,且椭圆是一个闭曲线。

1.2 椭圆的基本性质椭圆是一个特殊的曲线,具有许多独特的性质。

其中包括:(1) 椭圆的对称性(2) 椭圆的离心率(3) 椭圆的焦点(4) 椭圆的轴(5) 椭圆的焦点方程(6) 椭圆的直角坐标方程(7) 椭圆的极坐标方程(8) 椭圆的参数方程1.3 椭圆与圆的关系椭圆和圆都是平面上的曲线,它们之间有一些相似之处,但也有一些不同之处。

椭圆和圆的主要区别在于其离心率的大小,椭圆的离心率小于1,而圆的离心率等于0。

二、椭圆的性质2.1 椭圆的焦点椭圆有两个焦点,它们分别位于椭圆的长轴两端,且它们到椭圆上任意一点的距离之和为常数。

椭圆的焦点是椭圆的重要性质,它决定了椭圆的形状和大小。

2.2 椭圆的离心率椭圆的离心率是一个非常重要的参数,它决定了椭圆的形状。

椭圆的离心率小于1,离心率越小,椭圆的形状越接近于圆;离心率等于0时,椭圆即为圆。

2.3 椭圆的轴椭圆有两个轴,分别是长轴和短轴。

长轴是通过椭圆的两个焦点,并且垂直于短轴;短轴是椭圆通过两个焦点的中点,并且垂直于长轴。

长轴和短轴之间的距离称为椭圆的半长轴和半短轴。

2.4 椭圆的焦点方程椭圆的焦点方程是椭圆的重要性质之一,它表示了椭圆上的点到两个焦点的距离之和等于常数。

椭圆的焦点方程为x^2/a^2 + y^2/b^2 = 1,其中a为椭圆的半长轴,b为椭圆的半短轴。

2.5 椭圆的直角坐标方程椭圆的直角坐标方程是椭圆的另一个重要性质,它表示了椭圆上的点满足的方程。

椭圆的直角坐标方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)为椭圆的中心坐标。

2.6 椭圆的极坐标方程椭圆的极坐标方程是椭圆的极坐标描述方式,它表示了椭圆上的点的极坐标表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆知识点
知识点一:椭圆的定义
平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质
椭圆:12222=+b y a x )0(>>b a 与 122
22=+b
x a y )0(>>b a 的简单几何性质
标准方程
12
2
22=+b y a x )0(>>b a 12
2
22=+b x a y )0(>>b a 图形
性质
焦点 )0,(1c F -,)0,(2c F
),0(1c F -,),0(2c F
焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤
对称性
关于x 轴、y 轴和原点对称
顶点 )0,(a ±,),0(b ±
),0(a ±,)0,(b ±
轴长 长轴长=a 2,短轴长=b 2
离心率
)10(<<=
e a
c
e c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1; (p 是椭圆上一点)
1.椭圆标准方程中的三个量c b a ,,的几何意义
222c b a +=
2.通径:过焦点且垂直于长轴的弦,其长a
b 2
2
3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。

4.焦点三角形的面积2
tan
2
21θ
b S F PF =∆,其中21PF F ∠=θ
5. 用待定系数法求椭圆标准方程的步骤.
(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:
①依据上述判断设方程为22
22b
y a x +=1)0(>>b a 或2222a y b x +=1)0(>>b a
②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系: 2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,22
22b y a x +>1, 点在椭圆外。

7.直线与椭圆的位置关系
设直线方程y =kx +m ,若直线与椭圆方程联立,消去y 得关于x 的一元二次方程:ax 2+bx +c =0(a ≠0).
(1)Δ>0,直线与椭圆有两个公共点;(2)Δ=0,直线与椭圆有一个公共点; (3)Δ<0,直线与椭圆无公共点. 8.弦长公式:
若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则弦长
221221)()(y y x x AB -+-=221221)()(kx kx x x -+-= 2121x x k -+= 2122124)(1x x x x k -++=
9.点差法:
就是在求解圆锥曲线题目中,交代直线与圆锥曲线相交所截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。

求出直线的斜率,然后利用中点求出直线方程。

步骤:①设直线和圆锥曲线交点为 , ,其中点坐标为 ,则得到关系式
, ..
②把

分别代入圆锥曲线的解析式,并作差,利用平方差公式对结果进
行因式分解.其结果为0))(())((21212121=+-++-y y y y n x x x x m
③利用 求出直线斜率,代入点斜式得直线方程为 .。

相关文档
最新文档