船舶操纵系统
船舶操纵课件1

五、船舶种类概述
• 船舶操纵运动不但与船舶运动控制有关,还与船舶建造规 模、船型参数等因素有关。不同排水量、不同船型参数的 操纵性能不尽相同,随着船舶向大型化方向发展,这种性 能上的差别更加明显。 • 现代船舶种类繁多,有多种分类方法,可按用途、船体数 目、推进方式、推进器数目以及航行状态等进行分类。最 常用的方法是按用途分类:军用船和民用船两大类。民用 船:运输船、工程船、渔船、港作船等 • 从船舶操纵角度分:小型船舶、中型船舶和大型船舶 小型船舶:一般指载重量1万吨以下的船舶; 中型船舶; 一般指载重量3-5万吨以下的船舶; 大型船舶:一般指载重量8万吨以上、船长250m以上的船 舶;
R 兴波阻力: 与V 的4-6次方成正比
w s
WUT NC
Yang yadong
2、影响船舶基本阻力的因素:在船型一定的情况 下主要是船速和吃水
① ② ③ ④ ⑤
Vs
d
Vs
V
s
一定时,R 0 R b R f R r R f R e R w 一定时, V s R 0 较小时,
3% 2%
一.船舶阻力
2.附加阻力
(1)空气阻力 :水线以上部分所受阻力,比重较小。在航海界,一般 将3级 风以下的空气阻力计入基本阻力。
(2)污底阻力 :水线以下船体表面锈蚀、海生物附着。
(3)附体阻力 等。
:水线以下船体突出物,如龙骨、推进器轴、支架、舵
:波浪冲击,船体摇摆,顶浪航行时可使
(4)波浪阻力(汹涛阻力) 总阻力增加50%-100%。 (5)浅水附加阻力
WUT NC
yang ya dong
绪 论
• 船舶驾引人员根据船舶操纵性能和外界客观条件,按照 有关法规要求,正确运用操纵设备,使船舶按照驾引人 员的意图保持或改变船舶运动状态的操作(包括观察、 判断、指挥、实施等)。
船舶操纵技巧与技术

船舶操纵技巧与技术船舶操纵是航行中至关重要的一环,良好的操纵技巧和技术能够确保船只在复杂的水域中安全运行。
本文将介绍一些船舶操纵的技巧和技术,帮助船员更好地应对各种操纵挑战。
一、船舶操纵的基本原则船舶操纵的基本原则涉及到船舶动力学、水动力学和操纵设备的运用。
在实际操纵中,应遵循以下原则:1. 保持船舶稳定:船舶操纵过程中应尽量减小船舶的摇摆和倾斜,保持船舶的稳定性。
2. 控制速度和方向:及时、准确地通过手动或自动操纵设备调整船舶的速度和方向。
3. 避免碰撞和搁浅:注意监测船舶周围的水域情况,避免与其他船只、岛屿或障碍物碰撞,并确保船舶不会搁浅。
4. 灵活应对突发情况:当遇到突发情况,如恶劣天气、机械故障或其他紧急情况时,及时采取应对措施,确保船舶安全。
二、船舶操纵技巧1. 舵角和推力的协调运用:正确配合舵角和推力,通过调整舵柄和控制推进器来控制船舶的方向和速度。
2. 转向技巧:在进行转向操作时,应在中速航行状态下开始转向,逐渐增加船舶舵角,使船舶缓慢转向。
转向角度过大或过快都会引起摇摆或失控。
另外,进入弯道时应提前减速,以确保船舶在转弯过程中不会失控。
3. 使用舵动力特性:船舶舵的响应时间较长,因此在操纵船舶时,应提前预判和计划舵的动作,避免误操作。
同时,应注意保持适量的速度,以利用水流在船舶舵上的力量来帮助控制船舶运动。
4. 使用辅助设备:船舶操纵过程中,可以借助雷达、GPS、罗经等辅助设备来提供实时航行信息,帮助船员更好地掌握船舶位置、航向、速度等关键数据,从而进行准确的操纵。
三、船舶操纵技术1. 自动操纵技术:随着技术的进步,现代船舶配备了自动操纵系统,如自动驾驶系统、动力位置系统等,通过这些系统可以实现自动控制船舶的方向、速度和位置。
船员可根据实际情况灵活使用这些技术来提高船舶操纵的效率和安全性。
2. 航线规划和动态控制:在船舶操纵中,可以利用电子海图和航线规划系统来预先规划船舶的航线,并在航行中动态调整航线以应对不同的情况。
船舶操纵系统图解

第一节 操纵系统概述
为了满足船舶在各种工况下的航行需要,将船舶主机的起动、换向和调速等各装置联结成一个 统一整体,并可集中控制的所有机构、设备和管路,总称为柴油机推进装置的操纵系统。
小型柴油机的推进装置,其起动、调速及换向系统的控制件距离近,通常分别设置,各自操纵。 近年来不少船舶也通过机械、气动等型式传输集中至机舱集控台或驾驶室,对推进装置集中操纵。 大、中型柴油机为操纵方便和工作可靠,都将各控制部分通过各种方式有机地联系以便集中控制和 远程控制。
一、对操纵系统的要求
在船舶柴油机中,操纵部分是最复杂的一部分,其部件多、零件杂、相互牵连制约,近代自动 化技术和遥控技术在操纵系统的应用,更增加了操纵系统的复杂程度。为了保证操纵系统能够可靠 地工作,对船舶柴油机的操纵系统有下列基本要求:
(1)必须能迅速而准确地执行起动、换向、变速和超速保护等动作,并能满足船舶规范上相 应的要求。
三、操纵系统和遥控系统的类型
1. 操纵系统的类型 按操纵部位和操纵方式,操纵系统可以分为: 1)机旁手动操纵:操纵台设置在柴油机旁边,使用相应的控制机构操纵柴油机,由轮机员直 接手动操纵,使之满足各种工况下的需要。 2)机舱集中控制室控制:操纵台设置在机舱适当部位的专用控制室内,由轮机员对柴油机实 现操纵和监视。 3)驾驶室控制:在船舶驾驶室内,专设主机遥控操纵台,由驾驶员直接操纵柴油机。 机旁手动操纵是操纵系统的基础,机舱集中控制和驾驶台控制均称为遥控,三者之间常设有转 换装置以便随意转换。每种操纵台上均设操纵手柄,操纵部位转换开关、应急操作按钮及各种显示 仪表,以便对主机进行操纵和运行状态的监视。尽管目前主机遥控技术已经达到了相当高的水平, 但系统中仍然必须保留机旁手动操纵系统,以保证对主机的可靠控制。 2.遥控系统的类型 遥控系统是用逻辑回路和自动化装置代替原有的各种手动操作程序。按遥控系统所使用的能源 和工质,主机遥控系统可分为: 1)电动式遥控系统:以电作为能源,通过电动遥控装置和电力驱动装置对主机进行远距离操 纵。 该系统控制性好,控制准确,遥控距离不受限制,有利于远距离控制;设备简单,不需要油、 气管路,无油、气处理装置,不必担心漏油、漏气;易实现较高程度的自动化,是实现主机遥控的 最佳途径。缺点是管理水平要求高,故障不易发现,操作管理人员要具备一定的电子技术知识。 2)气动式遥控系统:以压缩空气为能源,通过气动遥控装置和气动驱动装置对主机进行远距 离操纵。 气源可直接由起动空气经减压、净化得到,信号传递距离较远,一般在 100 米以内可满足系统 的控制要求,信号受电气、振动、温度等干扰少,动作可靠,故障容易发现,维修方便。但该系统 气源净化品质要求高,需除水、除油、除尘,否则易使气动元件失灵。 3)液力式遥控系统:以油泵产生的压力油作为能源,通过液压阀件和液动机构进行控制。
船用舵机原理

船用舵机原理船用舵机是船舶操纵系统中的重要部件,其原理和工作机制对船舶的操纵和安全具有重要影响。
船用舵机是一种能够控制船舶舵角的装置,通过对舵机的控制,船舶可以实现转向、转弯、保持航向等操作。
船用舵机的原理涉及到液压、电气和机械等多个方面的知识,下面将对船用舵机的原理进行详细介绍。
首先,船用舵机的原理涉及到液压传动系统。
液压传动系统是舵机实现舵角控制的关键。
当船舶需要改变航向时,船长或操纵员通过操纵舵机控制系统,向舵机传递指令。
舵机控制系统通过控制液压系统中的液压阀,调节液压系统中的液压油的流动方向和流量,从而控制舵机的运动。
液压传动系统具有传动效率高、动力密度大、动作平稳等优点,能够满足船舶在不同工况下的舵角控制需求。
其次,船用舵机的原理涉及到电气控制系统。
电气控制系统是舵机控制系统的重要组成部分,通过电气控制系统可以实现对舵机的远程控制。
舵机的电气控制系统包括控制器、传感器、执行机构等部件,控制器接收船长或操纵员的指令,并将指令转化为电气信号,传输给舵机的执行机构,从而控制舵机的运动。
传感器用于检测舵机的位置和舵角,将检测到的信息反馈给控制器,控制器根据反馈信息对舵机进行闭环控制,实现舵角的精确控制。
最后,船用舵机的原理涉及到机械传动系统。
机械传动系统是舵机的动力输出部分,通过机械传动系统可以将液压系统和电气系统提供的动力传递给舵机执行机构,实现舵机的运动。
机械传动系统包括液压缸、传动杆、舵轴等部件,液压缸接收液压系统提供的动力,通过传动杆将动力传递给舵轴,舵轴带动舵叶的转动,从而改变船舶的航向。
机械传动系统具有传动效率高、结构简单、可靠性高等优点,能够满足舵机在恶劣海况下的工作要求。
综上所述,船用舵机的原理涉及到液压、电气和机械等多个方面的知识,通过液压传动系统、电气控制系统和机械传动系统的协同作用,舵机可以实现舵角的精确控制,满足船舶在不同工况下的舵向要求。
舵机的原理和工作机制对船舶的操纵和安全具有重要影响,对船舶操纵系统的设计和优化具有重要意义。
船舶主机遥控系统和桥楼两翼操作指南

船舶主机遥控系统和桥楼两翼操作指南一、初次启动前检查:* 控制位置处于"集控室"(CONTROL ROOM)位置,辅助车钟处于"完车"(FWE)状态.* 操纵手柄处于"停车"(STOP)状态.* 按"试灯"(LAMO TEST)系统检查灯光系统.* 车钟系统:移动操纵手柄按步骤发指令并且获得集控室应答.二、控制部位的转移:---从集控室转移到桥楼控制:* 辅助车钟处于"备用"(STAND BY)状态.* 将操纵手柄置于与主机转速相对应的位置.* 按操纵指挥位置"桥楼"(BRIDGE),指示灯频闪并拌有蜂鸣器声.* 操纵指挥位置"集控室"(CONTROL ROOM)指示灯继续亮着.* 得到机舱应答后,"桥楼"(BRIDGE)指示灯亮,"集控室"(CONTROL ROOM)指示灯灭.---从桥楼到集控室:* 辅助车钟处于"备用"(STAND BY)状态.* 按操纵指挥位置"集控室"(CONTROL ROOM),指示灯频闪并拌有蜂鸣器声.* 操纵指挥位置"桥楼"(BRIDGE)指示灯继续亮着.* 得到机舱应答后,"集控室"(CONTROL ROOM)指示灯亮,"桥楼"(BRIDGE)指示灯灭.操作指示:* 根据指令移动操纵手柄至相应位置,主机启动并逐渐达到所需转速RPM.* 从"百分之五十负荷"(AB. 50% LOAD)到"海上全速"(MAX)或者反之,主机转速通过负荷的作用在大约十五到六十分钟的海上航行时间里逐步改变主机转速.* 按"取消负荷程序"(CANCEL LOAD PROGRAMME)钮,可取消负荷程序;移动操纵手柄,使之处于负荷水准之下,负荷程序亦停止工作.车钟系统:* 移动操纵手柄至所需要之指令位置,指令即被发出.处于新的指令位置上的车钟按钮指示灯开始频闪并拌有声响警示信号,指令得到应答以后,先前位置上的指示灯灭,新的指令位置上的指示灯亮,声音提示停止.停车:* 当"保护停车"(SHUT DOWN)警示灯亮,蜂鸣器发出声响,主机自动停车.* 操纵手柄设置于"停车"(STOP)位置,待"保护停车"(SHUT DOWN)警示灯灭掉以后,主机便可重新启动.减速:* 当"保护减速"(SLOW DOWN)警示灯亮,蜂鸣器发出声响,主机转速自动降低至预置值,将操纵手柄置于保护减速保护值以下位置.* "保护减速"(SLOW DOWN)警示灯熄灭,保护减速功能复位,移动操纵手柄可提高主机转速.* 按"取消保护减速"(CANCEL SLD)钮,取消所有保护减速,再按此钮,复原.应急操作:* 应急启动之前需要按取消所有功能钮.* 所有可取消保护减速功能被终止.* 手动设置的转速限制被取消.* 负荷程序被取消.* 启动油门给定值增加.* 再次按功能取消键,恢复保护功能.主机超速:* 一旦测出主机超速,"保护停车"(SHUT DOWN)警示灯亮,蜂鸣器发出声响,主机自动停车.* 将操纵手柄置于"停车"(STOP)位置,使其复位,然后重新置于指令位置.启动故障:* 当"启动故障/失败"(START BLOCK/FAILURE)警示灯亮,蜂鸣器发出声响.* 将操纵失败置于"停车"(STOP)位置,使其复位,然后重新置于指令位置.* 将控制功能转移至集控室继续启动.系统故障:* 当"控制系统故障"(CONTROL SYSTEM FAILURE)警示灯亮,蜂鸣器发出声响.* 和集控室取得联系,必要时转移控制.清除警报:* 按"报警认可"(ALARM ACKN)钮,声响/频闪报警复位.应急车钟:* 按"按钮车钟"(PUSH BUTTON TELEGRAPH)以后可以执行应急车钟操纵,应急车钟是通过应急车钟系统的按钮来操作的.备车:* 在引水员抵达之前,有必要在桥楼试一试主机换向,再将控制功能从桥楼转移至集控室,进行停车/启动试车,然后转回桥楼控制.模式:* 在车钟仪表盘上显示系统工作模式,有辅助车钟的"完车"(FWE),"备车"(STAND BY),或者"海速"(AT SEA).按"备车"键,可由"完车"转换至"备车","备车"指示灯频闪,得到应答后"备车"灯亮,"完车"灯灭. 注意:不能跳过"备车"直接从"完车"转成"海速",也不能跳过"备车"从"海速"转成"完车".船舶主机遥控系统桥楼两翼操作指南综述:桥楼两翼操作手柄和桥楼主手柄一样直接操作主机,控制信号通过主机遥控AC--4桥楼部分送到主机.控制和位置的变换* 从桥楼至两翼按驾驶台中ETU/AC4车钟及控制面板PORT WING (左翼)或STB WING (右翼)按钮,相应位置的灯板"IN CONTROL"灯闪.* 将两翼手柄位置同主手柄一致.主手柄RPM设定点在"RPM SETPOINT"显示器中显示,当主手柄和两翼手柄位置一致时,控制位置自动变换,灯板"IN CONTROL"亮.两翼控制* 将两翼手柄位置同主手柄一致,主手柄设定点在"SET POINT"显示器中显示.* 按两翼控制面板中"IN CONTROL"按钮,控制位置变换为两翼控制,"IN CONTROL"灯亮.返回桥楼控制* 将主手柄置于车钟按钮指示灯所示位置.为确保平稳转移,在执行转换前主机转速 "ENGINE RPM"与主机转速指令"RPM COMMAND"必须一致.* 按驾驶台中ETU/AC--4车钟和控制面板的"BRIDGE CONTROL" (桥楼遥控)按钮,控制位置返回主手柄控制.两翼操作* 只要将两翼手柄置于所需位置,即可实现两翼的操作.。
船舶操纵

4.4 船舶操纵控制船舶操纵是指船舶驾驶员根据船舶操纵性能和风、浪、流等客观条件,按照有关法规要求,正确运用操纵设备,使船舶按照驾驶员的意图保持或改变船舶水平运动状态的操作。
下面介绍现代船舶航向控制和船舶主机遥控操纵。
4.4.1 船舶操纵基本原理船舶操纵是一个大系统,由人、船舶和操船环境三个小系统构成,如图4–24所示。
该系统中,船舶驾引人员是主要组成部分,他们通过掌握和处理大量信息,将操船指令输人船舶,使船舶保持或改变运动状态而达到预期的目的。
图4–25为船舶驾引人员操纵船舶流程。
图中信息A 为本船运动状态,信息B为自然环境,信息C 为航行环境,信息D 为操船手册。
操纵船舶运动的机构,主要有舵和推进动力装置。
舵是船舶操纵的重要设备,操舵者通过操舵可以使船舶保持或改变其航向,达到控制船舶方向的目的。
推进器是指把主机发出的功率转换为推船运动的专用装置或系统,目前应用最广泛的推进器是螺旋桨。
螺旋桨分为等螺距螺旋桨、变螺距螺旋桨、固定螺距螺旋桨(FPP )和可调螺距螺旋桨(CPP )等不同类型。
20世纪50年代以来,船舶自动化经历了单元自动化、机舱集中监测与控制以及主机驾驶室遥控等几个阶段。
随后,由于计算机技术和自动化技术在实船上的应用,以及空间技术和通信技术的发展,使得船舶自动化由机舱自动化朝综合自动化和智能化方向发展。
螺旋桨转速舵 角锚的使用缆的使用拖船的使用图4–25 船舶操纵流程图4.4.2 船舶航向控制船舶航向控制的主要任务有二:一是保持航向;二是航向跟踪。
航向操纵部分——自动操舵系统自1922年自动操舵仪(也称自动舵)问世到今天,已经历了机械式自动舵、PID 自动舵和自适应自动舵三个发展阶段,目前正处于第四个研究发展阶段——智能自动舵。
1. 自动操舵系统1) 常规PID 自动舵在航海自动化系统中,船舶是系统的调节对象,若略去动力装置的影响,船舶运动状态的调节,将由舵来实现,并从船首方向表现出来。
船用舵机原理

船用舵机原理
船用舵机是船舶操纵系统中的重要部件,它通过控制舵的转向来实现船舶的操
纵和转向。
船用舵机原理是基于液压传动和控制技术,通过对液压系统的控制来实现舵的转动,从而改变船舶的航向。
下面我们将详细介绍船用舵机的原理和工作过程。
船用舵机的原理主要包括液压系统、舵机控制系统和舵机执行机构。
液压系统
是舵机的动力来源,它通过液压泵将液压油输送到舵机执行机构,从而实现舵的转动。
舵机控制系统负责控制液压系统的工作,包括舵机的启停、转向和速度控制。
舵机执行机构是舵机的核心部件,它通过液压力将舵转动到指定的角度,从而改变船舶的航向。
船用舵机的工作过程可以简单描述为,当船舶需要改变航向时,船长或操纵员
通过舵机控制系统发出指令,舵机控制系统接收指令后通过控制液压系统启动液压泵,液压泵将液压油输送到舵机执行机构,舵机执行机构受到液压力的作用将舵转动到指定的角度,从而改变船舶的航向。
当船舶达到指定航向后,船长或操纵员可以通过舵机控制系统停止液压泵的工作,舵机执行机构停止工作,舵保持在指定的角度,船舶保持当前航向。
船用舵机的原理和工作过程是船舶操纵系统中的关键环节,它直接影响船舶的
操纵性能和安全性能。
因此,船用舵机的设计和制造需要严格符合相关的标准和规范,确保舵机在各种工况下都能可靠地工作。
同时,船用舵机的维护和保养也至关重要,只有定期检查和保养舵机,才能确保舵机的正常工作和长期可靠性。
总之,船用舵机原理是船舶操纵系统中的重要内容,了解船用舵机的原理和工
作过程对于船舶操纵人员和船舶工程师都至关重要。
希望本文能够对读者有所帮助,谢谢!。
船舶拖航系统六自由度操纵运动仿真

船舶拖航系统六自由度操纵运动仿真船舶拖航系统六自由度操纵运动仿真船舶拖航系统是一种重要的海上运输设备,在海上货物运输中起到了非常关键的作用,而如何提高船舶拖航系统的操控能力是当前研究的热点。
船舶拖航系统的操纵运动仿真是一种非常有效的工具,可以模拟出各种不同的船舶拖航运动,对于提高系统的操纵能力具有重要意义。
船舶拖航系统的六自由度操纵运动是指在三个轴向分别进行平移和旋转的运动。
这六个自由度是:横向平移、纵向平移、垂直平移、绕X轴旋转、绕Y轴旋转和绕Z轴旋转。
在实际操作中,船舶拖航系统的操纵运动非常复杂,需要通过软件仿真来模拟出各种不同情况下的运动模式。
实现船舶拖航系统六自由度操纵运动仿真需要使用专业的仿真软件,如MATLAB/Simulink、ADAMS等。
这些软件具有良好的仿真性能和精度,可以精确地模拟出船舶拖航系统的各个运动指标。
以MATLAB/Simulink为例,其基于多体动力学理论,可以对船舶拖航系统进行六自由度动力学仿真,包括运动方程、力学方程和动力学方程等。
在进行船舶拖航系统六自由度操纵运动仿真时,需要考虑各种常见因素,并对其进行参数设置。
通常需要设置船舶的结构参数、物理参数、环境参数和控制参数等,以便精确地进行仿真分析。
其中结构参数包括船舶的长、宽、高等尺寸信息;物理参数包括船舶的质量、重心、惯性矩等;环境参数包括海洋水流、波浪等外部环境影响;控制参数包括船舶的操纵系统和控制策略等。
在仿真系统中,可以使用多种不同的仿真模式,如驱动模式、跟踪模式和预演模式等。
驱动模式是指在实际操纵情况下,通过对船舶各项指令进行控制,模拟出其对应的运动模式。
跟踪模式是指模拟出船舶跟随目标物体进行拖航操作的情况。
预演模式是指在不同环境条件下,模拟出船舶在某些特殊情况下的运动模式,以便用于系统优化和改进等方面。
总之,船舶拖航系统六自由度操纵运动仿真是一种非常重要的技术手段,对于提高船舶拖航系统的操纵能力具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息D:操船手册(包 括本船的操纵性能、有 关法规等)
情境一 认识船舶操纵性能
任务一 认识船舶变速运动性能 任务二 认识船舶旋回性 任务三 认识船舶操纵运动方程和船舶操纵性指数 任务四 认识航向稳定性和保向性 任务五 实船操纵性试验 任务六 掌握IMO船舶操纵性衡准的基本内容
任务一 认识船舶变速运动性能
任务一 认识船舶变速运动性能
2.船舶的减速性能(停车性能) 船舶在全速或半速前进中停止主机,至船水 停止移动时,所需的时间和滑行距离称为停车冲 时和冲程。一般以下降到(2-3节)保持舵效的速 度为界限来计算。 t≈0.00105W·V02/R0(1/V-1/V0) S≈0.075 W·V02/R0[ln(V0/V)] 还可用TOPLEY船长的经验公式:(大部分 船舶速降一半时间大致相同)
任务一 认识船舶变速运动性能
四、船舶变速与冲程 1.船舶启动性能(启动惯性) 应逐级加速以避免主机转矩突然增大而 超负荷。 达到定常速度V0时所需的时间及航进的距离 t≈0.04W·V0/T0(min) S≈0.101 W·V02/T0 式中: V0:最终定常速度 W:实际排水量 T0:最终定常速度V0时的推力(9.81KN) 从静止直到海上速度满载船约需航进20L 左右的距离。
任务一 认识船舶变速运动性能
(2)经验估算法
S=CVk·ts C:紧急停船距离系数,一般货船取0.25~ 0.27 大型油船取0.27~0.29。 (3)低速航进时倒车冲程及冲时的估算 S=WKx/(2gTp)·V02 Ts=WKx/(gTp)·V0 Kx:船舶前进方向虚质量系数,可经实验取 得, VLCC及肥大型1.07。 Tp:倒车拉力(t、船舶操纵的任务 1. 大洋中的操船 主要问题是大风浪中减轻摇荡、防止货移 等。 2. 沿岸航行 来往船只较多,需经常进行改向避让操纵。 3. 浅窄水道、港内航行及系离泊操纵 水域宽度受限,水深较浅,船舶密度大。
绪论
二、船舶操纵系统
A港
操船者
B港
三、操船信息处理
任务一 认识船舶变速运动性能
(4)船速:船速越大,冲程越大; (5)外界条件:顺风流时增大,浅水中冲程略 减; (6)污底:污底越严重,冲程越小。 4.几种制动方法及其运用 1)倒车制动法; 被各类船舶广泛采用,但大型船舶在港内应慎 用。 2)蛇航制动法; 超大型船舶可用 3)满舵旋回制动法; 降速为原速的70%,大型油轮50%
任务一 认识船舶变速运动性能
当船舶驶向泊地要求船舶能在一倍船长的距 离内把船停住,则余速为:
V0=2gTpL/WKx (4)参考数据(倒车冲程) 一般万吨级船舶:6~8L 5万吨级船舶:8~10L 10万吨级船舶:10~13L 15~20万吨级船舶:13~16L
任务一 认识船舶变速运动性能
停船性能:是指在标准状态下以海上船速行 驶的船舶,经自力制动操纵后,可在允许偏航范 围内(偏航量和偏航角)迅速停船的性能。
绪论
信息A:本船的运动状 态(当时的船位、航向、 航速、转速及其变化趋 势)
信息C 信息B
外力
目
标 设
操船者
信息处理
船舶
定
信息D 信息A
信息B:自然环境(风、 流、浪涌等情况)
目 信息C:航行环境(包括 标 交通环境如他船动态、大 实 小、密度等;航道环境如 现 航道水深、可航宽度、碍
航物及助航设施、航行支 援系统等)
任务一 认识船舶变速运动性能
S=0.24C·V0 C:船速减半时间常数 但根据排水量的不同,C也不同。降至2节停车 冲程约为8~20L,VLCC降至3节停车冲程约为23 L、30min。
任务一 认识船舶变速运动性能
3.倒车制动性能(倒车冲程、紧急停船距离) 1)倒车冲程及时间 (1)Lovett估算法 t≈0.00089W·V0/R0(min) 全速前进中开后退三,从发令开始至船舶对 水停止移动时所需的时间和航进路程。 航速降至全速的60%-70%,转速降至额定 转速的25%-35%。
一、阻力和推力 1.船舶阻力 1)基本阻力 摩擦阻力(占总阻力的70%~80%); 涡流阻力(形状阻力); 兴波阻力。 2)附加阻力 附体阻力; 污底阻力; 汹涛阻力; 空气阻力。
任务一 认识船舶变速运动性能
2.推力 1)推进器 螺旋桨(FPP、CPP) 明轮 平旋推进器 喷水推进器 Z型推进器 2)推力 螺旋桨正车旋转时推水向后,而水给桨叶一个 反作用力,这个反作用力在船首方向的分量就是 推船前进的推力T。
任务一 认识船舶变速运动性能
4)拖锚制动法; 仅适用于小型慢速船舶(2~3节) 5) 拖船制动法; 适用于大型船舶在港内制动 6)辅助装置(展开的阻力鳍,船首增设开口 的减速通道) 。 5. 停车冲程的测定 1)方法:定位法、陆标法、抛木块法; 2)抛木块法介绍。
任务一 认识船舶变速运动性能
(1)测定条件: 无风流影响,水深≥3√Bd,正舵 ; (2)测定内容 前进三~停车,进二~停车 进三~退三,进二~退三; (3)方法 S=(n-1)L+L1 L1=最后一块木板离船首的距离。
RT
DL
RH
紧急停船距离:制动行程RT 偏航量:DL 制动距离:RH(用车紧急停船能让开前方物标的 最短距离)
任务一 认识船舶变速运动性能
3)影响倒车冲程的因素 (1)主机倒车功率和换向时间 倒车功率越大,冲程越小(约为正车功率的 60%)换向时间越长,冲程越大蒸汽机60~ 90秒; 内燃机90~120秒;汽轮机120~180秒。 (2)推进器种类:CPP约为FPP的60~80%; (3)排水量和船型: 排水量越大,冲程越大压载时停车冲程约为 满载的80%,倒车冲程约为40~50%。 肥大型船舶的附加质量大,故其停船距离较 瘦削型船为长;