图的m着色问题

合集下载

回溯法实验(图的m着色问题)

回溯法实验(图的m着色问题)

算法分析与设计实验报告第六次附加实验cout<<endl;}elsefor(int i=1;i<=m;i++){x[t]=i;if(ok(t)) Backtrack(t+1);//回溯,继续寻找下一层x[t]=0;//回到最初状态,使x[1]继续尝试其他填色的可能解}}测试结果当输入图如下时:结果如下:12435只要输入边即可当输入的图如下时:结果如下:附录:完整代码(回溯法)//图的m着色问题回溯法求解#include<iostream>using namespace std;class Color{friend void mColoring(int,int,int **);private:bool ok(int k);void Backtrack(int t);int n, //图的顶点个数m, //可用颜色数**a, //图的邻接矩阵*x; //当前解long sum; //当前已找到的可m着色的方案数};bool Color::ok(int k) //检查颜色可用性{for(int j=1;j<=n;j++)if((a[k][j]==1)&&(x[j]==x[k])) //两个点之间有约束且颜色相同return false;return true;}void Color::Backtrack(int t){if(t>n) //到达叶子节点{sum++; //可行解+1cout<<"着色: ";for(int i=1;i<=n;i++) //输出可行解方案cout<<x[i]<<" ";cout<<endl;}elsefor(int i=1;i<=m;i++){x[t]=i;if(ok(t)) Backtrack(t+1);//回溯,继续寻找下一层x[t]=0;//回到最初状态,使x[1]继续尝试其他填色的可能解 }}void mColoring(int n,int m,int **a){Color X;//初始化XX.n=n;X.m=m;X.a=a;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++)p[i]=0;X.x=p;cout<<"顶点: ";for(int i=1;i<=n;i++) //用于输出结果cout<<i<<" " ;cout<<endl;X.Backtrack(1); //从顶点1开始回溯delete []p;cout<<"解法个数:"<<X.sum<<endl;}int main(){int n;int m;cout<<"please input number of node:";cin>>n;cout<<"please input number of color:";cin>>m;int **a=new int*[n+1];for(int i=0;i<=n;i++)a[i]=new int[n+1];for(int i=0;i<=n;i++) //利用抽象图实现图的邻接矩阵for(int j=0;j<=n;j++)a[i][j]=0;int edge;cout<<"please input adjacent edge number:";cin>>edge;int v,w;cout<<"please inout adjacent edge:"<<endl; //只要输入边即可for(int i=0;i<edge;i++){cin>>v>>w; //由于是无向图,所以对应的邻接矩阵对应的边都有,即v->m,m->v都有边a[v][w]=1;a[w][v]=1;}mColoring(n,m,a);system("pause");return 0;}。

图的着色问题--C++实现(含详细注释)

图的着色问题--C++实现(含详细注释)

图的着色问题一、题目简述(1) 图的m-着色判定问题给定一个无向连通图 G 和 m 种不同的颜色。

用这些颜色为图 G 的各顶点着色,每个顶点着一种颜色,是否有一种着色法使 G 中任意相邻的两个顶点着不同颜色?(2) 图的m-着色优化问题若一个图最少需要 m 种颜色才能使图中任意相邻的两个顶点着不同颜色,则称这个数 m 为该图的色数。

求一个图的最小色数 m 的问题称为m-着色优化问题。

二、算法思想1. m-着色判定问题总体思想:通过回溯的方法,不断为每一个节点着色,每个点的颜色由一个数字代表,初始值为1。

在对前面 step - 1 个节点都合法的着色之后,开始对第 step 个节点进行着色。

如果 n 个点均合法,且颜色数没有达到 m 种,则代表存在一种着色法使 G中任意相邻的两个顶点着不同颜色。

具体步骤:1. 对每个点 step ,有 m 种着色可能性,初始颜色值为1。

2. 检查第 step 个节点颜色的可行性,若与某个已着色的点相连且颜色相同,则不选择这种着色方案,并让颜色值加1,继续检查该点下一种颜色的可行性。

3. 如果第 step 点颜色值小于等于 m ,且未到达最后一个点,则进行对第 step + 1 点的判断。

4. 如果第 step 点颜色值大于 m ,代表该点找不到合适的分配方法。

此时算法进行回溯,首先令第 step 节点的颜色值为0,并对第 step - 1 个点的颜色值+1后重新判断。

5. 如果找到一种颜色使得第 step 个节点能够着色,说明 m 种颜色的方案是可行的。

6. 重复步骤2至5,如果最终 step 为0则代表无解。

2. m-着色优化问题基于问题1,对于一个无向图 G ,从1开始枚举染色数,上限为顶点数,第一个满足条件的颜色数即为所求解。

三、实现过程(附代码)1. m-着色判定问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n和着色数m"<<endl;cin>>n>>m;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向邻接矩阵存储边cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}if (Solve(m)) {cout<<"有解";} else {cout<<"无解";}return0;}2. m-着色优化问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n"<<endl;cin>>n;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向图邻接矩阵存储边 cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}for (m=1; m<=n; m++) { // 从小到大枚举着色数mif (Solve(m)) { // 如果有解,输出答案并跳出循环cout<<"最小色数m为 "<<m;break;}}return0;}四、结果及分析问题1测试用例:问题2测试用例:经检验,最少着色数的范围为2-4,意味着使 G 中任意相邻的两个顶点着不同颜色最多需要4种颜色。

图的M着色算法演示

图的M着色算法演示
int OK(int t,int i) { int j;
for( j=1;j<t;j++) {
if(a[t][j]&&x[j]==i)
return 0; }
return 1; }
t=2
t=3 t=4
模拟演示
t=1
当前节 点
颜色的 种类
void Backtrace(int t,int m)
当搜索的当前节点t<=N时,m种颜色 依次试用,调用函数OK进行判断。 如果当前颜色可以,则进入下一层搜索。
当搜索到最叶子节 点时(t>N),即 可输出一种方案
for( i=1;i<=m;i++) {
if(OK(t,i)) { x[t]=i;
Backtrace(t+1,m); }
}
if(t>N) {
sum++; printf("第%d种方案:\n",sum);
for( i=1;i<=N;i++) printf("%d ",x[i]); }
我们可以把问题简化为3个点来分析,现给定如下图 ,怎样求解呢?
1
该图的色数是多少?怎样 用解空间树来表示呢?
3 2
由图可知,对于每一个顶点可选的颜色可以有3种不同的选择,所以每一个 节点有3个儿子节点,有4层。
判断条件是什么?
新加入来得节点t取某一种颜色i时,依次和上层的每一个节点j(j<t)比较。 如果a[t][j]=1并且x[t]=x[j],那么它是不可着色的。
四、程序代码
#include<stdio.h> #include<string.h> #define N 3//图中节点的个数 int a[N+1][N+1]={

图的着色问题

图的着色问题

问题来源
图的着色
通常所说的着色问题是指下述两类问题: 通常所说的着色问题是指下述两类问题: 1.给定无环图G=(V,E),用m种颜色为图中 的每条边着色,要求每条边着一种颜色, 的每条边着色,要求每条边着一种颜色,并 使相邻两条边有着不同的颜色, 使相邻两条边有着不同的颜色,这个问题称 为图的边着色问题。 为图的边着色问题。 2.给定无向图G=(V,E),用m种颜色为图中 的每个顶点着色,要求每个顶点着一种颜色, 的每个顶点着色,要求每个顶点着一种颜色, 并使相邻两顶点之间有着不同的颜色, 并使相邻两顶点之间有着不同的颜色,这个 问题称为图的顶着色问题。 问题称为图的顶着色问题。
化简得
( a + bd )(b + aceg )(c + bdef )( d + aceg )(e + bcdf )( f + ceg )( g + bdf )
求极小覆盖法- 求极小覆盖法-布尔代数法
Step3:从中挑选所用极大独立集个数最小者, Step3:从中挑选所用极大独立集个数最小者, 即为X 即为X(G) 但上述子集的颜色数都不是X ),正确的应 但上述子集的颜色数都不是X(G),正确的应 该是X =3,该子集为: {b,d,f}中的 该是X(G)=3,该子集为:给{b,d,f}中的 b,d,f涂颜色 涂颜色1 {a,e,g}中a,e,g涂颜色 涂颜色2 b,d,f涂颜色1,为{a,e,g}中a,e,g涂颜色2为 {a,c,g}中的 涂颜色3 中的c {a,c,g}中的c涂颜色3。 由此可见, 由此可见,求色数其需要求极大独立集以 及一切若干极大独立集的和含所有顶点的子 对于大图, 集,对于大图,因为图计算量过大而成为实 际上难以凑效的算法,所以不是一个好算法, 际上难以凑效的算法,所以不是一个好算法, 一般我们采用贪心法等近似算法来求解 。

0030算法笔记——最大团问题和图的m着色问题

0030算法笔记——最大团问题和图的m着色问题
// 计算最大团 void Clique::Backtrack(int i) { 3if (i > n) // 到达叶结点 3{ 33for (int j = 1; j <= n; j++) 33{ 333bestx[j] = x[j]; 333cout<<x[j]<<" "; 33} 33cout<<endl; 33bestn = cn; 33return; 3} 3// 检查顶点 i 与当前团的连接 int OK = 1; 3for (int j = 1; j < i; j++) 3if (x[j] && a[i][j] == 0) 3{ 33// i与j不相连 33OK = 0; 33break; 3}
3if (OK)// 进入左子树 3{ 33x[i] = 1; 33cn++; 33Backtrack(i+1); 33x[i] = 0; 33cn--; 3}
if (cn + n - i >= bestn)// 进入右子树 3{ 33x[i] = 0; 33Backtrack(i+1); 3} }
3333 如果U∈V且对任意u,v∈U有(u, v)不属于E,则称U是G的空子图。G的空子图U是G的独立集当且仅当U不包 含在G的更大的空子图中。G的最大独立集是G中所含顶点数最多的独立集。
3333 对于任一无向图G=(V, E),其补图G'=(V', E')定义为:V'=V,且(u, v)∈E'当且仅当(u, v)∈E。 3333 如果U是G的完全子图,则它也是G'的空子图,反之亦然。因此,G的团与G'的独立集之间存在一一对应的 关系。特殊地,U是G的最大团当且仅当U是G'的最大独立集。

《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告实验序号:10实验项目名称:实验十一回溯法(二)一、实验题目1.图的着色问题问题描述:给定无向连通图G和m种不同的颜色。

用这些颜色为图G的各顶点着色,每个顶点着一种颜色。

如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。

图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。

2.旅行商问题问题描述:给出一个n个顶点的带权无向图,请寻找一条从顶点1出发,遍历其余顶点一次且仅一次、最后回到顶点1的最小成本的回路——即最短Hamilton回路。

3.拔河比赛问题描述:某公司的野餐会上将举行一次拔河比赛。

他们想把参与者们尽可能分为实力相当的两支队伍。

每个人都必须在其中一只队伍里,两队的人数差距不能超过一人,且两队的队员总体重应该尽量接近。

4.批处理作业调度问题描述:给定n个作业的集合J=(J1,J2, .. Jn)。

每个作业J都有两项任务分别在两台机器上完成。

每个作业必须先由机器1处理,再由机器2处理。

作业i需要机器j的处理时间为tji(i=1,2, ..n; j=1,2)。

对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间,则所有作业在机器2上完成处理的时间和,称为该作业调度的完成时间和。

批处理作业调度问题要求,对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。

二、实验目的(1)通过练习,理解回溯法求解问题的解状态空间树与程序表达的对应关系,熟练掌握排列树、子集树的代码实现。

(2)通过练习,体会减少搜索解空间中节点的方法,体会解的状态空间树的组织及上界函数的选取对搜索的影响。

(3)通过练习,深入理解具体问题中提高回溯算法效率的方法。

(4)(选做题):在掌握回溯法的基本框架后,重点体会具体问题中解的状态空间搜索时的剪枝问题。

三、实验要求(1)每题都必须实现算法、设计测试数据、记录实验结果,并给出时间复杂度分析。

四、实验过程(算法设计思想、源码)1.图的着色问题(1)算法设计思想用邻接矩阵a[i][j]存储无向图,对于每一个顶点有m种颜色可以涂。

回溯算法---例题7.图的m着色问题

回溯算法---例题7.图的m着色问题

回溯算法---例题7.图的m着⾊问题⼀.问题描述给定⽆向连通图G和m种不同的颜⾊.⽤这些颜⾊为图G的各项点着⾊,每个项点画⼀种颜⾊.是否有⼀种着⾊法,使G中每条边的2个顶点有着不同颜⾊?⼆.解题思路图的m⾊判定问题:给定⽆向连通图G和m种颜⾊。

⽤这些颜⾊为图G的各顶点着⾊. 问是否存在着⾊⽅法, 使得G中任2邻接点有不同颜⾊。

图的m⾊优化问题:给定⽆向连通图G,为图G的各顶点着⾊, 使图中任2邻接点着不同颜⾊,问最少需要⼏种颜⾊。

所需的最少颜⾊的数⽬m称为该图的⾊数若图G是可平⾯图,则它的⾊数不超过4⾊(4⾊定理).4⾊定理的应⽤:在⼀个平⾯或球⾯上的任何地图能够只⽤4种颜⾊来着⾊使得相邻的国家在地图上着有不同颜⾊例如:[这⾥有⼀个适⽤于任意图着⾊的Welch Powell法,感兴趣的同学可以看看.](#Welch Powell)回到该问题,我们可以很清晰地看出问题的解空间树是⼀棵排列树,因为我们确定n个元素满⾜某种性质的排列,这个性质就是⼀条边的两个点颜⾊不相同.⽽不是说找到n个元素的⼀个⼦集,这是要做的第⼀步.具体的算法实现上:设图G=(V, E), |V|=n, 颜⾊数= m, ⽤邻接矩阵a表⽰G, ⽤整数1, 2…m来表⽰m种不同的颜⾊。

顶点i所着的颜⾊⽤x[i]表⽰。

问题的解向量可以表⽰为n元组x={ x[1],...,x[n] }. x[i]Î{1,2,...,m},解空间树为排序树,是⼀棵n+1层的完全m叉树.在解空间树中做深度优先搜索, 约束条件: x[i] ≠ x[j], 如果a[j].[i] = 1.代码如下:// 图的m着⾊问题#include<bits/stdc++.h>using namespace std;class Color{friend int mColoring(int, int, int **);private:bool CanDraw(int k);void Backtrack(int i);int n, //图的顶点数m, //可⽤颜⾊数**a, //图的邻接矩阵*x; //当前解long sum; //当前已经找到的可m着⾊⽅案数};bool Color::CanDraw(int i) //检查第i层填写的颜⾊x[i]是否可⽤{for(int j=1; j<i; j++){if(a[i][j]==1 && x[j]==x[i])return false;}return true;}void Color::Backtrack(int i){if(i > n){sum++;cout<<"第"<<sum<<"个解:";for(int i=1; i<=n; i++)cout<<x[i]<<" ";cout<<endl;return;}for(int k=1; k<=m; k++) //依次从m种颜⾊中选择,由于每⼀个分⽀的处理⽅法⼀样,所以直接⽤⼀个循环,⽽不需要分别写{x[i] = k;if(CanDraw(i)){cout<<"颜⾊"<<k<<"可⾏,深⼊⼀层,将到达"<<i+1<<"层"<<endl;Backtrack(i+1);cout<<"回溯⼀层到达第"<<i<<"层"<<endl;}else{if(k==m) cout<<"当前层所有颜⾊选完,没有可⾏颜⾊,故将回溯⼀层到达第"<<i-1<<"层"<<endl;else cout<<"颜⾊"<<k<<"不可⾏,继续选择颜⾊"<<k+1<<endl;}x[i] = 0;}}int mColoring(int n, int m, int **a){Color X;// 初始化XX.n = n;X.m = m;X.a = a;X.sum = 0;int *p = new int[n+1];for(int i=0; i<=n; i++) p[i] = 0;X.x = p;X.Backtrack(1);delete[] p;return X.sum;}int main(){cout<<"请输⼊顶点个数和颜⾊种数:";int n, m;while(cin>>n>>m && n && m){cout<<"请输⼊邻接矩阵"<<endl;int **a = new int*[n+1];for(int i=0; i<=n; i++) a[i] = new int[n+1];for(int i=1; i<=n; i++)for(int j=1; j<=n; j++)cin>>a[i][j];int ans = mColoring(n, m, a);cout<<"图的"<<m<<"着⾊⽅案共有"<<ans<<"种"<<endl;for(int i=0; i<=n; i++) delete[] a[i];delete[] a;cout<<"请输⼊顶点个数和颜⾊种数:";}system("pause");return 0;}运⾏结果:由此可以结合排列树看⼀看,⼗分清晰明了.参考毕⽅明⽼师《算法设计与分析》课件.欢迎⼤家访问个⼈博客⽹站---,和我⼀起加油吧!针对任意图着⾊问题,Welch Powell⽅法:将G的结点按照度数递减的次序排列⽤第⼀种颜⾊对第⼀个结点着⾊,并按照结点排列的次序对与前⾯着⾊点不邻接的每⼀点着以相同颜⾊⽤第⼆种颜⾊对尚未着⾊的点重复步骤2,⽤第三种颜⾊继续这种作法,直到所有点着⾊完为⽌例如:。

图着色问题——精选推荐

图着色问题——精选推荐

图着⾊问题⼀、图着⾊问题(1)图的m可着⾊判定问题给定⽆向连通图G和m种不同的颜⾊。

⽤这些颜⾊为图G的各顶点着⾊,每个顶点着⼀种颜⾊。

是否有⼀种着⾊法使G中每条边的2个顶点着不同颜⾊。

(2)图的m可着⾊优化问题若⼀个图最少需要m种颜⾊才能使图中每条边连接的2个顶点着不同颜⾊,则称这个数m为该图的⾊数。

⼆、m可着⾊判定问题的解法【算法】(1)通过回溯的⽅法,不断的为每⼀个节点着⾊,在前⾯cur-1个节点都合法的着⾊之后,开始对第cur-1个节点进⾏着⾊,(2)这时候枚举可⽤的m个颜⾊,通过和第cur-1个节点相邻的节点的颜⾊,来判断这个颜⾊是否合法(3)如果找到那么⼀种颜⾊使得第cur-1个节点能够着⾊,那么说明m种颜⾊的⽅案在当前是可⾏的。

(4)cur每次迭代加1,如果cur增加到N并通过了检测,说明m种颜⾊是可满⾜的。

(5)注意,这⾥只是要求判断m种颜⾊是否可满⾜,所以找到任何⼀种⽅案就可以了。

【代码实现】#include<iostream>#include<cstring>using namespace std;const int maxn = 105;int G[maxn][maxn];int color[maxn];bool ans;int n,m,k;void init(){ans = 0;memset(G, 0 , sizeof G);memset(color, 0 , sizeof color);}void dfs(int cur){if(cur > n) {ans = 1;return;}for(int i=1; i<=m; i++){ //对cur结点尝试使⽤每⼀种颜⾊进⾏涂⾊bool flag = 1;//cur之前的结点必被涂⾊for(int j=1; j<cur; j++){if(G[j][cur] == 1 && color[j] == i){flag = 0;//只要有⼀个冲突都不⾏break;}}//如果可以涂上i颜⾊,则考虑下⼀个结点的情况if(flag){color[cur] = i;dfs(cur + 1);}//如果到这⼀步第cur个结点⽆法着⾊,则返回探寻其他⽅案else color[cur] = 0;//回溯 ;}}int main(){while(cin>>n>>k>>m){init();for(int i=1; i<=k; i++){int x,y;cin>>x>>y;G[x][y] = G[y][x] = 1;}dfs(1);cout<<ans<<endl;}return0;}三、m可着⾊拓展【问题】在上述基础上,求出m种颜⾊能够给图G涂⾊的总总⽅案数量【算法】由于这个时候要求总⽅案数量,所以在找到⼀种可⾏⽅案后,总是进⾏回溯再搜索其他的解决⽅案,与上⾯不同,上⾯是只需要找出⼀种⽅案即可,所以如果找到了就不需要再回溯了,所以在这⾥只需要把回溯语句的位置写到dfs语句的后⾯即可。

m着色问题

m着色问题

{ private:
int n,
//图的顶点个数
m,
//可用颜色数
**a,
//图的邻接矩阵,用来表示一个无向连通图G
*x;
//当前解
long sum;
//当前已找到的可m着色方案数
public:
color();
int ok(int k);
void backtrack(int t);
void op();
~color();
};
/*构造函数的定义*/
color::color()
{ int k;
//边数
int i,j;
int v1,v2;
//构成边的两顶点
ifstream fin("input.txt",ios::nocreate);
if(!fin)
{cerr<<"文件不存在";
exit(0); }
fin>>n>>k>>m;
a[v1][v2]或a[v2][v1]赋值
}
if(!(x=new int[n+1]))
{cerr<<"insufficient memory!"<<endl;
exit(0); }
for(i=0;i<=n;i++)
x[i]=0;
//对x数组初始化,作为未着色情况
sum=0;
fin.close();
}
if(ok(t))
backtrack(t+1); //如果该颜色可用,判断下一个顶点
}
}
/*输出函数的定义*/
void color::op()

着色问题与排队论

着色问题与排队论
void GraphColor(int n, int c[ ][ ], int m) //所有数组下标从 1 开始 { for (i=1; i<=n; i++ ) //将数组 color[n]初始化为 0 color[i]=0; k=1; while (k>=1) { color[k]=color[k]+1; while (color[k]<=m) if Ok(k) break; else color[k]=color[k]+1; //搜索下一个颜色
12.1.1
顶点着色问题
一、基本定义 对图 G=(V,E),设 S 是 V 的一个子集,若 S 中任意两个顶点在 G 中均不相邻,则称 S 为 G 的一个独立集,如果 G 不包含适合|S'|>|S|的独立集 S',则称 S 为 G 的最大独立集。 设 K 是 G 的一个独立集,并且对于 V\K 的任一顶点 v,K+v 都不是 G 的独立集,则 称 K 是 G 的一个极大覆盖。极大独立集的补集称为极小覆盖, V 的子集 K 是 G 的极小覆 盖当且仅当:对于每个顶点 v 或者 r 属于 K,或者 v 的所有邻点属于 K(但两者不同时成 立) 。 G 的一个 k 顶点着色是指 k 种颜色 1,2,…,k 对于 G 各顶点的一个分配,如果任意两个 相邻顶点都分配到不同的颜色,则称着色是正常的。换句话说,无环图 G 的一个正常 k 顶 点着色是把 V 分成 k 个(可能有空的)独立集的一个分类 (V1,V2,„,Vk)。当 G 有一个正常 k 顶点着色时,就成 G 是 k 顶点可着色的。 G 的色数 X(G)是指 G 为 k 可着色的 k 的最小值,若 X(G)=k,则称 G 是 k 色的。 ·160·

算法设计与分析课件--回溯法-图的m着色问题

算法设计与分析课件--回溯法-图的m着色问题

4
5
C
C
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
X3=3
D
9
5.6 图的m着色问题
GCP示例
1
A
AA
A
A X1=1
2
3
X1=1
X1=1 X1=1
B
B
B
B X2=2
4
5
X2=2
C
X2=2
C
C X3=3
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
7
5.6 图的m着色问题
GCP示例
1
AA
A
2
3
X1=1
X1=1
B
B
X2=2
4
5
C
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
8
5.6 图的m着色问题
GCP示例
1
AA
A
A
2
3
X1=1
X1=1 X1=1
B
B
B
X2=2 X2=2
A
X1=1
2
3
B
X2=2 X2=3
4
5
C
X3=3
G
X3=2
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
D
X4=1
E
X5=3
F
H
X4=1

用回溯法求解图的m着色问题

用回溯法求解图的m着色问题

实验二用回溯法求解图的m着色问题一、实验目的12、使用回溯法编程求解图的m着色问题。

二、实验原理回溯法是一个既带有系统性又带有跳跃性的的搜索算法。

回溯法在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任何一个结点时,总是先判断该结点是否肯定不包含问题的解,如果肯定不包含,则跳过对以该结点为根的子树搜索。

否则,进入该子树,继续按深度优先的策略进行搜索。

回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。

而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可结束。

回溯法从开始结点(根结点)出发,以深度优先搜索的方式搜索整个解空间。

这个开始结点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的活结点,并成为当前扩展结点。

如果在当前的扩展结点处不能再向纵深方向移动,则当前的扩展结点就成为死结点。

此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已无活结点时为止。

三、问题描述给定一个无向连通图G和m种不同的颜色。

用这些颜色为图G的各顶点着色,每个顶点着一种颜色。

若一个图最少需要m种颜色才能使图中任何一条边连接的2个顶点着有不同的颜色,则称这个数m为该图的色数。

求一个图的色数m的问题称为图的m可着色优化问题。

设计一个算法,找出用m种颜色对一个图进行着色的不同方案。

四、算法设计与分析用邻接矩阵a来表示一个无向连通图G=(V,E)。

用整数1,2,…,m来表示m 种不同的颜色。

x[i]表示顶点i所着的颜色来,则问题的解向量可以表示为n元组x[1:n]。

问题的解空间可表示一棵高度为n+1的完全m叉树。

解空间树的第i层中每一结点都有m个儿子,每个儿子相应于x[i]的m个可能的着色之一,第n+1层结点均为叶结点。

图的m着色开题报告

图的m着色开题报告
C++是一种静态数据类型检查的,支持多重编程范式的通用程序设计语言。它支持过程化程序设计、数据抽象、面向对象程序设计、制作图标等等泛型程序设计等多种程序设计风格。C++是有C语言演化而来的,当C语言发展到顶峰的时刻,出现了一个版本叫C with Class,那就是C++最早的版本,在C语言中增加class关键字和类,那个时候有很多版本的C都希望在C语言中增加类的概念;后来C标准委员会决定为这个版本的C起个新的名字,那个时候征集了很多种名字,最后采纳了其中一个人的意见,以C语言中的++运算符来体现它是C语言的进步,故而叫C++,成立了C++标准委员会[15]。
“计算机既是数学的创造物,又是数学的创造者”,而算法既是计算机理论和实践的核心,也是数学的最基本内容之一。甚至有人说,数学学习的主要作用是形成“算法思维”。算法有着悠久的发展历史,中国古代数学曾经以算法为特色,取得了举世瞩目的辉煌成就。在已经逐步进入信息化社会的今天,算法的基本知识、方法、思想日益融入人们社会生活的方方面面,已经也应该成为现代人所应具备的一种基本素质。
目前解决该问题的算法很多,如回溯算法、分支界定法、Welsh-Powell算法、布尔代数法、蚁群算法、贪婪算法、禁忌搜索算法、神经网络、遗传算法以及模拟退火算法等。
通常的解决着色问题的算法采用蛮力法、贪婪法、深度优先或广度优先等思想可以得到最优解,但时间复杂性太大,如回溯法,其计算时间复杂性为指数阶的;有的在多项式时间内能得到可行解,但不是最优解,如Welsh-Powell算法和贪婪算法。Welsh-Powell算法只能保证最多使用 ( 为图中顶点的最大度)种颜色给一个图正常着色,而由Brooks定理,对于既不是完全图又不是奇圈的简单连通图,所需的颜色数 。故通常的算法在解决图节点着色问题这样的NP完全问题时,存在很大的瓶颈,难以得到满意的结果。而对于像遗传算法和神经网络这样复杂的启发式算法,通常算法本身复杂性较大,并且算法效率难以分析,最终得到的是近似解,其是否最优解也不能保证。

图的着色

图的着色
图的着色
内容
1 问题的来源 2 基本的概念
3
算法
4
实例
问题的来源-----四色问题
•图的着色问题是由地图的着色问题引申而来的:用m种颜色为地图着色,使得 地图上的每一个区域着一种颜色,且相邻区域颜色不同。 •四色问题:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同
的颜色。
问题处理:如果把每一个区域收缩为一个顶点,把相邻两个区域用一条边相 连接,就可以把一个区域图抽象为一个平面图。 例:图(a)所示的区域图可抽象为图(b)所表示的平面图。区域用城市名 表示,颜色用数字表示,则图中表示了不同区域的不同着色问题 。
算法6.8 生成下一种颜色
procedure NEXTVALUE(k) // global integer m,n,X(1:n),boolean GRAPH(1:n,1:n) integer j,k
loop
X(k) (X(K)+1)mod(m+1) //试验下一个最高标值的颜色//
if X(k)=0 then exit endif //全部颜色用完了//
if X(k)=0 then exit endif//没有可用的颜色了//
if k=n then print(X)//至多用了m种颜色分配给n个结点//
else call MCOLORING(K+1)//所有m-着色方案均在此反
复递归调用中产生// endif repeat end MCOLORING

基本概念
图的m色判定问题: 给定无向连通图G和m种颜色。用这些颜色为 图G的各顶点着色.问是否存在着色方法,使得G中任意2邻接点有不 同颜色。 图的m色优化问题:给定无向连通图G,为图G的各顶点着色, 使图中

图着色问题论述

图着色问题论述

图着色问题论述在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

贪心法它适用于解一些组合数较大的问题。

根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变。

换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优。

【关键词】图着色回溯法贪心法1 图着色问题的分类1.1 回溯法回溯法是一种系统地搜索问题解的搜索算法。

它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。

如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。

否则,进入该子树,继续按深度优先的策略进行搜索。

用回溯法解题的一般步骤:(1)描述解的形式,定义一个解空间,它包含问题的所有解。

(2)构造状态空间树。

(3)构造约束函数(用于杀死节点)。

1.2 贪心算法贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。

不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

贪心算法不是对所有问题都能得到整体最优解,但对一些问题它能产生整体最优解或者是整体最优解的近似解。

贪心算法没有固定的算法框架,算法设计的关键是贪婪策略的选择。

一定要注意,选择的贪婪策略要具有无后向性,即某阶段状态一旦确定以后,不受这个状态以后的策略影响,也就是说某个状态以后的过程不会影响以前的状态,只与当前状态有关,也称为这种特性为无后效性。

因此,适应用贪婪策略解决的问题类型较少,对所采用的贪婪策略一定要仔细分析其是否满足无后效性。

图的着色问题是由地图的着色问题引申而来的:用m 种颜色为地图着色,使得地图上的每一个区域着一种颜色,且相邻区域颜色不同。

图的着色问题

图的着色问题

顶点着色-基本概念
• K可着色:G的一个k顶点着色是指k种颜色1,2,…,k对于G各顶点的 可着色: 的一个k顶点着色是指k种颜色1,2,…,k对于G 1,2, 对于 一个分配,如果任意两个相邻顶点都分配到不同的颜色, 一个分配,如果任意两个相邻顶点都分配到不同的颜色,则称着 色是正常的。换句话说,无环图G的一个正常k顶点着色是把V 色是正常的。换句话说,无环图G的一个正常k顶点着色是把V分成 可能有空的)独立集的一个分类( 2,… k个(可能有空的)独立集的一个分类(V1,V2,…,Vk)。当G有一个 正常k顶点着色时,就成G 顶点可着色的。 正常k顶点着色时,就成G是k顶点可着色的。 • G的色数X(G)是指G为k可着色的k的最小值,若X(G)=k,则称G 的色数X 是指G 可着色的k的最小值, =k,则称G 色的。 是k色的。 • 事实上,如果我们将同色的顶点列入一个顶点子集,那么求X(G) 事实上,如果我们将同色的顶点列入一个顶点子集,那么求X 就转为求满足下列条件的最少子集数k 就转为求满足下列条件的最少子集数k: 两两子集中的顶点不同; (1)两两子集中的顶点不同; 子集中的两两顶点不相邻。 (2)子集中的两两顶点不相邻。 显然有: 为平凡图, =1; 显然有: (i)若G为平凡图,则X(G)=1; ii) 为偶图, (ii)若G为偶图,则X(G)=2 iii)对任意图G Δ+1(这里Δ (iii)对任意图G,有X(G)≤Δ+1(这里Δ表示为顶点 数最大值) 数最大值)
问题来源
图的着色
• 通常所说的着色问题是指下述两类问题: 通常所说的着色问题是指下述两类问题: • 1.给定无环图G=(V,E),用m种颜色为图中 的每条边着色,要求每条边着一种颜色, 的每条边着色,要求每条边着一种颜色,并 使相邻两条边有着不同的颜色, 使相邻两条边有着不同的颜色,这个问题称 为图的边着色问题。 为图的边着色问题。 • 2.给定无向图G=(V,E),用m种颜色为图中 的每个顶点着色,要求每个顶点着一种颜色, 的每个顶点着色,要求每个顶点着一种颜色, 并使相邻两顶点之间有着不同的颜色, 并使相邻两顶点之间有着不同的颜色,这个 问题称为图的顶着色问题。 问题称为图的顶着色问题。

图的m着色问题

图的m着色问题

图的m着⾊问题问题给定⽆向连通图G和m种颜⾊,⽤这些颜⾊给图的顶点着⾊,每个顶点⼀种颜⾊。

如果要求G的每条边的两个顶点着不同颜⾊。

给出所有可能的着⾊⽅案;如果不存在,则回答“NO”。

解析利⽤回溯法。

涂的时候从颜⾊1开始到m,每当涂上⼀个⾊,要判断第c个点是否可以涂这个⾊,不可以的话就不再往下涂了,改试另⼀个颜⾊,可以的话就继续。

当c>n的时候即前n个点都涂完了,然后输出结果并cout++计数。

设计if(c>n){//如果涂的数⽬⼤于n,则表⽰已经成功涂完输出color数组;return;}for(int i=1;i<=m;i++){color[c]=i;if(点c可以涂){draw(c+1);}color[c]=0;//回溯}分析有n个点,最坏情况下,每个点需要检查每⼀个⼦节点,复杂度为O(mn),所以总的时间复杂度为O(nm^n)。

源码/*author: kekeproject name:图的m着⾊问题Time Complexity: O(nm^n)*/#include <bits/stdc++.h>using namespace std;#define ll long long#define db doubleconst int maxn = 1010;int n, m, f, t, sum, color[maxn];bool p[maxn][maxn];bool jud(int x) {for (int i = 1; i <= n; i++) {if (p[x][i] && color[x] == color[i]) return false;}return true;}void draw(int x) {if (x > n) {//如果涂⾊数⽬⼤于n,则表⽰已经完成全部涂⾊for (int i = 1; i <= n; i++) cout << color[i] << (i == n ? "\n" : "");++sum;return;}for (int i = 1; i <= m; i++) {color[x] = i;if (jud(x)) draw(x + 1);color[x] = 0;//回溯}}int main() {ios::sync_with_stdio(false);cout << fixed << setprecision(2);cin >> n >> m;while (cin >> f >> t) { //不断读取图的边,建图if (f == 0 && t == 0) break;p[f][t] = p[t][f] = true; //双向边}draw(1);cout << "总共有" << sum << "种涂⾊⽅案" << "\n";return0; // good job! }。

图着色

图着色

算法设计课程设计题目图着色问题姓名学号专业年级指导教师职称2014年 12月 4日图的m着色问题1 摘要 (3)2 图的着色问题 (4)2.1 图的着色问题的来源 (4)2.2 图的着色问题的描述 (4)3算法的基本思想 (4)3.1 求极小覆盖法----布尔代数法 (4)3.2 穷举法-Welch Powell着色法 (4)3.3 回溯法 (4)3.4 贪心法 (4)3.5 蚁群算法 (5)4算法步骤 (5)4.1 求极小覆盖法----布尔代数法 (4)4.2 穷举法-Welch Powell着色法 (4)4.3 回溯法 (4)4.4 贪心法 (4)4.5 蚁群法 (4)5 理论分析(复杂度比较)、实验性能比较 (7)5.1 复杂度分析 (4)5.2 实验性能比较 (4)6 心得体会 (8)7参考文献 (8)8 附录 (8)摘要图论是近年来发展迅速而又应用广泛的一门新兴学科,已广泛应用于运筹学、网络理论、信息论、控制论、博奕论以及计算机科学等各个领域。

一般说来,图的着色问题最早起源于著名的“四色问题”,染色问题不但有着重要的理论价值,而且,它和很多实际问题有着密切联系,例如通讯系统的频道分配问题,更有着广泛的应用背景. 本文首先讨论了人工智能的状态搜索方法在图着色中的具体应用,并用可视化方法展示了低维的着色空间和约束的具体意义。

关键词:图着色 c++代码2、图的着色问题2.1图的着色问题的来源1852年,毕业于伦敦大学的弗南西斯·格思里(Francis Guthrie)在一家科研单位从事地图着色工作时,发现“任何一张地图似乎只用四种颜色就能使具有共同边界的国家着上不同的颜色。

”用数学语言来表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。

”这就是源于地图着色的四色猜想问题。

这里所指的相邻区域,是指有一整段边界是公共边界。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-5-23 3/9
m着色问题 图的 图的m � 图的m着色问题 : 为无向图的各顶点着色。要求:有边相 邻的顶点不能着同一种颜色。
2013-5-23
4/9
m着色问题 图的 图的m � 解空间:完全m叉树 设X[i]表示第i个节点的填的颜色,1代表填 入颜色1,. . . ,m代表填入颜色m,搜索的 空间为n元一维数组(X[1],X[2],X[3],……, X[n]) mn) � 取值范围 :( :(m 为(1,1,1……,1,1),(1,1,1……,1,2
种颜色 i 时,依次和上层 的每一个节点 j (j<t)比较
a[t][j]=1 && x[t]=x[j]
解空间图示
2013-5-23 7/9
m着色问题 图的 图的m
� 实例演示: 无向图有3个节点,分别相连,用 3种颜色为该 t=1 图着色。
1 2 3 t=2
t=3
t=4
2013-5-23 8/9
),(1,1,1……,2,2),……,(m,m, m……,m,m)。
2013-5-23
5/9
m着色问题 图的 图的m � 解空间图示 : 以3个节点,3种可用图颜色为例。
解空间图示
2013-5-23 6/9
m着色问题 图的 图的m � 颜色是否可填判断条件 : 与已填入颜色的节点比较:有边相连 且颜色相同,则不能填入。 新加入来得节点t 取某一
m着色问题 图的 图的m
� private static void backtrack(int t) � { 到达叶节点找到一个解 � if (t>n) sum++; � else � for (int i=1;i<=m;i++) { 颜色能填入向下搜索解 � x[t]=i; � if (ok(t)) backtrack(t+1); � } 判断当前颜色能否填入 � } � private static boolean ok(int k) � {// 检查颜色可用性 � for (int j=1;j<=n;j++) � if (a[k][j] && (x[j]==x[k])) return false; � return true; � } �}
华南师范大学计算机学院 – 计算机算法
图的 m着色问题 图的m
作者:杨劲松
2013-5-23
目录
� 图的m着色问题 � 问题描述 � 实例演示
2013图的 图的m � 国王的遗嘱: 五位王子,想各自立国,可以将国土分 为五份。要求:每个小国都要与其他的四 个小国有共同的国界。 � 四色猜想: 任意一个无飞地的 地图都可以用四种颜色 填色,使得没有两个相 邻国家填的颜色相同。
2013-5-23 9/9
相关文档
最新文档