初中数学二次函数的最值问题专题复习

合集下载

中考数学复习考点知识与题型专题讲义15---二次函数的最值(基础篇)

中考数学复习考点知识与题型专题讲义15---二次函数的最值(基础篇)

中考数学复习考点知识与题型专题讲义15 二次函数的最值(基础)1.已知二次函数y1=ax2+4x+b与y2=bx2+4x+a都有最小值,记y1、y2的最小值分别为m、n.(1)若m+n=0,求证:对任意的实数x,都有y1+y2≥0;(2)若m,n均大于0,且mn=2,记M为m,n中的最大者,求M的最小值.【分析】(1)根据题意可以用用含a,b的代数式表示m、n,然后根据m+n=0,可以解答本题;(2)根据题意可以用用含a,b的代数式表示m、n,然后根据mn=2,记M为m,n中的最大者,可以求得M的最小值.【解答】解:(1)∵二次函数y1=ax2+4x+b与y2=bx2+4x+a都有最小值,y1、y2的最小值分别为m、n,∴y1+y2≥m+n,∵m+n=0,∴y1+y2≥0;(2))∵y1=ax2+4x+b=a(x+2a)2+ab−4a,∴m=ab−4 a,∵y2=bx2+4x+a=b(x+2b)2+ab−4b,∴n=ab−4 b,∵mn=2,m,n均大于0,∴ab−4a•ab−4b=2,解得,ab=2(舍去)或ab=8,∴{m =4a n =4b , ∴m =4a ,n =a 2,∵M 为m ,n 中的最大者,∴当0<a <2√2时,M =4a >√2,当a =2√2时,M =√2,当a >2√2时,M =a 2由上可得,M 的最小值是√2.【点评】本题考查二次函数的最值,解题的关键是明确题意,可以将函数的一般式化为顶点式,利用分类讨论的数学思想和数形结合的思想解答问题.2.若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2﹣ax 有最大值还是最小值,并求出其最值.【分析】先根据一次函数的性质得到a +1>0且a <0,则﹣1<a <0,再利用配方法得到y =ax 2﹣ax =a (x −12)2−14a ,然后利用二次函数的性质解决问题.【解答】解:∵一次函数y =(a +1)x +a 的图象过第一、三、四象限,∴a +1>0且a <0,∴﹣1<a <0,∵y =ax 2﹣ax =a (x 2﹣x )=a (x 2﹣x +14−14)=a (x −12)2−14a ,而a <0,∴二次函数有最大值,最大值为−14a .【点评】本题考查了二次函数的最值:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.也考查了一次函数的性质.3.若函数f(x)=−12x 2+133当a ≤x ≤b 时的最小值为2a ,最大值为2b ,求a 、b 的值. 【分析】根据二次函数的增减性以及当a <b ≤0时,当a ≤0<b 时,若0<a <b 时分别得出a ,b 的值即可.【解答】解:函数f(x)=−12x 2+133的顶点是(0,133),对称轴是y 轴,最大值为133,如右图, (1)当a <b ≤0时,x =a 时有最小值2a ,x =b 时有最大值2b ,于是−12a 2+133=2a , −12b 2+133=2b ,可知a 、b 是方程−12x 2+133=2x 的两个根,即3x 2+12x ﹣26=0,由于△>0,x 1x 2=−263,此方程有一正一负两个根,这与a <b ≤0矛盾,故此情况舍去;(2)当a ≤0<b 时,x =0时有最大值133=2b , 解得b =136,x =b 时有最小值2a ,即−12×(136)2+133=14372>0,而2a ≤0,矛盾, 所以只能是x =a 时取最小值,(−12)a 2+133=2a , 3a 2+12a ﹣26=0 a =−6−√1143<0,符合条件,(3)若0<a <b ,显然有 (−12)a 2+133=2b ①,−12b 2+133=2a ②,①﹣②得:(−12)(a ﹣b )(a +b )=2(b ﹣a ),则a+b=4,b=4﹣a,代入①得:(−12)a2+133=2(4﹣a),3a2﹣12a+22=0,∵△<0,∴此方程无实数根,故此情况舍去.故有一组解符合要求:a=−6−√1143,b=136.【点评】此题主要考查了二次函数的最值求法,根据自变量的取值范围分别将a,b代入求出是解题关键.4.已知二次函数y=ax2+bx+c的图象经过点(1,2),且当x=﹣1时,y有最小值y=﹣2.(1)求这个函数的关系式;(2)试判断点(3,14)是否在此函数图象上.【分析】二次函数得最小值出现于对称轴处.因此本题利用二次函数得基本性质便可解题.【解答】解:(1)由题意得,对称轴x=−b2a=−1,代入函数得y=a﹣b+c=﹣2将点(1,2)代入函数得a+b+c=2,解得a=1,b=2,c=﹣1 ∴解析式为y=x2+2x﹣1(2)当x=3时,y=14∴(3,14)在此函数图象上【点评】本题主要考察二次函数得基本性质,熟练掌握二次函数是本题得关键5.如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?【分析】(1)由平行线得△ABC∽△ADE,根据相似形的性质得关系式;(2)由S=12•BD•AE;得到函数解析式,然后运用函数性质求解.【解答】解:(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴ADAB=AEAC,∴AE=6(8−2x)8=6−32x,∴y关于x的函数关系式为y=−32x+6(0<x<4).(2)解:S△BDE=12⋅BD⋅AE=12×2x(−32x+6)=−32x2+6x(0<x<4).当x=−62×(−32)=2时,S△BDE最大,最大值为6cm2.【点评】本题主要考查相似三角形的判定、三角形的面积及涉及到二次函数的最值问题,找到等量比是解题的关键.6.已知二次函数y=一x2+4x+6.(1)当x 为何值时,y 有最值?是多少?(2)当一2≤x ≤1时,求函数的最值.(3)当x ≥4时.求函数的最值.【分析】(1)将函数解析式配方成顶点式后,根据二次函数的性质即可得;(2)由x <2时,y 随x 的增大而增大,结合x 的范围求解可得;(3)由x >2时,y 随x 的增大而减小,结合x 的范围求解可得.【解答】解:(1)∵y =﹣x 2+4x +6=﹣(x 2﹣4x +4﹣4)+6=﹣(x ﹣2)2+10,∴当x =2时,y 有最大值,最大值为10;(2)∵当x <2时,y 随x 的增大而增大,∴由﹣2≤x ≤1知,当x =﹣2时,y 取得最小值,最小值y =﹣4﹣8+6=﹣6,当x =1时,y 取得最大值,最大值y =﹣1+4+6=9;(3)∵当x >2时,y 随x 的增大而减小,∴在x ≥4范围内,当x =4时,函数取得最大值,最大值y =﹣16+16+6=6,无最小值.【点评】本题主要考查二次函数的最值,解题的关键是熟练将二次函数的一般式配方成顶点式及二次函数的性质.7.对于二次函数f (x )=ax 2﹣bx +c ,当a >0时,只有最小值为4ac−b 24a ,这个结论一定正确吗?【分析】直接利用配方法求出二次函数的顶点式,即可求得出二次函数的顶点坐标,根据二次函数的性质求得出二次函数的最小值.【解答】解:对于二次函数f (x )=ax 2﹣bx +c ,当a >0时,只有最小值为4ac−b 24a ,这个结论一定正确;∵二次函数f (x )=ax 2﹣bx +c=a (x −b 2a )2+4ac−b 24a ; ∴图象的顶点坐标为:(b 2a ,4ac−b 24a ), ∵a >0,∴函数的最小值为:4ac−b 24a .【点评】此题主要考查了求二次函数的最值,熟练掌握二次函数的性质是解题关键.8.求函数y =3x 2+x+2x 2+2x+1的最小值. 【分析】将函数整理成关于x 的一元二次方程,然后利用根的判别式列出不等式求解即可.【解答】解:∵y =3x 2+x+2x 2+2x+1, ∴y (x 2+2x +1)=3x 2+x +2,整理得,(y ﹣3)x 2+(2y ﹣1)x +(y ﹣2)=0,∵关于x 的一元二次方程有解,∴△=b 2﹣4ac =(2y ﹣1)2﹣4(y ﹣3)(y ﹣2)≥0,整理得,16y ﹣24≥0,解得y ≤32,所以,函数的最小值为32. 【点评】本题考查了二次函数的最值,题目难度较大,将函数整理成关于x 的一元二次方程并考虑利用根的判别式求解是解题的关键.9.已知:二次函数y =﹣x 2+2(α+1)x +1,其中a 为常数.(1)若y 的最大值为2,求a 的值;(2)求y =﹣x 2+2(a +1)x +1在0≤x ≤|a |时的最小值;(3)若方程|﹣x 2+2(a +1)x +1|=2﹣x 的正实数根只有一个,求a 的取值范围.【分析】(1)把y=﹣x2+2(α+1)x+1配方即可得到结论;(2)根据二次函数的性质即可得到结论;(3)根据题意得到即该方程的一次项的系数为0,判别式△≥0且二次项的系数与常数项的符号相反.解方程即可得到结论.【解答】解:(1)∵二次函数y=﹣x2+2(α+1)x+1=﹣[x﹣(a+1)]2+a2+2a+2,∵y的最大值为2,∴a2+2a+2=2解得:a=0或a=﹣2即y的最大值为2时,a的值为0或﹣2;(2)∵二次函数y=﹣x2+2(α+1)x+1=﹣[x﹣(a+1)]2+(a+1)2+1的图象开口向下,对称轴x =a+1,当|a|≤a+1时,解得a≥−1 2当a>−12时,0≤x≤|a|时,函数值随x的增大而增大,故:函数y=﹣x2+2(a+1)x+1的最小值为:y min═﹣[0﹣(a+1)]2+(a+1)2+1=1,当a<−12时,0≤x≤|a|时,函数值随x的增大而减小,x=|a|时,有最小值,最小值=﹣a2﹣2a(a+1)+1=﹣3a2﹣2a+1.(3)∵方程|﹣x2+2(a+1)x+1|=2﹣x的正实数根只有一个,判别式△≥0且二次项的系数与常数项的符号相反.∴当方程﹣x2+2(a+1)x+1=2﹣x时,有:x2﹣(2a+3)x+1=0,而此时二次项的系数与常数项的符号相同,不符合题意,舍去.∴当方程为:﹣x 2+2(a +1)x +1=x ﹣2时,化简整理得:x 2﹣(2a +1)x ﹣3=0,∵△=[﹣(2a +1)]2﹣4×(﹣3)=4a 2+4a +13=(2a +1)2+12>0,∴a 的取值范围为任意实数.【点评】本题考查了二次函数的最值,二次方程的判别式,正确的理解题意是解题的关键.10.已知函数y =k 2x k 2﹣2是关于x 的二次函数(1)求满足条件的k 的值;(2)k 为何值时,函数有最大值?最大值为多少?当x 为何值时,y 随x 的增大而减小?【分析】(1)根据二次函数的指数是二,可得方程,根据解方程,可得答案;(2)根据函数有最大值,可得二次项系数是负数,根据顶点坐标是函数的最值,可得答案;根据a <0时,对称轴的右侧y 随x 的增大而减小,可得答案.【解答】解:(1)函数y =k 2x k 2﹣2是关于x 的二次函数,得{k 2−2=2k 2≠0, 解得k =2或k =﹣2;(2)当k =﹣2时,函数y =﹣x 2有最大值,最大值是0;∴此时函数y =k 2x k 2﹣2是开口向下的,对称轴为x =0;∴当x >0时,y 随x 的增大而减小.【点评】本题考查了二次函数的定义,利用二次函数的定义得出k 值是解题关键,又利用了二次函数的性质.11.如图.抛物线y =ax 2+bx +52与直线AB 交于点A (﹣1,0),B (4,52),点D 是抛物线上位于直线AB 上方的一点(不与点A ,B 重合),连接AD ,BD .(1)求抛物线的解析;(2)设△ADB 的面为S ,求出当S 取最大值时的点D 的坐标.【分析】(1)把A 、B 两点坐标代入抛物线解析式即可.(2)设点D 坐标为(m ,−12m 2+2m +52),直线DC ⊥x 轴,与AB 交于点C ,根据S △ABD =S △ACD +S △BCD 构建二次函数,利用二次函数的最值问题解决.【解答】解:(1)∵抛物线y =ax 2+bx +52经过点A (﹣1,0),B (4,52),∴{a −b +52=016a +4b +52=52解得{a =−12b =2, ∴抛物线解析式为y =−12x 2+2x +52.(2)设点D 坐标为(m ,−12m 2+2m +52),直线DC ⊥x 轴,与AB 交于点C , ∵直线AB 解析式为y =12x +12,∴点C 坐标(m ,12m +12), ∵S △ABD =S △ACD +S △BCD =12(−12m 2+2m +52−12m −12)×(4+1)=−54(m 2﹣3m ﹣4)=−54(m −32)2+12516,∴当m =32时,△ADB 面积最大,此时点D 坐标(32,358).【点评】本题考查二次函数的最值、一次函数等知识,解题的关键是掌握待定系数法确定函数解析式,学会构建二次函数,利用二次函数的性质解决问题,属于中考常考题型.12.如图,四边形ABCD的两条对角线AC,BD互相垂直,AC+BD=12,当AC,BD的长分别是多少时,四边形ABCD的面积最大?【分析】直接利用对角线互相垂直的四边形面积求法得出S=12AC•BD,再利用配方法求出二次函数最值.【解答】解:设AC=x,四边形ABCD面积为S,则BD=12﹣x,则:S=12AC•BD=12x(12﹣x)=−12(x﹣6)2+18,当x=6时,S最大=18;所以AC=BD=6时,四边形ABCD的面积最大.【点评】此题主要考查了二次函数最值以及四边形面积求法,正确掌握对角线互相垂直的四边形面积求法是解题关键.13.如图,点E、F分别是正方形ABCD的边BC、CD上两点,且CE=CF,AB=4.(1)设CE=x,△AEF的面积为y,求y关于x的函数关系式;(2)当x取何值时,△AEF面积最大?求出此时△AEF的面积.【分析】(1)由已知可得,AB=BC=CD=AD=4,CE=x,由图形得出y=S正方形ABCD﹣S△ABE﹣S △ADF﹣S△CEF,便可求出x与y的关系式.(2)化成顶点式即可求得结论.【解答】解:(1)∵BC=DC,CE=CF,∴BE=DF=x,∴y=S正方形ABCD﹣S△ABE﹣S△ADF﹣S△CEF,∴y=42−12×4×(4﹣x)−12×4×(4﹣x)−12⋅x2∴y=−12x2+4x(0≤x≤4).(2)∵y=−12x2+4x=−12(x﹣4)2+8,∴当x=4时,△AEF的面积最大,此时△AEF的面积是8.【点评】本题考查了二次函数的最值,正方形的性质,三角形的面积,正确求得函数的解析式是解题的关键.14.如图(1)放置两个全等的含有30°角的直角三角板ABC与DEF(∠B=∠E=30°),若将三角板ABC向右以每秒1个单位长度的速度移动(点C与点E重合时移动终止),移动过程中始终保持点B、F、C、E在同一条直线上,如图(2),AB与DF、DE分别交于点P、M,AC与DE交于点Q,其中AC=DF=√3,设三角板ABC移动时间为x秒.(1)在移动过程中,试用含x的代数式表示△AMQ的面积;(2)计算x等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?【分析】(1)解直角三角形ABC求得EF=BC=3,由题意可知CF=x,可求AQ=√33x,MN=12x,根据三角形面积公式即可求出结论;(2)根据“S重叠=S△ABC﹣S△AMQ﹣S△BPF”列出函数关系式,通过配方求解即可.【解答】解:(1)解:因为Rt△ABC中∠B=30°,∴∠A=60°,∵∠E=30°,∴∠EQC=∠AQM=60°,∴△AMQ为等边三角形,过点M作MN⊥AQ,垂足为点N.在Rt△ABC中,AC=√3,BC=AC⋅tanA=3,∴EF=BC=3,根据题意可知CF=x,∴CE=EF﹣CF=3﹣x,CQ=CE⋅tanE=√33(3−x),∴AQ=AC−CQ=√3−√33(3−x)=√33x,∴AM =AQ =√33x ,而MN =AM ⋅sinA =12x ,∴S △MAQ =12AQ ⋅MN =12×√33x ⋅12x =√312x 2,(2)由(1)知BF =CE =3﹣x ,PF =BF ⋅tanB =√33(3−x),∴S 重叠=S △ABC −S △AMQ −S △BPF =12AC ⋅BC −12AQ ⋅MN −12BF ⋅PF=12×3×√3−√312x 2−12(3﹣x )×√33(3﹣x ) =−√34x 2+√3x =−√34(x −2)2+√3,所以当x =2时,重叠部分面积最大,最大面积是√3.【点评】本题属于几何变换综合题,考查了平移变换,等边三角形的性质和判定,解直角三角形,二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.15.如图,函数y =﹣x 2+12x +c (﹣2020≤x ≤1)的图象记为L 1,最大值为M 1;函数y =﹣x 2+2cx +1(1≤x ≤2020)的图象记为L 2,最大值为M 2.L 1的右端点为A ,L 2的左端点为B ,L 1,L 2合起来的图形记为L .(1)当c =1时,求M 1,M 2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A ,B 重合时,求L 上“美点”的个数;(3)若M 1,M 2的差为4716,直接写出c 的值.【分析】(1)当c =1时,把函数的解析式化成顶点式即可求得M 1,M 2的值;(2)由已知可得点A,B重合时,c−12=2c,c=−12,L1上有1011个“美点”,L2上有2020个“美点”.则L上“美点”的个数是1011+2020﹣1=3030;(3)当x=14时,M1=116+c,由于L2的对称轴为x=c,分两种情况求解:当c≥1时,M2=c2+1;当c<1时,M2=2c;再由已知列出等式即可求c的值.【解答】解:(1)当c=1时,函数y=﹣x2+12x+c=﹣x2+12x+1=﹣(x−14)2+1716.又∵﹣2020≤x≤1,∴M1=17 16,y=﹣x2+2cx+1=﹣x2+2x+1=﹣(x﹣1)2+2.又∵1≤x≤2020,∴M2=2;(2)当x=1时,y=﹣x2+12x+c=c−12;y=﹣x2+2cx+1=2c.若点A,B重合,则c−12=2c,c=−12,∴L1:y=﹣x2+12x−12(﹣2020≤x≤1);L2:y=﹣x2﹣x+1(1≤x≤2020).在L1上,x为奇数的点是“美点”,则L1上有1011个“美点”;在L2上,x为整数的点是“美点”,则L2上有2020个“美点”.又点A,B重合,则L上“美点”的个数是1011+2020﹣1=3030.(3)y=﹣x2+12x+c(﹣2020≤x≤1)上时,当x=14时,M1=116+c,y=﹣x2+2cx+1(1≤x≤2020),对称轴为x=c,当c≥1时,M2=c2+1,∴|116+c ﹣c 2﹣1|=4716, ∴c =﹣1(舍去)或c =2;当c <1时,M 2=2c ,∴|2c −116−c |=4716, ∴c =3(舍去)或c =−238;∴c =−238或2. 【点评】本题考查二次函数的图象及性质;能够根据函数所给的取值范围,通过适当的分类讨论,正确的求函数的最大值是解题的关键.16.在矩形ABCD 中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,且AE =AH =CF =CG ,已知AB =a ,BC =b .(1)若b 3≤a ≤3b 时,求四边形EFGH 的面积的最大值; (2)若a =4,b =16,求四边形EFGH 的面积的最大值.【分析】(1)由已知可证明△AEH ≌△CGF (SAS ),△BEF ≌△DGH (SAS ),则S 四EFGH =S 矩ABCD ﹣2S △AEH ﹣2S △BEF =﹣2x 2+(a +b )x ,由二次函数的性质即可求面积最大值;(2)将a =4,b =16代入(1)所得的式子即可.【解答】解:(1)设AE =x ,∵AE =AH =CF =CG ,∴△AEH ≌△CGF (SAS ),∵AB =CD ,AD =BC ,∴BE=DG,HD=BF,∴△BEF≌△DGH(SAS),∴S四EFGH=S矩ABCD﹣2S△AEH﹣2S△BEF=ab﹣2×12x2﹣2×12(a﹣x)(b﹣x)=ab﹣x2﹣(ab﹣ax﹣bx+x2)=﹣2x2+(a+b)x,当x=a+b4时,S四EFGH有最大值,最大值为(a+b)28;(2)当a=4,b=16时,四边形EFGH的面积=﹣2x2+20x,∴当x=4时,四边形EFGH的面积的最大值为48.【点评】本题考查矩形的性质;熟练掌握矩形的性质,通过三角形全等求面积,再由二次函数求面积的最大值是解题的关键.17.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB边向点B以1cm/秒的速度移动,同时点Q从B点开始沿BC边向点C以2cm/秒的速度移动,且当其中一点到达终点时,另一个点随之停止移动.(1)P,Q两点出发几秒后,可使△PBQ的面积为8cm2.(2)设P,Q两点同时出发移动的时间为t秒,△PBQ的面积为Scm2,请写出S与t的函数关系式,并求出△PBQ面积的最大值.【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6﹣t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)利用三角形面积公式表示S=12×(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,利用二次函数的性质解题.【解答】解:(1)设经过t秒后,△PBQ的面积等于8cm2.12×(6﹣t)×2t=8,解得:t1=2,t2=4,答:经过2或4秒后,△PBQ的面积等于8cm2.(2)依题意,得S=12×PB×BQ=12×(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∴在移动过程中,△PBQ的最大面积是9cm2.【点评】本题考查了二次函数的运用.关键是根据题意,列出相应的函数关系式,运用二次函数的性质解题.18.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,点P从点C开始沿CB向点B以1cm/s 的速度移动,点Q从A开始沿AC向点C以2cm/s的速度移动,如果点P,Q同时从点C,A出发,试问:(1)出发多少时间时,点P,Q之间的距离等于2√17cm?(2)出发多少时间时,△PQC的面积为6cm2?(3)△PQC面积的是否有最大值?若有是多少?此时时间是多少?【分析】(1)可设出发xs时间时,点P,Q之间的距离等于2√17cm,根据勾股定理列出方程求解即可;(2)可设出发ys时间时,△PQC的面积为6cm2,根据三角形的面积公式列出方程求解即可;(3)根据题意得到△PQC面积和时间t的关系式,根据关系式即可得到结论.【解答】解:(1)设出发xs时间时,点P,Q之间的距离等于2√17cm,依题意有x2+(12﹣2x)2=(2√17)2,解得x1=2,x2=7.6(不合题意舍去).答:出发2s时间时,点P,Q之间的距离等于2√17cm;(2)设出发ys时间时,△PQC的面积为6cm2,依题意有12y(12﹣2y)=6,解得y1=3−√3,y2=3+√3.答:出发(3−√3)s或(3+√3)s时间时,△PQC的面积为6cm2;(3)依题意有S△PQC=12t(12﹣2t)=﹣(t﹣3)2+9,∵﹣1<0,∴△PQC面积的有最大值9,此时时间是3.【点评】此题主要考查了二次函数的最值,一元二次方程的应用,熟练掌握二次函数的性质是解题关键.19.如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小.【分析】(1)根据待定系数法即可求得;(2)把x=﹣2代入解析式得到P点的纵坐标y P=4+4m+m2﹣2=(m+2)2﹣2,即可得到当m=﹣2时,y P的最小值=﹣2,然后根据二次函数的性质即可判断y1与y2的大小.【解答】解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=1+2m+m2﹣2,∴m=﹣1,∴抛物线F的表达式是y=x2+2x﹣1.(2)当x=﹣2时,y P=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y P的最小值=﹣2.此时抛物线F的表达式是y=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小.∵x1<x2≤﹣2,∴y1>y2.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.20.如图,在平面直角坐标系中,点A,B是一次函数y=x图象上两点,它们的横坐标分别为a,a+3,其中a>0,过点A,B分别作y轴的平行线,交抛物线y=x2﹣4x+8于点C,D.(1)若AD=BC,求a的值;(2)点E是抛物线上的一点,求△ABE面积的最小值.【分析】(1)将已知点的坐标代入相应的函数解析式,再结合AD=BC,可得关于a的方程,解得a的值即可;(2)设点E(m,m2﹣4m+8),过E作EM垂直于x轴交AB于点M,作BF⊥EM,AG⊥EM,垂足分别为F,G,由题意可得M(m,m),从而可用含m的式子表示出EM的长,根据二次函数的性质及三角形的面积公式可得答案.【解答】解:(1)∵点A,B是一次函数y=x图象上两点,它们的横坐标分别为a,a+3,∴A(a,a),B(a+3,a+3).y=x2﹣4x+8=(x﹣2)2+4,将x=a,代入得:y=(a﹣2)2+4;将x=a+3,代入得:y=(a+1)2+4.∴D(a,(a﹣2)2+4),C(a+3,(a+1)2+4),∴AD=(a﹣2)2+4﹣a,CB=(a+1)2+4﹣(a+3).由AD=BC得:(a﹣2)2+4﹣a=(a+1)2+4﹣(a+3),∴a=1.(2)设点E(m,m2﹣4m+8),过E作EM垂直于x轴交AB于点M,作BF⊥EM,AG⊥EM,垂足分别为F,G,由题意得:M(m,m),∴EM=m2﹣4m+8﹣m=m2﹣5m+8=(m−52)2+74,∴S△ABE=S△AEM+S△EMB=12EM⋅AG+12EM⋅BF=12EM(AG+BF)=32(m−52)2+218,由32>0,得S△ABE有最小值.∴当m=52时,S△ABE的最小值为218.【点评】本题考查了二次函数的最值、一次函数与二次函数图象上的点与坐标的关系及三角形的面积计算等知识点,熟练掌握相关性质及定理并数形结合是解题的关键.。

中考数学复习专题突破专题26 二次函数-最值问题(全国通用)

中考数学复习专题突破专题26 二次函数-最值问题(全国通用)

专题26 二次函数-最值问题1212x ,2x bm a-≤≤= 二次函数中的最值问题从知识点上看,有两个方面,二次函数的增减性上由自变量取值范围确定最值, 即:自变量取值范围为x x 对称轴再结合对称轴的值在x ,x 之间还是之外,通过数形结合进行分类讨论解决问题;另一方面,通过两个几何公理两点之间线段最短和点线之间垂线段最短解决问题。

本专题结合近些年中考题进行专项练习提升学生解题能力。

一、单选题2.y 2303x x x y =--≤≤1在二次函数中,当时,的最大值和最小值分别是( )A .0,-4B .0,-3C .-3,-4D .0,02.如果二次函数268y x x =-+在x 的一定取值范围内有最大值(或最小值)为3,满足条件的x 的取值范围可以是( ) A .15x -≤≤B .16x ≤≤C .24x -≤≤D .11x -≤≤3.二次函数2y (x 1)6=+-有( ) A .最大值5-B .最小值5-C .最大值6-D .最小值6-4.二次函数22(4)5y x =--+的函数值有( ). A .最大值5B .最大值4C .最小值5D .最小值45.二次函数241y x x =-++有( ) A .最大值5B .最小值5C .最大值-3D .最小值-36.已知二次函数2(2)3y x =-+,则当14x ≤≤时,该函数( ) A .有最大值7,有最小值4 B .只有最大值7,无最小值 C .只有最小值3,无最大值D .有最小值3,有最大值77.已知二次函数2(1)y a x b =-+有最小值 –1,则a 与b 之间的大小关系是 ( ) A .a <bB .a=bC .a >bD .不能确定8.已知二次函数y =﹣2x 2﹣4x +1,当﹣3≤x ≤2时,则函数值y 的最小值为( ) A .﹣15B .﹣5C .1D .39.在平面直角坐标系中,二次函数223y x x =+-的图象如图所示,点()11,A x y ,()22,B x y 是该二次函数图象上的两点,其中1230x x -≤<≤,则下列结论正确的是( )A .12y y <B .12y y >C .函数y 的最小值是3-D .函数y 的最小值是4-10.已知二次函数y=x 2﹣2x +2在t ≤x ≤t +1时有最小值是t ,则t 的值是( ) A .1B .2C .1或2D .±1 或211.已知二次函数y=x 2=2x=2在m≤x≤m=1时有最小值m ,则整数m 的值是( = A .1 B .2 C .1或2 D .±1或212.已知二次函数()2y x h =-(h 为常数),当自变量x 的值满足-13x ≤≤时,与其对应的函数值y 的最小值为4,则h 的值为( ) A .1或-5 B .-5或3 C .-3或1 D .-3或5二、填空题13.二次函数y=2x 2 -4x+5,当=3≤x ≤4时,y 的最大值是___________,最小值是___________. 14.二次函数223y x x =--,当03x ≤≤时,y 的最大值和最小值的和是_______. 15.当x =_______时,二次函数()2235y x =--的最小值是________.16.已知二次函数y=-x 2-2x+3的图象与x 轴分别交于A 、B 两点(如图所示),与y 轴交于点C ,点P 是其对称轴上一动点,当PB+PC 取得最小值时,点P 的坐标为 .17.二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对应值如下表:给出了结论:(1)二次函数y =ax 2+bx +c 有最小值,最小值为-3; (2)当-12<x <2时,y <0; (3)二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论是_________ (填上正确的序号)18.已知二次函数y =2(x +1)2+1,﹣2≤x ≤1,则函数y 的最小值是_____,最大值是_____. 19.已知二次函数268y x x =-+,当0≤x≤4,y 的最小值是_____,最大值是__________. 20.已知二次函数2241y ax ax a =-+-,当x a ≥时,y 随x 的增大而增大.若点A (1,c )在该二次函数的图像上,则c 的最小值为_________.21.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________ 22.二次函数222y x x -=+的最小值是_________.23.二次函数22y x x m =-+的最小值为5时,m =________.24.二次函数2(2)3y x =--+,当15x ≤≤时,y 的最小值为_________.25.二次函数2y ax bx =+的图像如图,若一元二次方程20ax bx c ++=有实数根,则c 的最小值为______.26.已知二次函数y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表:则当x ≥1时,y 的最小值是_____.27.如图,已知二次函数21199y x x =-++的图象与x 轴交于点A ,B ,与y 轴交于点C ,顶点D 关于x 轴的对称点为D .点P 为x 轴上的一个动点,连接PD ',则12PA PD '+的最小值为__________.28.如图,在平面直角坐标系中,过点(,0)P x 作x 轴的垂线,分别交抛物线22y x =+与直线y x =-交于点A ,B ,以线段AB 为对角线作菱形ACBD ,使得60D ︒∠=,则菱形ACBD 的面积最小值为______.三、解答题29.如图,二次函数2y x ax c =++的图象与x 轴相交于A ,()10B ,两点,与y 轴交于点()0,3C -.(1)求二次函数的解析式;(2)将二次函数图象向右平移2个单位长度,再向上平移3个单位长度得到新二次函数图象,当06x ≤≤时,求新二次函数的最小值.30.如图1,已知二次函数1L :()2230y ax ax a a =-++>和二次函数2L :()()2110y a x a =-++>的图象的顶点分别为M 、N ,与y 轴分别交于点E 、F .(1)函数()2230y ax ax a a =-++>的最小值为___;当二次函数1L 、2L 的y 值同时随着x的增大而减小时,则x 的取值范围是___.(2)当EF MN =时,求证:四边形ENFM 为矩形.(3)若二次函数2L 的图象与x 轴的右交点为(),0A m ,当AMN ∆为等腰三角形时,求方程()2110a x -++=的解.31.在平面直角坐标系中,一次函数的图象与x 轴、y 轴相交于点A (,0),B (0,)两点,二次函数的图象经过点A .(1)求一次函数的表达式;(2)若二次函数的图象的顶点在直线AB 上,求m ,n ; (3)=设时,当时,求二次函数的最小值; =反之若时,二次函数的最小值为,求m ,n 的值.32.已知二次函数()2221y x m x m m =--+-(m 是常数,且0m ≠).(1)证明:不论m 取何值时,该二次函数图象总与x 轴有两个交点;(2)若()232A n n -+,、()212B n n ++,是该二次函数图象上的两个不同点,求二次函数解析式和n 的值;(3)若当01x ≤≤时,函数有最小值为1,求m 的值.33.根据下列二次函数部分图象信息,已知顶点D (1,4),与x 轴的一交点B (3,0). (1)求二次函数的解析式;(2)当0y > 时,直接写出x 的取值范围; (3)当-22x 时,求y 的最大值与最小值.34.如图,已知二次函数2(0)y ax bx c a =++≠的图象经过(0,2)、(1,3)、(1,0)-三点. (1)求该二次函数的解析式;(2)若点M 是该二次函数图象上的一点,且满足OAC ABM ∠=∠,求点M 的坐标; (3)点P 是该二次函数图象上位于一象限上的一动点,连接PA 分别交BC ,y 轴与点E 、F ,若EBP ∆、EFC ∆的面积分别为1S 、2S ,求21S S -的最小值.35.如图,二次函数()22y x b =--+的图像与x 轴分别相交于A 、B 两点,点A 的坐标为()1,0-,与轴交于点C . (1)求b 的值:(1)抛物线顶点为E ,EF x ⊥轴于F 点,点()2,P m 是线段EF 上一动点,(),0Q n 在x 轴上,且2n <,若90QPC ∠=︒,求n 的最小值.36.一次函数y =x −3的图象与x 轴,y 轴分别交于点A ,B .一个二次函数的图象经过点A ,B .(1)求点A ,B 的坐标,并画出一次函数y =x −3的图象; (2)求二次函数的解析式及它的最小值.37.已知二次函数22y x 2mx m m(m =-+-为常数)()1若m 0≥,求证该函数图象与x 轴必有交点()2求证:不论m 为何值,该函数图象的顶点都在函数y x =-的图象上 ()3当2x 3-≤≤时,y 的最小值为1-,求m 的值38.如图,抛物线2y x bx c =++与x 轴交于A ,B 两点,其中点A 的坐标为(3,0)-,与y 轴交于点C ,点(2,3)D --在抛物线上. (1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P ,求出PA PD +的最小值; (3)若抛物线上有一动点Q ,使ABQ △的面积为6,求点Q 的坐标.。

2024河南中考数学备考专题:二次函数图象与性质综合题 对称性、增减性、最值问题

2024河南中考数学备考专题:二次函数图象与性质综合题 对称性、增减性、最值问题

∴抛物线的顶点坐标为(t,-t);
例 在平面直角坐标系xOy中,已知抛物线y=x2-2tx+t2-t.
(2)点P(x1,y1),Q(x2,y2)在抛物线上,其中t-1≤x1≤t+2,x2=1-t.
①若y1的最小值是-2,求y1的最大值;
画出草图,标出对称轴
t-1≤x1≤t+2与对称轴的关系? 从图像发现了什么? 最大值在哪取?
(2)求抛物线上动点Q纵坐

类讨论点M,N的坐标;根据
标的取值范围
二次函数增减性确定最值
典例精讲
例 在平面直角坐标系xOy中,已知抛物线y=x2-2tx+t2-t.
(1)求抛物线的顶点坐标(用含t的代数式表示); 看到这个能想到什么?
解:(1)∵y=x2-2tx+t2-t=(x-t)2-t,
完全平方式
一题多解
点C(0,c)
B( 0)
c 2

已知A(1,0)
将已知点坐标代入抛物线解析式
练习 在平面直角坐标系中,抛物线y=ax2-4ax+c
(a<0)与x轴交于A(1,0),B两点,与y轴交于点C.
(2)若点P(x0,m),Q(
5 2
,n)在抛物线上,且m<n,求x0的取值范围.
第一步: 画出草图
2024中考备考重难专题课件
二次函数图象与性质综合题
对称性、增减性、最值问题
目 录
1 典例精讲 2 课堂练兵 3 课后小练
考情分析
年份 题号 题型 分值
解题关键点
设问形式
(1)将B(0,c)转化为A(c,0)
(1)求抛物线的解析式及

(2)根据抛物线上点与对称轴的
顶点坐标;
2023 21 答 10 距离,判断出点M的位置;分

2023学年数学中考复习重难点突破——二次函数的最值

2023学年数学中考复习重难点突破——二次函数的最值

2023学年数学中考复习重难点突破——二次函数的最值一、单选题1.当二次函数y=x 2+4x+9取最小值时,的值为( )A .-2B .1C .2D .92.对于二次函数y =2(x+1)(x ﹣3),下列说法正确的是( )A .图象过点(0,﹣3)B .图象与x 轴的交点为(1,0),(﹣3,0)C .此函数有最小值为﹣6D .当x <1时,y 随x 的增大而减小3.二次函数y=ax 2+bx+a (a≠0)的最大值是零,则代数式|a|+ 2244a b a- 化简结果为( )A .aB .1C .﹣aD .04.已知a≥2,m 2﹣2am+2=0,n 2﹣2an+2=0,则(m ﹣1)2+(n ﹣1)2的最小值是( )A .6B .3C .﹣3D .05.二次函数 23324y x ⎛⎫=-+ ⎪⎝⎭ 的图象 ()13x ≤≤ 如图所示,则该函数在所给自变量的取值范围内,函数值y 的取值范围是( )A .1y ≥B .13y ≤≤C .334y ≤≤ D .03y ≤≤6.如图,在△ABC 中,△B=90°,tan△C=34,AB=6cm .动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.若P ,Q 两点分别从A ,B 两点同时出发,在运动过程中,△PBQ 的最大面积是( )A.18cm2B.12cm2C.9cm2D.3cm27.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3-m,n)、D( 2, y2)、E(2,y3),则y1、y2、y3的大小关系是().A.y1< y2< y3B.y1 < y3< y2C.y3< y2< y1D.y2< y3< y18.二次函数y=ax2+bx+c (a、b、c为常数且a≠0)中的x与y的部分对应值如下表,x…-3-2-1012345…y…1250-3-4-30512…下列四个结论:①二次函数y=ax2+bx+c 有最小值,最小值为-3;②抛物线与y轴交点为(0,-3);③二次函数y=ax2+bx+c 的图像对称轴是x=1;④本题条件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.其中正确结论的个数是()A.4B.3C.2D.19.如图,在矩形ABCD中,AB=8,AD=6,点M为对角线AC上的一个动点(不与端点A,C重合),过点M作ME△AD,MF△DC,垂足分别为E,F,则四边形EMFD面积的最大值为()A.6B.12C.18D.2410.已知函数y=22(0)(0)x x xx x x⎧-⎨--<⎩,当a≤x≤b时,﹣14≤y≤14,则b﹣a的最大值为()A.1B2+1C 221+D2二、填空题11.已知二次函数y=x 2﹣4x+m 的最小值是﹣2,那么m 的值是 . 12.二次函数y=x 2﹣2x ﹣5的最小值是 .13.如图,在边长为6cm 的正方形ABCD 中,点E 、F 、G 、H 分别从点A 、B 、C 、D 同时出发,均以1cm/s 的速度向点B 、C 、D 、A 匀速运动,当点E 到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为 s 时,四边形EFGH 的面积最小,其最小值是 cm 2.14.飞机着陆后滑行的距离S (单位:m )与滑行的时间t (单位:s )的函数关系式是S=80t ﹣2t 2,飞机着陆后滑行的最远距离是 m .15.已知二次函数 2y ax bx c =++ (a≠0)的图象如图所示,有下列5个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④2c <3b ;⑤a+b >m(am+b),(m≠l 的实数).其中正确的结论有 (只填序号).三、解答题16.把函数y=3x 2+6x+10转化成y=a (x-h )2+k 的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.17.如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1 cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y(cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.18.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= 2x,y=2(x-1)2+1的最大值和最小值.(2)对于二次函数y=2(x-m)2+m-2,当2≤x≤4时有最小值为1,求m的值.19.由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x 的取值范围;售价(元/台)月销售量(台)400200▲ 250x▲(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?20.如图,在Rt△ABC中,△C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA 向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.21.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(△)求直线y=kx+b的函数解析式;(△)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d 关于x的函数解析式,并求d取最小值时点P的坐标;(△)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.答案解析部分1.【答案】A 2.【答案】D 3.【答案】C 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】D 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】2 12.【答案】-6 13.【答案】3;18 14.【答案】800 15.【答案】③④⑤16.【答案】解: 2222236103(2)103(211)10y x x x x x x =++=++=++-+23(1)1101x ⎡⎤=+-++⎣⎦23(1)310x =+-+ 23(1)7x =++ .图象开口向上,对称轴是 1x =- , 顶点坐标(-1,7),最小值是7.17.【答案】解:(1)∵S △PBQ =12PB·BQ ,PB =AB -AP =18-2x ,BQ =x , ∴y =12(18-2x)x ,即y =-x 2+9x(0<x≤4); (2)由(1)知,y =-x 2+9x ,∴y =-292x ⎛⎫- ⎪⎝⎭+814, ∵当0<x≤92时,y 随x 的增大而增大, 而0<x≤4,∴当x =4时,y 最大值=20, 即△PBQ 的最大面积是20 cm 2.18.【答案】(1)解:∵在函数y=2x+1中,k=2>0,∴函数y 随x 的增大而增大,∴y=2x+1的最大值为9,最小值为5;2=yx在函数中,k=2>0,∴函数y随x的增大而减小,则函数y=2x的最大值为1,最小值为12;y=2(x+1)2-1的最大值为19,最小值为3.(2)解:①当m=2时,当x=2时,y最小值为1,代入解析式,解得m= 52(舍去)或m=1∴m=1②当2≤m≤4时,m-2=1,∴m=3③当m>4时,当x=4时,y最小值为1,代入解析式,无解.综上所述:m=1或m=319.【答案】(1)解:根据题意,月销售量y与售价x之间的函数关系式为y=200+50× 40010x-=-5x+2200,当y=250时,得-5x+2200=250,解得:x=390,补全表格如下:售价(元/台)月销售量(台)400200390250x-5x+2200由30052200450xx≥⎧⎨-+≥⎩,得300≤x≤350.(2)解:∵w=(x-200)(-5x+2200)=-5(x-320)2+72000,∴当x=320时,w最大=72000,答:当售价x定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.20.【答案】解:如图,∵在Rt△ABC中,△C=90°,AC=4cm,BC=3cm.∴根据勾股定理,得:22AC BC+.(1)以A,P,M为顶点的三角形与△ABC相似,分两种情况:①当△AMP△△ABC时,APAC=AMAB,即524t-=45t-,解得t=32;②当△APM△△ABC时,AMAC=APAB,即:44t-=525t-,解得t=0(不合题意,舍去);综上所述,当t=32时,以A、P、M为顶点的三角形与△ABC相似;(2)存在某一时刻t,使四边形APNC的面积S有最小值.理由如下:假设存在某一时刻t,使四边形APNC的面积S有最小值.如图,过点P作PH△BC于点H.则PH△AC,∴PHAC=BPBA,即4PH=25t,∴PH=85t,∴S=S△ABC-S△BPH=12×3×4-12×(3-t)•85t=45(t-32)2+215(0<t<2.5).∵45>0,∴S有最小值.当t=32时,S最小值=215.答:当t=32时,四边形APNC的面积S有最小值,其最小值是215.21.【答案】解:(△)由题意可得403k bb-+=⎧⎨=⎩,解得343kb⎧=⎪⎨⎪=⎩,∴直线解析式为y= 34x+3;(△)如图1,过P作PH△AB于点H,过H作HQ△x轴,过P作PQ△y轴,两垂线交于点Q,则△AHQ=△ABO ,且△AHP=90°, ∴△PHQ+△AHQ=△BAO+△ABO=90°, ∴△PHQ=△BAO ,且△AOB=△PQH=90°, ∴△PQH△△BOA ,∴PQ OB = HQ OA = PHAB, 设H (m , 34 m+3),则PQ=x ﹣m ,HQ= 34m+3﹣(﹣x 2+2x+1),∵A (﹣4,0),B (0,3), ∴OA=4,OB=3,AB=5,且PH=d ,∴3x m - = ()2332144m x x +--++ = 5d , 整理消去m 可得d= 45 x 2﹣x+ 85 = 45 (x ﹣ 58 )2+10380, ∴d 与x 的函数关系式为d= 45 (x ﹣ 58 )2+10380, ∵45>0, ∴当x= 58 时,d 有最小值,此时y=﹣( 58 )2+2× 58 +1=11964, ∴当d 取得最小值时P 点坐标为( 58 , 11964);(△)如图2,设C 点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E ,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,∵C(0,1),∴C′(2,1),由(△)可知当x=2时,d= 45×(2﹣58)2+10380=145,即CE+EF的最小值为145.11/ 11。

中考数学总复习《二次函数的最值》练习题-附带答案解析

中考数学总复习《二次函数的最值》练习题-附带答案解析

中考数学总复习《二次函数的最值》练习题-附带答案解析一、单选题(共12题;共24分)1.如图,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm。

点P从点A出发,沿AB方向以2cm/s的速度向点B运动,同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点则另一个动点也停止运动,则△APQ的最大面积是()A.0cm2B.8cm2C.16cm2D.24 cm2 2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A.②④⑤⑥⑦B.①②③⑥⑦C.①③④⑤⑦D.①③④⑥⑦3.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时函数值y的最小值为﹣2,则m的值是()A.B.C.或D.- 或4.已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1 C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣25.二次函数y=−x2+6x−7,当x取值为t≤x≤t+2时有最大值t=2,则t的取值范围为()A.t≤0B.0≤t≤3C.t≥3D.以上都不对6.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.√3cm2B.32√3cm2C.92√3cm2D.272√3cm27.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.x>1时y随x的增大而减小C.顶点坐标是(1,2)D.函数有最大值28.如图,一条抛物线与x轴相交于M,N两点(点M在点N的左侧),其顶点P在线段AB上移动,点A,B的坐标分别为(﹣2,﹣3),(1,﹣3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1B.﹣3C.﹣5D.﹣7 9.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是()①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时函数值y随x值的增大而增大;④当x=﹣1或x=3时函数的最小值是0;⑤当x=1时函数的最大值是4A.4B.3C.2D.110.设实数x>0,y>0,且x+y-2x2y2=4,则1x+1y的最小值为()A.4 √2B.3 √2C.2 √2D.√2 11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=-1对称;③当x=-2时函数y的值等于0;④当x=-3或x=1时函数y的值都等于0.其中正确结论的个数是()A.1B.2C.3D.4 12.如图,已知抛物线y=ax2+bx+c(a<0)的对称轴为x=1,交x轴的一个交点为(x1,0),且﹣1<x1<0,有下列5个结论:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共6题;共6分)13.已知二次函数y=ax2+4ax+a2−1,当−4≤x≤1时y的最大值为5,则实数a的值为.14.函数y=2x2-8x+1的最小值是.15.当-2≤x≤1时二次函数若y=−(x−m)2+m2+1有最大值4,则m的值为.16.如图,在△ABC中△B=90°,AB=12cm,BC=24cm,动点P从点A开始向B点以2cm/s的速度移动(不与点B重合);动点Q从点B开始向点C以4cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒四边形APQC的面积最小.17.一条抛物线与x轴相交于A,B两点(点A在点B的左侧),若点M,N的坐标分别为(-1,-2),(1,-2),抛物线顶点P在线段MN上移动.点B的横坐标的最大值为3,则点A的横坐标的最小值为.18.二次函数y=mx2+2x+m−4m2的图象经过原点,则此抛物线的顶点坐标是三、综合题(共6题;共66分)19.如图,在平面直角坐标系中点A、C的坐标分别为(﹣1,0)、(0,﹣√3),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.20.X市与W市之间的城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m与该列车每次拖挂车厢节数n的部分数据如下:车厢节数n4710往返次数m16104b(k,b为常数,k≠0);②y=ax2+bx+c(a,b,c为常数,a≠0)中选取一个合适的函数模型,求出的m关于n的函数关系式是m=(不写n的范围);(2)结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时一天的设计运营人数Q最多(每节车厢载容量设定为常数p).21.在平面直角坐标系xOy中抛物线y=ax2+bx+2(a≠0)经过点A(1,−1),与y轴交于点B.(1)直接写出点B的坐标;(2)点P(m,n)是抛物线上一点,当点P在抛物线上运动时n存在最大值N.①若N=2,求抛物线的表达式;②若−9<a<−2,结合函数图象,直接写出N的取值范围.22.一商店销售某种商品,平均每天可售出20件,每件盈利50元,为了扩大销售、增加利润,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)当每件商品降价多少元时该商店每天销售利润为1600元?(2)当每件商品降价多少元时该商店每天销售利润最大?最大为多少元?23.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?24.如图,已知直线y=﹣12x+2与抛物线y=a (x+2)2相交于A、B两点,点A在y 轴上,M为抛物线的顶点.(1)请直接写出点A的坐标及该抛物线的解析式;(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案1.【答案】C 2.【答案】D 3.【答案】D 4.【答案】D 5.【答案】C 6.【答案】C 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】A 11.【答案】B 12.【答案】D13.【答案】2−√10 或1 14.【答案】-7 15.【答案】2或- √3 16.【答案】3 17.【答案】-3 18.【答案】(-4,-4)19.【答案】(1)解:设二次函数的解析式为y=ax 2+bx+c (a≠0,a 、b 、c 为常数)由抛物线的对称性知B 点坐标为(3,0) 依题意得: {a −b +c =09a +3b +c =0c =−√3解得: {a =√33b =−2√33c =−√3∴所求二次函数的解析式为 y =√33x 2−2√33x −√3(2)解:∵P 点的横坐标为m∴P 点的纵坐标为 √33m 2−2√33m −√3设直线BC 的解析式为y=kx+b (k≠0,k 、b 是常数) 依题意,得 {3k +b =0b =−√3∴{k=√33b=−√3故直线BC的解析式为y=√33x−√3∴点F的坐标为(m,√33m−√3)∴PF=−√33m2+√3n(0<m<3)(3)解:∵△PBC的面积S=S△CPF+S△BPF=12PF⋅BO=12×(−√33m2+√3m)×3=−√32(m−32)2+9√38∴当m=32时△PBC的最大面积为9√38把m=32代入y=√33x2−2√33x−√3得y=−5√34∴点P的坐标为(32,−5√3 4)20.【答案】(1)-2n+24(2)解:由题意得:Q=pmn=pn(−2n+24)=−2pn2+24pn ∵−2p<0∴Q有最大值∴当n=−24p2×(−2p)=6时Q有最大值此时答:一列火车每次挂6节车厢,一天往返12次时一天的设计运营人数最多. 21.【答案】(1)(0,2)(2)解:①依题意,当N=2时该抛物线的顶点为(0,2).设抛物线的解析式为y=ax2+2.由抛物线过A(1,−1),得a+2=−1解得a=−3∴抛物线的表达式为y=−3x2+2.②2≤N<322.【答案】(1)解:设每件商品应降价x元,根据题意,得(50-x)(20+2x)=1600 解得:x1=10,x2=30因要求每件盈利不少于25元,故x2=30应舍去……答:每件商品应减价10元,该商店每天销售利润为1600元.(2)解:设每件商品应降价x元,销售利润为W元。

2023年九年级中考高频数学专题练习--二次函数的最值问题

2023年九年级中考高频数学专题练习--二次函数的最值问题

2023年中考高频数学专题练习--二次函数的最值问题1.某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:(1)通过对上面表格中的数据进行分析,发现销量 y (件)与单价 x (元/件)之间存在一次函数关系,求 y 关于 x 的函数关系式(不需要写出函数自变量的取值范围);(2)预计在今后的销售中,销量与单价仍然存在(1)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?2.如图,已知抛物线 23y ax bx =++ 经过 ()3,0A - , ()1,0B 两点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H.(1)求该抛物线的解析式; (2)求DBC 的周长;(3)若点P 是该抛物线对称轴l 上的一个动点,求PBC 周长的最小值.3.若二次函数 214y ax x b =++ 与 224y bx x a =++ 均有最最小值,记 1y , 2y 的最小值分别为m ,n.(1)若 4a = , 1b = ,求m ,n 的值.(2)若 0m n += ,求证:对任意的实数 x ,都有 120y y +≥ .(3)若m ,n 均大于0,且 2mn = ,记M 为m ,n 中的较大者,求M 的最小值.4.某书店经营某出版社的同步辅导书,购进时的单价是30元,根据市场调查:销售单价是40元时,销售量是600本,而销售单价每涨1元,就会少售出10本书.(1)设辅导书的销售单价为x 元(x >40),写出销售利润y 与销售单价x 之间的函数关系式;(2)若书店获得了10000元销售利润,求该辅导书的销售单价x应定为多少元?(3)若书店想获得最大利润,应将销售价格定为多少?5.某商场试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=60时,y=50;x=70时,y=40.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?6.为了改善小区环境,某小区决定在一块一边靠墙(墙长25m)的空地上修建一个矩形小花园ABCD,小花园一边靠墙,另三边用总长40m的栅栏围住,如下图所示.若设矩形小花园AB边的长为xm,面积为ym2.(1)求y与x之间的函数关系式;(2)当x为何值时,小花园的面积最大?最大面积是多少?7.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示)回答下列问题:(1)设这个苗圃园垂直于墙的一边长为x米.则平行于墙的一边长为;(用含x 的代数式表示)(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;8.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式;②当售价为多少元/件时,周销售利润最大,最大利润是多少(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系。

最新二次函数中的最值问题整理(中考数学必考知识点)

最新二次函数中的最值问题整理(中考数学必考知识点)

二次函数中的最值问题归纳(中考数学必考知识点)一.线段和差最值1、如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C,点D为BC的中点.(1)求该抛物线的函数表达式;(2)点G是该抛物线对称轴上的动点,若GA+GC有最小值,求此时点G的坐标;第二问解题思路:(1)根据点G是该抛物线对称轴上的动点可得当点G在直线BC与抛物线对称轴的交点上时,GA+GC最小,先求出点C的坐标.(2)再设直线BC的解析式为y=kx﹣4(k≠0),根据待定系数求得直线BC 的解析式为y=x﹣4,然后求出抛物线的对称轴为直线x=1,联立两解析式求解即可.2、如图,在平面直角坐标系中,直线y=4x+4与x轴交于A点,与y轴交于C点,抛物线)经过A,C两点,与x轴相交于另一点B,连接BC.点P是线段BC上方抛物线上的一个动点,过点P作PQ⊥BC交线段BC于点Q.(1)求抛物线的解析式;(2)点D为抛物线对称轴上的一个动点,求|DC﹣DB|的最大值;第二问解题思路:(1)作点C关于抛物线的对称轴的对称点N(2,4).(2)连接BN交抛物线的对称轴于点D,则点D为所求点,进而求解.二.线段最值3、如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(1)求抛物线的解析式和直线BC的解析式;(2)当点P在线段OB上运动时,求线段MN的最大值;第二问解题思路:(1)用m可分别表示出N、M的坐标,则可表示出MN的长.(2)再利用二次函数的最值可求得MN的最大值.变式训练:如图,已知抛物线经过点A(﹣6,0),B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点P为该抛物线上一动点.当点P在直线AC下方时,过点P作PE∥x轴,交直线AC于点E,作PF∥y轴.交直线AC于点F,求EF的最大值;4、如图,在平面直角坐标系中,直线y=4x+4与x轴交于A点,与y轴交于C点,抛物线)经过A,C两点,与x轴相交于另一点B,连接BC.点P是线段BC上方抛物线上的一个动点,过点P作PQ⊥BC交线段BC于点Q.(1)求抛物线的解析式;(2)求PQ的最大值,并写出此时点P的坐标;第二问解题思路:由PQ=HP sin∠PHQ=PH知,当PH最大时,PG最大,进而求解变式训练:如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(﹣1,0)、B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.线段PQ的最大值;变式训练:如图,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.对称轴为直线x=﹣1.(1)a=;(2)点P为直线AC下方抛物线上的一动点,过P作PE⊥AC于点E,过P作PF⊥x轴于点F,交直线AC于点G,求PE+PG的最大值;5、如图,抛物线y=ax2+bx+3交x轴于点A(3,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的表达式;(2)D是直线AC上方抛物线上一动点,连接OD交AC于点N,求的最大值,并求出此时D的坐标.第二问解题思路:过点D作DH∥y轴,交AC于点H,由(1)设D(m,﹣m2+2m+3),直线AC的解析式为y=kx+n,然后可求出直线AC的解析式,则有H(m,﹣m+3),进而可得DH=﹣m2+3m,最后根据△OCN∽△DHN可进行求解.变式训练:如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;三.周长和面积6、如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?第二问解题思路:由抛物线的对称性得AE=OB=t,据此知AB=10﹣2t,再由x=t时BC=t2﹣t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得变式训练:如图1,抛物线y=ax2+bx+c与x轴相交于点B,C(点B在点C左侧),与y轴相交于点A(0,4),已知点C坐标为(4,0),△ABC面积为6.(1)求抛物线的解析式;(2)点M是直线AC下方抛物线上一点,过点P作直线AC的垂线,垂足为点H,过点P作PQ∥y轴交AC于点Q,求△PHQ周长的最大值及此时点P的坐标;7、如图,抛物线y=ax2+x+c经过坐标轴上A、B、C三点,直线y=﹣x+4过点B和点C.(1)求抛物线的解析式;(2)E是直线BC上方抛物线上一动点,连接BE、CE,求△BCE面积的最大值及此时点E的坐标;第二问解题思路:过E点作EG∥y轴交BC于点G,设E(t,﹣t2+t+4),则G(t,﹣t+4),可得S=﹣(t﹣2)2+4,当t=2时,△BCE的面积有最大值4,此时E △BCE(2,4)变式训练:二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),与y轴交于点C,点P为第二象限内抛物线上一点.(1)求二次函数的表达式;(2)如图,连接P A,PC,AC,求S的最大值;△P AC变式训练:已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)直接写出抛物线的函数解析式;(2)点N是第一象限内抛物线上的一动点,连接NA分别交BC、y轴于D、E两点,若△NBD、△CDE的面积分别为S1、S2,求S1﹣S2的最大值;四.AP+kBP型8、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3),P是第四象限内这个二次函数的图象上一个动点,设点P的横坐标为m,过点P作PH⊥x轴于点H,与BC交于点M.(1)求这个二次函数的表达式;(3)求PM+2BH的最大值;第二问解题思路:设P点坐标为(m,m2﹣2m﹣3),则M点坐标为(m,m﹣3),H点坐标为(m,0),将PM+2BH转化为二次函数求最值即可变式训练:抛物线y=﹣x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C,点和点P都在抛物线上.(1)求出抛物线表达式;(2)如图,若点P在直线AD的上方,过点P作PH⊥AD,垂足为H,①当点P是抛物线顶点时,求PH的长,②求AH+PH的最大值;变式训练:如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求抛物线的解析式;(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M.①求线段PM长度的最大值.②在①的条件下,若F为y轴上一动点,求PH+HF+CF的最小值.。

2023年中考数学专题复习:二次函数最值问题训练(含答案)

2023年中考数学专题复习:二次函数最值问题训练(含答案)

2023年中考数学专题复习:二次函数最值问题一、单选题1.已知2()=++≠的对称轴为直线230y ax bx ax=,与x轴的其中一个交点为(1,0),该x的取值范围,下列说法正确的是()函数在14A.有最小值0,有最大值3 B.有最小值1-,有最大值3C.有最小值3-,有最大值4 D.有最小值1-,有最大值42.若二次函数24=++的最小值是3,则a的值是()y ax x aA.4 B.-1或3 C.3 D.4或-13.已知二次函数y=﹣x2+2x+4,则下列说法正确的是()A.该函数图象开口向上B.该函数图象向右平移2个单位长度是y=﹣(x+1)2+5C.当x=1时,y有最大值5D.该函数的图象与坐标轴有两个交点4.函数2(0)=++≠的图象如图所示,则该函数的最小值是()y ax bx c aA.1-B.0C.1D.25.在关于n 的函数2=+中,n 为自然数.当n =9 时,S< 0;当n =10 时,S an bnS > 0.则当S 取值最小时,n 的值为()A.3 B.4 C.5 D.66.代数式22 5-+的最小值为()a aA.2 B.3 C.4 D.57.若两个图形重叠后.重叠部分的面积可以用表达式表示为y=﹣(x﹣2)2+3,则要使重叠部分面积最大,x的值为()A.x=2 B.x=﹣2 C.x=3 D.x=﹣38.某商品现在的售价为每件35元,每天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,求最大销售额是( )A .2500元B .2000元C .1800元D .2200元二、填空题9.如图,四边形ABCD 的两条对角线互相垂直,16AC BD +=,则四边形ABCD 的面积最大值是_________10.已知二次函数242y x x =-+,当13x -≤≤时,y 的取值范围内是_______. 11.已知抛物线22(1)1y x =-+,当03x 时,y 的最小值是 __,y 的最大值是 __. 12.当02x ≤≤时,22y x x a =++有最小值为4,则a 为 _____.13.某商品的销售利润y 与销售单价x 的关系为y =﹣21(50)10x -+2650,则当单价定价为每件____元时,可获得最大利润____元.14.已知二次函数223y x x =-+的图象经过点()11A x y , 和点()122B x y +,,则12y y +的最小值是________.15.设抛物线2(1)y x a x a =+++,其中a 为实数.(1)不论a 为何值,该抛物线必经过一定点 _____;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是 _____.16.如图是二次函数2y ax bx c =++(a ≠0)图象的一部分,对称轴是直线x =-1,下列判断:①b -2a =0;②4a -2b +c <0;③abc >0;④当x =0和x =-2时,函数值相等; ⑤3a +c <0;⑥a -b >m (ma +b );⑦若自变量x 的取值范围是-3<x <2,则函数值y >0.其中正确的序号是________.三、解答题17.如图,在▱ABCD中,AB=6,BC=8,∠B=60°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.(1)求用x表示S的函数解析式,并写出x的取值范围.(2)当E运动到何处时,S有最大值,最大值为多少?18.如图,抛物线经过A(﹣1,0),B(3,0),C(0,32)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使P A+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.19.端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,设这种水果每千克降价x元,解决下面所给问题:(1)设该水果超市一天销量y千克,写出y与x之间的关系式;(2)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果每千克降价多少元?(3)设该水果超市一天可获利润w元.求当该商品每千克降价多少元时,该超市一天所获利润最大?并求最大利润值.20.春节即将到来,某水果店进了一些水果,在进货单上可以看到:每次进货价格没有变化,第一次进货苹果400千克和梨500千克,共支付货款6200元;第二次进货苹果600千克和梨200千克,共支付货款6000元;为了促销,该店推出一款水果礼盒,内有3千克苹果和2千克梨,包装盒每个4元.市场调查发现:该礼盒的售价是70元时,每天可以销售80盒;每涨价1元,每天少销售2盒.(1)求每个水果礼盒的成本(成本=水果成本+盒子成本);(2)若每个礼盒的售价是a元(a是整数),每天的利润是w元,求w关于a的函数解析式(不需要写出自变量的取值范围);(3)若每个礼盒的售价不超过m元(m是大于70的常数,且是整数),直接写出每天的最大利润.参考答案:1.B2.A3.C4.A5.C6.C7.A8.C9.3210.27y -≤≤11. 1 912.413. 50 265014.615. (-1,0) 216.①③④⑥17.(1)S 2+(0<x ≤8)(2)18.(1)21322y x x =-++ (2)(1,1)(3)存在,3(2,)2,(13)2,(13)219.(1)y =40x +160;(2)这种水果每千克降价9元;(3)当该商品每千克降价6元时,该超市一天所获利润最大,最大利润值为4000元.20.(1)40元(2)2=-+-23008800w a a(3)当75m时,每天的最大利润为2450元;当7075<<时,每天的最大利润为m2-+-m m23008800。

51 二次函数与最值的六种考法-重难点题型-【初中数学】120个题型大招!冲刺满分秘籍!

51 二次函数与最值的六种考法-重难点题型-【初中数学】120个题型大招!冲刺满分秘籍!

二次函数与最值的六种考法-重难点题型2动轴或动区间】对于二次函数2(0)y ax bx c a =++>,在m x n ≤≤(m ,n 为参数)条件下,函数的最值需要分别讨论m ,n 与2ba-的大小.二次函数中的定轴定区间求最值】】(2021春•瓯海区月考)已知二次函数y =﹣x 2+2x +4,关于该函数在﹣2≤x 取值范围内,下列说法正确的是()A .有最大值4,有最小值0B .有最大值0,有最小值﹣4C .有最大值4,有最小值﹣4D .有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=32,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x ≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m和M的值,从而求出M﹣m的值.【解答过程】解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4),当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.【题型2二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y=mx2+2mx+1(m≠0)在﹣2≤x≤2时有最小值﹣2,则m=()A.3B.﹣3或38C.3或−38D.﹣3或−38【解题思路】先求出对称轴为x=﹣1,分m>0,m<0两种情况讨论解答即可求得m的值.【解答过程】解:∵二次函数y=mx2+2mx+1=m(x+1)2﹣m+1,∴对称轴为直线x=﹣1,①m>0,抛物线开口向上,x=﹣1时,有最小值y=﹣m+1=﹣2,解得:m=3;②m<0,抛物线开口向下,∵对称轴为直线x=﹣1,在﹣2≤x≤2时有最小值﹣2,∴x=2时,有最小值y=4m+4m+1=﹣2,解得:m=−38;故选:C.【变式2-1】(2021•瓯海区模拟)已知二次函数y=ax2﹣4ax﹣1,当x≤1时,y随x的增大而增大,且﹣1≤x≤6时,y的最小值为﹣4,则a的值为()A.1B.34C.−35D.−14【解题思路】根据二次函数y=ax2﹣4ax﹣1,可以得到该函数的对称轴,再根据当x≤1时,y随x的增大而增大,可以得到a的正负情况,然后根据﹣1≤x≤6时,y的最小值为﹣4,即可得到a的值.【解答过程】解:∵二次函数y=ax2﹣4ax﹣1=a(x﹣2)2﹣4a﹣1,∴该函数的对称轴是直线x=2,又∵当x≤1时,y随x的增大而增大,∴a<0,∵当﹣1≤x≤6时,y的最小值为﹣4,∴x=6时,y=a×62﹣4a×6﹣1=﹣4,解得a=−14,故选:D.【变式2-2】(2021•章丘区模拟)已知二次函数y=2ax2+4ax+6a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣2≤x≤1时,y的最小值为15,则a的值为()A.1或﹣2B.−2或2C.﹣2D.1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x≤1时,y的最小值为15,可得x=1时,y=15,即可求出a.【解答过程】解:∵二次函数y=2ax2+4ax+6a2+3(其中x是自变量),∴对称轴是直线x=−42×2=−1,∵当x≥2时,y随x的增大而减小,∴a<0,∵﹣2≤x≤1时,y的最小值为15,∴x=1时,y=2a+4a+6a2+3=15,∴6a2+6a﹣12=0,∴a2+a﹣2=0,∴a=1(不合题意舍去)或a=﹣2.故选:C.【变式2-3】(2021•滨江区三模)已知二次函数y=12(m﹣1)x2+(n﹣6)x+1(m≥0,n ≥0),当1≤x≤2时,y随x的增大而减小,则mn的最大值为()A.4B.6C.8D.494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m,n的取值范围,将mn转化为含一个未知数的整式求最值.【解答过程】解:抛物线y=12(m﹣1)x2+(n﹣6)x+1的对称轴为直线x=6−K1,①当m>1时,抛物线开口向上,∵1≤x≤2时,y随x的增大而减小,∴6−K1≥2,即2m+n≤8.解得n≤8﹣2m,∴mn≤m(8﹣2m),m(8﹣2m)=﹣2(m﹣2)2+8,∴mn≤8.②当0≤m<1时,抛物线开口向下,∵1≤x≤2时,y随x的增大而减小,∴6−K1≤1,即m+n≤7,解得m≤7﹣n,∴mn≤n(7﹣n),n(7﹣n)=﹣(n−72)2+494,∴mn≤494,∵0≤m<1,∴此情况不存在.综上所述,mn最大值为8.故选:C.【题型3二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a 的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x ≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x ≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−14,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.23B.−72C.3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得=−3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=3,∴+=3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴=−32(舍),故选:C.【题型4二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B (﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得−4+=0=4,解得=1=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−382+34x+3经过B,C两点,点E是直线BC上方抛物线上的一动点,过点E作y轴的平行线交直线BC于点M,则EM的最大值为.【解题思路】设出E的坐标,表示出M坐标,进而表示出EM,化成顶点式即可求得EM 的最大值.【解答过程】解:∵点E是直线BC上方抛物线上的一动点,∴点E的坐标是(m,−38m2+34m+3),点M的坐标是(m,−34m+3),∴EM=−38m2+34m+3﹣(−34m+3)=−38m2+32m=−38(m2﹣4m)=−38(m﹣2)2+32,∴当m=2时,EM有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x=﹣1的抛物线y=x2+bx+c,与x轴相交于A,B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)点C是抛物线与y轴的交点,点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC的解析式,再利用QD =﹣x﹣3﹣(x2+2x﹣3)进而求出最值.【解答过程】解:(1)∵点A(﹣3,0)与点B关于直线x=﹣1对称,∴点B的坐标为(1,0).(2)∵a=1,∴y=x2+bx+c.∵抛物线过点(﹣3,0),且对称轴为直线x=﹣1,∴9−3+=0−2=−1∴解得:=2=−3,∴y=x2+2x﹣3,且点C的坐标为(0,﹣3).设直线AC的解析式为y=mx+n,则−3+=0=−3,解得:=−1=−3,∴y=﹣x﹣3如图,设点Q的坐标为(x.y),﹣3≤x≤0.则有QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+32)2+94∵﹣3≤−32≤0,∴当x=−32时,QD有最大值94.∴线段QD长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+52与x轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;+S△MHA=12×MH×OA,即可求解;(Ⅱ)△AMC的面积=S△MHC(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−12,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC的表达式为y=kx+t,则=520=5+,解得=−12=52,故直线AC的表达式为y=−12x+52,当x=2时,y=32,则MH=92−32=3,+S△MHA=12×MH×OA=12×3×5=152;则△AMC的面积=S△MHC(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD 最短即可,则EF2=OD2=m2+(−12m+52)2=54m2−52m+254,∵54>0,故EF2存在最小值(即EF最小),此时m=1,故点D(1,2),∵点P、D的纵坐标相同,故2=−12x2+2x+52,解得x=2±5,故点P的坐标为(2+5,2)或(2−5,2).【题型5二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y=﹣x2上有A,B两点,其横坐标分别为1,2,在y轴上有一动点C,当BC+AC最小时,则点C的坐标是()A.(0,0)B.(0,﹣1)C.(0,2)D.(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A,B的坐标,作点B关于y 轴的对称点B′,连接AB′交y轴于点C,此时BC+AC最小,由点B的坐标可得出点B′的坐标,由点A,B′的坐标,利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C的坐标.【解答过程】解:当x=1时,y=﹣12=﹣1,∴点A的坐标为(1,﹣1);当x=2时,y=﹣22=﹣4,∴点B的坐标为(2,﹣4).作点B关于y轴的对称点B′,连接AB′交y轴于点C,此时BC+AC最小,如图所示.∵点B的坐标为(2,﹣4),∴点B′的坐标为(﹣2,﹣4).设直线AB′的解析式为y=kx+b(k≠0),将A(1,﹣1),B(﹣2,﹣4)代入y=kx+b得:+=−1−2+=−4,解得:=1=−2,∴直线AB′的解析式为y=x﹣2.当x=0时,y=0﹣2=﹣2,∴点C的坐标为(0,﹣2),∴当BC+AC最小时,点C的坐标是(0,﹣2).故选:D.【变式5-1】(2021•铁岭模拟)如图,已知抛物线y=﹣x2+px+q的对称轴为x=﹣3,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,1).要在坐标轴上找一点P,使得△PMN的周长最小,则点P的坐标为()A.(0,2)B.(43,0)C.(0,2)或(43,0)D.以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M的坐标;欲使△PMN 的周长最小,MN的长度一定,所以只需(PM+PN)取最小值即可.然后,过点M作关于y轴对称的点M′,连接M′N,M′N与y轴的交点即为所求的点P(如图1);过点M作关于x轴对称的点M′,连接M′N,则只需M′N与x轴的交点即为所求的点P(如图2).【解答过程】解:如图,∵抛物线y=﹣x2+px+q的对称轴为x=﹣3,点N(﹣1,1)是抛物线上的一点,∴−−2=−31=−1−+,解得=−6=−4.∴该抛物线的解析式为y=﹣x2﹣6x﹣4=﹣(x+3)2+5,∴M(﹣3,5).∵△PMN的周长=MN+PM+PN,且MN是定值,所以只需(PM+PN)最小.如图1,过点M作关于y轴对称的点M′,连接M′N,M′N与y轴的交点即为所求的点P.则M′(3,5).设直线M′N的解析式为:y=ax+t(a≠0),则5=3+1=−+,解得=1=2,故该直线的解析式为y=x+2.当x=0时,y=2,即P(0,2).同理,如图2,过点M作关于x轴对称的点M′,连接M′N,则只需M′N与x轴的交点即为所求的点P(−43,0).如果点P在y轴上,则三角形PMN的周长=42+M;如果点P在x轴上,则三角形PMN的周长=210+M;所以点P在(0,2)时,三角形PMN的周长最小.综上所述,符合条件的点P的坐标是(0,2).故选:A.【变式5-2】(2021•包头)已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B 的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+DE的值最小时,△ACE的面积为.【解题思路】解方程x2﹣2x﹣3=0得A(﹣1,0),B(3,0),则抛物线的对称轴为直线x=1,再确定C(0,﹣3),D(4,5),连接AD交直线x=1于E,交y轴于F点,如图,利用两点之间线段最短可判断此时BE+DE的值最小,接着利用待定系数法求出直线AD的解析式为y=x+1,则F(0,1),然后根据三角形面积公式计算.【解答过程】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B (3,0),抛物线的对称轴为直线x=1,当x=0时,y=x2﹣2x﹣3=﹣3,则C(0,﹣3),当x=4时,y=x2﹣2x﹣3=5,则D(4,5),连接AD交直线x=1于E,交y轴于F点,如图,∵BE+DE=EA+DE=AD,∴此时BE+DE的值最小,设直线AD的解析式为y=kx+b,把A(﹣1,0),D(4,5)代入得−+=04+=5,解得=1=1,∴直线AD的解析式为y=x+1,当x=1时,y=x+1=2,则E(1,2),当x=0时,y=x+1=1,则F(0,1),=S△ACF+S△ECF=12×4×1+12×4×1=4.∴S△ACE故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y=53x2−203x+5与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C,在其对称轴上有一动点M,连接MA、MC、AC,则当△MAC的周长最小时,点M的坐标是.【解题思路】点A关于函数对称轴的对称点为点B,连接CB交函数对称轴于点M,则点M为所求点,即可求解.【解答过程】解:点A关于函数对称轴的对称点为点B,连接CB交函数对称轴于点M,则点M为所求点,理由:连接AC,由点的对称性知,MA=MB,△MAC的周长=AC+MA+MC=AC+MB+MC=CA+BC为最小,令y=53x2−203x+5=0,解得x=1或3,令x=0,则y=5,故点A、B、C的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x=12(1+3)=2,设直线BC的表达式为y=kx+b,则0=3+=5,解得=−53=5,故直线BC的表达式为y=−53x+5,当x=2时,y=−53x+5=53,故点M的坐标为(2,53).【题型6二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m),点P是线段AC上一个动点,过点P做x轴的垂线交抛物线于点E.(1)求抛物线的解析式;(2)当P在何处时,△ACE面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C(2,﹣3),再利用待定系数法求出直线AC的解析式为y=﹣x﹣1,设E(t,t2﹣2t﹣3)(﹣1≤t≤2),则P(t,﹣t﹣1),利用三角形面积公式得到△ACE的面积=12×(2+1)×PE=32(﹣t2+t+2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)把C(2,m)代入y=x2﹣2x﹣3得m=4﹣4﹣3=﹣3,则C(2,﹣3),设直线AC的解析式为y=mx+n,把A(﹣1,0),C(2,﹣3)代入得−+=02+=−3,解得=−1=−1,∴直线AC的解析式为y=﹣x﹣1;设E(t,t2﹣2t﹣3)(﹣1≤t≤2),则P(t,﹣t﹣1),∴PE=﹣t﹣1﹣(t2﹣2t﹣3)=﹣t2+t+2,∴△ACE的面积=12×(2+1)×PE=32(﹣t2+t+2)=−32(t−12)2+278,当t=12时,△ACE的面积有最大值,最大值为278,此时P点坐标为(12,−32).【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大,若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−12,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:0=4+−2=,解得=12=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴S△DCA∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y 轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后+S△ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.根据S=S△ABC【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B(0,3),∵抛物线y=﹣x2+bx+c经过点A,B,∴=3−9+3+=0,∴=2=3,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图,过点P做PE⊥x轴于点E,与直线AB交于点D,∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+2m+3),∵点D在直线AB上,∴点D的坐标为(m,﹣m+3),∴PD=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,在y=﹣x2+2x+3中.令y=0.则﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴点C的坐标为(﹣1,0),+S△ABP=12×4×3+12(﹣m2+3m)×3=−32(m−32)2+758,∴S=S△ABC∴当m=32时,S最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P 是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;=−32(m−12)(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=32,∴E(0,−32),∴点P的纵坐标为−32,由(1)知,二次函数的解析式为y=x2﹣2x﹣3,∴x2﹣2x﹣3=−32,∴x=x=∵点P在直线BC下方的抛物线上,∴0<x<3,∴点P(2+102,−32);(3)如图2,过点P作PF⊥x轴于F,则PF∥OC,由(1)知,二次函数的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴A(﹣1,0),∴设P(m,m2﹣2m﹣3)(0<m<3),∴F(m,0),=S△AOC+S梯形OCPF+S△PFB=12OA•OC+12(OC+PF)•OF+12PF•BF ∴S四边形ABPC=12×1×3+12(3﹣m2+2m+3)•m+12(﹣m2+2m+3)•(3﹣m)=−32(m−32)2+758,∴当m=32时,四边形ABPC的面积最大,最大值为758,此时,P(32,−154),即点P运动到点(32,−154)时,四边形ABPC的面积最大,其最大值为758.。

最全二次函数区间的最值问题(中考数学必考题型)

最全二次函数区间的最值问题(中考数学必考题型)

二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。

例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。

2023年九年级数学中考专题训练——二次函数的最值 (附答案))

2023年九年级数学中考专题训练——二次函数的最值 (附答案))

2023年中考专题训练——二次函数的最值1.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =. (1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少? (3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图1,抛物线2323333y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B 作直线BD ∥直线AC ,交抛物线y 于另一点D ,点P 为直线AC 上方抛物线上一动点.(1)求线段AB 的长.(2)过点P 作PF y ∥轴交AC 于点Q ,交直线BD 于点F ,过点P 作PE AC ⊥于点E ,求233PE PF +的最大值及此时点P 的坐标. (3)如图2,将抛物线2323333y x x =--+向右平移3个单位得到新抛物线y ',点M 为新抛物线上一点,点N 为原抛物线对称轴一点,直接写出所有使得A 、B 、M 、N 为顶点的四边形是平行四边形时点N 的坐标,并写出其中一个点N 的坐标的求解过程. 3.已知二次函数2y x bx c =+-的图象经过点(3,0),且对称轴为直线1x =.(1)求b c +的值;(2)当43x -≤≤时,求y 的最大值;(3)平移抛物线2y x bx c =+-,使其顶点始终在二次函数221y x x =--上,求平移后所得抛物线与y 轴交点纵坐标的最小值.4.已知关于x 的一元二次方程()()121x x m --=+(m 为常数).(1)若它的一个实数根是方程()2140x --=的根,则m =_____,方程的另一个根为_____; (2)若它的一个实数根是关于x 的方程()240x m --=的根,求m 的值; (3)若它的一个实数根是关于x 的方程()240x n --=的根,求m n +的最小值.5.如图,抛物线23y ax bx =++交x 轴于()3,0A ,()1,0B -两点,交y 轴于点C ,动点P 在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P ,B ,C 为顶点的三角形周长最小时,求点P 的坐标及PBC 的周长;(3)若点Q 是平面直角坐标系内的任意一点,是否存在点Q ,使得以A ,C ,P ,Q 为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.6.平面直角坐标系中,二次函数y =ax 2+bx +c 的顶点为(32,﹣254),它的图象与x 轴交于点A ,B (点A 在点B 左侧).(1)若AB =5,交y 轴于点C ,点C 在y 轴负半轴上. ①求二次函数的解析式;②若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围. (2)当-1≤x ≤1时,函数值y 有最小值为﹣a 2,求a 的值(其中a 为二次函数的二次项系数).7.已知直线1y kx =+经过点()2,3,与抛物线2y x bx c =++的对称轴交于点1,2n ⎛⎫⎪⎝⎭(1)求k ,b 的值;(2)抛物线2y x bx c =++与x 轴交于()()12,0,0x x 且2139x x ≤-<,若22123p x x =-,求p 的最大值;(3)当12x -<<时,抛物线2y x bx c =++与直线1y kx =+有且只有一个公共点,直接写出c 的取值范围.8.如图,直线:l y m =-与y 轴交于点A ,直线:a y x m =+与y 轴交于点B ,抛物线2y x mx =+的顶点为C ,且与x 轴左交点为D (其中0m >).(1)当12AB =时,在抛物线的对称轴上求一点P 使得BOP △的周长最小;(2)当点C 在直线l 上方时,求点C 到直线l 距离的最大值; (3)若把横坐标、纵坐标都是整数的点称为“整点”.当2021m =时,求出在抛物线和直线a 所围成的封闭图形的边界上的“整点”的个数.9.如图,在平面直角坐标系中,抛物线2y x bx c =++经过A (0,﹣1),B (4,1).直线AB 交x 轴于点C ,P 是直线AB 下方抛物线上的一个动点.过点P 作PD ⊥AB ,垂足为D ,PE ∥x 轴,交AB 于点E .(1)求抛物线的函数表达式;(2)当△PDE 的周长取得最大值时,求点P 的坐标和△PDE 周长的最大值;(3)把抛物线2y x bx c =++平移,使得新抛物线的顶点为(2)中求得的点P .M 是新抛物线上一点,N 是新抛物线对称轴上一点,直接写出所有使得以点A ,B ,M ,N 为顶点的四边形是平行四边形的点M 的坐标,并把求其中一个点M 的坐标的过程写出来.10.如图,抛物线2y x bx c =-++过点()3,2A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为()4,m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ∠=︒?若存在,求点Q 的坐标;若不存在,请说明理由.11.如图,抛物线24y ax bx =++交x 轴于3,0,()(,0)4A B -两点,与y 轴交于点C ,连接,AC BC .M 为线段OB 上的一个动点,过点M 作PM x ⊥轴,交抛物线于点P ,交BC 于点Q . (1)求抛物线的表达式;(2)过点P 作PN BC ⊥,垂足为点N .求线段PN 的最大值.(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以,,A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标:若不存在,请说明理由.12.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B . (1)求抛物线的解析式(2)若直线y =mx +n 经过B 、C 两点,求直线BC 的解析式; (3)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标及此时距离之和的最小值13.在平面直角坐标系xOy 中,已知抛物线y =ax 2-2ax -1(a <0). (1)抛物线的对称轴为,抛物线与y 轴的交点坐标为;(2)试说明直线y =x -2与抛物线y =ax 2-2ax -1(a <0)一定存在两个交点; (3)若当-2≤x ≤2时,y 的最大值是1,求当-2≤x ≤2时,y 的最小值是多少?14.如图,抛物线2y ax bx =+经过点()3,33A -、()12,0B . (1)求抛物线的解析式; (2)试判断OAB 的形状;(3)曲线AB 为抛物线上点A 到点B 的曲线,在曲线AB 上是否存在点P 使得四边形OAPB 的面积最大,若存在,求点P 的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,二次函数y =ax 2+bx ﹣6的图象交坐标轴于A (﹣2,0),B (3,0)两点,抛物线与y 轴相交于点C ,抛物线上有一动点P 在直线BC 下方. (1)求这个二次函数的解析式;(2)是否存在点P ,使△POC 是以OC 为底边的等腰三角形?若存在,求出P 点坐标; (3)动点P 运动到什么位置时,△PBC 面积最大.求出此时P 点坐标和△PBC 的最大面积.16.已知抛物线y =x 2﹣bx +c (b ,c 为常数)的顶点坐标为(2,﹣1). (1)求该抛物线的解析式;(2)点M (t ﹣1,y 1),N (t ,y 2)在该抛物线上,当t <1时,比较y 1与y 2的大小; (3)若点P (m ,n )在该抛物线上,求m ﹣n 的最大值. 17.如图1,抛物线2y x bx c =++与x 轴交于点(2,0)A -、(6,0)B .(1)求抛物线的函数关系式.(2)如图1,点C 是抛物线在第四象限内图像上的一点,过点C 作CP y ⊥轴,P 为垂足,求CP OP +的最大值;(3)如图2,设抛物线的顶点为点D ,点N 的坐标为()2,16--,问在抛物线的对称轴上是否存在点M ,使线段MN 绕点M 顺时针旋转90︒得到线段MN ',且点N '恰好落在抛物线上?若存在,求出点M 的坐标;若不存在,请说明理由.18.如图,已知抛物线2y ax bx c =++()0a ≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,且OC OB =.(1)求点C 的坐标和此抛物线的解析式;(2)若点E 为第二象限抛物线上一动点,连接BE ,CE ,BC ,求BCE 面积的最大值; (3)点P 在抛物线的对称轴上,若线段PA 绕点P 逆时针旋转90°后,点A 的对应点A '.恰好也落在此抛物线上,求点P 的坐标.19.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ()0,3-,A 点的坐标为(-1,0). (1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积; (3)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA+QC 最小,求出Q 点的坐标,并求出此时△QAC 的周长.20.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当24x ≤≤时,两个函数:()221,211y x y x =+=-+的最大值和最小值; (2)若2y x=的值不大于2,求符合条件的x 的范围;(3)若(0)ky k x=≠,当()20t x x ≤≤≠时既无最大值,又无最小值,求a 的取值范围.参考答案:1.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -【分析】(1)先求出点C 的坐标,得到点B 的坐标,再将点A 、B 的坐标代入解析式计算即可;(2)将函数解析式化为顶点式,根据函数的性质解答即可; (3)存在点P ,设()0,P m ,根据相似三角形对应边成比例列得PC CC PO OB'=,代入数值求出m 即可.【解析】(1)二次函数23y ax bx =+-的图象与y 轴交于C 点,()0,3C ∴-.OB OC =,点A 在点B 的左边,()3,0B ∴.又点A 的坐标为()1,0-,由题意可得:093303a b a b =+-⎧⎨=--⎩,解得:12a b =⎧⎨=-⎩.∴二次函数的解析式为2=23y x x --.(2)()22=2314y x x x ---=-,二次函数顶点坐标为()1,4-,∴当1x =时,4y =-最小值,当01x ≤≤时,y 随着x 的增大而减小, ∴当0x =时,3y =-最大值,当14x <≤时,y 随着x 的增大而增大, ∴当4x =时,5y =最大值.∴当04x ≤≤时,函数的最大值为5,最小值为4-.(3)存在点P ,如图,设()0,P m ,CC OB '∥,且PC 与PO 是相似三角形的对应边,PC CC PO OB ∴'=,即:()323m m --=, 解得:9m =-或95m =-,()0,9P ∴-或90,5P ⎛⎫- ⎪⎝⎭.【点评】此题考查了二次函数与图形问题,待定系数法求二次函数的解析式,二次函数的对称性,相似三角形的性质,二次函数的最值,正确掌握二次函数的综合知识是解题的关键. 2.(1)4(2)当32t =-时,233PE PF +1733232P ⎛- ⎝⎭; (3)(1,3N --,113⎛- ⎝⎭和3731,⎛- ⎝⎭【分析】(1)令232330,求解即可; (2)求直线,AC BD 的解析式,设点232,33P t ⎛ ⎝,则33Q t ⎛ ⎝,33F t ⎛ ⎝⎭,利用30QFC ∠=︒,将所求转化为23333PE PF PQ PF +=+,再求解即可; (3)推出平移后的解析式,设234383,M m ⎛ ⎝⎭,()2,N n -,分三种情况讨论;再利用平行四边形的性质结合中点坐标求解即可. 【解析】(1)令232330, 解得1x =或3x =-, ∴()()3,0,1,0A B -,4AB ∴=;(2)232333y x x =-(3C ∴,设直线AC 的解析式为y kx b =+,303k b b -+=⎧⎪∴⎨=⎪⎩,解得33k b ⎧=⎪⎨⎪=⎩,∴直线AC 的解析式为y x =(),1,0AC BD B ∥,∴直线BD 的解析式为y x =设点2,P t ⎛ ⎝+,则Q t ⎛+ ⎝,F t ⎛ ⎝⎭, ∵点P 为直线AC 上方抛物线上一动点,22PQ ∴==,22P F ==∵3,OA OC ==30CAO ∴∠=︒,,PE AC PF OA ⊥⊥, 30QFC ∴∠=︒,PE ∴=,∴222333332PF PQ PF t ⎛⎫+=+==-+ ⎪⎭⎝⎭∴当32t =-时,3PF +32P ⎛- ⎝⎭;(3))22313y x =-+ ∴抛物线对称轴为直线=1x -,∵抛物线2y =3个单位得到新抛物线y ',∴新抛物线y '的解析式为)22y x =-+',∴2,M m ⎛ ⎝⎭,()1,N n -,①当AB 为平行四边形的对角线时,2311,0m n -=-+=,∴1,m n =-=∴((1,N M --,;②当AM 为平行四边形的对角线时,234383311,m n -=+-= ∴1133,m n ==∴113113N M ⎛⎛- ⎝⎭⎝⎭,; ③当AN 为平行四边形的对角线时,24311,3383n m -+-=+=, ∴3735,m n =-= ∴3733735,1,M N ⎛⎛-- ⎝⎭⎝⎭,; 综上,N 点坐标分别为(1,3N -,113⎛- ⎝⎭和3731,⎛- ⎝⎭. 【点评】本题考查了为此函数的图象和性质,直角三角形的性质,平行四边形的性质,熟练掌握知识并能够运用分类讨论的思想是解题的关键. 3.(1)1 (2)21 (3)1312-【分析】(1)根据对称轴公式求出b ,再有二次函数2y x bx c =+-的图象经过点(3,0),代入求出c ,计算即可;(2)根据二次函数的增减性可知,当x =-4时,y 值最大,代入求解即可;(3)因为平移抛物线2=23y x x --,其顶点始终在二次函数221y x x =--上,故设顶点坐标为()2,21h h h --,可得平移后的解析式为22()21y x h h h =-+--,可求平移后所得抛物线与y 轴交点纵坐标为231=--w h h ,根据二次函数求最值的方法求解即可. (1)解:由题意可知12bx =-=,∴2b =-. 将(3,0)代入22y x x c =--,得3c =, ∴1b c +=. (2)解:由(1)得2223(1)4y x x x =--=--,∴当1x <时,y 随x 增大而减小,当1x >时,y 随x 增大而增大.∵1(4)31-->-,∴当4x =-时,y 取最大值21. (3)解:∵平移抛物线2=23y x x --,其顶点始终在二次函数221y x x =--上,∴设顶点坐标为()2,21h h h --,故平移后的解析式为22()21y x h h h =-+--,∴22222221231y x hx h h h x hx h h =-++--=-+--. 设平移后所得抛物线与y 轴交点的纵坐标为w , 则22113313612w h h h ⎛⎫=--=-- ⎪⎝⎭,∴当16h =时,平移后所得抛物线与y 轴交点纵坐标的最小值为1312-. 【点评】本题考查了二次函数的性质,和最值,平移规律,熟练掌握二次函数的性质和平移规律是解题的关键.4.(1)1,0x =;(2)11m =,21m =-;(3)当1n =-时,m n +有最小值为-2. 【分析】(1)求方程2(x -1)-4=0的根,代入(x -1)(x -2)=m +1中,确定m 的值;解(x -1)(x -2)=m +1,得到另一个根;(2)求方程2(x -m )-4=0的根,代入(x -1)(x -2)=m +1中,确定m 的值;(3)求方程()240x n --=的根,代入(x -1)(x -2)=m +1中,用含n 的代数式表示m ,构造m +n 与n 的二次函数,利用二次函数的性质确定最值. 【解析】(1)∵2(x -1)-4=0, ∴x =3,∴(3-1)(3-2)=m +1, 解得m =1, ∴(x -1)(x -2)=2, ∴2x -3x =0, ∴123,0x x ==, 故答案为:1,0x =. (2)由()240x m --=,得 2x m =+.则()()21221m m m +-+-=+ ∴21m m m +=+, ∴21m =,∴11m =,21m =-. (3)由()240x n --=,得2x n =+.则()()21221n n m +-+-=+. 即21m n n =+-.∴()222112m n n n n +=+-=+-; ∴当1n =-时,m n +有最小值-2.【点评】本题考查了一元一次方程,一元二次方程,二次函数的最值,熟练掌握方程的解法,二次函数的最值是解题的关键.5.(1) 223y x x =-++;(2) P 点坐标为(1,2),BCP ∆1032(3) Q 点坐标存在,为(2,2)或(417或(4,17-或(2-,314或(2-,314【分析】(1)将()3,0A ,()1,0B -代入即可求解;(2)连接BP 、CP 、AP ,由二次函数对称性可知,BP=AP ,得到BP +CP =AP +CP ,当C 、P 、A 三点共线时,△PBC 的周长最小,由此求出AC 解析式,将P 点横坐标代入解析式中即可求解;(3)设P 点坐标为(1,t ),Q 点坐标为(m ,n ),按AC 为对角线,AP 为对角线,AQ 为对角线分三种情况讨论即可求解.【解析】解:(1)将()3,0A ,()1,0B -代入二次函数表达式中,∴093303a b a b =++⎧⎨=-+⎩ ,解得12a b =-⎧⎨=⎩,∴二次函数的表达式为:223y x x =-++; (2)连接BP 、CP 、AP ,如下图所示:由二次函数对称性可知,BP=AP , ∴BP +CP =AP +CP , BCPC BP CP BCPA CP BCBC 为定直线,当C 、P 、A 三点共线时,PA CP 有最小值为AC ,此时BCP ∆的周长也最小,设直线AC 的解析式为:y kx m =+,代入()3,0,(0,3)A C ,∴0=330k m m +⎧⎨=+⎩,解得13k m =-⎧⎨=⎩,∴直线AC 的解析式为:3y x =-+, 二次函数的对称轴为12bx a=-=,代入3y x =-+,得到2y =, ∴P 点坐标为(1,2),此时BCP ∆的周长最小值=222213331032BC AC;(3)()3,0,(0,3)A C 设P 点坐标为(1,t ),Q 点坐标为(m ,n ), 分类讨论:情况一:AC 为菱形对角线时,另一对角线为PQ ,此时由菱形对角互相平分知:AC 的中点也必定是PQ 的中点, 由菱形对角线互相垂直知:1AC PQk k ,∴30103111m t n n t m ⎧⎪+=+⎪+=+⎨⎪-⎪-⋅=--⎩,解得221m n t =⎧⎪=⎨⎪=⎩,∴P 点坐标为(1,1),对应的Q 点坐标为(2,2); 情况二:AP 为菱形对角线时,另一对角线为CQ ,同理有:310030312m t n t n m ⎧⎪+=+⎪+=+⎨⎪--⎪⋅=--⎩,解得43m n t=⎧⎪⎨⎪=⎩或43m n t =⎧⎪=⎨⎪=⎩,∴P 点坐标为(1,3)或(1,3,对应的Q 点坐标为(4或(4,); 情况三:AQ 为菱形对角线时,另一对角线为CP ,()3,0,(0,3)A C 设P 点坐标为(1,t ),Q 点坐标为(m ,n ),同理有:3010303131m n t n t m ⎧⎪+=+⎪+=+⎨⎪--⎪⋅=--⎩,解得23m n t =-⎧⎪=⎨⎪=⎩23m n t =-⎧⎪=⎨⎪=⎩ ∴P 点坐标为(1或(1,,对应的Q 点坐标为(-2,3或(-2,3; 纵上所示,Q 点坐标存在,为(2,2)或(4或(4,或(2-,3或(2-,3.【点评】本题考查了待定系数法求二次函数解析式,二次函数对称性求线段最值问题及菱形的存在性问题,本题第三问难度大一些,熟练掌握各图形的性质是解决本题的关键. 6.(1)①234y x x =--;②自变量x 的取值范围为12x >-;(2)a 1401-+25541-- 【分析】(1)①二次函数y =ax 2+bx +c 的顶点为(32,﹣254),可确定二次函数的对称轴为32x =,利用对称轴求出抛物线与x 轴的交点A (-1,0),B (4,0),利用待定系数法可求抛物线解析式;②设自变量x 的值增加4时,的函数为y 1,求出新增函数21=5y x x +,利用1y y >两函数作差840x +>解不等式即可;(2)设二次函数的解析式为232524y a x ⎛⎫=-- ⎪⎝⎭,由-1≤x ≤132<,0a >或a<0分两种情况利用函数的增减性构造关于a 的一元二次方程,求出a 的值即可. 【解析】解:(1)①二次函数y =ax 2+bx +c 的顶点为(32,﹣254),∴二次函数的对称轴为32x =, ∵与x 轴交于点A ,B ,AB =5, ∴A 、B 两点关于对称轴为32x =对称,35122-=-,35+422=, ∴A (-1,0),B (4,0), 设解析式为()()14y a x x =+-,∵()()14y a x x =+-过顶点(32,﹣254),∴253314422a ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭, 解得=1a ,∴二次函数解析式为:2=34y x x --, ②设自变量x 的值增加4时,的函数为y 1, ∴()()221=+43+44=5y x x x x --+, ∵1y y >,∴()22534840x x x x x +---=+>,解得12x >-;(2)设二次函数的解析式为232524y a x ⎛⎫=-- ⎪⎝⎭,当-1≤x ≤132<, 当0a >,二次函数开口向上,在二次函数对称轴的左侧,y 随x 的增大而减小, ∴当x =1时函数取最小值﹣a 2,∴22325124a a ⎛⎫--=- ⎪⎝⎭,整理得24+250a a -=,解得a =0a =<(舍去), 当a<0,二次函数开口向下,在二次函数对称轴的左侧,y 随x 的增大而增大, ∴当x =-1时函数取最小值﹣a 2,∴22325124a a ⎛⎫---=- ⎪⎝⎭, 整理得24+25250a a -=,解得a =或0a =>(舍去). 【点评】本题考查待定系数法求抛物线解析式,利用自变量增大函数值增大构造不等式,利用函数的增减性取最小值构造关于a 的一元二次方程,掌握待定系数法求抛物线解析式,会列不等式与解不等式,利用函数的增减性取最小值构造关于a 的一元二次方程和解方程是解题关键.7.(1)1k =,1b =;(2)p 最大值为1;(3)30c -<≤或1c =【分析】(1)将(2,3)和1,2n ⎛⎫⎪⎝⎭分别代入直线表达式中可求得k 和n 值,再根据抛物线的对称轴公式求解b 值即可;(2)抛物线的对称轴为直线x =﹣12和2139x x ≤-<得出211x x =--及152x -<≤-,则()22221211331p x x x x =-=---2133222x ⎛⎫=-++ ⎪⎝⎭,根据二次函数的最值方法求解即可;(3)联立方程组可得x 2=1﹣c ,对c 讨论,结合方程根取值范围进行求解即可. 【解析】解:(1)把()2,3代入1y kx =+得:213k +=,则1k =,∴点1,2n ⎛⎫⎪⎝⎭在直线1y x =+上,∴12n =-,∴抛物线的对称轴122b x =-=-,∴1b =;(2)由(1)知1b =,则2y x x c =++,∵抛物线2y x x c =++与x 轴交点的横坐标为1x ,2x 且213x x -≥ ∴2112x x >-> ∴211122x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭即121x x +=-. ∴211x x =--.∴()22221211331p x x x x =-=---2133222x ⎛⎫=-++ ⎪⎝⎭∵2139x x ≤-<,∴()11319x x ≤---< ∴152x -<≤-∵20-<且对称轴为直线32x =-∴当152x -<≤-时,p 随1x 的增大而增大, ∴当12x =-时,p 取最大值且最大值为1;(3)由(1)知,直线的表达式为1y x =+,抛物线表达式为2y x x c =++,联立方程组21y x y x x c =+⎧⎨=++⎩得:x 2=1﹣c , 当c >1时,该方程无解,不满足题意; 当c =1时,方程的解为x =0满足题意; 当c <1时,方程的解为x =±1c -当1c -2即30c -<≤时,满足12x -<<时,抛物线2y x bx c =++与直线1y kx =+有且只有一个公共点,综上,满足题意的c 的取值范围为30c -<≤或1c =.【点评】本题考查二次函数与一次函数的综合,涉及待定系数法求函数表达式、二次函数的图象与性质、求二次函数的最值问题、两个函数图象的交点问题、解一元二次方程、解一元一次不等式组等知识,解答的关键是认真分析题意,找寻知识之间的关联点,利用待定系数法、分类讨论和数形结合思想进行推理、探究和计算. 8.(1)()3,3-;(2)1;(3)4044个【分析】(1)先求出点B 坐标,B 的纵坐标减去A 的纵坐标等于12求出m 值,再求出抛物线的对称轴,根据抛物线的对称性和两点之间线段最短知,当B 、P 、D 三点共线时OBP 周长最短,此时点P 为直线a 与对称轴的交点,进而求解即可;(2)先求出抛物线的顶点C 坐标2,24m m ⎛⎫-- ⎪⎝⎭,由C 与l 的距离221()(2)1144m m m =---=--+≤即可求出最大值;(3)先求出抛物线与直线a 的交点的横坐标,根据每一个整数x 的值都对应的一个整数y 值,结合边界由线段和抛物线组成求解即可. 【解析】解:(1)当0x =时,y x m m =+=, (0,)B m ∴,12AB =,而(0,)A m -,()12m m ∴--=,6m ∴=,∴抛物线L 的解析式为:26y x x =+,L ∴的对称轴3x =-,又知O 、D 两点关于对称轴对称,则OP DP =OB OP PB OB DP PB ∴++=++∴当B 、P 、D 三点共线时OBP 周长最短,此时点P 为直线a 与对称轴的交点,当3x =-时,63y x =+=, (3,3)P ∴-;(2)2224m m y x ⎛⎫=+- ⎪⎝⎭,L ∴的顶点2,24m m C ⎛⎫-- ⎪⎝⎭,点C 在l 上方,C ∴与l 的距离221()(2)1144m m m =---=--+≤,∴点C 与l 距离的最大值为1;(3)当2021m =时,抛物线解析式2:2021L y x x =+ 直线解析式:2021a y x =+联立上述两个解析式220212021y x xy x ⎧=+⎨=+⎩可得:12021x =-,21x =∴可知每一个整数x 的值都对应的一个整数y 值,且-2021和1之间(包括-2021和1)共有2023个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线, ∴线段和抛物线上各有2023个整数点, ∴总计4046个点∵这两段图象交点有2个点重复, ∴“整点”的个数:404624044-=(个); 故2021m =时“整点”的个数为4044个.【点评】本题考查二次函数的图象与性质、一次函数的图象与性质、图形与坐标、最短路径问题、二次函数的最值、两函数图象的交点问题、解二元一次方程组等问题,综合性强,难度适中,解答的关键是读懂题意,找寻相关知识的关联点,利用数形结合思想解决问题. 9.(1)2712y x x =--;(2)t =2时,△PDE 2458, 点P的坐标为(2,﹣4);(3)满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12),过程见解析【分析】(1)利用待定系数法求函数表达式即可;(2)先求出直线AB 的函数表达式和点C 坐标,设P 27,12t t t ⎛⎫-- ⎪⎝⎭,其中0<t <4,则E22727,12t t t t ⎛⎫---⎪⎝⎭,证明△PDE ∽△AOC ,根据周长之比等于相似比可得())22355651024522828l t t ++⎡⎤=--+=-⎣⎦,根据二次函数求最值的方法求解即可;(3)分以下情况①若AB 是平行四边形的对角线;②若AB 是平行四边形的边,1)当 MN ∥AB 时;2)当 NM ∥AB 时,利用平行四边形的性质分别进行求解即可. 【解析】解(1)∵抛物线2y x bx c =++经过点A (0,﹣1),点B (4,1),∴11641c b c =-⎧⎨++=⎩, 解得721b c ⎧=-⎪⎨⎪=-⎩, ∴该抛物线的函数表达式为2712y x x =--;(2)∵A (0,-1),B (4,1), ∴直线AB 的函数表达式为112y x =-, ∴C (2,0),设P 27,12t t t ⎛⎫-- ⎪⎝⎭,其中0<t <4,∵点E 在直线112y x =-上,PE ∥x 轴, ∴E 22727,12t t t t ⎛⎫--- ⎪⎝⎭,∠OCA =∠DEP ,∴PE =()2228228t t t -+=--+, ∵PD ⊥AB , ∴∠EDP =∠COA , ∴△PDE ∽△AOC , ∵AO =1,OC =2, ∴AC∴△AOC 的周长为令△PDE 的周长为lACPE=,∴())2222828l t t ⎡⎤=--+=-⎣⎦, ∴当t =2时,△PDE8, 此时点P 的坐标为(2,﹣4),(3)如图所示,满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12). 由题意可知,平移后抛物线的函数表达式为24y x x =-,对称轴为直线2x =. ①若AB 是平行四边形的对角线,当MN 与AB 互相平分时,四边形ANBM 是平行四边形, 即MN 经过AB 的中点C (2,0),∵点N 的横坐标为2,∴点M 的横坐标为2,∴点M 的坐标为(2,-4);②若AB 是平行四边形的边,1)MN ∥AB 时,四边形ABNM 是平行四边形,∵A (0,-1),B (4,1),点N 的横坐标为2,∴点M 的横坐标为2﹣4=﹣2,∴点M 的坐标为(﹣2,12);2)当 NM ∥AB 时,四边形ABMN 是平行四边形,∵A (0,-1),B (4,1),点N 的横坐标为2,∴点M 的横坐标为2+4=6,∴点M 的坐标为(6,12),综上,满足条件的点M 的坐标有(2,﹣4),(6,12),(﹣2,12).【点评】本题考查待定系数法求函数的表达式、相似三角形的判定与性质、求二次函数的最值、平行四边形的性质等知识,解答的关键是熟练掌握二次函数的性质,运用平行四边形的性质,结合数形结合和分类讨论的思想方法进行探究、推导和计算.10.(1)21722y x x =-++;(2)352(3)存在,点Q 的坐标为(10,23Q 、(20,23Q 【分析】(1)先将点B 的坐标为(4,)m 代入代入直线解析式中,求得点B 的坐标,再利用,A B 坐标,待定系数法求二次函数解析式;(2)设217,22D m m m ⎛⎫-++ ⎪⎝⎭,则7,2E m m ⎛⎫-+ ⎪⎝⎭,()21222DE m =--+,当2m =时,DE 有最大值为2,此时72,2D ⎛⎫ ⎪⎝⎭,作点A 关于对称轴的对称点A ',连接A D ',与对称轴交于点P ,PD PA PD PA A D ''+=+=此时PD PA +最小,勾股定理即可求得;(3)作AH y ⊥轴于点H ,连接AM 、AQ 、MQ 、HA 、HQ ,由45AQM ∠=︒可知12AQM AHM ∠=∠,继而可得:2QH HA HM ===,设(0,)Q t ,勾股定理即可求得点Q 的坐标【解析】解:(1)将点B 的坐标为(4,)m 代入72y x =-+, 71422m =-+=-, ∴B 的坐标为14,2⎛⎫- ⎪⎝⎭, 将(3,2)A ,14,2B ⎛⎫- ⎪⎝⎭代入 212y x bx c =-++, 2213322114422b c b c ⎧-⨯++=⎪⎪⎨⎪-⨯++=-⎪⎩ 解得1b =,72c =, ∴抛物线的解析式21722y x x =-++; (2)设217,22D m m m ⎛⎫-++ ⎪⎝⎭, 则7,2E m m ⎛⎫-+ ⎪⎝⎭, 222177112(2)222222DE m m m m m π⎛⎫⎛⎫=-++--+=-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当2m =时,DE 有最大值为2 此时72,2D ⎛⎫ ⎪⎝⎭, 作点A 关于对称轴的对称点A ',连接A D ',与对称轴交于点P .PD PA PD PA A D ''+=+=,此时PD PA +最小,∵(3,2)A ,∴(1,2)A '-,2273(12)2522A D ⎛⎫'=--+- ⎪⎝⎭ 即PD PA +352(3)作AH y ⊥轴于点H ,连接AM 、AQ 、MQ 、HA 、HQ ,∵抛物线的解析式21722y x x =-++, ∴(1,4)M ,∵(3,2)A ,∴2AH MH ==,(1,2)H∵45AQM ∠=︒,90AHM ∠=︒, ∴12AQM AHM ∠=∠, 可知AQM 外接圆的圆心为H ,∴2QH HA HM ===设(0,)Q t2,2t =2∴符合题意的点Q的坐标:(10,2Q、(20,2Q .【点评】本题考查了待定系数法求二次函数解析式,二次函数图像与性质,勾股定理,将军饮马求线段和的最小值,三角形的外心,圆周角定理,正确作出图形是解题的关键.11.(1)211433y x x =-++;(2)3;(3)存在,点Q 的坐标为(1,3)或⎝⎭ 【分析】(1)将点A 、B 的坐标代入解析式中求解即可;(2)由抛物线的表达式211433y x x =-++求出y 轴交点C 的坐标,利用待定系数法求得直线BC 的解析式,然后用m 表示出PQ ,利用三角函数求出PN =PQ cos45°,再利用二次函数的性质即可求解;(3)分三种情况:①当AC CQ =时,过点Q 作QE y ⊥轴于点E .则222CQ CE EQ =+,即[]224(4)25m m +--+=;②当AC AQ =时,连结AQ ,则5AQ AC ==,在Rt AMQ △中,由勾股定理得:AQ 2=AM 2+QM 2=AC 2,即22[(3)](4)25m m --+-+=;③当CQ AQ =时,则EC 2+EQ 2=AM 2+QM 2,即()[]2222(3)(+44)4m m m m =--+--+⎡⎤+⎦-⎣,分别求解即可. 【解析】解:(1)∵抛物线24y ax bx =++交x 轴于3,0,()(,0)4A B -两点,∴将点A B 、的坐标代入抛物线表达934016440a b a b -+=⎧⎨++=⎩, 解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的表达式为:211433y x x =-++;(2)∵抛物线的表达式211433y x x =-++,当x=0时,y=4,∴点(0,4)C ,设直线BC 的表达式为:y kx b =+;把点B C 、的坐标代入解析式得:404k b b +=⎧⎨=⎩, 解得:14k b =-⎧⎨=⎩, 直线BC 的表达式为:4y x =-+;设点(,0)M m ,则点211,433P m m m ⎛⎫-++ ⎪⎝⎭,点4(),Q m m -+, 221114443333PQ m m m m m ∴=-+++-=-+, OB OC =,∴45ABC OCB ∠=∠=︒,∵PM ⊥x 轴,∴∠MQB =90°-∠CBO =90°-45°=45°,∴∠PQN =∠MQB =45°,∵PN ⊥BC ,∴45NPQ NQP ∠=∠=︒,22214222sin 452)33PN PQ m m m ⎫∴=︒=-+=-⎪⎝⎭, 206-<,开口向下,PN 有最大值, 当2m =时,PN 22 (3)存在,理由: 点A C 、的坐标分别为(3,0),(0,4)-,在△OAC 中由勾股定理有()2222-34AC OA OC +=+①当AC CQ =时,过点Q 作QE y ⊥轴于点E .则222CQ CE EQ =+,∴222=CE EQ AC +即()224425m m ⎡⎤⎣-⎦+-+=, 解得:52m =(舍去负值),∴点Q ⎝⎭;②当AC AQ =时,连结AQ ,则5AQ AC ==,在Rt AMQ △中,由勾股定理得:AQ 2=AM 2+QM 2=AC 2即[]22(3)(4)25m m --+-+=,解得:1m =或0(舍去0),∴点()1,3Q ;③当CQ AQ =时,则EC 2+EQ 2=AM 2+QM 2,即()[]2222(3)(+44)4m m m m =--+--+⎡⎤+⎦-⎣, 解得:2542m =>(舍去);综上,点Q 的坐标为(1,3)或822⎛- ⎝⎭..【点评】本题考查待定系数法求抛物线解析式和直线解析式,两点距离公式,锐角三角函数,分类探究等腰三角形.勾股定理,掌握待定系数法求抛物线解析式和直线解析式,两点距离公式,锐角三角函数,分类探究等腰三角形.勾股定理,利用勾股定理构造方程是解题关键.12.(1)223y x x =--+;(2)y =x +3;(3)M (-1,2),【分析】(1)根据抛物线的对称轴可得12b a-=-,然后代入A (1,0),C (0,3)代入抛物线解析式03a b c c ++=⎧⎨=⎩解方程组即可; (2)利用(1)的函数解析式令y =0,解方程即可求出点B 坐标,再根据B 、C 坐标利用待定系数法求直线BC 的解析式即可;(3)由点A 与点B 是关于对称轴直线=1x -的对称点,直线BC 与对称轴直线=1x -的交点就是D (-1,2),由点M 在对称轴上,可得AM =BM ,由点M 到点A 的距离与到点C 的距离之和最小,点B ,点M ,点C 三点共线时最短,即点M 与点D 重合时,距离之和的最小值就是可得CM +AM =BC 的长,在Rt △BOC 中,由勾股定理得BC =32【解析】解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得123a b c =-⎧⎪=-⎨⎪=⎩,∴223y x x =--+;(2)当y=0时2x 2x 30--+=解得123,1x x =-=∴点B (-3,0)由直线BC 的解析式为:y =mx+n ,代入B (﹣3,0),C (0,3)得:303m n n -+=⎧⎨=⎩, 解得:13m n =⎧⎨=⎩, ∴直线BC 的解析式为:y =x +3;(3)∵点A 与点B 是关于对称轴直线=1x -的对称点,∴直线BC 与对称轴直线=1x -的交点就是D 点,∴当=1x -时3y x =-1+3=2,∴D (-1,2),∵点M 在对称轴上,∴AM =BM ,点M 到点A 的距离与到点C 的距离之和最小,∴点B ,点M ,点C 三点共线时最短,即点M 与点D 重合时,点M (-1,2),∴距离之和的最小值就是CM +AM =CM+BM = BC 的长,在Rt △BOC 中,由勾股定理得BC∴距离之和的最小值就是【点评】本题考查的是二次函数的综合运用,待定系数法求函数解析式,一次函数解析式,利用轴对称求最短路径以及M 坐标是解题关键.13.(1)直线x =1,(0,-1);(2)见解析;(3)17-.【分析】(1)将抛物线解析式转化为顶点式解析式,得到对称轴,当0x =时,可解得抛物线与y 轴的交点坐标;(2)将y =x -2代入二次函数解析式,得到关于x 的一元二次方程,根据一元二次方程根的判别式解题即可;(3)将抛物线解析式转化为顶点式,得到对称轴为直线x =1,根据抛物线的图象与性质解题即可.【解析】解:(1)抛物线y =ax 2-2ax -12(1)1a x a =--- ,∴抛物线的对称轴为直线1x =,抛物线y =ax 2-2ax -1中,当0x =时,1y =-,∴抛物线与y 轴的交点坐标为:(0,1)-故答案为:直线x =1,(0,1)-;(2)将y =x -2代入二次函数解析式,得x -2 = ax 2-2ax -1,则原方程可化为 ax 2-(2a +1)x +1=0,由根的判别式可得2-4b ac =()222214441441a a a a a a ⎡⎤-+-=++-=+⎣⎦2410a +>0∴∆>∴直线y =x -2与抛物线y =ax 2-2ax -1(a < 0)一定存在两个交点;(3)∵抛物线的开口向下,对称轴直线为x =1,顶点坐标为(1,1)a --,∴当-2≤x ≤2时,∵y 的最大值是1,∴顶点坐标为(1, 1),11a ∴--=2a ∴=-∴当x < 1时,y 随x 的增大而增大,当x >1时,y 随x 的增大而减小,∵2x =-比2x =离对称轴1x =更远一些,即x =-2时,y 有最小值,∴最小值是22(2)2(2)(2)117y =-⨯--⨯-⨯--=-,即y 的最小值是 17-.【点评】本题考查二次函数的图象与性质、一次函数与二次函数的交点问题,涉及二次函数的最值等知识,是重要考点,难度一般,掌握相关知识是解题关键.14.(1)2343y x =;(2)直角三角形;(3)存在,点P 坐标为:151353,2⎛ ⎝⎭. 【分析】(1)把(3,33A -、(12,0)B 代入2y ax bx =+,利用待定系数法解题;(2)利用勾股定理的逆定理解题;(3)连接AB ,利用待定系数法解得直线AB 的解析式为:33y =-2343P x x ⎛⎫ ⎪ ⎪⎝⎭,过点P 作PM x ⊥轴,垂足为M ,交AB 于点343N x x ⎛- ⎝,由三角形面积公式,结合二次函数的最值问题解题即可.【解析】解:(1)把(3,33A -、(12,0)B 代入2y ax bx =+,得9333144120a b a b ⎧+=-⎪⎨+=⎪⎩①②, ①4⨯-②得,1083a -=-3a ∴= 把3a =①得 43b =343a b ⎧=⎪⎪∴⎨⎪=⎪⎩∴抛物线的解析式为:2343y x =;(2)(0,0)O,(3,A -、(12,0)B(222336OA ∴=+=∣(222(123)108AB =-+=2212144OB ==22236108144OA AB OB +=+==OAB ∴△为直角三角形;(3)存在,连接AB ,OAB APB OAPB S S S =+△△四边形而OAB S 已确定,要使四边形OAPB S 面积最大,只需要APB S 最大即可,设直线AB 的解析式为(0)y kx b k =+≠,把点(3,A -、(12,0)B代入,得:3120k b k b ⎧+=-⎪⎨+=⎪⎩解得:k b ⎧=⎪⎨⎪=-⎩∴直线AB的解析式为:y x =-设2P x x ⎛⎫ ⎪ ⎪⎝⎭,过点P 作PM x ⊥轴,垂足为M ,交AB 于点N ,于是N x ⎛- ⎝,则2119922APB APB S PN S x x ⎡⎤⎫=⋅⋅==--⨯⎢⎥⎪⎪⎢⎥⎝⎝⎭⎣⎦△△2x =-当152x ==⎝⎭时,APB S 最大.2x x = ∴符合条件的点P坐标为:15,2⎛ ⎝⎭.【点评】本题考查二次函数与一次函数的综合题,涉及勾股定理逆定理、待定系数法求一次。

2022年九年级中考数学专题复习 课件 二次函数中的最值问题(线段和面积最值)

2022年九年级中考数学专题复习 课件 二次函数中的最值问题(线段和面积最值)
FO
解:过点M作MG∥y轴交AC于点G
∴△MFG∽△OFC
设M(t,-t2-2t+3)(-3<t<0),
H
∴ MF MG FO OC
∵OC=3
则G(t,t+3)
∴MG=yM-yN
=-t2-3t
G
∵-1<0,∴MG有最大值
∴MF 1 MG FO 3 MF
∴当MG最大时, FO 最大 ∵A(-3,0),C(0,3)
二次函数中的最值问题
复习巩固
1.二次函数的一般式
y=ax2+bx+c(a≠0)
a(x b )2 4ac b2
2a
4a
顶点坐标为:(
b
4ac b2
,
)
2a 4a
对称轴是直线 x b
2a
2.区间最值的解决方法 判断区间与对称轴的位置关系
线段最值问题
问题背景:在平面直角坐标系中,二次函数y=ax2+bx+c的图象与x轴交 于A(-3,0),B(1,0)两点,与y轴交于点C(0,3). (1)求二次函数的表达式;
24
(3)点M为直线AC上方抛物线上一动点,过M点作MN∥y轴交直线AC 于点N,作ME⊥AC于点E,求△MEN周长的最大值,并求出此时点M的 坐标;
解:∵MN∥y轴,ME⊥AC
∴△MEN∽△AOC
∴MN=yM-yN =-t2-3t
∴△MEN为等腰直角三角形
∴ME NE 2 MN 2
∴C△MEN=MN+ME+NE =( 2 1 )MN
∵-1<0,∴MN有最大值
∴当t=
b 2a

3 2
时,
∴MNmax=
9 4
∴当MN最大时,△MEN的周长最大

二次函数的最值问题-中考数学第一轮总复习课件(全国通用)

二次函数的最值问题-中考数学第一轮总复习课件(全国通用)

中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第三单元 函数及其图象专题3.5 二次函数的最值问题知识点利用二次函数的区间最值求值01利用二次函数求代数式的最值02利用二次函数求面积的最值03拓展训练04【例1】已知二次函数y=-(x-h)2.(1)若当x<3时,y随x的增大而增大,当x>3时,y随x的增大而减少,则h=___.(2)若当x<3时,y随x的增大而增大,则h的取值范围为______.(3)当自变量x的取值满足2≤x≤5时,函数值y的最大值为-1,则h=______.3h≥31或6a>0(开口向上)a<0(开口向下)a≤x≤b<h,y随x增大而减小,当x=a时,y有最大值,y max =m;当x=b时,y有最小值,y min =na≤x≤b<h,y随x增大而增大,当x=a时,y有最小值,y min =m;当x=b时,y有最大值,y max =ny O xm n a bh k (h,k)yOx(h,k)hb a knma >0(开口向上)a <0(开口向下)h<a≤x≤b,y随x增大而增大,当x=a时,y有最小值,y min =m;当x=b时,y有最大值,y max =nh <a ≤x ≤b ,y 随x 增大而减小,当x =a 时,y 有最大值,y max =m ;当x =b 时,y 有最小值,y min =ny O xh k(h,k)b a n m yO x(h,k)h k nm baa >0(开口向上)a <0(开口向下)a≤x≤b,a<h<b,|a-h|<|b-h|当x=h时,y有最小值,y min =k;当x=b时,y有最大值,y max =n(a>0,离对称轴越远的点,位置越高)a≤x≤b,a<h<b,|a-h|>|b-h|当x=h时,y有最大值,y max =k;当x=a时,y有最小值,y min =m(a<0,离对称轴越远的点,位置越低)y Oxhk (h,k)b a n m yO x(h,k)hk n bam1.已知二次函数y=(x-h)2+1,在1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为( ) A.1或-5 B.-1或5 C.1或-3 D.1或32.已知二次函数y=x 2-2x-3,当0≤x≤3时,y的最大值和最小值分别是( ) A.0,-4 B.0,-3 C.-3,-4 D.0,03.已知二次函数y=ax 2+2ax+3a 2+3,当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a=____.4.如图,抛物线y=a(x-h)2+k与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两个点),顶点C是矩形DEFG区域内(包括边界和内部)的一个动点,则a的取值范围是__________.B知识点一强化训练利用二次函数的区间最值求值A 1xy-2-11143232知识点利用二次函数的区间最值求值01利用二次函数求代数式的最值02利用二次函数求面积的最值03拓展训练04【例【例22】】点P(m,n)在以y轴为对称轴的二次函数y=x 2+ax+4的图象上,则m-n的最大值等于( ) A.15/4 B.4 C.-15/4 D.-17/4C∵y轴为对称轴把P(m,n)代入y=x 2+ax+4得:n=m 2+4∴m-n=m-(m 2+4)=-(m-1/2)2-15/4∴a=0∴m-n的最大值为-15/4a>0(开口向上)a<0(开口向下)设M(x,kx+d).∵MN∥y轴,N在抛物线上,∴N(x,ax2+bx+c).当xA <x<xB,MN=(kx+d)-(ax2+bx+c)设M(x,kx+d).∵MN∥y轴,N在抛物线上,∴N(x,ax2+bx+c).当xA<x<xB,MN=(ax2+bx+c)-(kx+d).yO xxAMBAxBNy=ax2+bx+c y=kx+dyOxNxAMABxBy=ax2+bx+cy=kx+d1.若关于x的方程ax2+bx+1=0(a,b是常数,a>0)两根相差1,令t=12a-b2,则t的最大值为____.2.已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)(m<n)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是_____.1.解析:Δ=b2-4a∴b2=a2+4a∴t=12a-b2=12a-(a2+4a)∴t=-(a-4)2+16当a=4时,tmax =16167/42.解析:y=ax2+4ax+4a+1=a(x+2)2+1∴对称轴为x=-2∵AB≤4,A(m,3),B(n,3)∴当m=-4,n=0时a最小把B(0,3)代入y=ax2+4ax+4a+1得a=1/2∴a2+a+1=(a+1/2)2+3/4=(1/2+1/2)2+3/4=7/43.如图直线y=x与抛物线y=x 2-2x-3交于点E、F,直线MN∥y轴,交直线y=x于点N,交抛物线于点M.(1)若点M为于点N的下方,求当MN 最长时,M的坐标;(2)若以O、C、M、N为顶点的四边形是平行四边形,求点M的坐标。

中考数学专题复习二次函数的应用题与最值问题

中考数学专题复习二次函数的应用题与最值问题

二次函数的应用题与最值问题二次函数最值问题(一)开口向上:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最小值,在离对称轴较远端点处取得最大值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最大值,离对称轴较近端点处取得最小值.(二)开口向下:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最大值,在离对称轴较远端点处取得最小值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最小值,离对称轴较近端点处取得最大值.1. 求解析式综合题型:例1.如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =CD .(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.2.已知二次函数y =ax 2+bx +c 的图象过点(﹣1,0),且对任意实数x ,都有4x ﹣12≤ax 2+bx +c ≤2x 2﹣8x +6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.二次函数的应用题例1.某商品现在的售价为每件25元,每天可售出50件,市场调查发现,售价每上涨1元,每天就少卖出2件,已知该商品的进价为每件20元,设该商品每天的销售量为y件,售价为每件x元(x为正整数)(1)求y与x之间的函数关系式;(2)该商品的售价定为每件多少元时,每天的销售利润W(元)最大,最大利润是多少元?1.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.某商家在构进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y (元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x 天该产品的销售量z(件)与x(天)满足关系式z = x + 15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天,该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?.3.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;如果每台设备提价5万元时,则年销售量就减少50台.设该设备的年销售量为y(单位:台),销售单价为x(单位:万元/台).(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,则应把这种设备的销售单价定为多少万元时,该公司所获得的年利润最大?最大的年利润是多少?4.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.例2.某农场拟建三间矩形牛饲养室,饲养室的一面全部靠现有墙(墙长为40m),饲养室之间用一道用建筑材料做的墙隔开(如图).已知计划中的建筑材料可建围墙的总长为60m,设三间饲养室合计长x(m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围.(2)x为何值时,三间饲养室占地总面积最大?最大为多少?1.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?(2)若墙体长度为20米,问长方形面积最大是多少?2.如图,用48米篱笆围成一个外形为矩形的花园,花园一面利用院墙,中间用一道篱笆间隔成两个小矩形,院墙的长度为20米,平行于院墙的一边长为x米,花园的面积为S平方米.(1)求S与x之间的函数关系式;(2)问花园面积可以达到180平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?例3.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.1.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m.现将它的图形放在如图所示的直角坐标系中.求这条抛物线的解析式.2.如图是一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m,在图中直角坐标系中该抛物线的解析式.3.如图,是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,若水面上升1m,则水面宽为()A.m B.2m C.2m D.2m4.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s =60t ﹣1.5t 2,那么飞机着陆后滑行的最远距离为( )A .600mB .400mC .300mD .200m5.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为()341212+--=x y ,由此可知铅球达到的最大高度是 m ,推出的距离是 m .6.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )直接具有的关系为h =24t ﹣4t 2,则小球从飞出到落地所用的时间为 s .7.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y =﹣x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为6米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.例4.当22≤≤-x 时,求函数322--=x x y 的最大值和最小值.1.当21≤≤x 时,求函数12+--=x x y 的最大值和最小值.2.已知二次函数y =x 2+2bx +c(1)若b =c ,是否存在实数x ,使得相应的y 的值为1?请说明理由;(2)若b =c ﹣2,y 在﹣2≤x ≤2上的最小值是﹣3,求b 的值.3.当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.4.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是m .(1)求羽毛球经过的路线对应的函数关系式;(2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a
=-处取得最大值2
44ac b a
-,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.
【例1】当22x -≤≤时,求函数2
23y x x =--的最大值和最小值.
分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.
解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =.
【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值.
解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.
由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.
根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:
【例3】当0x ≥时,求函数(2)y x x =--的取值范围.
解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.
可以看出:当1x =时,min 1y =-,无最大值.
所以,当0x ≥时,函数的取值范围是1y ≥-.
【例4】当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数
)
. 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.
解:函数21522
y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =
--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:
当1x =时,2min 1511322
y =
⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:
当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.
综上所述:2213,0
23,0115,12
2t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩
在实际生活中,我们也会遇到一些与二次函数有关的问题:
【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.
(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;
(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?
解:(1) 由已知得每件商品的销售利润为(30)x -元,
那么m 件的销售利润为(30)y m x =-,又1623m x =-.
2 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤
(2) 由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下 ∴当42x =时,2max 342252424860432y =-⨯+⨯-=
∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.
二次函数的最值问题答案
A 组
1.4 14或2,32
2.2
216l m 3.(1) 有最小值3,无最大值;(2) 有最大值
94,无最小值. 4.当34x =时,min 318
y =;当2x =-时,max 19y =.
5.5y ≥- 6.当56x =时,min 36y =-23x =或1时,max 3y =. 7.当54
t =-时,min 0y =. B 组
1.(1) 当1x =时,min 1y =;当5x =-时,max 37y =.
(2) 当0a ≥时,max 2710y a =+;当0a <时,max 2710y a =-.
2.21m -≤≤-. 3.2,2a b ==-.
4.14
a =-或1a =-. 5.当0t ≤时,max 22y t =-,此时1x =;当0t >时,max 22y t =+,此时1x =-.
练习 A 组
1.抛物线2
(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.
2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ .
3.求下列二次函数的最值:
(1) 2245y x x =-+; (2) (1)(2)y x x =-+.
4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.
5.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.
6.求函数3y =-
7.已知关于x 的函数22(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?
B 组
1.已知关于x 的函数222y x ax =++在55x -≤≤上.
(1) 当1a =-时,求函数的最大值和最小值;
(2) 当a 为实数时,求函数的最大值.
2.函数2
23y x x =++在0m x ≤≤上的最大值为3,最小值为2,求m 的取值范围.
3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b 的值.
4.已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.
5.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值(t 为常数).。

相关文档
最新文档