深圳中学2014年中考数学一模试卷(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳中学2014年中考第一次模拟考试
数学
考生须知:
1.本试卷共5页。
全卷满分150分。
考试时间为120分钟。
试题包含选择题和非选择题。
考生答题全部答在答题卡上,答在本试卷上无效。
2.请将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡上。
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其它位置答题一律无效。
一、选择题(共10小题,每小题3分,共30分.).
C D
.C D.
.C D.
5.(3分)如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为()
.C D.
7.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()
.C D.
2
10.(3分)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为()
.C D.
二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上).
11.(3分)因式分解:a2+2a=_________.
12.(3分)某市在市中心建了一个文化广场,建成后总面积达163500平方米,成为该市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为_________平方米.
13.(3分)如图,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周长为26,DE=4,则△BEC的周长为
_________.
14.(3分)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且圆心距O1O2=t+2,若这两个圆相切,则t=
_________.
15.(3分)双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是_________.
16.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,…;则a2014的值为_________.(用含m的代数式表示)
三、解答题(本大题共9题,满分102分.解答应写出文字说明、证明过程或演算步骤).
17.(9分)解不等式组,并把解集在数轴上表示出来.
18.(9分)如图,已知:在△ABC中,AB=AC,∠BAF=∠CAE,求证:BE=CF.
19.(10分)化简求值:,其中x=2.
20.(10分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:
(1)这次抽查的家长总人数为_________;
(2)请补全条形统计图和扇形统计图;
(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是_________.
21.(12分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.
(1)求该市对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?
22.(12分)马航事件牵动了全国甚至全世界人们的心,当得知MH370客机最后失
踪地点是在印度洋南部某海域C处,“雪龙”号科考船立即从B处出发以60km/h的速度前往搜救.已知出发时在B 测得搜救指挥基地A的方位角为北偏东80°,测得失踪地点C的方位角为南偏东25°.航行10小时后到达C处,在C处测得A的方位角为北偏东20°.求C到A的距离.
23.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)求证:∠C=2∠DBE;
(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)
24.(14分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.
25.(14分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于
点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2,2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m 的值;若不存在,请说明理由.
深圳中学2014年中考第一次模拟试卷数学答案
一、选择题(共10小题,每小题3分,共30分.).
C D
.C D.
.C D.
5.(3分)如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为()
.C D.
sinA==
7.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()
.C D.
2
10.(3分)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为()
.C D.
a
,
C=C=
a
a a
+++
l=
二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上).
11.(3分)因式分解:a2+2a=a(a+2).
12.(3分)某市在市中心建了一个文化广场,建成后总面积达163500平方米,成为该市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为 1.635×105平方米.
13.(3分)如图,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周长为26,DE=4,则△BEC的周长为18.
14.(3分)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且圆心距O1O2=t+2,若这两个圆相切,则t=2或0.
15.(3分)双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交
y轴于C,若S△AOB=1,则y2的解析式是y2=.
解:∵
=
.
.
16.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,…;则a2014的值为1﹣.(用含m的代数式表示)
﹣
=1=,
=1=m
=
﹣
.
三、解答题(本大题共9题,满分102分.解答应写出文字说明、证明过程或演算步骤).17.(9分)解不等式组,并把解集在数轴上表示出来.
18.(9分)如图,已知:在△ABC中,AB=AC,∠BAF=∠CAE,求证:BE=CF.
19.(10分)化简求值:,其中x=2.
20.(10分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:
(1)这次抽查的家长总人数为100;
(2)请补全条形统计图和扇形统计图;
(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.
扇形统计图:赞成:,反对:×
=.
21.(12分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.
(1)求该市对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?
22.(12分)马航事件牵动了全国甚至全世界人们的心,当得知MH370客机最后失
踪地点是在印度洋南部某海域C处,“雪龙”号科考船立即从B处出发以60km/h的速度前往搜救.已知出发时在B 测得搜救指挥基地A的方位角为北偏东80°,测得失踪地点C的方位角为南偏东25°.航行10小时后到达C处,在C处测得A的方位角为北偏东20°.求C到A的距离.
×=300
×=100km
CA=300+100=1003)
+
23.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)求证:∠C=2∠DBE;
(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)
BD=2BF=2
××﹣
24.(14分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.
25.(14分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于
点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2,2),求实数m的值;
(2)在(1)的条件下,求△BCE的面积;
(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m 的值;若不存在,请说明理由.
(
(
=
,∴)
﹣
=2(
•
±
+2
∴
∴(
(EC=。