平面直角坐标系与轴对称变换专题
平面直角坐标系与图形的对称
对称中心
对于中心对称图形,存在一个固定点,使得图形关于这个点 对称。这个点被称为对称中心。
对称变换基本性质
对称变换不改变图形的形状和大小, 只改变图形的方向或位置。
对于轴对称图形,对称轴两侧的图形 完全重合;对于中心对称图形,关于 对称中心的任意两点连线都被对称中 心平分。
对称变换具有可逆性,即如果图形A 经过对称变换得到图形B,那么图形B 也可以经过相应的对称变换得到图形 A。
03
对于某些具有旋转对称性的图形,通过旋转坐标系可以使得对
称性的描述更加直观。
坐标系变换下图形对称性变化规律
平移变换
平移变换不改变图形的对称性,但会改变对称轴或对称中心的位 置。
旋转变换
旋转变换可以改变图形的对称性,如将轴对称图形转变为中心对称 图形或将非对称图形转变为对称图形。
缩放变换
缩放变换不改变图形的对称性类型,但会改变对称轴或对称中心的 位置以及对称点的坐标。
。
02
图形对称性质简介
对称图形定义及分类
定义
如果一个图形经过一次变换后,与另 一个图形重合,则称这两个图形关于 这次变换对称。
分类
根据对称变换的不同,对称图形可以 分为轴对称图形和中心对称图形。
对称轴和对称中心概念
对称轴
对于轴对称图形,存在一条直线,使得图形关于这条直线对 称。这条直线被称为对称轴。
定义
平面直角坐标系由两条互相垂直、原点重合的数轴组成,通常水平方向的数轴 称为x轴,竖直方向的数轴称为y轴。
性质
在平面直角坐标系中,任意一点都可以用一对有序实数来表示,即点的坐标。 坐标原点用(0,0)表示,x轴上的点纵坐标为0,y轴上的点横坐标为0。
坐标轴上点表示方法
轴对称与坐标变化
3 轴对称与坐标变化【知识与技能】1.会由一点求关于坐标轴对称的点的坐标.2.掌握两点关于坐标轴对称的坐标规律,并能利用这个规律在平面坐标系中作出一个图形的轴对称图形.【过程与方法】在找两点关于坐标轴对称的坐标规律的过程中,培养学生的语言表达能力、观察能力、归纳能力,养成良好的自觉探索的习惯,体会数形结合的思想方法.【情感态度】在找点、描点的过程中让学生体会数形结合的思想,激发学生学习数学的乐趣.【教学重点】会由一点求关于坐标轴对称的点的坐标.【教学难点】找两点关于坐标轴对称的坐标规律.一、创设情境,导入新课情境教材第68页例题上方的内容.【教学说明】学生通过观察和实际操作对关于坐标轴对称点的坐标特点有个初步的认识.利用数形结合帮助他们进一步理解这一规律.二、思考探究,获取新知关于坐标轴对称点的坐标特点.前面,我们已经对关于坐标轴对称点之间的关系有了一定的了解,利用这个关系,请看例题并思考.例教材第68页例题【教学说明】一方面,通过学生描点对以前所学知识加以巩固;另一方面,让学生经历纵坐标不变,横坐标乘-1点的坐标变化形成的规律特征,印象深刻.做一做:教材第69页“做一做”【教学说明】相反的,当把上面的各个顶点的横坐标不变,纵坐标乘-1所形成的规律特征让学生形成鲜明的对比,有助于学生理解与记忆.【归纳结论】关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数.三、运用新知,深化理解1.平面直角坐标系中,点P(4,-5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限2.若P(x,y)的坐标满足等式(x-2)2+|y-1|=0,点P与P1(x1,y1)关于y轴对称,则x1,y1的对应值为(),1 ,-1 ,1 ,-13.已知点A(a+2b,1),B(-2,2a-b).(1)若点A、B关于x轴对称,求a、b的值.(2)若点A、B关于y轴对称,求a+b的值.4.△ABC在平面直角坐标系中的位置如图,分别作出与△ABC关于x轴和y轴对称的图形.【教学说明】学生独立完成,加深对所得规律的理解和检查他们学以致用的情况.学习过程中有困难的同学教师要及时给予帮助.四、师生互动,课堂小结1.共同回顾关于坐标轴对称点的坐标规律.2.通过这节课的学习,你已经掌握了哪些新知识?还存在哪些疑惑?请与大家交流.【教学说明】教师引导学生回顾已学知识,加深印象便于理解和记忆.通过总结得出,互相取长补短,利于共同进步.规律不需要死记硬背,要结合图形来理解.1.布置作业:习题中的第1、2、3题.2.完成《创优作业》中本课时练习的“课时作业”部分.学生对于规律性的知识一般采用死记硬背的方法,题目稍作变换就不能灵活加以运用,解决实际问题的过程中必要时利用图形帮助我们达到快速高效的目的.。
平面直角坐标系下的图形变换
平面直角坐标系下的图形变换王建华图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。
在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活平移: 上下平移横坐标不变,纵坐标改变左右平移横坐标改变,纵坐标不变对称: 关于x轴对称横坐标不变,纵坐标改变关于y轴对称横坐标不变,纵坐标不变关于中心对称横坐标、纵坐标都互为相反数旋转:改变图形的位置,不改变图形的大小和形状旋转角旋转半径弧长公式L=nπR/180一、平移例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。
析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B反思:①根据平移的坐标变化规律:★左右平移时:向左平移h个单位),(),(bhaba-→向右平移h个单位),(),(bhaba+→★上下平移时:向上平移h个单位),(),(hbaba+→向下平移h个单位),(),(hbaba-→二、旋转例3.如图2,已知△ABC,画出△ABC关于坐标原点0旋转180°后所得△A′B′C′,并写出三角形各顶点的坐标,旋转后与旋转前对应点的坐标有什么变化?解析:△ABC三个顶点的坐标分别是:A(-2,4),B(-4,2),C(-1,1).△A′B′C′三个顶点的坐标分别是:图2图1B/图2图1A′(2,-4),B′(4,-2),C′(1,-1).比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).三、对称例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?解析:△ABC三个顶点的坐标分别是:A(1,4),B(3,1),C(-2,2).△A′B′C′三个顶点的坐标分别是:A′(1,-4),B′(3,-1),C′(-2,-2).观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC△的三个顶点的位置如图3所示.(1)请画出ABC△关于y轴对称的A B C'''△(其中A B C''',,分别是A B C,,的对应点,不写画法);(2)直接写出A B C''',,三点的坐标:(_____)(_____)(_____)A B C''',,.析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-,故可得(2)(23)A',,(31)B',,(12)C'--,反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1-★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1-四、位似例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,使△A′B′C′在第三象限,与△ABC 的位似比为21,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?解析:△ABC三个顶点的坐标分别是:A(2,2),B(6,4),C(4,6).△A′B′C′三个顶点的坐标分别是:A′(-1,-1),B′(-3,-2),C′(-2,-3).图31 2 xO1-1ABCy1 2 xO1-1ABCA'B'C'y图3 图4C B AA 2C 2A 1B 1C 1O观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC对应各顶点坐标21的相反数.友情提示: △ABC 以坐标原点0为位似中心的位似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为21,且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标分别是△ABC 各顶点坐标的21.课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路线长.解:⑴画出△A 1B 1C 1;⑵画出△A 2B 2C 2, ,连接OA 1、OA 2,OA=2223+=13点A 旋转到A 2,所经过的路线长为:ι=9013131802ππ⋅=点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴的距离相等。
平面直角坐标系坐标变化
平面直角坐标系中的变换彳----------- 必标系屮的对称平而l'i角坐标系屮的变换坐标系中的平移\------------ 怡标系屮的面枳和规律问题编写思路:本讲求而积时主要让学生掌握将点坐标转化为线段长度的过程•让学生亲自动手在坐标系中画出某个点关于横轴、纵轴以及原点的对应点,并且让他们自己总结两个对称点的横.纵坐标关系。
二:(1)对于点的平移:让学生亲自动手将某个点进行上、下、左、右平移,并且自己总结点的坐标变化规律。
对于任意的平移,可以将貝理解先上下平移、后左右平移的组合。
(2)对于图形的平移:让学生充分认识本质就是图形上的每个点都进行同一过程的平移,即对应点之间的平移过程完全一样。
从而将图形的平移转化成为点的平移。
并让学生体会平移前后的两个图形完全一样。
三、简单的数形结合:求三角形而积问题。
让学生充分掌握割补法求三角形而积,并理解为何要用割补法。
让学生熟练掌握并体会坐标与线段长的讣算关系。
四.找规律问题:老师可带着学生探索常见找规律问题的思路和方法.点P(-b)关于X轴的对称点是叫,-巧,即横坐标不变,纵坐标互为相反数.点P(a,b)关于y轴的对称点是P©,b),即纵坐标不变,横坐标互为相反数.点P(a.b)关于坐标原点的对称点是P'(—d),即横坐标互为相反数,纵坐标也互为相反数.【引例】在平而直角坐标系中,卩(-4 5)关于X 轴的对称点的坐标是 __________ 坐标是 ________ ,关于原点的对称点是 ___________【例1】(1)点P(3, -5)关于x 轴对称的点的坐标为()⑵点"-2, 1)关于y 轴对称的点的坐标为()⑶ 在平而直角坐标系中,点P(2, -3)关于原点对称点P 的坐标是 _____________ ⑷ 点P(2, 3)关于直线x = 3的对称点为 ________ ,关于直线y = 5的对称点为 ________ ⑸已知点P(“ + l,加-1)关于x 轴的对称点在第一彖限,求d 的取值范围.【例2】如图,在平而直角坐标系中,直线/是第一、三象限的角平分线.实验与探究:(1) 由图观察易知A(2, 0)关于直线/的对称点/V 的坐标为(0,2),请在图中分别标明3(5,3), C(-2,5)关于直线/的对称点X 、C'的位置,并写岀它们的坐标: B' __________ ,C ____________ ;归纳与发现:(2) 结合图形观察以上三组点的坐标,你会发现:坐标平而内任一点关于第一、三象限的角平分线/的对称点P 的坐标为 ______________ (不必证明): ⑶点A(a , b)在直线/的下方,则d, 〃的大小关系为 ________________ :若在直线/的上方,则 __________ ・h + d\丁 >・(选讲),关于y 轴的对称点的A. (—3, —5)B. (5, 3)C. (一3, 5) D ・(3, 5)B. (2,1)C. (2, -1)D. (-2, 1)点P(a ,b)和点Q(c , d)的中点是M(1)点平移:①将点(x, y)向右(或向左)平移4个单位可得对应点(x + a t y)或(x-“, y).②将点(x, y)向上(或向下)平移〃个单位可得对应点(x,>'+/?)或(x, y-h).⑵图形平移:①把一个图形%个点的横坐标都加上(或减去)一个正数d ,相应的新图形就是把原图形向右(或向左)平移Q个单位.②如果把图形各个点的纵坐标都加上(或减去)一个正数d ,相应的新图形就是把原图形向上(或向下)平移a个单位.注意:平移只改变图形的位置,图形的大小和形状不发生变化.【弓I例】点M(-3, -5)向上平移7个单位得到点M,的坐标为:再向左平移3个单位得到【例3】(1)平而直角坐标系中,将P(-2,l)向右平移4个单位,向下平移3个单位,得到P __________ ,□平而直角坐标系中,线段虫妨'是由线段佔经过平移得到的,点A(-1,-4)的对应点为人(1, -1),那么此过程是先向________ 平移____ 个单位再向______ 平移 _____ 个单位得到的,则点B (1, 1)的对应点$坐标为______________ .⑶将点P(m-2,” + 1)沿求轴负方向平移3个单位,得到P^i-rn, 2),则点P坐标是_____________⑷ 平而直角坐标系中,线段A'B'是由线段初经过平移得到的,点A(-2, 1)的对应点为A f (3. 4),点B 的对应点为B'(4,0),则点B 的坐标为()A ・(9,3) B. (一 1,一3) C ・(3, — 3) D. (一3, —1)【例4】二如下左图,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案 中左.右眼睛的坐标分别是(-4, 2), (-2, 2),右边图案中左眼的坐标是(3, 4),则右边 图案中右眼的坐标是 _____________________ .-如下右图是由若干个边长为1的小正方形组成的网格,请在图中作岀将“蘑菇”ABCDE 绕A点逆时针旋转奸 再向右平移2个单位的图形(其中C 、D 为所在小正方形边的中点).二如图,把图1中的04经过平移得到00(如图2),如果图1中04上一点P 的坐标为伽皿),那么平移后在图2中的对应点P 的坐标为 __________ ・大图形的总而积减去周用小三角形的面积.一般方法有割补法和等积变换法.找规律的题目一左要先找/7 = 1、2、3几个图形规律,再推广到“的情况.从简单情形入手,从中发现规律,猜想、推测.归纳出结论,这是创造性思维的特点.i/\ V1例题精讲A ・v图1 图2在平面直角坐标系或网格中求而积,一般将难以求解的图形分割成易求解的图形的面积,可以用F二兀一 - —【引例】如图,直角坐标系中,△ABC的顶点都在网格点上,英中点A坐k标为(2,-1),则△4BC 的而积为 _____________ 平方单位.二如上右图,AABC,将△ABC 向右平移3个单位长度,然后再向上平移2个单位长度,可 以得到△ ・ ① 画出平移后的△人妨6 :② 写出△ AB.C,三个顶点的坐标:(在图中标岀)③ 已知点P 在x 轴上,以B“ P 为顶点的三角形面积为4,求P 点的坐标.【探究1】如图所示,4(1,4),B(4,3),(7(5,0),求图形如C 的面积.【例5】□直角坐标系中,已知人(-1,0)、5(3, 0)两点,点C 在y 轴上,△ABC 的而积是4,则点C 的坐标是 ___________ ■0如右图,已知直角坐标系中A(-1,4)、B(0,2),平移线段初,使点B 移到点C(3,0),此时点A 记作点D ,贝IJ 四边形ABCD 的 而积是 ___________ .【例6】□如下左图,在平而直角坐标系中,四边形ABCD 各顶点的坐标分别为A(0,0), 8(9,0), C(7,5),D(2, 7)・求四边形ABCD 的而积.「41「J 1_1 T 丿r k —厂」I 厂 11- T 4—n T klrLIr典题精练L LIL」I- T -I- +• -1 ~J_L J•V A【探究2】如下图所示,A(-3,5), B(4,3),求图形OAB的而积.【教师备选】方法三、转化法:平行线,一边转到轴上【探究4】如图所示,求三角形AOB的而积.解析:过点A做0B的平行线,交y轴于点C,连接BC由一次函数知识可求出直线OB:y=-x t设直线AC:y=-x+b -2 - 2 求得y=l x+2 ,得C(0,2)由等积变换可知S厶AOB = S^Bg. ―― x 2x 4=4解析:过点A作BC的平行线交y轴于点D,连接DC利用一次函数求得BC:y=2x+2 ,设直线AD:y=2x+b 求得尸2x+7, D(0,7) 由等积变换可知S沁=S沁弓x 1 x 5=|【变式】已知,在平而直角坐标系中,A「B两点分别在才轴、y轴的正半轴上,且OB = OA = 3. ⑴直接写出点A、B的坐标:⑵若点C(-2, 2),求△BOC的面积;⑶点P是与〉,轴平行的直线上一点,且点P的横坐标为1.若的面积是6,求点P的坐标.【例7】□任平而直角坐标系中,横坐标、纵坐标都为整数的点称为整点,图中的正方形的四个顶点都在格点上,观察图中每一个正方形四条边上的整点的个数,请你猜测由里向外第10个正方形四条边上的整点个数共有_______ 个.□如图,在平而直角坐标系中,第1次将MAB变换成△ OA.B.,第二次将变换成第3次将MAB 变换成△0比尽・已知A(l, 3), 4(2, 3), 4(4, 3), A(8, 3), B(2, 0), $(4, 0) , BJ8, 0),耳(16, 0)观察每次变化前后的三角形,找岀规律,按此变化规律再将△OA&3变换成△ O儿则点比的坐标是 _____ ,点厲的坐标是 _____ ,点人的坐标是_______ ,点乞的坐标是 ___________ ・【例8】一个粒子在第一象限内及x轴、y轴上运动,在第lmin内它从原点运动到(1, 0),而后接着按如图所示方式在与X轴、轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在2013min后,求这个粒子所处的位置坐标・【变式】将正整数按如图所示的规律在平而直角坐标系中进行排列,每个正整数对应一个整点坐标(X, y)9且x, y均为整数.如数5对应的坐标为(-1,1),则数_________________ 对应的坐标是(-2,3),数2012对应的坐标是__________________【拓展】数1950对应的坐标是______________ ・【教师备选】【备选1】类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1 个单位,用实数加法表示为3 + (-2) = 1.若坐标平而上的点作如下平移:沿*轴方向平移的数屋为d (向右为正,向左为负,平移冋 个单位),沿y 轴方向平移的数量为方(向上为正,向下为负,平移问个单位),则把有序 数对{“,b}叫做这一平移的“平移量”;“平移量” {a, b}与“平移量” {c, d}的加法运算 法则为{“,b} + {c, d} = {a+c, b + d}. 解决问题:(1) 计算:{3, 1} + {1, 2};(2) 动点P 从坐标原点O 出发,先按照"平移量”{3, 1}平移到A,再按照"平移量”{1, 2} 平移到若先把动点P 按照“平移量” {1, 2}平移到C,再按照“平移量” {3, 1}平 移,最后的位置还是点B 吗?在图1中画出四边形OABC.(3) 如图2, 一艘船从码头O 出发,先航行到湖心岛码头P (2,3),再从码头P 航行到码头0(5, 5),最后回到出发点O,请用“平移量”加法算式表示它的航行过程.37 36 35 34 3332 31 30 297 16 15 1413 12 11 18 19 61 2 2() 78 ,10 27 2122 23 2425 26图1【备选2】观察下列有规律的点的坐标:儿(1, 1), 4(2, -4), 4(3, 4),人(4, 一2),人(5, 7),肩6, -寸,4(7, 10), 4(8, —1)依此规律,人|的坐标为______________ ,州2的坐标为 ______________________________【备选3】一个动点P在平而直角坐标系中作折线运动,第一次从原点运动到(b 1)>然后按图中箭头所示方向运动,每次移动三角形的一边长•即(1, 1)-* (2, 0) - (3, 2) - (4, 0)-(5, 1)—........... ,按这样的运动规律,经过第17次运动后,动点P的坐标是___________ ,经过第2011次运动后,动点P的坐标是 __________ .【备选4】如图,在长方形网格中,每个小长方形的长为2,宽为1, B 两点在网格格点上,若点C也在网格格点上,以A、3、C为顶点的三角形面积为2,则满足条件的点C个数是( )A. 5B. 4B AD・2【备选5】在平而直角坐标系中,已知八(2・-2),任y轴上确左点P.使8"为等腰三角形,则符合条件的点P共有( )A. 2个B. 3个C. 4个D. 5个题型一坐标系中的对称巩固练习【练习1】□在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是( )A. (—5,—2)B. (一2, —5)C. (一2,5)D. (2, —5)□已知点P(x, y), n),如果x +加=0, y + 〃= 0 ,那么点P, Q ( )A・关于原点对称 B.关于x轴对称C・关于y轴对称D・关于过点(0,0), (1,1)的直线对称□已知:lx-ll+(.y + 2『=0,则(x, y)关于原点对称的点为_________________ .□已知点P(" + 3b,3)与点0(-5,“ + 2b)关于x轴对称,贝比= ______________ , b = _________ .题型二坐标系中的平移巩固练习【练习2】⑴线段CD是由线段初平移得到的,点A(-l, 5)的对应点是C(4, 2),则点B(4, -1)的对应点D的坐标为__________ ・⑵在平面直角坐标系中有一个已知点A ,现在x轴向下平移3个单位,y轴向左平移2个单位,单位长度不变,得到新的坐标系,在新的坐标系下点A的坐标为(-1,2),在旧的坐标系下,点A的坐标为_______ ・【练习3】如图,在平而直角坐标系中,若每一个方格的边长代表一个单位.□线段DC是线段经过怎样的平移得到的?□若C点的坐标是(4, 1), A点的坐标是(-1,-2),你能写岀B、D两点的坐标吗?□求平行四边形ABCD的而积.题型三坐标系中的面积和规律问题巩固练习【练习4】□已知A(0,—2), B(5,0), C(4,3),求△ABC的而积.□已知:A(4,0), 3(1-斗0), 0(1, 3), ZVWC 的而积=6,1)A B求代数式2A-2-5X + X2+4X-3X2 -2 的值.【练习5】如图,长为1,宽为2的长方形ABCQ以右下角的顶点为中心顺时针旋转90°,此时A点的坐标为________ :依次旋转2009次,则顶点A的坐标为___________ ・。
在直角坐标系中画轴对称图形ppt课件
1
知识分析
• 本节课是在学生学习了用坐标表示平移和画轴对称 图形的基础上,研究用坐标表示轴对称,从位置关 系和数量关系的角度来刻画轴对称.把坐标思想和 图形变换的思想联系起来,是学习函数和中心对称 的基础.
2
学习掌握
• 学习目标: 1.理解在平面直角坐标系中,已知点关于x 轴或y 轴 对称的点的坐标的变化规律. 2.掌握在平面直角坐标系中作出一个图形的轴对称 图形的方法.
关于y 轴对称的点的坐标:(2,6), (-1,-2),(1,3),(4,-2),(-1,0) .
11
课堂练习
练习2 若点P(2a+b,-3a)与点P′(8,b+2) 关于x 轴对称,则a = 2 ,b= 4 ;若关于y 轴对 称,则a = 6 ,b=__-_2_0__.
12
运用变化规律作图
例 如图,四边形ABCD 的四个顶点的坐标分别为
归纳: 关于x轴对称的点的坐标的特点是:横坐标相
等,纵坐标互为相反数. 关于y轴对称的点的坐标的特点是:横坐标互
为相反数,纵坐标相等.
10
课堂练习
练习1 分别写出下列各点关于x 轴和y 轴对称的点 的坐标:(-2,6),(1,-2),(-1,3), (-4,-2),(1,0) .
解:关于x 轴对称的点的坐标:(-2, -6), (1,2),(-1, -3),(-4,2),(1,0) .
B
1
O
B′
1
A′x
15
运用变化规律作图
请在图上画出四边形ABCD 关于x 轴对称的图形. Cy
D
A B1 O1
x
16
运用变化规律作图
归纳画一个图形关于x 轴或y 轴对称的图形的方法 和步骤.
平面直角坐标系中点的变化规律例题
平面直角坐标系中点的变化规律例题1. 引言哎呀,坐标系的世界真的很奇妙呢!你有没有觉得,在直角坐标系中,点的移动就像在玩一场拼图游戏,每一步都让你发现新规律。
今天,我们就来一起探讨一下这些点是怎么“变脸”的,看看能否找到一些有趣的规律和技巧。
2. 坐标系基础2.1 坐标系的组成首先,我们得了解一下直角坐标系的基本构成。
直角坐标系由横轴(x轴)和纵轴(y轴)组成,交点叫做原点。
每一个点都可以用一对数字(x, y)来表示,这两个数字分别告诉我们点在横轴和纵轴上的位置。
简而言之,x坐标告诉我们点向右走了多远,y坐标则告诉我们点向上走了多高。
2.2 如何读懂坐标比如说,点A的坐标是(3, 4),那就意味着我们从原点出发,向右走3步,再向上走4步,咱们就找到了点A。
是不是很简单?不过,问题来了,当这些点开始移动时,我们要如何判断它们的新位置呢?3. 点的变化规律3.1 点的平移说到点的变化,首先要提到的是平移。
平移就像是在画布上移动画笔,点的坐标在这种情况下会以某种固定的方式改变。
假如我们把点A(3, 4)向右平移2步,向上平移3步,那么新坐标就是(5, 7)。
这就像是把点A挪到了新地方,却没改变它的形状和方向。
3.2 点的对称再来聊聊对称。
对称就像是一面镜子,把点对折过来。
比如,点A(3, 4)相对于y轴对称的点是(3, 4),因为我们把x坐标取了相反数,y坐标保持不变。
若是相对于x轴对称,点A会变成(3, 4)。
就像把点A在镜子前面照一照,镜中点的坐标自然就变了。
4. 实际例题解析4.1 例题背景假设我们有一个点B,它的坐标是(6, 2),现在我们要把它先向左移动4步,再向下移动3步。
这个问题就像是在解谜题一样,需要我们运用之前学过的知识。
4.2 解决过程首先,点B(6, 2)向左移动4步,这就意味着x坐标减少4,所以新的x坐标是6 4= 2。
然后,向下移动3步,就意味着y坐标减少3,所以新的y坐标是2 3 = 5。
平移旋转轴对称练习题
平移旋转轴对称练习题一、选择题1. 下列图形中,哪一个图形可以通过平移得到另一个图形?A. 正方形B. 长方形C. 梯形D. 平行四边形2. 在平面直角坐标系中,点A(2, 3)经过平移后得到点B,若点B 的坐标为(5, 7),则平移向量为?A. (3, 4)B. (4, 3)C. (3, 5)D. (5, 3)3. 下列哪个图形是轴对称图形?A. 正三角形B. 正方形C. 等腰梯形D. 所有选项都是4. 下列哪个图形可以通过旋转90度得到自身?A. 正方形B. 长方形C. 等边三角形D. 圆二、填空题1. 图形平移时,对应点的连线__________。
2. 图形的旋转中心称为__________。
3. 轴对称图形的对称轴可以是__________、__________或__________。
4. 一个图形绕着某一点旋转180度后与原图形重合,这个点称为__________。
三、判断题1. 平移不改变图形的大小和形状。
()2. 旋转会改变图形的大小和形状。
()3. 轴对称图形的对称轴必须经过图形的中心。
()4. 平移和旋转都是刚体变换。
()四、作图题1. 请画出下列图形经过平移后的图形:(1)正方形,平移向量:(3, 2)(2)等腰三角形,平移向量:(4, 1)2. 请画出下列图形绕点O旋转90度后的图形:(1)正方形(2)等边三角形3. 请画出下列图形的对称轴:(1)正方形(2)等腰梯形五、解答题1. 请描述一个正方形绕其中心旋转180度后的位置变化。
2. 画出两个全等三角形,其中一个三角形通过平移、旋转或轴对称变换得到另一个三角形,并说明变换过程。
3. 请举例说明生活中平移、旋转和轴对称现象的应用。
六、应用题1. 在平面直角坐标系中,点P(1, 2)经过平移后到达点Q,点Q 的坐标是(4, 1)。
求平移向量,并画出平移后的图形。
2. 一个长方形的长是8厘米,宽是4厘米。
如果将这个长方形绕其一个顶点旋转90度,求旋转后长方形的面积。
15.1 第2课时 平面直角坐标系中的轴对称
解:如图所示:
y
A (0,4)
B (2,4)
C' (3,1)
O
C (3,-1) x
A' (0,-4)
B' (2,-4)
14
例2 已知点A(2a-b,5+a),B(2b-1,-a+b).
(1)若点A、B关于x轴对称,求a、b的值;
(2)若A、B关于y轴对称,求(4a+b)2016的值.
解:(1)∵点A、B关于x轴对称,
象限,求a的取值范围.
解:依题意得P点在第四象限,
a+1>0 2a 1<0.
解得 1<a< 1 2
即a的取值范围是 1<a< 1
2
方法总结:解决此类题,一般先根据点的坐标关于坐
标轴对称,判断出点或对称点所在的象限,再由各象
限内坐标的符号,列不等式(组)求解. 16
当堂练习
1.平面直角坐标系内的点A(-1,2)与点B(-1,-2)
2
如图,是一幅老北京城的 示意图,其中西直门和东 直门是关于中轴线对称的. 如果以天安门为原点,分 别以长安街和中轴线为x轴 和y轴建立平面直角坐标系. 根据如图所示的东直门的 坐标,你能说出西直门的 坐标吗?
3
讲授新课
一 用坐标表示轴对称
互动探究
问题1:已知点A和一条直线MN,你能画出这
个点关于已知直线的对称点吗?
殊点(如多边形的顶点)的对应点的坐标,描出并连接 这些点,就可以得到这个图形的轴对称图形.
(一找二描三连)
12
针对训练: 平面直角坐标系中,△ABC的三个顶点坐标分别为 A(0,4),B(2,4),C(3,-1). (1)试在平面直角坐标系中,标出A、B、C三点; (2)若△ABC与△A'B'C'关于x轴对称,画出 △A'B'C',并写出A'、B'、C'的坐标.
轴对称与坐标变化
y
5
不变,横坐标都乘以 -1,
4
则图形怎么变化?
3
2
两个图形关于 y 轴对称
1
–5 –4 –3 –2 –1 0 –1
1 2 34
5x
坐标变化为:
–2
–3
(x,y) (0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)
(-x,y) (0,0) (-5,4) (-3,0) (-5,1) (-5,-1) (-3,0) (-4,-2) (0,0)
分别过点 A、B1 作 x 轴、y 轴的垂 线,交点为 C,得到 Rt△AB1C.
显然 AC = 3,B1C = 4,根据勾股定理可得 AB1 = 5. 于是,AP + PB 的最小值为 5.
A.4
B.5
C.6
D.7
课堂小结
关于坐标轴对称
轴对称与 坐标变换
作图 —— 关于轴对 称变化
点到坐标轴的距离
拓展提升
已知:A,B 两个村庄在如图所示的直角坐标系中,那么: (1)点 A 的坐标为 ( 1,1 ) ,点 B 的坐标为 ( 5,2 ) ; (2)在 x 轴上有一条河,现准备在 河流边上建一个抽水站 P,使得抽 水站 P 到 A、B 两个村庄的距离之 和最小,请作出点 P 的位置,并求 此时距离之和的最小值.
关于x轴对称的两个点 的坐标,横坐标相同, 纵坐标互为相反数;
关于 y 轴对称的两个点的 坐标,横坐标互为相反数, 纵坐标相同.
关于横轴对称的点, 横坐标相同;
关于纵轴对称的点, 纵坐标相同.
练一练
1. 平面直角坐标系中,点 P( 2,3)关于 x 轴对称的 点的坐标为 (2, 3) .
判断平面直角坐标系中的对称性
判断平面直角坐标系中的对称性在平面直角坐标系中,对称性是指图形在某个特定的变换下不变。
这些变换包括关于x轴、y轴或原点的对称变换,以及关于某一直线或点的对称变换。
通过判断图形是否具有对称性,我们可以更好地理解和描述图形的性质和特点。
下面将介绍如何判断平面直角坐标系中的对称性。
一、关于x轴对称:当一个图形在关于x轴的对称变换下不变时,我们称其具有关于x 轴的对称性。
具体判断方法如下:1. 对于一段直线,如果该直线与x轴垂直,那么它是关于x轴对称的。
例如:y = a(a为常数)。
2. 对于一个点(x, y),如果这个点与另一个点(x, -y)关于x轴对称,那么这个点也具有关于x轴对称性。
3. 对于一个函数图像,如果该函数图像关于x轴对称(即对于任意点(x, y)在图像上,点(x, -y)也在图像上),那么该函数具有关于x轴的对称性。
例如:y = sin(x)。
二、关于y轴对称:当一个图形在关于y轴的对称变换下不变时,我们称其具有关于y 轴的对称性。
具体判断方法如下:1. 对于一段直线,如果该直线与y轴垂直,那么它是关于y轴对称的。
例如:x = a(a为常数)。
2. 对于一个点(x, y),如果这个点与另一个点(-x, y)关于y轴对称,那么这个点也具有关于y轴对称性。
3. 对于一个函数图像,如果该函数图像关于y轴对称(即对于任意点(x, y)在图像上,点(-x, y)也在图像上),那么该函数具有关于y轴的对称性。
例如:y = x^2。
三、关于原点对称:当一个图形在关于原点的对称变换下不变时,我们称其具有关于原点的对称性。
具体判断方法如下:1. 对于一段直线,如果该直线通过原点且斜率不存在或为0,那么它是关于原点对称的。
2. 对于一个点(x, y),如果这个点与另一个点(-x, -y)关于原点对称,那么这个点也具有关于原点的对称性。
3. 对于一个函数图像,如果该函数图像关于原点对称(即对于任意点(x, y)在图像上,点(-x, -y)也在图像上),那么该函数具有关于原点的对称性。
专题卷 平面直角坐标系中平移和轴对称变换-简单数学之2021-2022学年七年级下册考点专训(解析
专题卷 平面直角坐标系中平移和轴对称变换一、选择题(每小题3分,共36分)1.平面直角坐标系中,把点A (-3,2)向右平移2个单位,所得点的坐标是( )A .(-3,0)B .(-3,4)C .(-5,2)D .(-1,2) 【答案】D【分析】根据点坐标平移的特点:左减右加,上加下减,进行求解即可.【详解】解:点A (-3,2)向右平移2个单位,所得点的坐标是(-3+2,2)即(-1,2),故选D .【点睛】本题主要考查了点坐标平移,解题的关键在于能够熟练掌握点坐标平移的特点.2.点()3,5P -关于y 轴的对称点是( )A .()3,5-B .()3,5C .()3,5--D .()3,5- 【答案】C【分析】关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等,据此解答.【详解】解:点()3,5P -关于y 轴的对称点是()3,5--,故选:C .【点睛】此题考查关于y 轴对称的点的坐标特征:关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等. 3.点3(4,)P -关于x 轴对称的点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限【答案】D【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得点的坐标,再根据坐标确定所在象限.【详解】解:点3(4,)P -关于x 轴对称的点是(4,3),在第一象限,故选:D .【点睛】本题考查了关于x 轴的对称点的坐标,解题的关键是掌握点的坐标的变化特点.4.将点()2,2P m m +-向右平移2个单位长度到点Q ,且Q 在y 轴上,那么点P 的坐标是( )A .()6,2-B .()2,6-C .()2,2D .()0,4 【答案】B【分析】将点P (m +2,2-m )向右平移2个单位长度后点Q 的坐标为(m +4,2-m ),根据点Q 在y 轴上知m +4=0,据此知m =-4,再代入即可得.【详解】解:将点P (m +2,2-m )向右平移2个单位长度后点Q 的坐标为(m +4,2-m ),∵点Q (m +4,2-m )在y 轴上,∴m +4=0,即m =-4,则点P 的坐标为(-2,6),故选:B .【点睛】此题主要考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.同时考查了y 轴上的点横坐标为0的特征.5.将ABC 的各个顶点的横坐标分别加3,纵坐标不变,连接三个新的点所成的三角形是由ABC ( ) A .向左平移3个单位所得B .向右平移3个单位所得C .向上平移3个单位所得D .向下平移3个单位所得【答案】B【分析】根据平移与点的变化规律:横坐标加3,图形向右移动;纵坐标不变,图形不向上下移动.【详解】解:根据点的坐标变化与平移规律可知,当ABC 的各个顶点的横坐标分别加3,纵坐标不变,相当于ABC 向右平移3个单位,故选:B .【点睛】本题考查图形的平移变换,关键是要懂得左右平移横坐标变化,纵坐标不变;而上下平移时横坐标不变,纵坐标变化;平移变换是中考的常考点.6.蝴蝶标本可以近似地看作轴对称图形,如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A 的坐标为(﹣5,3),则其关于y 轴对称的点B 的坐标为( )A .(5,3)B .(5,﹣3)C .(﹣5,﹣3)D .(3,5)【答案】A【分析】 根据轴对称图形的性质,横坐标互为相反数,纵坐标相等,即可得解.【详解】解:由题意,A ,B 关于y 轴对称,∵A (﹣5,3),∴B (5,3),故选:A .【点睛】此题主要考查平面直角坐标系中轴对称图形坐标的求解,熟练掌握,即可解题.7.已知平面直角坐标系中点A 的坐标为()5,6-,则下列结论正确的是( )A .点A 到x 轴的距离为5B .点A 到y 轴的距离为6C .点A 关于x 轴对称的点的坐标为()5,6-D .点A 关于y 轴对称的点的坐标为()5,6【答案】D【分析】根据坐标与距离的关系,坐标关于x 轴,y 轴对称的特点求解【详解】∵点A 的坐标为()5,6-,∴点A 到x 轴的距离为|6|=6,到y 轴的距离为|-5|=5,∴选项A ,B 都是错误的;∵点A 关于x 轴对称的点的坐标为()5,6--,∴选项C 是错误的;∵点A 关于y 轴对称的点的坐标为()5,6,∴选项D 是正确的;故选D【点睛】本题考查了坐标的意义,坐标与距离,坐标与轴对称,准确理解坐标的意义,坐标的对称点的意义是解题的关键.8.在平面直角坐标系中,把点P 先向左平移7个单位长度,再向上平移5个单位长度得到点M ,作点M 关于y 轴的对称点N .已知点N 的坐标是(5,1),那么点P 的坐标是 ( )A .(2,-4)B .(6,-4)C .(6,-1)D .(2,-1)【答案】A【分析】先根据点的关于y 轴对称性质由N 点求出点M ,再根据点的平移性质求出点P .【详解】解:因为点M 和点N 关于y 轴对称,N 点坐标是(5,1),所以点M 是(-5,1),又因为点P 先向左平移7个单位长度,再向上平移5个单位长度得到点M ,所以点P 是(2,-4),故选A.【点睛】本题主要考查点的对称和点的平移,解决本题的关键是要熟练掌握点的对称性质和点的平移性质.9.在平面直角坐标系内,P (2x ﹣6,5﹣x )关于x 轴对称的对称点在第四象限,则x 的取值范围为( ) A .3<x <5B .x <3C .5<xD .﹣5<x <3【答案】A【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数,由此求解即可.【详解】解:∵点P (2x ﹣6,5-x )关于x 轴对称的点在第四象限,∴点(2x ﹣6,x -5)第四象限 ∴26050x x ->⎧⎨-<⎩解得:35x <<故选A .【点睛】本题主要考查了关于x 轴对称的点的坐标特征,坐标所在的象限的特点,解题的关键在于能够熟练掌握坐标所在象限的特点.10.在平面直角坐标系中,将点(1,2)A m n -+先向左平移3个单位长,再向上平移2个单位长,得到点A ',若点A '位于第二象限,则m ,n 的取值范围分别是( )A .2m <-,0n >B .4m <,0n >C .4m <,4n >-D .1m <,2n >-【答案】C【分析】根据点的平移规律可得向左平移3个单位,再向上平移2个单位得到(m -1-3,n+2+2),再根据第二象限内点的坐标符号可得.【详解】解:点A (m -1,n +2)先向左平移3个单位,再向上平移2个单位得到点A′(m -4,n +4),∵点A′位于第二象限,∴m −4<0, n +4>0 ,解得:m <4,n >-4,故选C .【点睛】本题主要考查了坐标与图形变化-平移,解题的关键是要熟练掌握点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.11.如图,在平面直角坐标系中,点A(﹣2,2),B(2,6),点P为x轴上一点,当P A+PB的值最小时,三角形P AB的面积为()A.1B.6C.8D.12【答案】B【分析】如图,作点A关于x轴的对称点A′,连接A′B交x轴于点P,连接AP,此时P A+PB的值最小.判断出点P 的坐标,根据S△P AB=S△AA′B﹣S△AA′P,求解即可.【详解】解:如图,作点A关于x轴的对称点A′,连接A′B交x轴于点P,连接AP,此时P A+PB的值最小.∵A(﹣2,2),B(2,6),A′(﹣2,﹣2),P(﹣1,0),∴S△P AB=S△AA′B﹣S△AA′P=12×4×4﹣12×4×1=6,故选:B.【点睛】本题考查了轴对称,坐标与图形,数形结合是解题的关键.12.如图,点()11,1A ,点1A 向上平移1个单位,再向右平移2个单位,得到点2A ;点2A 向上平移2个单位,再向右平移4个单位,得到点3A ;点3A 向上平移4个单位,再向右平移8个单位,得到点4A ,…,按这个规律平移得到点2021A ,则点2021A 的横坐标为( )A .202121-B .20212C .202221-D .20222【答案】A【分析】 根据平移方式先求得1234,,,A A A A 的坐标,找到规律求得n A 的横坐标,进而求得2021A 的横坐标.【详解】点1A 的横坐标为1121=-,点2A 的横坐为标2321=-,点3A 的横坐标为3721=-,点4A 的横坐标为41521=-,…按这个规律平移得到点n A 的横坐标为21n -,∴点2021A 的横坐标为202121-,故选A .【点睛】本题考查了点的平移,坐标规律,找到规律是解题的关键.二、填空题(每小题3分,共18分)13.点M (2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是 _________.【答案】(﹣1,1)【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【详解】解:点M (2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是(2﹣3,﹣1+2),即(﹣1,1),故答案为:(﹣1,1).【点睛】此题考查了平面直角坐标系中,点的平移变换,掌握点的平移规律是解题的关键.14.若点A (1+m ,2)与点B (﹣3,1﹣n )关于y 轴对称,则m +n 的值是___.【答案】1【分析】关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标相同.据此可得m ,n 的值.【详解】解:∵点A (1+m ,2)与点B (-3,1-n )关于y 轴对称,∴1312m n +=⎧⎨-=⎩,解得:21m n =⎧⎨=-⎩, ∴m +n =2-1=1,故答案为:1.【点睛】本题主要考查了关于y 轴的对称点的坐标特点,即点P (x ,y )关于y 轴的对称点P ′的坐标是(-x ,y ). 15.如图所示,在平面直角坐标系中,()2,0A ,()0,1B ,将线段AB 平移至11A B 的位置,则a b +的值为___________.【答案】2【分析】根据平移变换的规律解决问题即可.解:由题意,线段AB 向右平移1个单位,再向上平移1个单位得到线段11A B ,1a ,1b =,2a B ∴+=,故答案为:2.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握平移变换的性质,属于中考常考题型.16.在平面直角坐标系中,若点()27,2M a -和点()3,N b a b --+关于y 轴对称,则b a =____. 【答案】116【分析】关于y 轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a ,b 的值即可解题.【详解】解:∵点M (2a -7,2)和N (-3﹣b ,a +b )关于y 轴对称,∴2732a b a b -=+⎧⎨+=⎩, 解得:42a b =⎧⎨=-⎩, 则b a =()21416-=. 故答案为:116. 【点睛】本题考查关于y 轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键.17.第一象限内有两点()4,P m n -,(),2Q m n -,将线段PQ 平移,使平移后的点P 、Q 都在坐标轴上,则点P 平移后的对应点的坐标是_________.【答案】(0,2)或(4,0)-【分析】设平移后点P 、Q 的对应点分别是P ′、Q ′.分两种情况进行讨论:①P ′在y 轴上,Q ′在x 轴上;②P ′在x 轴上,Q ′在y 轴上.解:设平移后点P 、Q 的对应点分别是P ′、Q ′.分两种情况:①P ′在y 轴上,Q ′在x 轴上,则P ′横坐标为0,Q ′纵坐标为0,∵0-(n -2)=-n +2,∴n -n +2=2,∴点P 平移后的对应点的坐标是(0,2);②P ′在x 轴上,Q ′在y 轴上,则P ′纵坐标为0,Q ′横坐标为0,∵0-m =-m ,∴m -4-m =-4,∴点P 平移后的对应点的坐标是(-4,0);综上可知,点P 平移后的对应点的坐标是(0,2)或(-4,0).故答案为:(0,2)或(-4,0).【点睛】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.规定:在平面直角坐标系xOy 中,“把某一图形先沿x 轴翻折,再沿y 轴翻折”为一次变换.如图,已知正方形ABCD ,顶点()()1,3,3,1A C ,若正方形ABCD 经过一次上述变换,则点A 变换后的坐标为________;对正方形ABCD 连续做2021次这样的变换,则点D 变换后的坐标为_________.【答案】(1,3)-- (3,3)--【分析】根据平面直角坐标系内关于x 和y 轴成轴对称点的坐标特征易得解.关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.【详解】解:根据平面直角坐标系内关于x 和y 轴成轴对称点的坐标特征:关于x 轴对称点的坐标特点,横坐标不变,纵坐标互为相反数;关于y 轴对称点的坐标特点,横坐标互为相反数,纵坐标不变. 点(1,3)A 先沿x 轴翻折,再沿y 轴翻折后的坐标为(1,3)--; 由于正方形ABCD ,顶点(1,3)A ,(3,1)C ,所以(3,3)D , 先沿x 轴翻折,再沿y 轴翻折一次后坐标为(3,3)--, 两次后坐标为(3,3), 三次后坐标为(3,3)--,故连续做2021次这样的变化,则点D 变化后的坐标为(3,3)--. 故答案为:(1,3)--;(3,3)--. 【点睛】考查了平面直角坐标系中的翻折变换问题,解题的关键是熟悉坐标平面内对称点的坐标特征. 三、解答题(19题6分,其余每题8分,共46分)19.如图所示,用点A (3,1)表示放置3个胡萝卜、1棵青菜,用点B (2,3)表示放置2个胡萝卜,3棵青菜.(1)请你写出点C 、D 、E 、F 所表示的意义;(2)若一只兔子从点A 到达点B (顺着方格线走),有以下几条路线可以选择:①A →C →D →B ;②A →E →D →B ;③A →E →F →B ,问走哪条路吃到的胡萝卜最多?走哪条路吃到的青菜最多?【答案】(1)C 表示放置2个胡萝卜、1棵青菜;D 表示放置2个胡萝卜、2棵青菜;E 表示放置3个胡萝卜、2棵青菜;F 表示放置3个胡萝卜、3棵青菜;(2)第③条路线吃到的胡萝卜和青菜都最多 【分析】(1)根据问题的“约定”先写出坐标,再回答其实际意义;(2)通过比较三条线路吃胡萝卜、青菜的多少回答问题. 【详解】解:(1)因为点A (3,1)表示放置3个胡萝卜、1棵青菜,点B (2,3)表示放置2个胡萝卜、3棵青菜,可得: 点C 的坐标是(2,1),它表示放置2个胡萝卜、1棵青菜;点D 的坐标是(2,2),它表示放置2个胡萝卜、2棵青菜; 点E 的坐标是(3,2),它表示放置3个胡萝卜、2棵青菜; 点F 的坐标是(3,3),它表示放置3个胡萝卜、3棵青菜.(2)若兔子走路线①A →C →D →B ,则可以吃到的胡萝卜共有3+2+2+2=9(个),吃到的青菜共有1+1+2+3=7(棵);走路线②A →E →D →B ,则可以吃到的胡萝卜共有3+3+2+2=10(个),吃到的青菜共有1+2+2+3=8(棵); 走路线③A →E →F →B ,则可以吃到的胡萝卜共有3+3+3+2=11(个),吃到的青菜共有1+2+3+3=9(棵); 由此可知,走第③条路线吃到的胡萝卜和青菜都最多. 【点睛】本题考查平面直角坐标系中的坐标规律问题,理解横纵坐标的含义是结题关键.20.在网格中建立如图所示的平面直角坐标系,ABC 的顶点A ,B ,C 均在格点上,ABC 与A B C '''关于y 轴对称.(1)画出A B C '''; (2)直接写出点C '的坐标;(3)若(,1)P m m -是ABC 内部一点,点P 关于y 轴对称点为P ',且8PP '=,请直接写出点P 的坐标. 【答案】(1)见解析;(2)(5 3)C '-,;(3)(4 3)P , 【分析】(1)分别作出点A (4,5)、B (1,1)、C (5,3)关于y 轴的对称点A B C ''',,,依次连接起来即得到A B C '''; (2)根据关于y 轴对称的点的坐标的特征,即可写出点C '的坐标;(3)由点P 关于y 轴对称点为P ',则可得PP '关于m 的表达式,由8PP '=可得关于m 的方程,解方程即可,从而求得点P 的坐标. 【详解】 (1)如图所示.(2)C '点与C 点关于y 轴对称,且点C 的坐标为(5,3),则点C '的坐标为(53)-,; (3)∵点P 关于y 轴对称点为P ',且(1)P m m -, ∴(1)P m m '--, ∵点P 在△ABC 的内部 ∴m >0 ∴2PP m '= ∵8PP '= ∴2m =8 ∴m =4 ∴(43)P ,. 【点睛】本题是坐标与图形问题,考查了画轴对称图形,关于y 对称的点的坐标特征,掌握点关于y 轴对称的坐标特征是解题的关键.21.在平面直角坐标系中,已知A 1(﹣3,0),B 1(1,1),C 1(1,3).(1)将点A 1、B 1、C 1三点分别向上平移1个单位再向右平移两个单位得到点A 、B 、C ,请写出点A ,B ,C 的坐标;并在平面直角坐标系中画出△ABC ; (2)连接OA ,OB ,求△ABO 的面积.【答案】(1)点A坐标(﹣1,1),点B坐标(3,2),点C坐标(3,4),图见解析;(2)5 2【分析】(1)先根据平移方式确定A、B、C三点的坐标,然后描点顺次连接即可;(2)根据三角形ABO的面积等于其所在的矩形面积减去周围三个三角形的面积即可得到答案.【详解】(1)点A坐标(﹣1,1),点B坐标(3,2),点C坐标(3,4),如图,△ABC为所作.(2)S△ABO=1115 241411322222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.22.如图,在平面直角坐标系中,三角形ABC经过平移得到三角形A1B1C1,结合图形,完成下列问题:(1)三角形ABC 先向左平移 个单位,再向 平移 个单位得到三角形A 1B 1C 1. (2)三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是 . (3)三角形ABC 的面积是 .【答案】(1)5,下,4;(2)(5x -,4y -);(3)7. 【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可. 【详解】解:(1)根据题图可知,三角形ABC 先向左平移5个单位,再向下平移4个单位得到三角形A 1B 1C 1; 故答案是:5,下,4;(2)由平移的性质:上加下减,左减右加可知,三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是(5x -,4y -), 故答案是:(5x -,4y -); (3)11144142423162437222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=---=,故答案是:7. 【点睛】本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键.23.如图,ABC 三个顶点的坐标分别为(5,4)A -、(2,2)B -、(4,1)C -.(1)若111A B C △与ABC 关于y 轴成轴对称,请在答题卷上作出111A B C △,并写出111A B C △的三个顶点坐标; (2)求111A B C △的面积;(3)若点P 为y 轴上一点,要使CP BP +的值最小,请在答题卷上作出点P 的位置.(保留作图痕迹) 【答案】(1)图见解析,1(5,4)A 、1(2,2)B 、1(4,1)C ;(2)72;(3)见解析【分析】(1)依据轴对称的性质进行作图,即可得到△A 1B 1C 1; (2)依据割补法进行计算,即可得到111A B C △的面积.(3)连接CB 1,交y 轴于点P ,则11BP CP B P CP B C +=+=可得最小值; 【详解】 解:(1)如图,1(5,4)A 、1(2,2)B 、1(4,1)C ;(2)111A B C △的面积为1312237332222⨯⨯⨯⨯---=; (3)连接1CB (或1BC )与y 轴交于点P ,如图,11BP CP B P CP B C +=+= 【点睛】本题考查了作图-轴对称变换、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.24.如图所示,在平面直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A (1,2),A 1(2,2),A 2(4,2),A 3(8,2);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化?找出规律,按此规律再将三角形OA 3B 3变换成三角形OA 4B 4,则A 4的坐标是________,B 4的坐标是________;(2)若按(1)中找到的规律将三角形OAB 进行n 次变换,得到三角形OA n B n ,推测A n 的坐标是________,B n 的坐标是________. (3)求出△OAnBn 的面积.【答案】(1)(16,2), (32,0);(2)(2n ,2), (2n+1,0);(3)12n +. 【分析】(1)观察图形并结合已知条件,找到A n 的横坐标、纵坐标的规律,及B n 的横坐标、纵坐标的规律,即可解题;(2)根据规律:A n 的横坐标是2n ,纵坐标都是2,得到A n 的坐标是(2n ,2),B n 的横坐标是2n +1,纵坐标都是0,得到B n 的坐标是(2n +1,0);(3)分别计算11OA B ∆、22OA B ∆、33OA B ∆的面积,找到面积规律n n OA B ∆的面积为: 1112222n n ++⨯⨯=. 【详解】解:(1)A (1,2),A 1(2,2),A 2(4,2),A 3(8,2)A ∴的横坐标0112,A =的横坐标 1222,A =的横坐标2342,A =的横坐标382=,三个点的纵坐标都是2,4A ∴的横坐标是4216=,纵坐标是0, 4(16,2)A ∴,又B 1(4,0),B 2(8,0),B 3(16,0),1B ∴的横坐标2242,B =的横坐标 3382,B =的横坐标4162=,三个点的纵坐标都是0,4B ∴的横坐标5232=,纵坐标是2,4(32,0)B ∴故答案为:(16,2), (32,0);(2)由A 1(2,2),A 2(4,2),A 3(8,2)可以发现它们各点坐标的关系为:横坐标是2n ,纵坐标都是2,得到A n 的坐标是(2n ,2), 由B 1(4,0),B 2(8,0),B 3(16,0)可以发现,它们各点坐标的关系为:横坐标是2n +1,纵坐标都是0,得到B n 的坐标是(2n +1,0), 故答案为:(2n ,2),(2n +1,0);(3)11OA B ∆的面积为2212222⨯⨯=,22OA B ∆的面积为3312222⨯⨯=,33OA B ∆的面积为4412222⨯⨯=,据此规律可得n n OA B ∆的面积为: 1112222n n ++⨯⨯=. 【点睛】本题考查平面直角坐标系与图形规律,是基础考点,掌握相关知识是解题关键.。
平面直角坐标系中的轴对称图形 -八年级数学上册课件(沪科版)
y
4
3D
C
2
1
B
关于 x 轴 对称的点的坐标 的特点是:
-5 -4
-3
-2
-1
O -1
A11
2
3B14
5x
-2
横坐标相等,纵坐标互为相反数. 已知点坐标 A(1,1) B(3,1)
-3
- D1
4
C(3,3)
C1
D(1,3)
关于x轴对称 的点的坐标
A1( 1,-1 )
B1( 3,-1 ) C1( 3,-3 )
2
C3,D3,并写出它们的坐标.
1A
B
-5 -4 -3
B3
-2 -1A-O13
1 2 3 4 5x
-2
已知点坐标
A(1,1)
C2
B(3,1)
-3
D2-
4
C(3,3)
D(1,3)
关于原点对称 的点的坐标
A2( -1,-1)
B2( -3,-1) C2( -3,-3)
D2( -1,-3)
探究 2
如图,在直角坐标系中,正方形ABCD四个顶点的坐标分别
15.1.3 平面直角坐标系中的轴对称图形
1、线段的垂直平分线的定义 经过线段中点 并且垂直于这条线段的直线,叫做这条
线段的垂直平分线. 又叫做线段的中垂线.
2、轴对称的性质: 如果两个图形关于某条直线对称,那么对称轴是任何一对对应
点所连线段的垂直平分线.反过来成轴对称的两个图形中,对应点 的连线被对称轴垂直平分. 3、轴对称图形的性质
为 A(1,1), B(3,1), C(3,3),D(1,3). 猜想:已知点 P(x,y),它关于 原点 对称点的坐标为 P3(-x,-y )
备战中考数学二轮专题归纳提升真题平面直角坐标系规律探究问题(解析版)
专题01 平面直角坐标系规律探究问题【知识点梳理】1、关于x 轴、y 轴或原点对称的点的坐标的特征点P (a ,b )与关于x 轴对称点的坐标为 (a ,-b ) 点P (a ,b )与关于y 轴对称点的坐标为 (-a ,b ) 点P (a ,b )与关于原点对称点的坐标为 (-a ,-b ) 口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号 2、点的平移点P (a ,b )沿x 轴向右(或向左)平移m 个单位后对应点的坐标是(a ±m,b ); 点P (a ,b )沿y 轴向上(或向下)平移n 个单位后对应点的坐标是(a,b ±n ). 口诀:横坐标右加左减,纵坐标上加下减.3、两点间的距离:在x 轴或平行于x 轴的直线上的两点P 1 (x 1,y ),P 2 (x 2,y )间的距离为|x 1−x 2| 在y 轴或平行于y 轴的直线上的两点P 1 (x ,y 1),P 2 (x ,y 2)间的距离为|y 1−y 2| 任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2的中点坐标为(x 1+x 22,y 1+y 22)任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2=√(x 1−x 2)2+(y 1−y 2)2【典例分析】【例1y)经过某种变换后得到点P ′(−y +1,x +2),我们把点P ′(−y +1,x +2)叫做点P(x,y)的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…、nP 、…,若点p 1的坐标为(2,0),则点P 2022的坐标为_____。
【答案】(1,4).解析:解:P 1 坐标为(2,0),则P 2坐标为(1,4),P 3坐标为(-3,3),P 4坐标为(-2,-1),P 5坐标为(2,0),∴P n 的坐标为(2,0),(1,4),(-3,3),(-2,-1)循环, ∵2022=4×505+2, ∴P 2022 坐标与P 2点重合, 故答案为(1,4).【练1】在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(y -1,-x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,2),则A 2023的坐标为________【答案】(-3,0)解析:解:∵A1(3,2),A2(1,-2),A3(-3,0),A4(-1,4),A5(3,2),…,∴点A n的坐标4个一循环.∵2023=505×4+3,∴点A2023的坐标与点A2的坐标相同.∴A2023的坐标为(-3,0),故答案为:(-3,0).【练2】某同学在平面直角坐标系内设计了一个动点运动的编程.若一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,则点A2022的坐标为()A.(22021﹣1,22021+1)B.(22022﹣1,22022+1)C.(22022﹣2,22022+2)D.(22021﹣2021,22021+2021)【答案】B【解析】解:∵一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,∴A n(2n﹣1,2n+1),∴A2022的坐标为:(22022﹣1,22022+1),故选:B.【练3】对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y);且规定P n(x,y)=P1(P n﹣1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2).则P2022(1,﹣1)=.【答案】(21011,21011)【解析】解:由题意可得:P1(1,﹣1)=(0,2),P2(1,﹣1)=(2,﹣2)P3(1,﹣1)=(0,4),P4(1,﹣1)=(4,﹣4)P5(1,﹣1)=(0,8),P6(1,﹣1)=(8,﹣8)…当n为奇数时,P n(1,﹣1)=(0,),当n为偶数时,P n(1,﹣1)=(2n2,2n2),∴P2022(1,﹣1)应该等于(21011,21011).故答案是:(21011,21011).【例2】如图,在平面直角坐标系中,A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…根据这个规律,探究可得点A2022的坐标是()A.(2022,0)B.(2022,2)C.(2021,﹣2)D.(2022,﹣2)【答案】A【解析】解:观察图形可知,点A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…的横坐标依次是1、2、3、4、…、n,纵坐标依次是2、0、﹣2、0、2、0、﹣2、…,四个一循环,2022÷4=505…2,故点A2022坐标是(2022,0).故选:A.【练1】如图,动点P1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2022,0)D.(2022,1)【答案】C【解析】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位,∴2022=4×505+2.当第505循环结束时,点P位置在(2020,0),在此基础之上运动两次到(2022,0).故选C.【练2】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P2022的坐标是()A.(2022,1)B.(2022,2)C.(2022,﹣2)D.(2022,0)【答案】D【解析】解:观察图象,动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∴经过第2022次运动后,动点P的纵坐标是0,故选:D.【练3】如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2022的坐标是_____________.【答案】(1011,1).【解析】观察图象可知,点A的纵坐标每4个点循环一次,∵2022=505×4+2,∴点A2022的纵坐标与点A2的纵坐标相同,∵A2(1,1),A6(3,1),A10(5,1)……,∴点A2022的坐标是(1011,1).【例3】如图,在平面直角坐标系上有个点A(-1,O),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2022次跳动至点A2022的坐标是( )A.(-505, 1011)B.(505, 1010)C.(-506, 1010)D.(506, 1011)【答案】D【解析】解:设第n次跳动至点A n,观察,发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(505+1,505×2+1),即(506,1011).故选:D.【练1】如图所示,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位……依此规律跳动下去,点P第99次跳动至点P99的坐标是_____【答案】(-25,50)【解析】解:由题中规律可得出如下结论:设点Px的横坐标的绝对值是n,则在y轴右侧的点的下标分别是4(n-1)和4n-3,在y轴左侧的点的下标是:4n-2和4n-1;判断P199的坐标,就是看99=4(n-1)和99=4n-3和99=4n-2和99=4n-1这四个式子中哪一个有负整数解,从而判断出点的横坐标.由上可得:点P第99次跳动至点P99的坐标是(-25,50)故答案为:(-25,50).【练2】如图,在平面直角坐标系上有点A0(1,0),点A0第一次跳动至点A1(−1,1),第二次点A1跳动至点A2(2,1),第三次点A跳动至点A3(−2,2),第四次点A3跳动至点A4(3,2),……依2此规律跳动下去,则点A2021与点A2022之间的距离是()A.2023B.2022C.2021D.2020【答案】A【解析】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至A2022点的坐标是(1012,1011),第2021次跳动至点A2021的坐标是(﹣1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012﹣(﹣1011)=2023.故选:A.【练3】在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(﹣1,3),第四次从点A3跳动到点A4(﹣1,4),…,按此规律下去,则点A2021的坐标是()A.(673,2021)B.(674,2021)C.(﹣673,2021)D.(﹣674,2021)【答案】B【解析】解:因为A1(0,1),A2(1,2),A3(﹣1,3),A4(﹣1,4),A5(2,5),A6(﹣2,6),A7(﹣2,7),A8(3,8),…A3n﹣1(n,3n﹣1),A3n(﹣n,3n),A3n+1(﹣n,3n+1)(n为正整数),∵3×674﹣1=2021,∴n=674,所以A2021(674,2021),故选:B.【例4】如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1)(1,1),(1,2),(2,2)……根据这个规律,第2022个点的坐标为________【答案】(45,6)【解析】解:观察图形,可知:第1个点的坐标为(1,0),第4个点的坐标为(1,1),第9个点的坐标为(3,0),第16个点的坐标为(1,3),…,∴第(2n-1)2个点的坐标为(2n-1,0)(n为正整数).∵2025=452,∴第2025个点的坐标为(45,0).又∵2025-3=2022,∴第2022个点在第2025个点的上方3个单位长度处,∴第2022个点的坐标为(45,3).故答案为:(45,3).【练1】如图,一个蒲公英种子从平面直角坐标系的原点O出发,向正东走3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,以此规律走下去,当种子到达点A10时,它在坐标系中坐标为()A.(﹣12,﹣12)B.(15,18)C.(15,﹣12)D.(﹣15,18)【答案】B【解析】解:根据题意可知:O A1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【练2】如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2022秒时,点所在位置的坐标是( )A .(2,44)B .(41,44)C .(44,41)D .(44,2)【答案】【解析】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x 轴时的横坐标为时间的平方,当点离开y 轴时的纵坐标为时间的平方, 此时时间为奇数的点在x 轴上,时间为偶数的点在y 轴上, ∵2022=452﹣3=2025﹣3,∴第2025秒时,动点在(45,0),故第2022秒时,动点在(45,0)向左一个单位,再向上2个单位, 即(44,2)的位置. 故选:D .【练3】如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1)…根据这个规律探索可得,第99个点的坐标为( )A.(14,−1)B.(14,0)C.(14,1)D.(14,2)【答案】C【解析】解:在横坐标上,第一列有一个点,第二列有2个点…第n 个有n 个点, 并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为(n,n−12),(n,n−12−1),…,(n,1−n 2);偶数列的坐标为(n,n2),(n,n2−1),…,(n,1−n2), ∵1+2+3+4+……+13=91∴第99个点位于第14列自上而下第7行.−6),即(14,1).代入上式得(14,142故选C.【例5】如图,在平面直角坐标系中,将边长为3,4,5的直角△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,发现A(3,0),A1(12,3),A2(15,0)…那么点A2022的坐标为.【答案】(12135,0)【解析】解:∵∠AOB=90°,点A(3,0),B(0,4),根据勾股定理得AB=5,根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(27,0);…发现规律:A2n﹣1(12n,3),A2n(12n+3,0),∵2022=2n,∴n=1011,∴点A2022的坐标为(12135,0),故答案为:(12135,0).【练1】如图,动点P从(0,3)出发沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2022次碰到长方形的边时点P的坐标为.【答案】(0,3【解答过程】解:如图所示:经过6次反弹后动点回到出发点(0,3),∵2022÷6=337∴当点P第2022次碰到矩形的边时与P点起点位置重合,∴点P的坐标为(0,3).故答案为:(0,3).【练2】如图,将边长为2的等边三角形沿x轴正方向连续翻折2019次,依次得到点P1,P2,P3,...,P2022,则点P2022的坐标是()A.(2022,2)B.(2022,√3)C.(4043,2)D.(4043, √3)【答案】D【解析】解:由题意可知P1是1P的横坐标是3,P3的横坐标是5,P4的横坐标是7…依此类推下去,P n的横坐标是2n-1,∴P2022的横坐标是2×2022-1=4043纵坐标都是√3,故选:D.连续作旋转变换,依【练3】如图,在直角坐标系中,已知点A(−3,0),B(0,4),对OAB次得到Δ1,Δ2,Δ3,Δ4,…,则∆2022的直角顶点的坐标为______.【答案】(8088,0)【解析】解:∵点A(-3,0)、B(0,4),∴AB=√32+42=5由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2022÷3=674,∴∆2022的直角顶点是第674个循环组的最后一个三角形的直角顶点;∵674×12=8088,∴∆2022的直角顶点的坐标为(8088,0).故答案为(8088,0).【例6】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2021B2022C2022的顶点B2022的坐标是_____.【答案】(0,-22011)【解析】解:∵正方形OA1B1C1的边长为1,∴OB1=√2∴OB2=2∴B2(0,2),同理可知B3(-2,2),B4(-4,0),B5(-4,-4),B6(0,-8),B7(8,-8),B9(16,16),B10(0,32).由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标的符号相同,每次正方形的边长变为原来的√2倍,∵2022÷8=252⋯⋯6,∴B8n+6(0,-24n+3),∴B2022(0,-22011).故答案为:(0,-22011).【练1】如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2022的坐标是_____.【答案】(0,-22011)【解析】解:由等腰直角三角形的性质,可知:A 1(1,1),A 2(0,2),A 3(﹣2,2),A 4(0,﹣4),A 5(﹣4,﹣4),A 6(0,﹣8),A 7(8,﹣8),A 8(16,0),A 9(16,16),A 10(0,32),A 11(﹣32,32),…,∵2022=252×8+6∴点A 8n+6的坐标为(0,24n+3)(n 为自然数).∴点A 2022的坐标为(0,24×252+3),即(0,-22011),故答案为:(0,-22011).【练2】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点2A ,作正方形A 2B 2C 2C 1……按这样的规律进行下去,第2022个正方形的面积为_____.【答案】5×(32)4042.【解析】解:∵点A 的坐标为(1,0),点D 的坐标为(0,2)∴正方形ABCD 的边长为√5,设其面积为S 1=5,依此类推,接下来的面积依次为S 2,S 3,S 4⋯⋯第2022个正方形的面积为S 2022,又∵三角形相似,∴ OA OD =A 1B AB =A 2B 1A 1B 1=⋯=12. ∴ S 2=5×94,S 3=5×(94)2…… ∴S 2022=5×(94)2022−1=5×(94)2021=5×(32)4042.【练3】如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线B n B n+1都在y 轴上,且B n B n+1的长度依次增加1个单位长度,顶点A n都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为;用n的代数式表示A n的纵坐标:.【答案】2;【解析】解:作A1D⊥y轴于点D,则B1D=B1B2÷2=(3﹣1)÷2=1,∴A1的纵坐标=B1D+B1O=1+12,同理可得A2的纵坐标=OB2+(B2B3)÷2=3+(6﹣3)÷2 4.5,∴A n的纵坐标为,故答案为2,.。
轴对称与坐标变化课件
知识点复习:
1、坐标轴上的点的坐标有什么特点:
位于x轴上的点的坐标的特征是: 纵坐标等于 0;
位于y轴上的点的坐标的特征是:横坐标等于 0。
2、与x轴平行的直线上点的坐标的特征
是:
;
与y轴平行的直线上点的坐标的特征
是:
。
3、每一象限内的点的坐标有什么特征? 第一象限( , ) 第二象限( , )
第三象限( , ) 第四象限 ( , )
知识回顾:
2.在平面直角坐标系中,在第二象限内有一点P,且P点
到x轴的距离是4,到y轴的距离是5,则P点坐
为
。
知识回顾:
2.在平面直角坐标系中,在第二象限内有一点P,且P点
到x轴的距离是4,到y轴的距离是5,则P点坐
为
。
解析:因为P在第二象限, 所以横坐标为负,纵坐标为正 P点到x轴的距离是4---说明纵坐标为4 到Y轴的距离是5------说明横坐标为-5
(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分 别乘-1,依次连接这些点,你会得到怎样的图案?视察坐标 系中的两条鱼的位置关系?
(3)将各坐标的纵坐标与横坐标都乘以-1,图形会变 成什么样?
探索坐标变化引起的图形变化
(1)将所得图案的各个顶点的纵坐标保持不变,横坐标 分别乘-1,依次连接这些点,你会得到怎样的图案?视察 坐标系中的两条鱼的位置关系?
探索两个关于坐标轴对称的图形的坐标关系
1.两面小旗之间有怎样的位置关系?
.
2.对应点A与A1的坐标有什么特点?
.
3.画出小旗ABCD关于x轴的对称图形,它的各个“顶点”的坐 标与本来的点的坐标有什么关系?
探索两个关于坐标轴对称的图形的坐标关系
坐标平面内图形的轴对称和平移
第21课 坐标平面内的图形的轴对称和平移学习目标1.感受坐标平面内图形变化相应的坐标变化.2.了解关于坐标轴对称的两个点的坐标关系.3.会求与已知点关于坐标轴对称的点的坐标.4.利用关于坐标轴对称的两个对称点的坐标关系,求作轴对称图形.知识点01 坐标平面内图形的轴对称在直角坐标系中,点(a,b )关于x 轴的对称点的坐标为(a,-b ),关于y 轴的对称点的坐标为(-a,b).1. 关于x 轴对称:横坐标不变,纵坐标互为相反数2.关于y 轴对称:横坐标互为相反数,纵坐标不变知识点02 坐标平面内图形的平移平移:上加下减,右加左减考点01 坐标平面内图形的轴对称【典例1】已知点A (a +2b ,﹣2)和点B (﹣1,a +1)关于y 轴对称,那么a +b = ﹣1 .【思路点拨】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【解析】解:∵点A (a +2b ,﹣2)和点B (﹣1,a +1)关于y 轴对称,∴,解得,∴a +b =﹣3+2=﹣1.故答案为:﹣1.【点睛】此题主要考查了关于x 轴对称点的性质,正确得出a ,b 的值是解题关键.【即学即练1】平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,4),B (3,4),C (3,﹣1).(1)试在平面直角坐标系中,标出A 、B 、C 三点;(2)求△ABC 的面积.(3)若△A 1B 1C 1与△ABC 关于x 轴对称,写出A 1、B 1、C 1的坐标.【思路点拨】(1)根据点A 、B 、C 的坐标及坐标的概念描点即可;(2)根据三角形的面积公式求解可得;(3)根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解析】解:(1)如图所示,点A 、B 、C即为所求;能力拓展(2)△ABC的面积为:=5;(3)若△A1B1C1与△ABC关于x轴对称,则A1(1,﹣4)、B1(3,﹣4)、C1(3,1).【点睛】本题主要考查作图﹣轴对称变换,解题的关键是根据轴对称变换的定义和性质得出对应点.考点02 坐标平面内图形的平移【典例2】用(﹣2,4)表示一只蚂蚁的位置,若这只蚂蚁先水平向右爬行3个单位,然后又竖直向下爬行2个单位,则此时这只蚂蚁的位置是( )A.(1,6)B.(﹣5,2)C.(1,2)D.(2,1)【思路点拨】根据平移规律解答即可.【解析】解:自点(﹣2,4)先水平向右爬行3个单位,然后又竖直向下爬行2个单位,此时这只蚂蚁的位置是(﹣2+3,4﹣2),即(1,2),故选:C.【点睛】本题考查了坐标与图形变化﹣平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.【即学即练2】三角形ABC与三角形A′B′C′在平面直角坐标系中的位置如图所示:(1)分别写出下列各点的坐标:A (1,3) ,A′ (﹣3,1) ;(2)若点P(x,y)是三角形ABC内部一点,则三角形A′B′C′内部的对应点P′的坐标 (x﹣4,y﹣2) .(3)三角形A′B′C′是由三角形ABC经过怎样的平移得到的?【思路点拨】(1)根据点的位置写出坐标即可;(2)利用平移变换的规律解决问题即可;(3)根据平移变换的性质解决问题.【解析】解:(1)A (1,3),A ′(﹣3,1).故答案为:(1,3),(﹣3,1);(2)∵△ABC 向左平移4个单位,再向下平移2个单位得到△A ′B ′C ′,∴P (x ,y )的对应点P ′(x ﹣4,y ﹣2),故答案为:(x ﹣4,y ﹣2);(3)△ABC 向左平移4个单位,再向下平移2个单位得到△A ′B ′C ′.【点睛】本题考查坐标与图形变化﹣平移,解题的关键是掌握平移变换的性质,属于中考常考题型.题组A 基础过关练1.在平面直角坐标系中,点A (3,2)与点B (3,﹣2)的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .没有对称关系【思路点拨】直接利用关于关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,进而得出答案.【解析】解:∵点A (3,2)与点B (3,﹣2),横坐标相同,纵坐标互为相反数,∴点A (3,2)与点B (3,﹣2)的位置关系是关于x 轴对称.故选:A.分层提分【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.2.在平面直角坐标系中,点P(6,﹣3)关于x轴对称的点的坐标是( )A.(﹣6,3)B.(6,﹣3)C.(6,3)D.(﹣6,﹣3)【思路点拨】直接利用关于x轴对称点的性质分析得出答案.【解析】解:在平面直角坐标系中,点P(6,﹣3)关于x轴对称的点的坐标是(6,3).故选:C.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.3.若点P(2,b)和点Q(a,﹣3)关于y轴对称,则a+b的值是( )A.﹣1B.1C.﹣5D.5【思路点拨】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”,可得a=﹣2,b=﹣3,再代入计算即可.【解析】解:∵点P(2,b)和点Q(a,﹣3)关于y轴对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5.故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.若点M(2a,﹣1)与点N(4,﹣b)关于x轴对称,则a+b的值为( )A.﹣3B.﹣1C.1D.3【思路点拨】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案.【解析】解:∵点M(2a,﹣1)与点N(4,﹣b)关于x轴对称,∴2a=4,﹣b=1,解得a=2,b=﹣1,则a+b=2﹣1=1.故选:C.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握对称点坐标特点是解题关键.5.把点A(﹣2,1)向上平移2个单位,再向左平移3个单位后得到B,点B的坐标是( )A.(﹣5,3)B.(1,3)C.(1,﹣3)D.(﹣5,﹣1)【思路点拨】根据平移的基本性质,向上平移a,纵坐标加a,向右平移a,横坐标加a;【解析】解:∵A(﹣2,1)向上平移2个单位,再向左平移3个单位后得到B,∴1+2=3,﹣2﹣3=﹣5;点B的坐标是(﹣5,3).故选:A.【点睛】本题考查了平移的性质,①向右平移a个单位,坐标P(x,y)⇒P(x+a,y),①向左平移a 个单位,坐标P(x,y)⇒P(x﹣a,y),①向上平移b个单位,坐标P(x,y)⇒P(x,y+b),①向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b).6.在平面直角坐标系中,若点P(a,﹣5)与点Q(4,3)所在直线PQ∥y轴,则a的值等于( )A.﹣5B.3C.﹣4D.4【思路点拨】根据直线PQ∥y轴,得到P,Q横坐标相等,即可求解.【解析】解:∵直线PQ∥y轴,∴P,Q横坐标相等,∴a=4,故选:D.【点睛】本题考查了坐标与图形性质,直线PQ∥y轴,得到P,Q横坐标相等是解题的关键.7.如图,将线段AB向右平移3个单位长度,再向下平移2个单位长度,得到线段A'B',则点A的对应点A'的坐标是( )A.(0,2)B.(1,2)C.(0,﹣1)D.(﹣1,﹣2)【思路点拨】利用平移变换的性质分别作出A,B的对应点A′,B′即可.【解析】解:如图,观察图象可知点A′的坐标是(1,2),故选:B.【点睛】本题考查坐标与图形变化—平移,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.8.在平面直角坐标系中,已知点M(m﹣1,2m+3).若点N(﹣3,2),且MN∥y轴.(1)m= ﹣2 ;(2)点M关于y轴对称的点的坐标为 (3,﹣3) .【思路点拨】(1)根据MN∥y轴得出点M与点N的横坐标相等,建立等式可求出m的值,由此即可得;(2)根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.【解析】解:(1)∵点M(m﹣1,2m+3).若点N(﹣3,2),且MN∥y轴,∴点M与点N的横坐标相等,即m﹣1=﹣3,解得m=﹣2,故答案为:﹣2;(2)由(1)可得点M的坐标为(﹣3,﹣1),所以点M关于y轴对称的点的坐标为(3,﹣1).故答案为:(3,﹣1).【点睛】本题考查了点坐标,熟练掌握平面直角坐标系中,点坐标的特征是解题关键.9.△ABC的三个顶点坐标分别是A(a,5),B(7,b),C(4,9),将△ABC平移后得到△A1B1C1,其中A1(3,8),B1(6,3),则点C1的坐标是 (3,12) .【思路点拨】由题意△ABC向上平移3个单位,再向左平移一个单位得到△A1B1C1,由此可得结论.【解析】解:由题意△ABC向上平移3个单位,再向左平移一个单位得到△A1B1C1,∴C1(3,12).故答案为:(3,12).【点睛】本题考查坐标与图形变化﹣平移,解题的关键是理解题意,灵活运用所学知识解决问题.10.已知点A(a﹣3,a2﹣4),求分别满足下列条件的a的值及点A的坐标.(1)点A在x轴上;(2)已知点B(2,5),且AB∥x轴.【思路点拨】(1)根据x轴上的点的坐标特征可得a2﹣4=0,求出a的值,进一步可得点A的坐标;(2)根据AB∥x轴,可得a2﹣4=5,求出a的值,进一步可得点A的坐标.【解析】解:(1)∵点A在x轴上,∴a2﹣4=0,解得a=2或a=﹣2,∴点A的坐标为(﹣1,0)或(﹣5,0);(2)∵AB∥x轴,∴a2﹣4=5,∴a=3或a=﹣3,∴点A坐标为(0,5)或(﹣6,5).【点睛】本题考查了坐标与图形的性质,熟练掌握平面直角坐标系内坐标轴上的点和平行于坐标轴的点的坐标特征是解题的关键.11.如图在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(每个小正方形的边长均为1).(1)若点D与点A关于y轴对称,则点D的坐标为 (2,2) .(2)将点B向右平移5个单位,再向上平移2个单位得到点C,则点C的坐标为 (2,0) .(3)请在图中表示出D、C两点,顺次连接ABCD,并求出A、B、C、D组成的四边形ABCD的面积.【思路点拨】(1)直接利用关于y轴对称点的性质得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案;(3)利用四边形ABCD所在矩形面积减去周围三角形面积,进而得出答案.【解析】解:(1)如图所示:D(2,2);故答案为:(2,2);(2)如图所示:C(2,0);故答案为:(2,0);(3)如图所示:四边形ABCD的面积为:4×5﹣×1×4﹣×5×2=13.【点睛】此题主要考查了四边形面积求法以及关于y轴对称点的性质,正确得出对应点位置是解题关键.题组B 能力提升练12.若点A(6,6),AB∥x轴,且AB=2,则B点坐标为( )A.(4,6)B.(6,4)或(6,8)C.(8,6)D.(4,6)或(8,6)【思路点拨】根据AB∥x轴,得到点A,B的纵坐标相等,点B的纵坐标为6,根据AB=2分两种情况求点B的坐标即可.【解析】解:∵AB∥x轴,∴点A,B的纵坐标相等,∴点B的纵坐标为6,∵AB=2,∴当点B在点A左侧时,B(4,6);当点B在点A右侧时,B(8,6);故选:D.【点睛】本题考查了坐标与图形性质,体现了分类讨论的思想,根据AB∥x轴,得到点A,B的纵坐标相等是解题的关键.13.在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣2),那么点B的对应点B′的坐标是( )A.(1,1)B.(1,2)C.(2,2)D.(2,1)【思路点拨】利用平移变换的性质,画出图形可得结论.【解析】解:如图,观察图像可知,B′(1,1).故选:A.【点睛】本题考查坐标与图形变化﹣平移,解题的关键是理解题意,正确画出图形解决问题.14.在平面直角坐标系中,将点A(2,﹣1)向上平移4个单位长度得到点B,则点B关于y轴对称的点B'的坐标为( )A.(﹣3,2)B.(2,3)C.(﹣2,﹣3)D.(﹣2,3)【思路点拨】首先根据纵坐标上移加,下移减可得B点坐标,然后再根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解析】解:将点A(2,﹣1)向上平移4个单位长度得到点B的坐标为(2,﹣1+4),即(2,3),则点B关于y轴的对称点B′的坐标是:(﹣2,3).故选:D.【点睛】此题主要考查了坐标与图形变化﹣平移,以及关于y轴对称点的坐标,关键是掌握点的坐标变化规律.15.已知点P(a+1,2a﹣3)关于x轴对称的点在第二象限,则a的取值范围为( )A.a>B.a<C.a<﹣1D.﹣1<a<【思路点拨】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出对应点坐标,再利用第二象限点的坐标特点进而得出答案.【解析】解:点P(a+1,2a﹣3)关于x轴对称的点为(a+1,﹣2a+3)在第二象限,故,解得a<﹣1.故选:C.【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.在平面直角坐标系中有A(m,3),B(4,n)两点,若直线AB平行于y轴,且AB=4,则m+n= 3或11 .【思路点拨】先根据直线AB平行于y轴可得出m=4,再由AB=4可得出n的值.【解析】解:∵点A(m,3),B(4,n),直线AB平行于y轴,∴m=4.∵AB=4,∴|3﹣n|=4,解得n=﹣1或7.∴m+n=4﹣1=3,或4+7=11故答案为:3或11.【点睛】本题考查的是坐标与图形性质,熟知平行于y轴的直线上点的横坐标相等是解答此题的关键.17.已知点M(3,﹣2)与点M'(x,y)在同一条平行于x轴的直线上,且M'到y轴的距离等于4,那么点M'的坐标是 (4,﹣2)或(﹣4,﹣2) .【思路点拨】由点M和M′在同一条平行于x轴的直线上,可得点M′的纵坐标;由“M′到y轴的距离等于4”可得,M′的横坐标为4或﹣4,即可确定M′的坐标.【解析】解:∵M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,∴M′的纵坐标y=﹣2,∵“M′到y轴的距离等于4”,∴M′的横坐标为4或﹣4.所以点M′的坐标为(4,﹣2)或(﹣4,﹣2),故答案为:(4,﹣2)或(﹣4,﹣2).【点睛】本题考查了点的坐标的确定,注意:由于没具体说出M′所在的象限,所以其坐标有两解,注意不要漏解.18.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,有两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),如:点A(1,2)、点B(3,6),则线段AB的中点M的坐标为(,),即M(2,4).利用以上结论解决问题:平面直角坐标系中,若E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于y轴上,且到x轴的距离是1,则4a+b的值等于 0 .【思路点拨】根据中点坐标公式求出点G的坐标,根据线段EF的中点G恰好位于y轴上,且到x轴的距离是1,得到点G的横坐标等于0,纵坐标的绝对值为1,列出方程组求解即可.【解析】解:根据题意得:G(,),∵线段EF的中点G恰好位于y轴上,且到x轴的距离是1,∴,解得(舍去),,∴4a+b=0.故答案为:0.【点睛】本题考查了坐标与图形性质,根据线段EF的中点G恰好位于y轴上,且到x轴的距离是1,得到点G的横坐标等于0,纵坐标的绝对值为1是解题的关键.题组C 培优拔尖练19.在平面直角坐标系中,将点A(m,n+2)先向左平移3个单位,再向上平移2个单位,得到点A′,若点A'位于第二象限,则m、n的取值范围分别是( )A.m<0,n>0B.m<3,n>﹣4C.m<0,n<﹣2D.m<﹣3,n<﹣4【思路点拨】根据第二象限点的特征,根据不等式组解决问题即可.【解析】解:平移后的坐标为(m﹣3,n+4),由题意,,解得,故选:B.【点睛】本题考查坐标与图形变化﹣平移,不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.在平面直角坐标系中,点A的坐标为(﹣1,3),点B的坐标为(5,3),则线段AB上任意一点的坐标可表示为( )A.(3,x)(﹣1≤x≤5)B.(x,3)(﹣1≤x≤5)C.(3,x)(﹣5≤x≤1)D.(x,3)(﹣5≤x≤1)【思路点拨】根据A、B两点纵坐标相等,可确定AB与x轴平行,即可求解.【解析】解:∵点A的坐标为(﹣1,3),点B的坐标为(5,3),A、B两点纵坐标都为3,∴AB∥x轴,∴线段AB上任意一点的坐标可表示为(x,3)(﹣1≤x≤5),故选:B.【点睛】本题考查了坐标与图形的性质,平行于x轴的直线上的点纵坐标相等.22.在平面直角坐标系中,若点P(m,m﹣n)与点Q(2,1)关于原点对称,则点M(m,n)在( )A.第一象限B.第二象限C.第三象限D.第四象限【思路点拨】直接利用关于原点对称点的性质得出m,n的值,再利用各象限内点的坐标特点得出答案.【解析】解:∵点P(m,m﹣n)与点Q(2,1)关于原点对称,∴,解得,∴点M(m,n)即(﹣2,﹣1)在第三象限.故选:C.【点睛】此题主要考查了关于原点对称点的性质以及点的坐标特点,正确得出m,n的值是解题关键.23.在平面直角坐标系中,下列说法:①若点A(a,b)在坐标轴上,则ab=0;②若m为任意实数,则点(2,m2)一定在第一象限;③若点P到x轴的距离与到y轴的距离均为2,则符合条件的点P有2个;④已知点M(2,3),点N(﹣2,3),则MN∥x轴.其中正确的是( )A.①④B.②③C.①③④D.①②④【思路点拨】①坐标轴上的点的特征是横坐标为0或纵坐标为0,由此可判断;②由m2≥0,可得点(2,m2)在第一象限或x轴正半轴上;③到点P到x轴的距离与到y轴的距离均为2,则点P在四个象限内都有符合条件的点;④由题可知MN在直线y=3上,由此可判断.【解析】解:①∵点A(a,b)在坐标轴上,∴a=0或b=0,∴ab=0,故①符合题意;②∵m2≥0,∴点(2,m2)在第一象限或x轴正半轴上,故②不符合题意;③点P到x轴的距离与到y轴的距离均为2,∴P点坐标为(2,2)或(2,﹣2)或(﹣2,2)或(﹣2,﹣2),∴P点共有4个,故③不正确;④∵点M(2,3),点N(﹣2,3),∴M、N两点在y=3的直线上,∴MN∥x轴,故④符合题意;故选:A.【点睛】本题考查坐标与图形,熟练掌握平面直角坐标系中点的坐标特征是解题的关键.25.如图,正△ABO的边长为4,O为坐标原点,A在x轴上,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得到△A1B1O,翻滚2022次后AB中点M坐标为 (8085,) .【思路点拨】作出把△ABO经3次翻滚后的图形,作B3E⊥x轴于点E,由勾股定理可得B3E的长,从而可知点B3的纵坐标,再根据等边三角形的边长为4及等腰三角形的三线合一性质,可得OE的长,从而可知点B3的坐标;由图象可知翻滚的循环规律,从而可知翻滚2022次后AB中点M的坐标.【解析】解:如图所示,把△ABO经3次翻滚后,点B落到点B3处,点M经过点N、点H落到点M’处,点A落到点K处,作B3E⊥x轴于点E,则∠B3KE=60°,B3K=2,∴KE=B3K=2,B3E=B3K=2,∴OE=3×4﹣2=10,∴K(8,0),B3(10,2).∴M′(9,).由图象可知,翻滚三次为一个循环,∵2022=3×674,∴翻滚2022次后AB 中点M 的纵坐标与点M ′的纵坐标相同,横坐标为2022×4﹣3=8085,∴翻滚2022次后AB 中点M 的坐标为(8085,).故答案为:(8085,).【点睛】本题考查的是坐标与图形变化﹣旋转,等边三角形的性质等知识,找到旋转规律是解题的关键.26.如图①,在平面直角坐标系中,点A (a ,0),点B (b ,0),点C (0,2),且|a +2b |+=0.(1)求点A ,B 的坐标;(2)将三角形ABC 平移,平移后点C 的对应点的坐标为(7,6),点B 的对应点为点D ,如图②.求三角形ACD 的面积;(3)P (m ,3)是一动点,若三角形PCO 的面积等于三角形AOC 的面积,求出点P 的坐标.【思路点拨】(1)由|a +2b |+=0,根据非负数的性质可得出a 和b 的值,即可确定点A 和B 的坐标;(2)连接OD ,根据S 三角形ACD =S 三角形OCD +S 三角形OAD ﹣S 三角形AOC 计算即可求解;(3)根据三角形PCO 的面积等于三角形AOC 的面积,列出方程计算即可求解.【解析】解:(1)∵|a +2b |+=0,∴,解得.故点A (4,0),点B (﹣2,0);(2)∵将三角形ABC 平移,平移后点C (0,2)的对应点的坐标为(7,6),∴三角形ABC 是向右平移7个单位长度,再向上平移4个单位长度,∴三角形ABC 平移后点B (﹣2,0)的对应点D 的坐标为(5,4),连接OD ,∴S 三角形ACD =S 三角形OCD +S 三角形OAD ﹣S 三角形AOC=×4×4+×2×5﹣×4×2=9;(3)依题意有:×2|m|=×4×2,解得m=±4,故点P的坐标为(﹣4,3)或(4,3).【点睛】本题主要考查平面直角坐标系,关键是能根据|a+2b|+=0的非负性确定a和b的值,求出点A,B的坐标.27.在平面直角坐标系中,将线段AB平移得到的线段记为线段A′B′.(1)如果点A,B,A′的坐标分别为A(﹣2,﹣1),B(1,﹣3),A′(2,3),直接写出点B′的坐标 (5,﹣1) ;(2)已知点A,B,A',B'的坐标分别为A(m,n),B(2n,m),A′(3m,n),B′(6n,m),m 和n之间满足怎样的数量关系?说明理由;(3)已知点A,B,A′,B′的坐标分别为A(m,n+1),B(n﹣1,n﹣2),A′(2n﹣5,2m+3),B′(2m+3,n+3),求点A,B的坐标.【思路点拨】(1)根据点A到A′确定出平移规律,再根据平移规律列式计算即可得到点B′的坐标;(2)根据题意列方程,解方程即可得到结论;(3)根据题意列方程组,解方程组,即可得到结论.【解析】解:(1)∵A(﹣2,1)平移后得到点A′的坐标为(2,3),∴向上平移了2个单位,向右平移了4个单位,∴B(1,﹣3)的对应点B'的坐标为(1+4,﹣3+2),即(5,﹣1).故答案为:(5,﹣1);(2)m=2n,理由:∵将线段AB平移得到的线段记为线段A′B′,A(m,n),B(2n,m),A′(3m,n),B′(6n,m),∴3m﹣m=6n﹣2n,∴m=2n;(3)∵将线段AB平移得到的线段记为线段A′B′,点A,B,A′,B′的坐标分别为A(m,n+1),B(n﹣1,n﹣2),A′(2n﹣5,2m+3),B′(2m+3,n+3),∴2n﹣5﹣m=2m+3﹣(n﹣1),2m+3﹣(n+1)=(n+3)﹣(n﹣2),解得m=6,n=9,∴点A的坐标为(6,10),点B的坐标为(8,7).【点睛】本题考查了坐标与图形变化﹣平移,熟练掌握点的平移规律是解题的关键.28.我们约定:若点P的坐标为(x,y),则把坐标为(kx+y,x﹣ky)的点P k成为点P的“k阶益点”(其中k为正整数),例如:P2(2×3+4,3﹣2×4)即P2(10,﹣5)就是点P(3,4)的“2阶益点”.(1)已知点P3(﹣1,﹣7)是点P(x,y)的“3阶益点”,求点P的坐标;(2)已知点P2是点P(t+1,2t)的“2阶益点”,将点先向右移动6个单位,再向下移动3个单位得到点Q,若点Q落在第四象限,求t的取值范围;(3)已知点P(x,y)的“k阶益点”是P k(3,﹣2),若x<y<2x,求符合要求的点P的坐标.【思路点拨】(1)构建方程组求解即可;(2)构建不等式组解决问题即可;(3)根据不等式组,求出整数k,可得结论.【解析】解:(1)由题意,解得,,∴P(﹣1,2);(2)由题意,,解得,t>﹣;(3)由题意,,解得,,∵x<y<2x,∴<<,解得,<k<5,∵k是正整数,∴K=2或3或4,∴或或,∴满足条件的点P的坐标为(,)或(,)或(,).【点睛】本题考查坐标与图形变化﹣平移,解一元一次方程,不等式组等知识,解题的关键是理解题意,学会构建方程或不等式解决问题.。
用坐标表示轴对称
06
轴对称在几何中的应用
轴对称在几何图形中的应用
轴对称图形
如圆、椭圆、抛物线等都是轴对称图形,它们具有对称轴, 沿对称轴折叠后两部分完全重合。
轴对称变换
通过轴对称变换,可以将一个图形变为另一个图形,保持其 形状定理的证明
勾股定理的证明可以利用轴对称的思 想,通过构造对称图形来证明。
空间直角坐标系中的点对称
点关于x轴对称
若点P(x,y,z)关于x轴对称,则其对称 点的坐标为(x,-y,-z)。
点关于z轴对称
若点P(x,y,z)关于z轴对称,则其对称 点的坐标为(-x,-y,z)。
点关于y轴对称
若点P(x,y,z)关于y轴对称,则其对称 点的坐标为(-x,y,-z)。
空间直角坐标系中的图形对称
设有点 $P(x,y)$ 和 其关于 $x$ 轴的对 称点 $P'(x',y')$
对应的点对称变换矩 阵为 $[1, 0; 0, -1]$
根据轴对称的性质, 有 $x' = x$ 和 $y' = -y$
图形对称变换的矩阵表示
01
对于图形上任意一点 $P(x,y)$, 其关于 $x$ 轴的对称点为 $P'(x,y)$
点关于原点对称
如果点A(x1, y1)关于原点对称,则其对称点 的坐标为(-x1, -y1)。
平面直角坐标系中的图形对称
直线关于x轴对称
如果直线l与x轴平行,则其关于x轴 对称的直线与y轴平行。
直线关于y轴对称
如果直线l与y轴平行,则其关于y轴 对称的直线与x轴平行。
直线关于原点对称
如果直线l经过原点O,则其关于原 点对称的直线与原点的距离相等且 方向相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系与轴对称变换专题第三讲平面直角坐标系与轴对称变换专题第一节:直角坐标系与轴对称变换知识点回顾知识点一:轴对称、轴对称图形1、轴对称图形:如果一个图形沿某条直线对折,对折的两部分是重合的,那么就称这样的图形为轴对称图形。
这条直线称为对称轴,对称轴一定为直线。
2、轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么这两个图形成轴对称,两个图形中的对应点叫对称点。
知识点二:轴对称图形的性质1、轴对称图形的对应线段相等,对应角相等,对应点的连线被对称轴垂直平分。
轴对称的两个图形,对应线段或延长线相交,交点在对称轴上。
2、轴对称图形变换的特征是不改变图形的大小和形状,只改变图形的位置,新旧图形具有对称性。
例2:(2009湖北荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将A'BDA C其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB =()A.40° B.30° C.20° D.10°解析:有关折叠问题是中考常考的题型,必须要辨别清楚折叠前后图形和数量关系。
本题中,将∠A折叠,出现了轴对称,∠CA′D=∠A,因为∠A=50°,所以∠CA′D=50°。
在Rt△ABC中,∠ACB=90°,∠B=90°-∠A=40°。
∠CA′D是△ A′B D的一个外角,等于∠A′DB与∠B之和,所以∠A′DB=∠A′DB -∠B=50°- 40°=10°。
应选择D。
2.(2009湖南郴州)点(35)p,关于x轴对称的点的坐标为()A.(3,5)B.(5,3)C.(3,5) D.(3,5)【答案】D知识点三:中心对称、中心对称图形1、中心对称图形:一个图形绕着某点旋转一定角度后能与自身重合,这种图形叫中心对称图形,该点叫作旋转中心。
2、中心对称:把一个图形绕着某一点旋转一定角度后,如果它能与另一个图形4.对任意实数x,点2,一定不在P x x x(2)..()A.第一象限B.第二象限C.第三象限D.第四象限(1)当0<x<2时,x>0,x2-2x=x*(x-2)<0,故点P在第四象限;(2)当x>2时,x>0,x2-2x=x*(x-2)>0,故点P在第一象限;(3)当x<0时,x2-2x>0,点P在第二象限.故对任意实数x,点P可能在第一、二、四象限,一定不在第三象限,故选C.5如图的坐标平面上有一正五边形ABCDE,其中C、D两点坐标分别为(1,0)、(2,0) .若在没有滑动的情况下,将此正五边形沿着x轴向右滚动,则滚动过程中,下列会经过(75 , 0)的点是()A. A B. B C. C D. D∵C、D两点坐标分别为(1,0)、(2,0).∴按题中滚动方法点E经过点(3,0),点A 经过点(4,0),点B经过点(5,0),∵点(75,0)的横坐标是5的倍数,而该正五边形滚动5次正好一周,∴可知经过(5,0)的点经过(75,0),∴点B 经过点(75,0).故选B.6、当b=______时,点B(3,|b-1|)在第一.三象限角平分线上.点在角平分线上的特点:一、三象限的角平分线上的点:横纵坐标相等;二、四象限的角平分线上的点:横纵坐标互为相反数7.(2013浙江杭州)如图,在△ABC中,∠ CAB =70。
. 在同一平面内, 将△ABC绕点A旋转到△AB’C’的位置, 使得AB//CC’,则∠BAB ()A. 30.B. 35.C. 40.D.50.8、如图,已经四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE,若DE:AC=3:5,求AD/AB的值第二节:最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于12AB为半径画弧,两弧交于两点,过这两点作直线,与EF的交点P即为所求.(2)如图2,画出点A关于河岸EF的对称点A′,连接A′B交EF于P,则P到A,B的距离和最短.【例3】如图,从A地到B地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到B地的路程最短?思路导引:从A到B要走的路线是A→M→N→B,如图所示,而MN是定值,于是要使路程最短,只要AM+BN最短即可.此时两线段应在同一平行方向上,平移MN到AC,从C到B应是余下的路程,连接BC的线段即为最短的,此时不难说明点N即为建桥位置,MN即为所建的桥.解:(1)如图2,过点A作AC垂直于河岸,且使AC等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b 解:如图b.(1)作C 点关于OA 的对称点C 1,作D 点关于OB 的对称点D 1,(2)连接C 1D 1,分别交OA ,OB 于P ,Q ,那么小明沿C →P →Q →D 的路线行走,所走的总路程最短.5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点 解决距离的最值问题的关键 运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】 如图所示,A ,B 两点在直线l 的两侧,在l 上找一点C ,使点C 到点A 、B 的距离之差最大.分析:此题的突破点是作点A (或B )关于直线l 的对称点A ′(或B ′),作直线A ′B (AB ′)与直线l 交于点C ,把问题转化为三角形任意两边之差小于第三边来解决.解:如图所示,以直线l 为对称轴,作点A 关于直线l 的对称点A ′,A ′B 的连线交l 于点C ,则点C 即为所求.理由:在直线l 上任找一点C ′(异于点C ),连接CA ,C ′A ,C ′A ′,C ′B .因为点A ,A ′关于直线l 对称,所以l 为线段AA ′的垂直平分线,则有CA =CA ′,所以CA -CB =CA ′-CB =A ′B .又因为点C ′在l 上,所以C ′A =C ′A ′.在△A ′BC ′中,C ′A -C ′B =C ′A ′-C ′B <A ′B ,所以C ′A ′-C ′B <CA -C B .点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.不等式补充:1. 对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b ,则b +d 的值为_________.2. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .3. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.4.|21||3|x x -+<-。