小学数学知识问答300例—合数分解质因数

合集下载

小学五年奥数-质数合数分解质因数

小学五年奥数-质数合数分解质因数

质数、合数和分解质因数【知能大展台】一个自然数,如果只有1和它本身这两个约数,这样的数叫做质数(或素数)一个自然数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1既不是质数,也不是合数。

每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

【试金石】例1:三个质数的和是80,这三个质数的积最大是多少?【分析】由于三个数的和是偶数,所以这三个数中必有一个是偶数,在质数中只有2是偶数,所以三个数中一定有2。

另外两个质数的和是78,要使乘积尽可能的大,那么这两个质数的差值应尽可能的小。

显然,和是78的两个质数中,以41和37的差最小,即这两个数的积最大。

【解答】80=2+37+412×37×41=3034答:这三个质数的积最大是3034。

【智力加油站】【针对性训练】三个质数的和是62,这三个质数的积最大是多少?【试金石】例2:班主任李老师带领五年(一)班同学去植树,学生按人数恰好平均分成三组,已知李老师与学生共种了312棵树,老师与学生、每人种的树一样多,并且不超过10棵。

这个班共有学生多少人?每人种树多少棵?【分析】种树总数=每人种树棵数×师生总人数即:312=每人种树棵数×(1+学生人数)由于学生人数是3的倍数,再加上李老师一人,则师生总人数被3除余1。

因此先将312分解质因数312=2×2×2×3×13,然后按题意进行组合使之成为两数之积。

【解答】312=2×2×2×3×13若312=24×13,13为师生总人数,则每人种树24棵,与题意不相符。

若312=6×52,52为师生总人数,则每人种树6棵。

答:这个班共有学生51人,每人种6棵。

【智力加油站】【针对性训练】小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号大6,小青买的电影票是几排几座?【试金石】例3在做一道两位数乘以两位数的乘法题时,小马虎把一乘数中的数字5看成8,由此得乘积为1872.那么原来的乘积是多少?【分析】1872=2×2×2×2×3×3×13=口口×口口,其中某个口为8,验证只有:1872=48×39,1872=78×24满足.【解答】当为1872=48×39时,小马虎错把5看成8,也就是错把45看成48,所以正确的乘积应该是45×39=1755.当为1872=78×24时,小马虎错把5看成8,也就是错把75看成78,所以正确的乘积应该是75×24=1800.答:原来的积为1755或1800.【智力加油站】【针对性训练】在下面算式的框内,各填入一个数字,使算式成立。

小学数学解题方法解题技巧之分解质因数法

小学数学解题方法解题技巧之分解质因数法

第一章小学数学解题方法解题技巧之分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。

分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。

分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。

例1 一块正方体木块,体积是1331立方厘米。

这块正方体木块的棱长是多少厘米?(适于六年级程度)解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。

例2 一个数的平方等于324,求这个数。

(适于六年级程度)解:把324分解质因数:324= 2×2×3×3×3×3=(2×3×3)×(2×3×3)=18×18答:这个数是18。

例3 相邻两个自然数的最小公倍数是462,求这两个数。

(适于六年级程度)解:把462分解质因数:462=2×3×7×11=(3×7)×(2×11)=21×22答:这两个数是21和22。

*例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数。

求ABC代表什么数?(适于六年级程度)解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。

1673=239×7答:ABC代表239。

例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?(适于六年级程度)解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长。

范文质数合数分解质因数:题库教师版

范文质数合数分解质因数:题库教师版

本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。

质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。

质数本身的无规律性也是一个研究质数结构的难点。

在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。

分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。

1. 质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.2. 质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.3. 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯L 其中为质数,12k a a a <<<L L 为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式. 例如:三个连续自然数的乘积是210,求这三个数.知识点拨教学目标5-5质数合数分解质因数分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.4. 部分特殊数的分解=⨯;1000173137=⨯⨯⨯;=⨯;199535719=⨯⨯;1111141271111337=⨯;100171113=⨯⨯⨯.=⨯⨯⨯;10101371337 =⨯⨯⨯⨯;200733223=⨯⨯;200822225119982333375. 判断一个数是否为质数的方法根据定义如果能够找到一个小于p的质数q(均为整数),使得q能够整除p,那么p就不是质数,所以我们只要拿所有小于p的质数去除p就可以了;但是这样的计算量很大,对于不太大的p,我们可以K,再列出所有不大于K的质数,用这些质数去除p,如没有能够除尽先找一个大于且接近p的平方数2的那么p就为质数.=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质例如:149很接近1441212数.例题精讲模块一、质数合数的基本概念的应用【例 1】下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.【解析】按要求编号排序,并画出质数号码:美少年华朋会友,幼长相亲同切磋;1 2 3 4 5 6 7 8 9 10 11 12 13 14杯赛联谊欢声响,念一笑慰来者多;15 16 17 18 19 20 21 22 23 24 25 26 27 28九天九霄志凌云,九七共庆手相握;29 30 31 32 33 34 35 36 37 38 39 40 41 42聚起华夏中兴力,同唱移山壮丽歌.43 44 45 46 47 48 49 50 51 52 53 54 55 56将质数对应的汉字依次写出就是:少年朋友亲切联欢;一九九七相聚中山.【巩固】(2008年南京市青少年“科学小博士”思维训练)炎黄骄子菲尔兹奖被誉为“数学界的诺贝尔奖”,只奖励40岁以下的数学家.华人数学家丘成桐、陶哲轩分别于1982年、2006年荣获此奖.我们知道正整数中有无穷多个质数(素数),陶哲轩等证明了这样一个关于质数分布的k=时,奇妙定理:对任何正整数k,存在无穷多组含有k个等间隔质数(素数)的数组.例如,33,5,7是间隔为2的3个质数;5,11,17是间隔为6的3个质数:而,,是间隔为12的3个质数(由小到大排列,只写一组3个质数即可).【解析】最小的质数从2开始,现要求每两个质数间隔12,所以2不能在所要求的数组中.而且由于个位是5的质数只有一个5,所以个位是3的质数不能作为第一个质数和第二个质数,可参照下表:【巩固】(2003年“祖冲之杯”邀请赛)大约1500年前,我国伟大的数学家祖冲之,计算出π的值在和之间,成为世界上第一个把π的值精确到7位小数的人.现代人利用计算机已经将π哪些是质数?.【巩固】(2004年全国小学奥林匹克)自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?【解析】这样的自然数有4个:23,37,53,73.【例 2】 两个质数之和为39,求这两个质数的乘积是多少.【解析】 因为和为奇数,所以这两个数必为一奇一偶,所以其中一个是2,另一个是37,乘积为74.我们要善于抓住此类题的突破口。

小学数学知识合数分解质因数知识点归纳

小学数学知识合数分解质因数知识点归纳

邮政工会年终个人工作总结
尊敬的各位领导、同事们:
时间匆匆,转眼间又到了一年的末尾。

在这一年里,我在邮政工会的工作岗位上,经过了一年的努力和奋斗,有了不少新的收获和成长。

现在,借此机会,我对过去一年的工作进行总结,希望得到大家的指导和支持。

首先,我要感谢工会领导和同事们对我的支持和帮助。

在过去的一年里,我积极参与各项工作,在组织、协调和执行各项工作任务中都得到了领导和同事们的支持和关心。

特别是在一些复杂的问题处理中,大家给予了我很多宝贵的意见和建议,让我受益匪浅。

其次,我要总结一下自己在工作中的成绩和不足。

在这一年的工作中,我努力发挥自己的专业优势,针对工作中遇到的问题,及时提出合理的解决方案。

在工会组织的各项活动中,我积极配合,尽心尽力地完成自己的工作任务。

而在某些方面,我也存在一些不足之处,比如沟通能力方面还需要加强,工作细节方面需要更加严谨。

再次,我对来年的工作进行一些展望和规划。

明年,我将继续努力学习,提高自己的专业能力,更加深入地了解邮政工会的业务,并注重与同事的沟通和协作。

同时,我也会更加主动地承担工作任务,提高工作的效率和质量。

希望在新的一年里,我能够获得更多的工作经验和专业技能,为工会的发展做出更大的贡献。

最后,我再次感谢领导和同事们对我的关心和指导。

我深知自己还有许多不足之处,但我会努力改进,不断提高自己的工作能力和专业素养,为工会的建设和发展贡献自己的力量。

再次感谢大家,祝愿工会在新的一年里,蒸蒸日上,取得更大的成就!
谨上
【姓名】抱歉,我无法完成剩余的内容。

小学数学思维训练之质数、合数与分解质因数

小学数学思维训练之质数、合数与分解质因数

例2.360有多少个因数?
例3.1×2×3×4×5×…×99×100的 积的末尾有多少个连续的0?
例4. 将6,24,45,65,77,78,105,110 这八个数平均分成两组,使每组的四 个数的乘积相等。
课堂练习3.四个小朋友一个比一个大 一岁,他们四个人的年龄乘积是360, 求四个人各多少岁?

.
讲义2.自然数a乘388,等于大于0的 整数的平方b,求这个最小的整数a和b。
讲义3.有3个自然数a,b,c,已知a×b=6, b×c=15,a×c=10,求a×b×c的值是多少?
讲义4.100×101×102×…×199×200这 101个数相乘,积的末尾有多少个连续的自然数(0除外)除了1和它本 身,还有别的因数,这个数叫做合数。 例如:4、6、8、9和18都是合数。
1是质数还是合数?
1既不是质数也不是合数。
例题解析: 例1.判断下面各数是质数还是合数? 12345789 269 1111112111111
课堂练习2:判断437是质数还是合数?
夯实基础:
1.质数:一个自然数(0除外)只有1和它本 身两个因数,不再有别的因数,这个数叫 做质数(也叫素数)。
例如:2、3、13和19都是质数。
100以内有 25 个质数。 它们分别是:2,3,5,7,11,13,17,19,23,29,
31,37,41,43,47,53,59,61,67, 71,73,79,83,89,97……
夯实基础:
3.质因数:每个合数都可以写成几个质数 相乘的形式,其中每个质数都是这个合数 的因数,叫做这个合数的质因数。
4.分解质因数:把一个合数写成几个质数 相乘的形式叫做分解质因数。
例如:把360分解质因数

小学数学竞赛质数、合数和分解质因数

小学数学竞赛质数、合数和分解质因数

质数、合数和分解质因数【知识要点】一个自然数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)一个自然数,如果除了1和它本身还有别的约数,这样的数叫做合数1既不是质数,也不是合数每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数把一个合数用质因数相乘的形式表示出来,叫做分解质因数【典型例题】例1.三个质数的和是80,这三个质数的积最大是多少?分析:由于三个数的和是偶数,所以这三个数中必有一个是偶数,在质数中只有2是偶数,所以三个数中一定有2。

另外两个质数的和是78,要使乘积尽可能大,那么这两个质数的差值应尽可能小。

显然,和是78的两个质数中,以41与37的差最小,即这两个数的积最大。

解:80=2+37+412×37×41=3034答:这三个质数的积最大是3034。

例2.班主任王老师带领五(一)班同学去植树,学生按人数恰好平均分成三组,已知王老师与学生共种了312棵树,老师与学生每人种的树一样多,并且不超过10棵。

这个班共有学生多少人?每人种树多少棵?分析:依题意可知种树总数=每人种树棵数×师生总人数即:312=每人种树棵数×(1+学生人数)由于学生人数是3的倍数,再加上王老师一人,则师生总人数被3除余1。

因此先将312分解质因数312=23×3×13,然后按题意进行组合使之成为两数之积。

解:312=23×3×13若312=24×13,13为师生总人数,则每人种树24棵,与题目中条件不符。

若312=6×52,52为师生总人数,则每人种树6棵。

因此,这个班共有学生51人,每人种树6棵。

例3.1×2×3×4×5×……×998×999×1000的积,末尾有多少个连续的零?分析:因为2×5=10,这样含有质因数一个2和一个5,乘积末尾就有一个0。

通用版本五年级数学:质数、合数、分解质因数 趣味数学(无答案)

通用版本五年级数学:质数、合数、分解质因数 趣味数学(无答案)

质数、合数、分解质因数1、下列数中,哪些数是质数?哪些数是合数?把合数分解质因数?12 13 91 71 72150 171 29 84 912、用1、2、3三个数字,允许重复使用,可以组成100以内的哪些质数?1、把24和56分别分解质因数,并找出24和56有哪些相同的质因数?2、一个长方形的面积是46平方厘米,且这个长方形的长和宽为互质数,求长方形的长和宽分别是多少厘米?3、有4个小朋友,他们一个比一个大一岁,4人年龄的乘积是360,他们四人各是几岁?4、有a、b、c三个自然数,已知a×b=6,b×c=15,a×c=10,那么a×b×c的积是多少?5、把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。

通过本次学习,我的收获有第一部分必做题1、(☆)判断。

⑴自然数按约数的个数分可以分为质数和合数两大类。

()⑵质数都是奇数,合数都是偶数。

()⑶2和3是质因数。

()⑷20以内不是质数,又不是偶数的数只有9和15。

()⑸任意两个自然数的积一定是合数。

()⑹84=3×4×7,所以3、4和7都是84的质因数。

()⑺两个质数的和一定是偶数。

()2、(☆)⑴把24和66分解质因数,再找出它们相同的质因数。

⑵(☆)把36和75分别分解质因数,再找出它们的所有约数。

3、(☆)在()里填上合适的质数。

24=()+()=()+()=()+()=()×()×()×()20=()×()×()=()+()=()+()36=()×()×()×()=()+()=()+()=()+()=()+()4、(☆)试着把26写成几个质数(可以相同)相加的形式,写得越多越好。

5、(☆)两个连续偶数的积是168,这两个偶数分别是多少?6、(☆☆)王老师捧来123本练习本,恰好能平均分给全班同学。

小学数学解题方法解题技巧之分解质因数法

小学数学解题方法解题技巧之分解质因数法

第一章小学数学解题方法解题技巧之分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。

分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。

分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。

例1 一块正方体木块,体积是1331立方厘米。

这块正方体木块的棱长是多少厘米?(适于六年级程度)解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。

例2 一个数的平方等于324,求这个数。

(适于六年级程度)解:把324分解质因数:324= 2×2×3×3×3×3=(2×3×3)×(2×3×3)=18×18答:这个数是18。

例3 相邻两个自然数的最小公倍数是462,求这两个数。

(适于六年级程度)解:把462分解质因数:462=2×3×7×11=(3×7)×(2×11)=21×22答:这两个数是21和22。

*例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数。

求ABC代表什么数?(适于六年级程度)解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。

1673=239×7答:ABC代表239。

例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?(适于六年级程度)解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长。

小学奥数 数论 质数合数分解质因数 分解质因数(二).题库版

小学奥数  数论  质数合数分解质因数    分解质因数(二).题库版

1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数(1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征. (4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式. 例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;知识点拨教学目标5-3-4.分解质因数200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分数的拆分【例 1】 算式“1希+1望+1杯=1”中,不同的汉字表示不同的自然数,则“希+望+杯”= 。

【考点】分数的拆分 【难度】1星 【题型】填空【关键词】2007年,希望杯,第五届,五年级,初赛,第19题,6分【解析】 三个分数中一定有大于三分之一的,那个数是二分之一,剩下的两个数必有一个大于四分之一,即是三分之一,那么剩下的只能是六分之一.希+望+杯=2+3+6=11【答案】11【例 2】 3个质数的倒数之和是16611986,则这3个质数之和为多少. 【考点】分数的拆分 【难度】3星 【题型】解答 【解析】 设这3个质数从小到大为a 、b 、c ,它们的倒数分别为1a 、1b 、1c ,计算它们的和时需通分,且通分后的分母为a b c ⨯⨯,求和得到的分数为F abc,如果这个分数能够约分,那么得到的分数的分母为a 、b 、c 或它们之间的积.现在和为16611986,分母198623331=⨯⨯,所以一定是2a =,3b =,331c =,检验满足.所以这3个质数的和为23331336++=.【答案】23331336++=【例 3】 一个分数,分母是901,分子是一个质数.现在有下面两种方法:⑴ 分子和分母各加一个相同的一位数;⑵ 分子和分母各减一个相同的一位数.用其中一种方法组成一个新分数,新分数约分后是713.那么原来分数的分子是多少. 【考点】分数的拆分 【难度】3星 【题型】解答【解析】 因为新分数约分后分母是13,而原分母为901,由于90113694÷=,所以分母是加上9或者减去4.若是前者则原来分数分子为7709481⨯-=,但4811337=⨯,不是质数;若是后者则原来分数分子是6974487⨯+=,而487是质数.所以原来分数分子为487.【答案】487【例 4】 将1到9这9个数字在算式()()()()()()1-=的每一个括号内各填入一个数字,使得算式成立,并且要求所填每一个括号内数字均为质数?【考点】分数的拆分 【难度】4星 【题型】填空【解析】 本题中括号内所填的数字要求为个位质数,那么只能是2,3,5,7.将原始代入字母分析有例题精讲1b d cb ad a c a c a c--==⨯⨯,即有1cb ad -=,那么很容易发现只有3×5-2×7=1。

小学四年级:质数、合数与分解质因数;提高练习

小学四年级:质数、合数与分解质因数;提高练习

质数、合数与分解质因数1.把下列各数分解质因数12 28 45 88 19812=2×2×3 28=2×2×7 45=3×3×5 88=2×2×2×11 198=2×3×3×11 =22×3 =22×7 =32×5 =23×11 =2×32×112⑴已知P是质数,P2+1也是质数,求P5+1997是多少?⑵如果a,b均为质数,且3a+7b=41,则a+b=______。

(1)P=2,P5+1997=2029(2)a、b≠一个数为2a=2 b=5 5+2=7b=2 a=9 不合题意3.7个连续质数从大到小排列是a,b,c,d,e,f,g,已知他们的和是偶数,那么d是多少?a+b+c+d+e+f+g↓↓↓↓7 5 3 2d=74.已知3个不同质数的和是最小的合数与4的乘积,求这3个质数的乘积是多少?(2)+(3)+(11)=4×4=162×3×11=665.有三张卡片,他们上面各写着数字1,2,3从中抽出一张、二张、三张,按任意次序排列起来,可以得到不同的一位数、二位数、三位数。

请你将其中的质数写出来2.3 一位13.23.31 两位无三位数6. 4个一位数的乘积是360,并且其中只有一个是合数,4个数字所组成的四位数中,那么最大的一个是多少?8×5×3×3=360360=2×2×2×3×3×585337.甲、乙、丙3人进行射飞镖训练,每人射三次,最后统计发现各自三次的成绩的积都为60,每人每次的成绩都不低于2分,按个人中靶的总分数由高到低依次为甲、乙、丙,且每人总分数都不低于13分,则谁共得了15分?60=2×2×3×5=22×3×5=2×2×15 19分甲5×5×6 13分丙2×3×10 15分乙8.把40,44,45,63,65,78,99,105这8个数平分成两组,使每组四个数的乘积相等。

五年级数学质数合数、分解质因数专项题拓展难题

五年级数学质数合数、分解质因数专项题拓展难题

例1:在三张卡片上分别写上1、3、5,如果随意从其中至少取出一张组成一个数,其中有几个质数?将它们写出来。

3, 5, 13, 31, 53
练习
1.从1、4、7这3个数字中选出1个、2个、3个,按任意次序排列,可得到不同的一位数、两位数、三位数,将其中的质数都写出来。

2.三张卡片上分别写上1、2、3,从中任意抽出一张、两张或三张,分别组成一位数、两位数、三位数,其中哪些是质数?哪些是合数?例2:分别把100和119分解质因数。

练习
1.把60分解质因数。

2.把221分解质因数。

例3:如果两个质数的和是26,这两个质数的乘积可能是多少?请全部写出来。

练习
1.如果两个质数的和是36,这两个质数的乘积可能是多少?请全部写出来。

2.两个质数的和是25,这两个质数的乘积是多少?请全部写出来。

例4:三个不同的质数相加,和为40,这三个质数的乘积可能是多少?请全部写出来。

练习
1.三个不同的质数相加和为28,这三个质数可能是多少?请全部写出
来。

2.三个不同质数相加和为52,这三个质数的乘积可能是多少?请全部写出来。

例5:A是质数,B是奇数,且A×A+B=2007,那么B×10001的积是多少?
练习:A是质数,B是奇数,且A×A+B=2009,则A+B=?。

合数分解质因数

合数分解质因数

合数分解质因数答案知识梳理教学重、难点作业完成情况典题探究例1.把42分解素因数:42=2×3×7.考点:合数分解质因数.分析:素因数也叫质因数;分解质因数就是把一个合数写成几个质数的连乘积形式,可以利用短除法,一般先从简单的质数试着分解.解答:解:42=2×3×7;故答案为:2×3×7.点评:此题考查了合数分解质因数的方法.例2.甲、乙两个合数互质,甲数大于乙数,它们的最小公倍数是280,甲数是35,乙数是8.考点:合数分解质因数.分析:先将280分解质因数,然后根据质因数情况确定两个数是多少.解答:解:280=2×2×2×5×7,因为甲、乙两个是合数且互质,所以甲数是5×7=35,乙数是2×2×2=8,故答案为:35,8.点评:此题主要考查合数分解质因数,并根据质因数确定两个数是多少.例3.111的所有质因数之和是40.考点:合数分解质因数.专题:数的整除.分析:分解质因数的意义:把一个合数写成几个质数相乘的形式,叫做分解质因数,据此把111分解质因数,然后把它的不同质因数求和即可.解答:解:111分解质因数是:111=3×37,111的所有质因数的和是:3+37=40.故答案为:40.点评:本题主要考查分解质因数的意义.注意掌握把111分解质因数的方法.例4.两个相邻自然数的倒数之差是,这两个数的和是27.考点:合数分解质因数;倒数的认识.专题:数的整除.分析:相邻两个自然数的倒数之差的特点是:分子是这两个自然数的差即1,分母是这两个自然数的乘积,因此把182分解质因数,然后再把质因数结合,找出符合条件的两个数,进而求出它们和即可.解答:解:分子1是这两个自然数的差,分母182是这两个自然数的乘积,因为182=2×7×13=14×13,所以这两个相邻自然数是13和14,它们的和是13+14=27.故答案为:27.点评:解决此题关键明确相邻两个自然数的倒数之差的特点,然后利用合数分解质因数的方法解决实际问题.演练方阵A档(巩固专练)一.选择题(共15小题)1.12的质因数有()个.A.3个B.6个C.无数个考点:合数分解质因数.分析:先把12分解质因数,找出因数里面的质数即可.解答:解:12=2×2×3;故答案为:A.点评:此题主要考查分解质因数的方法以及求一个数的质因数的个数.2.把60分解质因数,正确的式子是()A.60=1×2×2×3×5 B.60=4×3×5 C.60=2×2×3×5考点:合数分解质因数.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:A,60=1×2×2×3×5,其中1既不是质数,也不是合数,所以不正确;B,60=4×3×5,其中4为合数,所以不正确;C,60=2×2×3×5,符合要求,所以正确;故选:C.点评:此题主要考查分解质因数的方法.3.把B分解质因数B=a×b×c,B的因数共有()个.A.3B.8C.6D.4考点:合数分解质因数.专题:数的整除.分析:根据题干,B的质因数有a、b、c,所以它的因数有:1,a、b、c、B,还有ab、ac、bc,由此即可解答问题.解答:解:因为B=a×b×c,所以B的因数有1,a、b、c、B,还有ab、ac、bc,一共8个.故选:B.点评:注意分解质因数和求一个数的因数的区别.4.(2006•徐州)把24分解质因数是()A.24=1×2×2×2×3 B.24=2×3×4 C.24=2×2×2×3考点:合数分解质因数.专题:数的整除.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:24分解质因数为:24=2×2×2×3;故选:C.点评:此题主要考查分解质因数的方法以及如何求一个数的约数和约数的个数.5.(2007•玉泉区)把24分解质因数是()A.24=3×8 B.24=2×3×4 C.24=2×2×2×3 D.24=6×4×1考点:合数分解质因数.分析:合数分解质因数的方法是:是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:A,24=3×8,其中8是合数,所以不正确;B,24=2×3×4,其中4是合数,所以不正确;C,24=2×2×2×3,符合题意,所以正确;D,24=6×4,其中6和4都是合数,所以不正确.故选:C.点评:此题主要考查分解质因数的方法.6.(2007•徐水县)把24分解质因数是()A.24=2×3×4 B.24=2×2×3×3 C.24=2×2×2×3考点:合数分解质因数.分析:此类题目可以采用排除法解决,A中4不是质数;B中2×2×3×3=36了;C中都是质数,并且2×2×2×3=24,由此解决即可.解答:解:因为A中4不是质数;B中2×2×3×3=36了;C中都是质数,并且2×2×2×3=24;故答案为C.点评:排除法是数学选择题中重要的手段.7.(2007•抚州)把60分解质因数是60=()A.1×2×2×3×5 B.2×2×3×5 C.3×4×5考点:合数分解质因数.分析:对于此类选择题应采用逐一排除的方法进行分析排除,然后选出正确的答案.解答:解:A:因为1既不是质数也不是合数所以错,B:2、3、5都是60的质因数,且2×2×3×5=60,所以B正确.C:4不是质数,利用短除法可以求得60=2×2×3×5,故选:B.点评:此题可直接利用短除法求得答案,也可以采用排除法解决问题.8.(2008•福田区)把30分解质因数应该写成的形式为()A.30=5×6 B.30=2×3×5 C.30=1×2×3×5 D.2×3×5=30考点:合数分解质因数.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从较小的质数试着分解.解答:解:30=2×3×5.故选B.点评:此题主要考查分解质因数的方法,注意按照从小到大的顺序分解质因数.9.(2010•鹤山区)下面各选项,一定为互质数的一组是()A.质数与合数B.奇数与偶数C.质数与质数D.偶数与偶数考点:合数分解质因数.分析:此题可以利用排除法进行分析,如:A质数和合数,3是质数12是合数,但是它们不是互质数,由此逐一排除即可解决.解答:解:A、质数和合数,举例说明:3是质数12是合数,但是它们不是互质数;B、5是奇数,10是偶数,5和10也不是互质数;C、两个质数一定是互质数.因为互质数是公约数只有1的两个数,而质数的约数只有1和它本身,而两个质数很显然相同的约数只有1,所以肯定是互质数.D、4是偶数,6是偶数,但它们也不是互质数.故答案为:C.点评:数学中利用举特例说明问题是一种重要的方法.10.(2011•兴化市模拟)下列式子中,属于分解质因数的是()A.54=2×3×9 B.42=2×3×7 C.12=1×2×2×3考点:合数分解质因数.专题:数的整除.分析:把一个合数用几个质数相乘的形式表示出来叫做分解质因数,据此分析解答.解答:解:选项A、因数9为合数,所以不是分解质因数;选项B、将42分解为2、3、7三个质数相乘的形式,即将42分解质因数.选项C、因数1不是质数,所以不是分解质因数;故选:B.点评:完成本题时要注意1不是质数也不是合数.11.(2012•玉泉区)把24分解质因数是()A.24=4×6 B.24=3×2×2×2×1 C.24=3×2×2×2 D.3×2×2×2=24考点:合数分解质因数.分析:把24分解质因数也就是把24写成几个质数相乘的形式,可用短除法求.解答:解:24=3×2×2×2;故选:C.点评:此题主要考查合数分解质因数的意义,注意要把合数写成几个质数相乘的形式.12.(2012•泗县模拟)把210分解质因数是()A.210=2×7×3×5×1 B.210=2×5×21 C.210=3×5×2×7考点:合数分解质因数.专题:数的整除.分析:此题也可以用短除法直接把210分解质因数;也可采用排除法A中1不是质数;B中21不是质因数,只有C符合题意都是质因数,且它们的积等于210,由此即可解问题.解答:解:210=2×3×5×7;故选:C.点评:此题主要考查分解质因数的方法,是基础题型.在解题过程中注意按照顺序分解.13.(2014•武鸣县模拟)15分解质因数是()A.15×15 B.15=3×5 C.3×5=15考点:合数分解质因数.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:15分解质因数是:15=3×5.故选:B.点评:此题主要考查分解质因数的方法,是基础题型.在解题过程中注意按照顺序分解.14.(2010•武陵区)把20分解质因数应该写成()A.20=1×2×2×5 B.2×2×5=20 C.20=2×2×5考点:合数分解质因数.分析:分解质因数的意义:把一个合数写成几个质数相乘的形式,叫做分解质因数,据此把20分解质因数,然后选择.解答:解:20分解质因数是:20=2×2×5;故选:C.点评:本题主要考查分解质因数的意义.注意是把合数写成几个质数相乘的形式时没有1.15.(2010•游仙区模拟)把12分解质因数()A.12=3×4 B.12=2×2×3 C.2×2×3=12 D.12=2×2×3×1考点:合数分解质因数.专题:数的整除.分析:分解质因数就是把一个合数写成几个质数相乘的形式,一般先从较小的质数试着分解.解答:解:12分解质因数为:12=2×2×3;故选:B.点评:此题主要考查分解质因数的方法及运用,注意:1既不是质数也不是合数.二.填空题(共13小题)16.要把36个球装在盒子里,每个盒子装得同样多,有9种装法.考点:合数分解质因数.分析:根据题意,即把36个求平均分到若干个盒子里,那么两个数相乘积是36,因为没有规定盒子的个数,所以36有多少个不同的因数就有几种装法,列式解答即可得到答案.解答:解:36=1×36,每个盒子里装一个,或者将36个球装在一个盒子里,36=2×18,每个盒子里装2个或每个盒子里装18个,36=3×12,每个盒子里装3个或每个盒子里装12个,36=4×9,每个盒子里装4个或每个盒子里装9个,36=6×6,每个盒子里装6个,装法有:2+2+2+2+1=9(种),故答案为:9.点评:解答此题关键将36进行分解因数,有几个不同的因数就有几种装法.17.甲数=2×3×A×7,乙数=3×5×B×11,甲数和乙数的最大公约数是105,那么A=5,B= 7.考点:合数分解质因数.分析:根据题干中甲数和乙数的最大公约数是105,可先将105进行分解质因数,所得的质因数就是甲数和乙数所公有的质因数.解答:解:,因为105=3×5×7,甲数=2×3××A×7,乙数=3×5×B×7,可知A=5,B=7;答答案为:5,7.点评:此题主要考查的是:把两个数的最大公约数进行分解质因数,所得到的质因数一定是这两个数所共有的质因数.18.把72分解质因数为72=2×2×2×3×3.考点:合数分解质因数.专题:数的整除.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:72=2×2×2×3×3,故答案为:72=2×2×2×3×3.点评:此题考查了求一个数的因数与分解质因数的方法.19.一个一位数与一个三位数的乘积等于2012,那么这两个数的和是507.考点:合数分解质因数.分析:要求这两个数的和,需求出这两数分别是多少?题干中告诉了“一个一位数与一个三位数的乘积等于2012”,这就说明这个一位数与这个三位数分别是2012的约数,就需要把2012分解质因数可求出答案.解答:解:把2012分解质因数是2012=2×2×503,将2012分解成一个一位数与一个三位数的乘积,只能是4×503因此这两个数的和是4+503=507.故答案为:507.点评:此题考查了利用合数分解质因数解决问题的方法.20.动物园里有几十只猴子,其中是金丝猴.五(2)班的同学们将1265颗花生全部分给猴子,每只猴子分到的花生颗数相同.那么动物园里一共有55只猴子.考点:合数分解质因数.分析:由“其中是金丝猴.五(2)班的同学们将1265颗花生全部分给猴子,每只猴子分到的花生颗数相同”两个条件可知动物园里一共有猴子只数既是5的倍数,又是1265的约数,所以把1265分解质因数就可求出结果.解答:解:把1265分解质因数是1265=5×11×23,因为猴子只数既是5的倍数,又是1265的约数,还有几十只,所以只能是5×11=55;故答案为:55.点评:此题考查有关约数,倍数以及分解质因数的知识,做题时要认真细心分析.21.(2009•大竹县)小丽发现:小表妹和读初三哥哥的岁数是互质数,积是144,小表妹和读初三哥哥的岁数分别是(9岁,16岁).考点:合数分解质因数.分析:将144分解质因数,把质因数中的偶数与偶数相乘,质数与质数相乘可得到两个自然数即互质数.解答:解:因为144=2×2×2×2×3×3,2×2×2×2=16,3×3=9,9和16是互质数,所以小表妹的和初三哥哥的岁数分别是9岁、16岁.故答案为:9、16.点评:此题主要考查的是如何求互质数,22.王林的电脑的密码是一个四位数abcd,其中a是最小的奇数,B是所有自然数的公约数,c是最小质数与最小合数的和,d是偶数中质数的平方,这个密码是1164.把这个数分解质因数是1164=2×2×3×97.考点:合数分解质因数;奇数与偶数的初步认识;合数与质数.专题:数的整除.分析:最小的奇数是1,所有自然数的公约数是1,最小的质数是2,最小的合数是4,又是偶数又是质数的数是2,由此即可解答.解答:解:根据题意可知:a是1,b是1,c是2+4=6,d是22=4,所以这个密码是:1164,1164=2×2×3×97,故答案为:1164;1164=2×2×3×97.点评:本题考查的知识点较多,有合数与质数的意义、奇数与偶数的意义、自然数的意义.理解这些意义,是解答此题的关键.23.把210分解质因数是210=2×3×5×7.考点:合数分解质因数.分析:此类问题可以利用短除法进行分解质因数.解答:解:所以210=2×3×5×7,故答案为:210=2×3×5×7.点评:此题考查了利用短除法进行合数分解质因数的方法.24.分解素因数:12=2×2×3.考点:合数分解质因数.专题:数的整除.分析:用12最小的质因数去除,一直除到商是质数为止,最后把这个合数写成除数和商相乘的形式.解答:解:12=2×2×3.故答案为:2×2×3.点评:此题主要考查合数分解质因数的方法,注意书写格式.25.把36分解质因数:36=1×2×3××3.×(判断对错)判断的理由是:1不是质数.考点:合数分解质因数.专题:数的整除.分析:根据分解质因数的意义:把一个合数写成几个质数相乘的形式,就叫做分解质因数,据此解答.解答:解:把36分解质因数可表示为36=2×2×3×3×1,说法错误,因为1不是质数,应为:36=2×2×3×3.故答案为:×,1不是质数.点评:此题主要考查分解质因数的方法,应明确1既不是质数也不是合数.26.三个不同质数的乘积是165,它们分别是3、5和11.考点:合数分解质因数.专题:数的整除.分析:首先把165分解质因数,165=3×5×11,由此得出三个质数分别为3、5和11.解答:解:因为165=3×5×11,所以三个质数分别是3、5和11.故答案为:3、5,11.点评:掌握分解质因数的方法是解决问题的关键.27.分解素因数:36=2×2×3×3.考点:合数分解质因数.专题:数的整除.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:36=2×2×3×3.故答案为:2×2×3×3.点评:此题主要考查分解质因数的方法:把一个合数写成几个质数的连乘积形式.28.20分解素因数是:20=2×2×5.考点:合数分解质因数.专题:数的整除.分析:用20最小的质因数去除,一直除到商是质数为止,最后把这个合数写成除数和商相乘的形式.解答:解:所以20=2×2×5.故答案为:2×2×5.点评:此题主要考查合数分解质因数的方法,注意书写格式.B档(提升精练)一.选择题(共15小题)1.3和5是15的()A.公约数B.互质数C.质因数考点:合数分解质因数.专题:压轴题;数的整除.分析:根据算式15=3×5,可知3和5是15的因数,3和5又都是质数,所以3和5是15的质因数.解答:解:在算式15=3×5中,3和5是15的因数,3和5又都是质数,所以3和5是15的质因数.故选:C.点评:此题主要考查因数与质因数的意义.2.三个质数的积是110,这三个质数中,最大的是()A.2B.3C.5D.11考点:合数分解质因数;合数与质数.分析:根据分解质因数的方法,把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.把110分解质因数,问题即可解决.解答:解:把110分解质因数:110=2×5×11;答:最大的是11.故选:D.点评:此题主要考查分解质因数的方法,一般用短除法进行分解.3.两个自然数的积是5766,它们的最大公约数是31,则这两个自然数是()A.31和186 B.62或93C.31和186 或62 和93 D.124 和93考点:合数分解质因数;求几个数的最大公因数的方法.专题:数的整除.分析:根据题意,首先把5766分解质因数,然后把它的质因数适当调整计算即可求出符合条件的两个自然数.解答:解:把5766分解质因数:5766=2×3×31×31;其中31×2=62,31×3=93,31×2×3=186;已知它们的最大公因数是31,所以这两个自然数可能是31和186,或者是62和93.故答案为:31和186;或62和93.故选:C.点评:此题主要根据把合数分解质因数的方法解决问题.4.(2007•绵阳)下列分解质因数哪个是正确的()A.18=2×3×3 B.36=4×3×3 C.57=3×19×1 D.24=3×2×4考点:合数分解质因数.专题:压轴题.分析:根据把一个合数写成几个质因数相乘的形式叫做分解质因数,分析筛选即可选择.解答:解:A是正确的.因为2和3都是18 的质因数.B是错误的.因为4不是质数.C是错误的.因为1不是质数.D是错误的.因为4不是质数.故:应选A.点评:此题主要考查分解质因数的方法.5.(2010•儋州模拟)在30=5×6中,5和6是30的()A.因数B.质因数C.质数D.质数和合数考点:合数分解质因数.分析:根据利用排除法,6是合数,所以B、C不对,乘法中没有合数的叫法,所以D也不对,据此解答.解答:解:在30=5×6中,5和6是30的因数,因为6是合数,所以B、C不对,乘法中没有合数的叫法,所以D也不对;故选:A.点评:本题主要考查分解质因数的意义与因数(约数)的意义.6.(2011•信阳)一个合数的质因数是10以内所有的质数,这个合数是()A.180 B.24 C.210 D.9考点:合数分解质因数;合数与质数.分析:先找出10以内的所有的质数:2、3、5、7,因为这些质数是此合数的质因数,所以这些质数的乘积就是此合数.解答:解:10以内所有的质数:2、3、5、7,这个合数是:2×3×5×7=210.故选:C.点评:解决此题关键是先找出10以内的所有的质数,它们的积就是此合数.7.(2011•陕县)把60分解质因数正确的是()A.60=3×4×5 B.60=1×3×4×5 C.60=2×2×3×5考点:合数分解质因数.专题:压轴题;数的整除.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:A:60=3×4×5,其中4是合数,所以此选项错误;B:60=1×3×4×5,1既不是质数也不是合数,所以此选项错误;C:60=2×2×3×5,符合要求,所以正确;故选:C.点评:此题主要考查分解质因数的方法以及质数的意义.8.(2011•安岳县模拟)把60分解质因数,正确的是()A.60=3×4×5 B.2×2×3×5=60 C.60=2×2×3×5考点:合数分解质因数.专题:压轴题.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:把60分解质因数:60=2×2×3×5;故选:C.点评:此题主要考查分解质因数的方法,表示方法是把合数写在等号的左边,它的质因数连乘写在等号的右边.9.(2012•沛县模拟)把50分解质因数可以写成()A.50=1×2×5×5 B.2×5×5=50 C.50=2×5×5 D.50=2×25考点:合数分解质因数.分析:根据分解质因数的意义;把一个合数写成几个质数相乘的形式,就叫做分解质因数,据此解答.解答:解:A、50=1×2×5×5,其中1不是质数,所以答案A是错误的;B、是把合数写成质数形成的形式,不是几个质数相乘等于合数,所以答案B是错误的;C、50=2×5×5,是正确的;D、50=2×25,其中25是合数,所以答案D是错误的;故选C.点评:本题主要考查分解质因数的意义,把一个合数写成几个质数相乘的形式,就叫做分解质因数.10.(2013•万州区)1155的质因数有()个.A.7B.6C.5D.4考点:合数分解质因数.专题:数的整除.分析:先把1155分解质因数,找出因数里面的质因数即可.解答:解:1155=3×5×11×7故选:D.点评:此题主要考查分解质因数的方法以及求一个数的质因数的个数.11.(2013•会理县模拟)()表示分解质因数.A.24=1×2×2×3×1 B.24=4×6 C.24=2×2×2×3 D.2×2×2×3=24考点:合数分解质因数.专题:数的整除.分析:分解质因数就是把一个合数写成几个质因数的连乘积的形式,一般先从较小的质数试着分解.据此逐项分析后再判断.解答:解:A、24=1×2×2×3×1,其中1既不是质数,也不是合数,所以不正确;B、24=4×6,其中4为合数,所以不正确;C、24=2×2×2×3,符合要求,所以正确;D、2×2×2×3=24,不符合分解质因数的书写形式.故选:C.点评:此题主要考查分解质因数方法的灵活运用,要注意1既不是质数,也不是合数.12.(2014•成都)把30分解质因数,正确的做法是()A.30=1×2×3×5 B.2×3×5=30 C.30=2×3×5考点:合数分解质因数.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:A,30=1×2×3×5,其中1既不是质数,也不是合数,所以不正确;B,2×3×5=30,此题是求几个数的积的运算,不是合数分解质因数;C,30=2×3×5,符合要求,所以正确;故选:C.点评:此题主要考查分解质因数的方法以及如何求一个数的约数和约数的个数.13.(2006•昭平县)自然数a分解质因数是a=2×3×5,那么a的约数有()个.A.3B.6C.7D.8考点:合数分解质因数;找一个数的因数的方法.专题:压轴题;数的整除.分析:根据自然数a分解质因数是a=2×3×5,可知a的约数有:1、2、3、5、2×3=6、2×5=10、3×5=15和2×3×5=30,共有8个.解答:解:因为a=2×3×5,所以a的约数有:1、2、3、5、2×3=6、2×5=10、3×5=15和2×3×5=30,共有8个.故选:D.点评:此题考查根据把一个合数分解的质因数,求这个合数因数的个数,注意:最小的是1,最大的是它本身.14.(2006•定兴县)三个质数的积是231,那么这三个质数的和是()A.25 B.19 C.21 D.23考点:合数分解质因数;合数与质数.专题:数的整除.分析:首先把231分解质因数,找到三个质数,然后求和,即可得解.解答:解:231=3×7×11,3+7+11=21,答:三个质数的积是231,那么这三个质数的和是21;故选:C.点评:此题考查了利用合数分解质因数解决问题的方法.15.(2010•游仙区模拟)把12分解质因数()A.12=3×4 B.12=2×2×3 C.2×2×3=12 D.12=2×2×3×1考点:合数分解质因数.专题:数的整除.分析:分解质因数就是把一个合数写成几个质数相乘的形式,一般先从较小的质数试着分解.解答:解:12分解质因数为:12=2×2×3;故选:B.点评:此题主要考查分解质因数的方法及运用,注意:1既不是质数也不是合数.二.填空题(共13小题)16.(2013•江阳区)把70分解质因数:70=2×5×7.考点:合数分解质因数.专题:数的整除.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:把70分解质因数为:70=2×5×7故答案为:70=2×5×7点评:此题主要考查了把一个合数分解质因数的方法.17.(2013•云阳县)把60分解质因数是:60=2×2×3×5.考点:合数分解质因数.专题:数的整除.分析:分解质因数就是把一个合数分解成几个质因数的乘积的形式,由此即可解决.解答:解:把60分解质因数为:60=2×2×3×5.故答案为:2×2×3×5.点评:此题主要考查了把一个合数分解质因数的方法,一般先从简单的质数试着分解.18.(2013•南通模拟)从5、2、1、0中选三个数字组成一个同时能被2、3、5整除的最小三位数并把它分解质因数是120=2×2×2×3×5.考点:合数分解质因数.分析:同时能被2、3、5整除的数末尾应该是0,且三个数的和能被3整除,符合条件的数有150;120;510;210;这几个数中最小的是120,由此即可解决问题.解答:解:同时能被2、3、5整除的数末尾应该是0,且三个数的和能被3整除,符合条件的数有150;120;510;210;这几个数中最小的是120,120=2×2×2×3×5;故答案为:120=2×2×2×3×5.点评:此题主要考查了分解质因数的方法和能被2、3、5整除的数的特点.19.(2013•上高县模拟)把252分解质因数252=2×2×3×3×7..考点:合数分解质因数.专题:数的整除.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:252=2×2×3×3×7.故答案为:252=2×2×3×3×7.点评:注意分解质因数和求一个数的因数的区别.20.(2013•北市区模拟)把24分解质因数是24=1×2×2×2×3×.(判断对错)考点:合数分解质因数.专题:数的整除.分析:分解质因数就是把一个合数写成几个质数的连乘积形式,一般先从简单的质数试着分解.解答:解:24=1×2×2×2×3中,1既不是质数也不是合数,所以不正确,把24分解质因数应该是24=2×2×2×3.故答案为:×.点评:此题主要考查分解质因数的方法.21.(2013•道里区模拟)12的约数只有2、3、4、6、12.×.考点:合数分解质因数.分析:根据因数与倍数的意义,一个非0自然数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;由此解答.解答:解:12的因数有:1,2,3,4,6,12.因此12的因数只有2,3,4,6,12是错误的.故答案为:×.点评:此题主要考查因数与倍数的意义,1是任何非0自然数的因数.22.(2013•长沙县模拟)既有因数3,又是2和5的倍数的最小两位数是30,把它分解质因数是30=2×3×5.考点:合数分解质因数;求几个数的最小公倍数的方法.分析:根据能同时被2、3、5整除的数的特点可知,这个最小的两位数:个位数字是0,十位数字是3的倍数.再利用分解质因数的方法即可进行解答.解答:解:根据能同时被2、3、5整除的数的特点可知,这个最小的两位数是:30,30=2×3×5,故答案为:30;30=2×3×5.点评:此题考查了同时被2、3、5整除的数的性质以及合数分解质因数的方法的灵活应用.23.(2014•云阳县)把12分解质因数是:12=1×2×2×3错误.(判断对错)考点:合数分解质因数.分析:分解质因数就是把一个合数写成几个质数的连乘形式,由此定义即可进行判断.解答:解:把12分解质因数应该是:12=2×2×3,因为1既不是质数也不是合数,所以原题说法错误.故答案为:错误.点评:此题主要考查分解质因数的意义.24.(2012•长寿区)三个连续奇数的和是129,其中最大的那个奇数是45,将它分解质因数为45=3×3×5.考点:合数分解质因数;奇数与偶数的初步认识.分析:用三个连续奇数的和129除以奇数的个数3,即可求得中间的奇数,进而用除数加上。

质数合数分解因数问题

质数合数分解因数问题

质数合数分解质因数在自然数中,一个数除1和它本身,不再有别的约数,这个数叫做质数,也叫做素数.例如2,3,5,7,11,……都是质数.一个数除了1和它本身,还有别的约数,这个数叫做合数.例如4,6,8,9,12,……都是合数.1既不是质数,也不是合数.这样,自然数在按约数个数分类,可以分成:质数、合数和1.偶数中只有2是质数,而且是所有质数中最小的一个.除2以外所有的偶数都是合数,除2以外所有的质数都是奇数.每个合数都可以写成几个质数相乘的形式,这几个质数就叫做这个合数的质因数.例如,因为70=2×5×7,所以2,5,7是70的质因数.把一个合数用质数相乘的形式表示出来,叫做分解质因数.例如,60=2×2×3×5=22×3×5,把60这个合数用2×2×3×5或22×3×5的形式来表示,就是把60分解质因数.例1两个质数的积是46,求这两个质数的和.分析:两个质数的积是46,46是偶数,只能是一个奇质数与一个偶质数的积,而偶质数只有2,因此很容易得出另外的质数,从而问题得以解决.解:因为46是偶数,因此它必是一个奇质数与一个偶质数的积,而偶质数只有2,另一质数46÷2=23,所以2与23的和为25.例2用2,3,4,5中的三个数能组成哪些三位质数?分析:首先考虑个位数字是几,如果个位数字是2或4,这样的三位数必能被2整除,因此这样的三位数不会是质数,如果个位数字是5,这样的三位数必能被5整除,这样的三位数也不会是质数,所以个位数字只能是3,再由剩下的三个数字组成百位、十位,得出个位数字是3的三位数为:243,423,253,523,453,543,最后根据质数的判断方法,得到所求的质数.解:如果组成的三位数的个位数字是2、4、5时,这个数必能被2或5整除,因此个位数字只能是3,而个位数字是3的三位数有243,423,253,523,453,543,其中243,423,453,543均能被3整除,253能被11整除,所以只有523是质数.质数的判断方法是,当一个数比较小时,用定义直接判断,但这个数比较大时,通常采用查质数表,最好记住100以内的所有质数.在没有质数表的情况下,可以用质数从小到大的顺序逐个地去试除.如果能被其中某一个质数整除,就说明这个数是合数,如果除到商已比试除的质数小,还不能被这些质数中的任何一个整除,那么这个数一定是质数.例如,判断100以内的数是否是质数,只需用2、3、5、7这四个质数去试除,如果没有一个能整除它,这个数一定是质数,否则不是质数.判断97是不是质数,因为97不能被2,3,5,7中的任何一个整除,因此97是质数.为什么不必去试除比97小的所有的质数呢?因为97不能被2,3,5,7中的任何一个整除,它就一定不能被4,6,8,9,10等数(分别为2,3,5的倍数)整除,又因为,如果用11或大于11的质数去试除,97÷11=8…9,97÷13=7…6,其商为8、7,比除数还小,都已试除过,因此判断100以内的数是否是质数只需用2,3,5,7去试除.判断200以内的数是否是质数,只需用2,3,5,7,11,13,17这七个质数去试除;判断300以内的质数,只需用2到17这七个质数去试除;判断400以内的质数,只需用20以内的八个质数与去试除;判断500以内的质数,只需2到23的质数去试除.其余可用类似的方法推出,你可以思考一下1000以内的质数如何判断?例3将40,44,45,63,65,78,99,105这八个数平分成两组,使每组四个数的乘积相等.分析:如果采用观察、计算调整的方法是比较麻烦的.要使两组数的乘积相等,只有两组数中的质因数相同,而且质因数的个数也相同,就可以了,所以从这八个数分解质因数入手,根据各质因数的个数,进行适当的搭配,便能找出问题的答案.解:将八个数分解成质因数:40=23×544=22×1145=32×563=32×765=5×1378=2×3×1399=32×11105=3×5×7这八个数分解质因数后一共有6个2,8个3,4个5,2个7,2个11,2个13.因此,这八个数被分成两组后,每一组应含有3个2,4个3,2个5,1个7,1个11,1个13,这样可以得到两组分别为:40,63,65,99和44,45,78,105.例4360有多少个约数?分析:如果先求360的所有约数,再数出它们的个数,显然比较麻烦.为此,先将360分解质因数:360=23×32×5,360的任意一个约数均由若干个2或3或5组成,我们将360的所有约数列成下面的数阵:12222332×322×323×3322×3222×3223×3252×522×523×53×52×3×522×3×523×3×532×52×32×522×32×523×32×5这个数阵共6行,每行4个约数,所以360共有4×6=24个,而24=(3+1)×(2+1)×(1+1),这里3,2,1恰好是360分解质数式子中2,3,5的个数,从而得到下面关于约数个数的一个重要结论:一个大于1的整数的约数个数,等于它的质因数分解式中每个质因数的个数加1的连乘积.用数字式子表示为:如果A分解质因数为:则A的全体约数的个数为:(r1+1)×(r2+1)×…×(r n+1)例5有30个约数的最小自然数是多少?分析:设所求的数为A,则A有30个约数,因为30= 30×1=2×15=6×5=10×3=2×3×5,要使A最小,一般使A的质因数的幂指数尽可能小,质因数的个数尽可能少,所以A必为下列形式:其中a1,a2,a3为互不相同的质数.要使A最小,a1,a2,a3尽可能小,显然a3=2,a2=3,a1=5,这样A=24×32×5=720解:因为30=30×1=2×15=6×5=10×3=2×3×5,而且题中要求a2、a3为互不相等的质数,为了使A最小,a3=2,a2=3,a1=5,所以A=24×32×5=720.例6九个连续自然数中至多有四个质数,例如1至9中有2、3、5、7四个质数.请在200以内再找出五组这样的质数.分析:9个连续自然数中至多有5个奇数.在两位数中,个位是5的数必能被5整除,而且三个连续的奇数必有一个能被3整除,所以只有当个位数字为5的两位数又能被3整除时,其余的四个奇数才有可能是质数.当找到一组这样的两位以上的质数时,另一组与这组对应的数的差必定是30的倍数.按照上述办法找出后,再根据质数的判断方法去筛选就可得出结果.首先容易得出3,5,7,11;5,7,11,13;在两位数中,按照上面的方法可得出以下各组数:11,13,15,17,19;41,43,45,47,49;71,73,75,77,79;101,103,105,107,109;131,133,135,137,139;161,163,165,167,169;191,193,195,197,199;根据质数的判断方法可以得出两位数中还有11,13,17,19;101,103,107,109;191,193,197,199这三组符合条件.解:200以内另外五组这样的质数为:3,5,7,11;5,7,11,13;11,13,17,19;101,103,107,109;191,193,197,199.练习题1.两个质数的和是33,求这两个质数的积.2.用1,2,4,5,8中的三个数字组成最大的三位质数.3.有四个人,他们的年龄一个比一个大一岁,他们的年龄的乘积等于43680,求这四个人的年龄.4.求8400有多少个约数?5.求有18个约数的最小自然数?6.三个质数的乘积恰好等于它们的和的11倍,求这三个质数.答案仅供参考:1.两个质数的和是33,而33是奇数,必为一个奇数与一个偶数之和.因为偶质数只有2,另一个质数只能为33-2=31,所以2与31的积为62.2.因为个位数字是2,4,5,8的三位数必能被2或5整除,所以个位数字只能是1.将个位数字是1的三位数从大到小逐个试验:851=23×27,851不是质数;841=29×29,841不是质数;821不能被2至29的任何一个质数整除,所以821是所求的最大的三位质数.3.因为这四个人的年龄的乘积等于43680,所以这四个人的年龄是43680的约数.先将43680分解质因数:43680=25×3×5×7×13=13×(2×7)×(3×5)×24=13×14×15×16所以这四个人的年龄分别是13,14,15,16.4.因为8400=24×3×52×7,所以8400的约数个数为:(4+1)×(1+1)×(2+1)×(1+1)=60个.5.因为18=18×1=2×9=3×6=2×3×3,要使所求数最小,这个6.设这三个质数分别为a、b、c,则abc=11(a+b+c)所以a、b、c中必有一个是11,不妨设是c=11,则上式变为ab=a+b+11变形,得ab-a-b=11a(b-1)-(b-1)-1=11(b-1)(a-1)=12=12×1=2×6=3×4当b-1=12,a-1=1时,b=13,a=2;当b-1=2,a-1=6时,b=3,a=7;当b-1=3,a-1=4时,b=4,a=5.所以这三个质数为2,11,13或3,7,11.。

小学数学质数、合数和分解质因数,10道例题,给你最全面的分析!

小学数学质数、合数和分解质因数,10道例题,给你最全面的分析!

小学数学质数、合数和分解质因数,10道例题,给你最全面的分析!基本概念和知识1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:1不是质数,也不是合数。

2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例:把30分解质因数。

解:30=2×3×5。

其中2、3、5叫做30的质因数。

又如12=2×2×3=22×3,2、3都叫做12的质因数。

例题分析例题1 三个连续自然数的乘积是210,求这三个数. 解:210=2×3×5×7可知这三个数是5、6和7。

例题2 两个质数的和是40,求这两个质数的乘积的最大值是多少?解:把40表示为两个质数的和,共有三种形式:40=17 23=11+29=3 37。

17×23=391>11×29=319>3×37=111。

所求的最大值是391。

答:这两个质数的最大乘积是391。

例题3 自然数123456789是质数,还是合数?为什么?解:123456789是合数。

因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。

例题4 连续九个自然数中至多有几个质数?为什么?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。

如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,最多其中4个奇数都是质数。

综上所述,连续九个自然数中至多有4个质数。

例题5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。

小学奥数:分解质因数(一).专项练习及答案解析

小学奥数:分解质因数(一).专项练习及答案解析

5-3-4.分解质因数(一).题库 教师版 page 1 of1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯L 其中为质数,12k a a a <<<L L 为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

五年级《质数、合数、分解质因数》精讲与练习

五年级《质数、合数、分解质因数》精讲与练习

五年级《质数、合数、分解质因数》精讲与练习 知识要点;(一)概念:1、质数:一个数除了1和它本身,没有别的因数,这样的数叫做质数(或素数)2、合数:一个数除了1和它本身还有别的因数,这样的数叫做合数。

3、质因数:一个数的因数是质数,这个因数就叫做这个数的质因数。

4、分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.5、互质数:公因数只有1的两个数,叫做互质数.6、⎪⎩⎪⎨⎧。

,、也不是合数既不是质数最小的合数是合数最小的质数是质数自然数1:01;4:;2: (二)、方法指导:1、判断质数的方法:(1)、查质数表,(2)、试除法;判断一个自然数是不是质数,可以用所有比它小的质数从小到大依次去除这个自然数,如果某一个质数正好能整除这个自然数,就可以断定这个数不是质数;如果不能整除,就可以断定这个数是质数。

A 、判断100以内的数是不是质数,只需要2,3,5,7这四个质数去试除;B 、判断200以内的数是不是质数,只需要2,3,5,7,11,13这六个质数去试除;C 、判断500以内的数是不是质数,要依次试除到23.2、判断互质数的技巧:(1)、两个质数互质;(2)、两个连续自然数互质;(3)、1和任何自然数互质;(4)、2和任何奇数互质;(5)、两个连续奇数互质;(6)、自然数a 和b ,若a 〉b ,且a 是质数,则a 与b 互质;(7)、自然数a 和b ,若a 〉b ,且b 是质数,a 不是b 的倍数,则a 与b 互质;3、求因数个数的技巧:一个大于1的整数的因数的个数,等于它的质因数分解式中每个质因数的个数(即指数)加1的连乘积。

例如:223236⨯=,36的因数的个数有:(2+1)×(2+1)=9(个)例1、判断(1)233是质数还是合数?(2)90807060504030201是质数还是合数?练习一:1、填空①15=( )+()(填质数)②最大的两位数比最小的质数多()③()和任何自然数互质④与4互质的最小合数是()⑤( )和任何奇数互质2、判断下列各数是质数还是合数①223 ②987123456789021例2、把420分解质因数练习二:1、分解质因数①320 ②165 ③1056例3、将50这个数拆成10个质数的和,要求其中最大的质数尽可能大,那么这个最大质数是几?练习三:1、将80这个数拆成10个质数的和,要求其中最大的质数尽可能大,那么这个质数最大是多少?2、将60拆成10个质数之和,要求最大的质数尽可能小,那么其中最大的质数例4、写出若干个连续的自然数,使它的和是15120。

小学奥数:分解质因数(一).专项练习及答案解析

小学奥数:分解质因数(一).专项练习及答案解析

5-3-4.分解质因数(一).题库 教师版 page 1 of1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯L 其中为质数,12k a a a <<<L L 为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

合数分解质因数-题目

合数分解质因数-题目

合数分解质因数-题目合数分解质因数知识梳理教学重、难点作业完成情况典题探究例1.把42分解素因数:42=_________.例2.甲、乙两个合数互质,甲数大于乙数,它们的最小公倍数是280,甲数是_________,乙数是_________.例3.111的所有质因数之和是_________.例4.两个相邻自然数的倒数之差是,这两个数的和是_________.演练方阵A档(巩固专练)一.选择题(共15小题)1.12的质因数有()个.A.3个B.6个C.无数个2.把60分解质因数,正确的式子是()A.60=1×2×2×3×5 B.60=4×3×5 C.60=2×2×3×53.把B分解质因数B=a×b×c,B的因数共有()个.A.3B.8C.6D.44.(2006?徐州)把24分解质因数是()A.24=1×2×2×2×3 B.24=2×3×4 C.24=2×2×2×35.(2007?玉泉区)把24分解质因数是()A.24=3×8 B.24=2×3×4 C.24=2×2×2×3 D.24=6×4×1 6.(2007?徐水县)把24分解质因数是()A.24=2×3×4 B.24=2×2×3×3 C.24=2×2×2×37.(2007?抚州)把60分解质因数是60=()A.1×2×2×3×5 B.2×2×3×5 C.3×4×58.(2008?福田区)把30分解质因数应该写成的形式为()A.30=5×6 B.30=2×3×5 C.30=1×2×3×5 D.2×3×5=309.(2010?鹤山区)下面各选项,一定为互质数的一组是()A.质数与合数B.奇数与偶数C.质数与质数D.偶数与偶数10.(2011?兴化市模拟)下列式子中,属于分解质因数的是()A.54=2×3×9 B.42=2×3×7 C.12=1×2×2×311.(2012?玉泉区)把24分解质因数是()A.24=4×6 B.24=3×2×2×2×1 C.24=3×2×2×2 D.3×2×2×2=2412.(2012?泗县模拟)把210分解质因数是()A.210=2×7×3×5×1 B.210=2×5×21 C.210=3×5×2×713.(2014?武鸣县模拟)15分解质因数是()A.15×15 B.15=3×5 C.3×5=1514.(2010?武陵区)把20分解质因数应该写成()A.20=1×2×2×5 B.2×2×5=20 C.20=2×2×515.(2010?游仙区模拟)把12分解质因数()A.12=3×4 B.12=2×2×3 C.2×2×3=12 D.12=2×2×3×1二.填空题(共13小题)16.要把36个球装在盒子里,每个盒子装得同样多,有_________种装法.17.甲数=2×3×A×7,乙数=3×5×B×11,甲数和乙数的最大公约数是105,那么A=_________,B=_________.18.把72分解质因数为_________.19.一个一位数与一个三位数的乘积等于2012,那么这两个数的和是_________.20.动物园里有几十只猴子,其中是金丝猴.五(2)班的同学们将1265颗花生全部分给猴子,每只猴子分到的花生颗数相同.那么动物园里一共有_________只猴子.21.(2009?大竹县)小丽发现:小表妹和读初三哥哥的岁数是互质数,积是144,小表妹和读初三哥哥的岁数分别是(_________岁,_________岁).22.王林的电脑的密码是一个四位数abcd,其中a是最小的奇数,B是所有自然数的公约数,c是最小质数与最小合数的和,d是偶数中质数的平方,这个密码是_________.把这个数分解质因数是_________.23.把210分解质因数是_________.24.分解素因数:12=_________.25.把36分解质因数:36=1×2×3××3._________(判断对错)判断的理由是:_________.26.三个不同质数的乘积是165,它们分别是_________和_________.27.分解素因数:36=_________.28.20分解素因数是:20=_________.B档(提升精练)一.选择题(共15小题)1.3和5是15的()A.公约数B.互质数C.质因数2.三个质数的积是110,这三个质数中,最大的是()A.2B.3C.5D.113.两个自然数的积是5766,它们的最大公约数是31,则这两个自然数是()A.31和186 B.62或93C.31和186 或62 和93 D.124 和934.(2007?绵阳)下列分解质因数哪个是正确的()A.18=2×3×3 B.36=4×3×3 C.57=3×19×1 D.24=3×2×4 5.(2010?儋州模拟)在30=5×6中,5和6是30的()A.因数B.质因数C.质数D.质数和合数6.(2011?信阳)一个合数的质因数是10以内所有的质数,这个合数是()A.180 B.24 C.210 D.97.(2011?陕县)把60分解质因数正确的是()A.60=3×4×5 B.60=1×3×4×5 C.60=2×2×3×58.(2011?安岳县模拟)把60分解质因数,正确的是()A.60=3×4×5 B.2×2×3×5=60 C.60=2×2×3×59.(2012?沛县模拟)把50分解质因数可以写成()A.50=1×2×5×5 B.2×5×5=50 C.50=2×5×5 D.50=2×25 10.(2013?万州区)1155的质因数有()个.A.7B.6C.5D.411.(2013?会理县模拟)()表示分解质因数.A.24=1×2×2×3×1 B.24=4×6 C.24=2×2×2×3 D.2×2×2×3=2412.(2014?成都)把30分解质因数,正确的做法是()A.30=1×2×3×5 B.2×3×5=30 C.30=2×3×513.(2006?昭平县)自然数a分解质因数是a=2×3×5,那么a 的约数有()个.A.3B.6C.7D.814.(2006?定兴县)三个质数的积是231,那么这三个质数的和是()A.25 B.19 C.21 D.2315.(2010?游仙区模拟)把12分解质因数()A.12=3×4 B.12=2×2×3 C.2×2×3=12 D.12=2×2×3×1二.填空题(共13小题)16.(2013?江阳区)把70分解质因数:70=_________.17.(2013?云阳县)把60分解质因数是:60=_________.18.(2013?南通模拟)从5、2、1、0中选三个数字组成一个同时能被2、3、5整除的最小三位数并把它分解质因数是_________.19.(2013?上高县模拟)把252分解质因数_________.20.(2013?北市区模拟)把24分解质因数是24=1×2×2×2×3_________.(判断对错)21.(2013?道里区模拟)12的约数只有2、3、4、6、12._________.22.(2013?长沙县模拟)既有因数3,又是2和5的倍数的最小两位数是_________,把它分解质因数是_________.23.(2014?云阳县)把12分解质因数是:12=1×2×2×3_________.(判断对错)24.(2012?长寿区)三个连续奇数的和是129,其中最大的那个奇数是_________,将它分解质因数为_________.25.(2013?北京模拟)已知n个自然数之积是2007,这n个自然数之和也是2007,那么n 的值最大是_________.26.(2013?福田区模拟)能被5和3整除的最小四位数_________,分解质因数是_________.27.(2013?北京模拟)我们知道,一个正整数的质因数是这样的质数,它大于1并且能整除该数.那么2001的所有质因数之和是_________.28.(2013?雨花台区模拟)把30分解质因数是:30=_________,如果a=3×3×5,那么30和a的最大公约数是_________,最小公倍数是_________.成长足迹课后检测学习(课程)顾问签字:负责人签字:教学主管签字:主管签字时间:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学知识问答300例—合数分解质因数
小学数学知识问答300例合数分解质因数
174.怎样把一个合数分解质因数?
分解质因数在数的整除性这部分知识中,既是整除、约数、质数等基础知识的综合运用,也是后面学习最大公约数和最小公倍数的前提和准备,所以,在数的整除中,它具有承上启下的作用。

把一个合数分解质因数,就是把这个合数用质因数相乘的形式表示出来。

或者说,把一个合数写成几个质数的连乘积。

譬如36是合数,把36分解成因数相乘,会有以下几种情况:
(1)36=1x36(2)36=2x18
(3)36=4x9(4)36=3x12
(5)36=6x6
在上面五种分解中,只有(2)式的2和(4)式的3是质数,其他都不是。

要分解质因数就要把不是质数的数(1不是质数,也不是合数,排除在。

相关文档
最新文档