空间向量专题练习答案

合集下载

高二空间向量练习题及答案

高二空间向量练习题及答案

高二空间向量练习题及答案空间向量是高中数学的一个重要内容,掌握空间向量的概念和运算方法对于解决几何问题有着重要的作用。

下面是一些高二空间向量的练习题及其答案,帮助大家巩固和提升空间向量的学习。

一、选择题1. 设向量a=2i-j+3k,向量b=-3i+j+2k,则a·b的值为:A. -11B. 11C. -9D. 9答案:A2. 设向量a=2i-3j+k,向量b=-i+2j-3k,则a与b的夹角为:A. 60°B. 90°C. 120°D. 150°答案:C3. 已知向量a=2i-j+3k,向量b=3i+2j-4k,则a与b的数量积等于:A. -17B. 17C. -3D. 3答案:B4. 设向量a=3i+4j-2k,向量b=i-3j+5k,则a×b的结果为:A. 23i+2j-13kB. -23i-12j+13kC. 23i-12j+13kD. -23i+2j+13k答案:C5. 向量a=3i+j+k,向量b=2i-4j-2k,求向量a与向量b的和向量c,并求c的模长。

A. 向量c=5i-3j-k,|c|=√35B. 向量c=5i-3j-k,|c|=√33C. 向量c=5i-5j-3k,|c|=√31D. 向量c=5i-3j-k,|c|=√31答案:D二、填空题1. 向量a=2i+3j-4k,向量b=5i-2j+k,求a+b的结果为________。

答案:7i+j-3k2. 向量a=2i-3j+k,向量b=-i+j+2k,求a与b的夹角的余弦值为________。

答案:-1/√143. 设向量a=3i-4j+2k,向量b=2i-3j+k,求a×b的结果为________。

答案:-5i-4j-1k4. 设向量a=-i+2j+k,d是一条过点A(1,2,3)且与向量a垂直的直线方程,则d的方程为_______。

答案:x-2y+z-3=05. 已知平行四边形的两条对角线的向量分别为a=2i-j+k和b=-3i+4j-2k,求平行四边形的面积为_______。

空间向量练习及答案解析

空间向量练习及答案解析

空间向量练习一、选择题(共15小题,每小题4.0分,共60分)1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是() A. (4,2,-2) B. (2,0,4) C. (2,-1,-5) D. (4,-2,2)2.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面AC,若EA=1,则平面ADE与平面BCE所成的二面角的大小是()A. 120° B. 45° C. 150° D. 60°3.已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当·取得最小值时,点Q的坐标为()A. B. C. D.4.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD所成的角为60°;④AB与CD所成的角为60°.其中错误的结论是()A.① B.② C.③ D.④5.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1的夹角是()A. 45° B. 60° C. 90° D. 120°6.已知在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设=a,=b,=c,则等于()A.a+b- c B.-a+b+ c C.a-b+ c D.a+b-c7.已知在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空间直角坐标系,则AB1与D1E所成角的余弦值为()A. B. C.- D.-8.如图所示,在正方体ABCD-A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点,若∠B1MN=90°,则∠PMN的大小()A.等于90° B.小于90° C.大于90° D.不确定9.如图,S是正三角形ABC所在平面外一点,M,N分别是AB和SC的中点,SA=SB=SC,且∠ASB=∠BSC=∠CSA=90°,则异面直线SM与BN所成角的余弦值为()A.- B. C.- D.10.已知平面α内两向量a=(1,1,1),b=(0,2,-1)且c=ma+nb+(4,-4,1).若c为平面α的法向量,则m ,n 的值分别为( ) A . -1,2 B . 1,-2 C . 1,2 D . -1,-211.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G ,则A 1B 与平面ABD 所成角的正弦值为( )A .√23B .√73C .√32D .√3712.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,若二面角B 1-DC -C 1的大小为60°,则AD 的长为( ) A .√2 B .√3 C . 2 D .√2213.三棱锥A -BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2,若〈n 1,n 2〉=π3,则二面角A -BD -C 的大小为( ) A .π3 B .2π3 C .π3或2π3D .π3或-π314.已知AB ⃗⃗⃗⃗⃗ =(1,5,-2),BC ⃗⃗⃗⃗⃗ = (3,1,z ),若AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,BP ⃗⃗⃗⃗⃗ =(x -1,y ,-3),且BP ⊥平面ABC ,则BP ⃗⃗⃗⃗⃗ 等于( ) A .(407,157,−3) B .(337,157,−3) C .(−407,−157,−3) D .(337,−157,−3)15.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论:①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.这四个结论中正确的个数为( ) A . 1 B . 2 C . 3 D . 4二、填空题(共6小题,每小题4.0分,共24分)16.如图所示,已知正四面体A-BCD 中,AE =AB ,CF =CD ,则直线DE 和BF 所成角的余弦值为________.17.已知a =(3,-2,-3),b =(-1,x -1,1),且a 与b 的夹角为钝角,则x 的取值范围是________.18.如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD =2,E ,F 分别是线段PA ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为________. 19.如图,在三棱柱ABC -A 1B 1C 1中,所有棱长均为1,且AA 1⊥底面ABC ,则点B 1到平面ABC 1的距离为________.20.如下图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.21.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB⃗⃗⃗⃗⃗ =(2,-1,-4),AD ⃗⃗⃗⃗⃗ =(4,2,0),AP ⃗⃗⃗⃗⃗ =(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP ⃗⃗⃗⃗⃗ 是平面ABCD 的法向量;④AP ⃗⃗⃗⃗⃗ ∥BD ⃗⃗⃗⃗⃗⃗ .其中正确的是____________.三、解答题(共6小题,每小题11.0分,共66分) 22.如图所示,已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,PA ⊥底面ABCD ,且PA =AD =DC =12AB =1,M 是PB 的中点.(1)证明:面PAD ⊥面PCD ;(2)求AC 与PB 所成角的余弦值; (3)求面AMC 与面BMC 所成二面角的余弦值.23.如下图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC . (1)求证:BC ⊥平面PAC ;(2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (3)是否存在点E ,使得二面角A -DE -P 为直二面角?并说明理由.24.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E ,F 是棱BC ,CD 的中点,求:(1)直线DF 与B 1F 所成角的余弦值;(2)二面角C 1-EF -A 的余弦值.25.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SB⊥平面ABCD,且SB=AB=AD=1,BC=2.(1)求SA与CD所成的角;(2)求平面SCD与平面SAB所成的锐二面角的余弦值.26.如下图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值.27.如下图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为BC的中点,F为CC1的中点.(1)求EF与平面ABCD所成的角的余弦值;(2)求二面角F-DE-C的余弦值.空间向量练习答案解析1.【答案】D【解析】∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),故选D.2.【答案】B【解析】以A为坐标原点,分别以AB,AD,AE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,则E(0,0,1),B(1,0,0),C(1,1,0),=(1,0,-1),=(1,1,-1).设平面BCE的法向量为n=(x,y,z),则即可取n=(1,0,1).又平面EAD的法向量为=(1,0,0),所以cos〈n,〉==,故平面ADE与平面BCE所成的二面角为45°.3.【答案】C【解析】设Q(x,y,z),因Q在上,故有∥,设=λ(λ∈R),可得x=λ,y=λ,z=2λ,则Q(λ,λ,2λ),=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),所以·=6λ2-16λ+10=62-,故当λ=时,·取最小值,此时Q.4.【答案】C【解析】如图所示,取BD的中点O,以点O为坐标原点,OD,OA,OC所在直线分别为x轴,y轴,z轴,建立空间直角坐标系Oxyz,设正方形ABCD边长为,则D(1,0,0),B(-1,0,0),C(0,0,1),A(0,1,0),所以=(0,-1,1),=(2,0,0),·=0,故AC⊥BD.①正确.又||=,||=,||=,所以△ACD为等边三角形.②正确.对于③,为面BCD的一个法向量,cos〈,〉====-.所以AB与OA所在直线所成的角为45°,所以AB与平面BCD所成角为45°.故③错误.又cos〈,〉===-.因为异面直线所成的角为锐角或直角,所以AB与CD所成角为60°.故④正确.5.【答案】B【解析】不妨设AB=BC=AA1=1,则=-=(-),=+,∴||=|-|=,||=,·=(-)·(+)=,∴cos〈,〉===,∴〈,〉=60°,即异面直线EF与BC1的夹角是60°.6.【答案】B【解析】=-=(+)-=b+c-a.7.【答案】A【解析】∵A(2,2,0),B1(2,0,2),E(0,1,0),D1(0,2,2),∴=(0,-2,2),=(0,1,2),∴||=2,||=,·=0-2+4=2,∴cos〈,〉===,又异面直线所成角的范围是,∴AB1与ED1所成角的余弦值为.8.【答案】A【解析】A1B1⊥平面BCC1B1,故A1B1⊥MN,·=(+)·=·+·=0,∴MP⊥MN,即∠PMN=90°.9.【答案】B【解析】不妨设SA=SB=SC=1,以S为坐标原点,,,所在直线分别为x轴,y轴,z 轴,建立空间直角坐标系Sxyz,则相关各点坐标为A(1,0,0),B(0,1,0),C(0,0,1),S(0,0,0),M,N.因为=,=,所以||=,||=,·=-,cos〈,〉==-,因为异面直线所成的角为锐角或直角,所以异面直线SM 与BN 所成角的余弦值为.10.【答案】A【解析】 c =ma +nb +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得即解得11.【答案】A【解析】∵侧棱与底面垂直,∠ACB =90°,所以分别以CA ,CB ,CC 1所在直线为x 轴、y 轴、z 轴,建立如图空间直角坐标系, 设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2),D (0,0,1), ∴E (a 2,a2,1),G (a 3,a 3,13),GE ⃗⃗⃗⃗⃗ =(a 6,a 6,23),BD ⃗⃗⃗⃗⃗⃗ =(0,-a,1), ∵点E 在平面ABD 上的射影是△ABD 的重心G ,∴GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0,解得a =2,∴GE ⃗⃗⃗⃗⃗ =(13,13,23),BA 1⃗⃗⃗⃗⃗⃗⃗ =(2,-2,2),∵GE ⃗⃗⃗⃗⃗ ⊥平面ABD ,∴GE ⃗⃗⃗⃗⃗ 为平面ABD 的一个法向量, 又cos 〈GE ⃗⃗⃗⃗⃗ ,BA 1⃗⃗⃗⃗⃗⃗⃗ 〉=GE ⃗⃗⃗⃗⃗ ·BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |GE ⃗⃗⃗⃗⃗ ||BA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=43√63×2=√23,∴A 1B 与平面ABD 所成角的正弦值为√23,故选A.12.【答案】A【解析】如下图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2)设AD =a ,则D 点坐标为(1,0,a ),CD ⃗⃗⃗⃗⃗ =(1,0,a ),CB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ),则{m ·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,m ·CD⃗⃗⃗⃗⃗ =0⇒{2y +2z =0,x +az =0,令z =-1, 得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=m·n|m ||n |,得1√a 2+1=12,即a =√2,故AD =√2. 13.【答案】C【解析】如图所示,当二面角A -BD -C 为锐角时,它就等于〈n 1,n 2〉=π3;当二面角A -BD -C 为钝角时,它应等于π-〈n 1,n 2〉=π-π3=2π3. 14.【答案】D【解析】因为AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,所以AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0,即1×3+5×1+(-2)z =0,所以z =4, 因为BP ⊥平面ABC ,所以BP⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,且BP ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,即1×(x -1)+5y +(-2)×(-3)=0,且3(x -1)+y +(-3)×4=0.解得x =407,y =-157,于是BP ⃗⃗⃗⃗⃗ =(337,−157,−3).15.【答案】C【解析】因为A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ ,D 1P ⃗⃗⃗⃗⃗⃗⃗ =D 1D ⃗⃗⃗⃗⃗⃗⃗⃗ +DP ⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ , 所以A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∥D 1P ⃗⃗⃗⃗⃗⃗⃗ ,从而A 1M ∥D 1P ,可得①③④正确. 又B 1Q 与D 1P 不平行,故②不正确.故选C. 16.【答案】 【解析】=+=+,=+=+,所以cos 〈,〉====.17.【答案】 B【解析】 若两向量的夹角为钝角,则a ·b <0,且a 与b 不共线,故3×(-1)+(-2)×(x -1)+(-3)×1<0,且x ≠,解得x >-2,且x ≠,故选B. 18.【答案】【解析】 以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,则E (0,0,1),F (1,2,0),B (2,0,0),D (0,2,0). =(1,2,-1),=(-2,2,0),故cos 〈,〉==.19.【答案】√217【解析】建立如图所示的空间直角坐标系,则A (√32,12,0),B (0,1,0),B 1(0,1,1),C 1(0,0,1),则C 1A ⃗⃗⃗⃗⃗⃗⃗ =(√32,12,−1),C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,0),C 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,1,-1),设平面ABC 1的一个法向量为n =(x ,y,1),则有{C 1A ⃗⃗⃗⃗⃗⃗⃗ ·n =√32x +12y −1=0,C 1B ⃗⃗⃗⃗⃗⃗⃗ ·n =y −1=0.解得n =(√33,1,1),则所求距离为|C 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n |n ||=1√13+1+1=√217.20.【答案】(1,1,1)【解析】设PD =a (a >0),则A (2,0,0),B (2,2,0),P (0,0,a ),E (1,1,a2).∴DP ⃗⃗⃗⃗⃗ =(0,0,a ),AE⃗⃗⃗⃗⃗ =(−1,1,a2),∵cos 〈DP ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=√33,∴a 22=a √2+a 24·√33,∴a =2.∴E 的坐标为(1,1,1).21.【答案】①②③【解析】由于AP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =-1×2+(-1)×2+(-4)×(-1)=0, AP ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =4×(-1)+2×2+0×(-1)=0,所以①②③正确. 22.【答案】因为PA ⊥AD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点,AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0),B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,12), (1)∵AP ⃗⃗⃗⃗⃗ =(0,0,1),DC ⃗⃗⃗⃗⃗ =(0,1,0),故AP ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =0,∴AP ⃗⃗⃗⃗⃗ ⊥DC ⃗⃗⃗⃗⃗ ,∴AP ⊥DC , 又由题设知:AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线, 由此得DC ⊥面PAD ,又DC 在面PCD 上,故面PAD ⊥面PCD ; (2)∵AC⃗⃗⃗⃗⃗ =(1,1,0),PB ⃗⃗⃗⃗⃗ =(0,2,-1), ∴|AC ⃗⃗⃗⃗⃗ |=√2,|PB ⃗⃗⃗⃗⃗ |=√5,AC ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ =2,∴cos 〈AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ 〉=√105, 由此得AC 与PB 所成角的余弦值为√105;(3)在MC 上取一点N (x ,y ,z ),则存在λ∈R ,使NC ⃗⃗⃗⃗⃗ =λMC ⃗⃗⃗⃗⃗⃗ ,NC ⃗⃗⃗⃗⃗ =(1-x,1-y ,-z ),MC ⃗⃗⃗⃗⃗⃗ =(1,0,−12),∴x =1-λ,y =1,z =12λ.要使AN ⊥MC ,只需AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,即x -12z =0,解得λ=45, 可知当λ=45时,N 点坐标为(15,1,25),能使AN ⃗⃗⃗⃗⃗⃗ ·MC⃗⃗⃗⃗⃗⃗ =0, 此时,AN ⃗⃗⃗⃗⃗⃗ =(15,1,25),BN ⃗⃗⃗⃗⃗⃗ =(15,−1,25), 由AN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,BN ⃗⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,得AN ⊥MC ,BN ⊥MC , ∴∠ANB 为所求二面角的平面角,∵|AN⃗⃗⃗⃗⃗⃗ |=√305,|BN ⃗⃗⃗⃗⃗⃗ |=√305,AN ⃗⃗⃗⃗⃗⃗ ·BN ⃗⃗⃗⃗⃗⃗ =-45,∴cos 〈AN ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ 〉=-23, 故所求的二面角的余弦值为-23.23.【答案】以A 为原点,AB ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 分别为y 轴、z 轴的正方向,过A 点且垂直于平面PAB 的直线为x 轴,建立空间直角坐标系Axyz ,设PA =a ,由已知可得:A (0,0,0),B (0,a ,0),C (√34a,34a,0),P (0,0,a ).(1)AP⃗⃗⃗⃗⃗ =(0,0,a ),BC ⃗⃗⃗⃗⃗ =(√34a,−a 4,0),∴BC ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =0,∴BC ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ ,∴BC ⊥AP , 又∵∠BCA =90°,∴BC ⊥AC ,∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点,∴D (0,a 2,a2),E (√38a,38a,a 2),∴由(1)知,BC ⊥平面PAC ,∴DE ⊥平面PAC ,垂足为点E , ∴∠DAE 是AD 与平面PAC 所成的角,∵AD ⃗⃗⃗⃗⃗ =(0,a 2,a 2),AE ⃗⃗⃗⃗⃗ =(√38a,38a,a 2),∴cos ∠DAE =AD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗|AD ⃗⃗⃗⃗⃗⃗ ||AE ⃗⃗⃗⃗⃗ |=√144, ∴AD 与平面PAC 所成的角的正弦值为√24.(3)∵DE ∥BC ,又由(1)知BC ⊥平面PAC ,∴DE ⊥平面PAC , 又∵AE ⊂平面PAC ,PE ⊂平面PAC ,∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 为二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∴∠PAC =90°,∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时∠AEP =90°, 故存在点E ,使得二面角A -DE -P 是直二面角.24.【答案】如图,以A 为坐标原点,建立空间直角坐标系Axyz ,则D (0,2,0),E (2,1,0),F (1,2,0),B 1(2,0,2),C 1(2,2,2),(1)因为DE ⃗⃗⃗⃗⃗ =(2,-1,0),B 1F ⃗⃗⃗⃗⃗⃗⃗ =(-1,2,-2),所以cos 〈DE ⃗⃗⃗⃗⃗ ,B 1F ⃗⃗⃗⃗⃗⃗⃗ 〉=DE ⃗⃗⃗⃗⃗⃗ ·B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |DE ⃗⃗⃗⃗⃗⃗ ||B 1F ⃗⃗⃗⃗⃗⃗⃗⃗ |=−43√5=-4√515, 所以直线DE 与B 1F 所成角的余弦值为4√515; (2)因为C 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,-1,-2),EF ⃗⃗⃗⃗⃗ =(-1,1,0), 设平面C 1EF 的一个法向量为n =(x ,y,1), 则由{n ·C 1E ⃗⃗⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗⃗ =0,可得{−y −2=0,−x +y =0, 解得x =y =-2,所以n =(-2,-2,1),又AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)是平面AEF 的一个法向量,所以cos 〈AA 1⃗⃗⃗⃗⃗⃗⃗ ,n 〉=n·AA1⃗⃗⃗⃗⃗⃗⃗⃗ |n ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |=22×3=13, 观察图形,可知二面角C 1-EF -A 为钝角,所以二面角C 1-EF -A 的余弦值为-13. 25.【答案】(1)建立如图所示的空间直角坐标系,则B (0,0,0),S (0,0,1),A (1,0,0),C (0,2,0),D (1,1,0),SA ⃗⃗⃗⃗⃗ =(1,0,-1), CD⃗⃗⃗⃗⃗ =(1,-1,0), 因为cos 〈SA ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 〉=SA ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗|SA⃗⃗⃗⃗⃗ ||CD ⃗⃗⃗⃗⃗ |=12,所以SA 与CD 所成的角为60°; (2)设平面SCD 的法向量为n 1=(x ,y ,z ), 又SC⃗⃗⃗⃗ =(0,2,-1),{n 1·SC⃗⃗⃗⃗ =0,n 1·CD⃗⃗⃗⃗⃗ =0,所以{2y −z =0,x −y =0, 令x =1,则n 1=(1,1,2),因为BC ⊥平面SAB ,第 11 页 共 11 页 所以平面SAB 的一个法向量为n 2=(0,1,0),cos 〈n 1,n 2〉=√66, 所以平面SCD 与平面SAB 所成的锐二面角的余弦值为√66. 26.【答案】如下图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)易得B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(-1,1,-1),于是B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·CE⃗⃗⃗⃗⃗ =0,所以B 1C 1⊥CE ;(2)B 1C ⃗⃗⃗⃗⃗⃗⃗ =(1,-2,-1),设平面B 1CE 的法向量m =(x ,y ,z ),则{m ·B 1C ⃗⃗⃗⃗⃗⃗⃗ =0,m ·CE ⃗⃗⃗⃗⃗ =0,即{x −2y −z =0,−x +y −z =0, 消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1),由(1),B 1C 1⊥CE ,又CC 1⊥B 1C 1,可得B 1C 1⊥平面CEC 1,故B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1)为平面CEC 1的一个法向量,于是cos 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=m·B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |m ||B 1C 1|=−4√14×√2=-2√77,从而sin 〈m ,B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 〉=√217,所以二面角B 1-CE -C 1的正弦值为√217. 27.【答案】建立如下图所示的空间直角坐标系D-xyz ,则D (0,0,0),A (2,0,0),C (0,2,0),B (2,2,0),E (1,2,0),F (0,2,2),(1)EF⃗⃗⃗⃗⃗ =(-1,0,2),易得平面ABCD 的一个法向量为n =(0,0,1), 设EF ⃗⃗⃗⃗⃗ 与n 的夹角为θ,则cos θ=EF ⃗⃗⃗⃗⃗ ·n |EF ⃗⃗⃗⃗⃗ ||n|=25√5,∴EF 与平面ABCD 所成的角的余弦值为2√55; (2)EF ⃗⃗⃗⃗⃗ =(-1,0,2),DF ⃗⃗⃗⃗⃗ =(0,2,2),设平面DEF 的一个法向量为m ,则m ·DF ⃗⃗⃗⃗⃗ =0,m ·EF⃗⃗⃗⃗⃗ =0, 可得m =(2,-1,1),∴cos 〈m ,n 〉=m·n|m ||n |=√66,∴二面角F -DE -C 的余弦值为√66.。

数学高考复习空间向量及其运算专题训练(含答案)

数学高考复习空间向量及其运算专题训练(含答案)

数学2021届高考复习空间向量及其运算专题训练(含答案)空间中具有大小和方向的量叫做空间向量,下面是空间向量及其运算专题训练,请考生及时练习。

一、选择题1.以下四个命题中正确的是().A.空间的任何一个向量都可用其他三个向量表示B.若{a,b,c}为空间向量的一组基底,则{a+b,b+c,c+a}构成空间向量的另一组基底C.ABC为直角三角形的充要条件是=0D.任何三个不共线的向量都可构成空间向量的一组基底解析若a+b、b+c、c+a为共面向量,则a+b=(b+c)+(c+a),(1)a=(1)b+(+)c,,不可能同时为1,设1,则a=b+c,则a、b、c为共面向量,此与{a,b,c}为空间向量基底矛盾.答案 B2.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(ca)(2b)=2,则x= ().A.4B.2C.4D.2解析 a=(1,1,x),b=(1,2,1),c=(1,1,1),ca=(0,0,1x),2b=(2,4,2).(ca)(2b)=2(1x)=2,x=2.答案 D3.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是().A.{a,a+b,ab}B.{b,a+b,ab}C.{c,a+b,ab}D.{a+b,ab,a+2b}解析若c、a+b、ab共面,则c=(a+b)+m(ab)=(+m)a+(m)b,则a、b、c为共面向量,此与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,ab可构成空间向量的一组基底.答案 C4.如图所示,已知空间四边形OABC,OB=OC,且AOB=AOC=,则cos〈,〉的值为().A.0B.C. D.解析设=a,=b,=c,由已知条件〈a,b〉=〈a,c〉=,且|b|=|c|,=a(cb)=acab=|a||c||a||b|=0,cos〈,〉=0.答案 A5.如图所示,在长方体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,=c,则下列向量中与相等的向量是().A.a+b+cB.a+b+cC.ab+cD.ab+c解析 =+=+()=c+(ba)=a+b+c.答案 A.如图,在大小为45的二面角AEFD中,四边形ABFE,CDEF都是边长为1的正方形,则B,D两点间的距离是()A.B.C.1D.解析 =++,||2=||2+||2+||2+2+2+2=1+1+1=3,故||=.答案 D 二、填空题R,向量,且,则解析 .答案8. 在空间四边形ABCD中,++=________.解析如图,设=a,=b,=c,++=a(cb)+b(ac)+c(ba)=0.答案 0.已知ABCDA1B1C1D1为正方体,(++)2=32;()=0;向量与向量的夹角是60正方体ABCDA1B1C1D1的体积为||.其中正确命题的序号是________.解析由,,,得(++)2=3()2,故正确;中=,由于AB1A1C,故正确;中A1B与AD1两异面直线所成角为60,但与的夹角为120,故不正确;中||=0.故也不正确.答案10.如图,空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,OAC=45,OAB=60,则OA与BC所成角的余弦值等于________. 解析设=a,=b,=c.OA与BC所成的角为,=a(cb)=acab=a(a+)a(a+)=a2+aa2a=2416.cos ===.答案三、解答题.已知A、B、C三点不共线,对平面ABC外的任一点O,若点M满足=(++).(1)判断、、三个向量是否共面;(2)判断点M是否在平面ABC内.解 (1)由已知++=3 ,即=+=,,,共面.(2)由(1)知,,,共面且基线过同一点M,四点M,A,B,C共面,从而点M在平面ABC内..把边长为a的正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、BC的中点,点O是原正方形的中心,求:(1)EF的长;(2)折起后EOF的大小.如图,以O点为原点建立空间直角坐标系Oxyz,则A(0,a,0),B(a,0,0),C0,a,0),D0,0,a),E0,a,a),F(a,a,0).(1)||2=2+2+2=a2,|EF|=a.(2)=,=,=0a++a0=,||=,||=,cos〈,〉==,EOF=120..如图,已知M、N分别为四面体ABCD的面BCD与面ACD的重心,且G为AM上一点,且GMGA=13.求证:B、G、N三点共线.证明设=a,=b,=c,则=a+(a+b+c)=a+b+c,=a+b+c=.∥,即B、G、N三点共线..如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB、AD、CD的中点,计算:(1)(2)(3)EG的长;(4)异面直线AG与CE所成角的余弦值.解设=a,=b,=c.则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60,(1)==ca,=a,=bc,=(a)=a2ac=,(2)=(ca)(bc)=(bcabc2+ac)=;(3)=++=a+ba+cb=a+b+c,||2=a2+b2+c2ab+bcca=,则||=.(4)=b+c,=+=b+a,cos〈,〉==,由于异面直线所成角的范围是(0,90],所以异面直线AG与CE所成角的余弦值为.空间向量及其运算专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优异的成绩。

空间向量练习及答案解析

空间向量练习及答案解析

空间向量练习及答案解析1.已知平面α的一个法向量为(2,-1,1),且α∥β,则平面β的一个可能的法向量是哪个?A。

(4,2,-2) B。

(2,0,4) C。

(2,-1,-5) D。

(4,-2,2)2.在如图所示的正方形ABCD中,过点A作线段EA垂直于平面AC,若EA=1,则平面ADE和平面BCE所成的二面角大小是多少?A。

120° B。

45° C。

150° D。

60°3.已知向量a=(1,2,3),向量b=(2,1,2),向量c=(1,1,2),点Q在直线OP上移动,当a·Q+b·Q取得最小值时,点Q的坐标是多少?A。

B。

C。

D.4.将正方形ABCD沿对角线BD折成直角二面角A-BD-C,以下哪个结论是错误的?A。

AC⊥BDB。

△ACD是等边三角形C。

∠ABC与平面BCD所成的角为60°D。

∠ABD与CD所成的角为60°5.在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E和F分别是棱AB和BB1的中点,直线EF和BC1的夹角是多少?A。

45° B。

60° C。

90° D。

120°6.在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设∠AOM=a,∠BOM=b,∠CON=c,则a+b-c等于多少?A。

a+b-c B。

-a+b+c C。

a-b+c D。

a+b-c7.在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空间直角坐标系,AB1和D1E所成角的余弦值是多少?A。

B。

C。

- D。

-8.在正方体ABCD-A1B1C1D1中,M、N、P分别是棱CC1、BC和A1B1上的点,若∠B1MN=90°,则∠PMN的大小是多少?A。

等于90° B。

小于90° C。

(完整word版)高三数学空间向量专题复习附答案

(完整word版)高三数学空间向量专题复习附答案

一、利用向量处理平行与垂直问题例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。

求证:AM B A ⊥1练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE2、如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.二、利用空间向量求空间的角的问题例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小。

例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 41D 1C 1,试求直线E 1F 与平面D 1AC例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。

zx1CFD CBA例4 已知E,F分别是正方体1111DCBAABCD-的棱BC和CD的中点,求:(1)A1D与EF所成角的大小;(2)A1F与平面B1EB所成角的大小;(3)二面角BBDC--11的大小。

三、利用空间向量求空间的距离的问题例1 直三棱柱AB C-A1B1C1的侧棱AA1,底面ΔAB C求点B1到平面A1B C的距离。

空间向量专题练习答案

空间向量专题练习答案

空间向量专题练习一、填空题(本大题共4小题,共20.0分)1.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为 ______ .【答案】π3或2π3 【解析】解:设平面α的法向量为m ⃗⃗⃗ =(1,0,-1),平面β的法向量为n ⃗ =(0,-1,1),则cos <m⃗⃗⃗ ,n ⃗ >=√2⋅√2=-12, ∴<m⃗⃗⃗ ,n ⃗ >=2π3. ∵平面α与平面β所成的角与<m⃗⃗⃗ ,n ⃗ >相等或互补, ∴α与β所成的角为π3或2π3.故答案为:π3或2π3.利用法向量的夹角与二面角的关系即可得出.本题考查了利用用法向量的夹角求二面角的方法,考查了计算能力,属于基础题.2.平面α经过三点A (-1,0,1),B (1,1,2),C (2,-1,0),则平面α的法向量u⃗ 可以是 ______ (写出一个即可) 【答案】(0,1,-1)【解析】解:AB ⃗⃗⃗⃗⃗ =(2,1,1),AC⃗⃗⃗⃗⃗ =(3,-1,-1), 设平面α的法向量u ⃗ =(x ,y ,z ),则{u ⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x +y +z =0u ⃗ ⋅AC⃗⃗⃗⃗⃗ =3x −y −z =0,令z =-1,y =1,x =0. ∴u ⃗ =(0,1,-1).故答案为:(0,1,-1).设平面α的法向量u ⃗ =(x ,y ,z ),则{u ⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x +y +z =0u⃗ ⋅AC ⃗⃗⃗⃗⃗ =3x −y −z =0,解出即可. 本题考查了线面垂直与数量积的关系、平面的法向量,属于基础题.3.已知AB ⃗⃗⃗⃗⃗ =(1,0,2),AC⃗⃗⃗⃗⃗ =(2,1,1),则平面ABC 的一个法向量为 ______ . 【答案】(-2,3,1)【解析】解:AB ⃗⃗⃗⃗⃗ =(1,0,2),AC ⃗⃗⃗⃗⃗ =(2,1,1),设平面ABC 的法向量为n ⃗ =(x ,y ,z ),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AC⃗⃗⃗⃗⃗ =0,即{x +2z =02x +y +z =0,取x =-2,则z =1,y =3.∴n ⃗ =(-2,3,1).故答案为:(-2,3,1).设平面ABC 的法向量为n ⃗ =(x ,y ,z ),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AC⃗⃗⃗⃗⃗ =0,解出即可. 本题考查了平面的法向量、线面垂直与数量积的关系,属于基础题.4.在三角形ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1),若向量n⃗ 与平面ABC 垂直,且|n⃗ |=√21,则n ⃗ 的坐标为 ______ . 【答案】(2,-4,-1)或(-2,4,1)【解析】解:设平面ABC 的法向量为m ⃗⃗⃗ =(x ,y ,z ),则m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,且m ⃗⃗⃗ •AC⃗⃗⃗⃗⃗ =0, ∵AB ⃗⃗⃗⃗⃗ =(-1,-1,2),AC⃗⃗⃗⃗⃗ =(1,0,2), ∴{−x −y +2z =0x +2z =0, 即{x =−2z y =4z, 令z =1,则x =-2,y =4,即m ⃗⃗⃗ =(-2,4,1),若向量n⃗ 与平面ABC 垂直, ∴向量n⃗ ∥m ⃗⃗⃗ , 设n ⃗ =λm ⃗⃗⃗ =(-2λ,4λ,λ),∵|n⃗ |=√21, ∴√21•|λ|=√21,即|λ|=1,解得λ=±1,∴n ⃗ 的坐标为(2,-4,-1)或(-2,4,1),故答案为:(2,-4,-1)或(-2,4,1)根据条件求出平面的法向量,结合向量的长度公式即可得到结论.本题主要考查空间向量坐标的计算,根据直线和平面垂直求出平面的法向量是解决本题的关键.二、解答题(本大题共3小题,共36.0分)5.如图,在四棱锥P-ABCD 中,底面ABCD 为菱形,∠BAD=60°,Q 为AD 的中点.(1)若PA=PD ,求证:平面PQB ⊥平面PAD ;(2)点M 在线段PC 上,PM =13PC ,若平面PAD ⊥平面ABCD ,且PA=PD=AD=2,求二面角M-BQ-C 的大小.【答案】解:(1)证明:由题意知:PQ ⊥AD ,BQ ⊥AD ,PQ ∩BQ=Q ,∴AD ⊥平面PQB ,又∵AD⊂平面PAD ,∴平面PQB ⊥平面PAD .(2)∵PA=PD=AD ,Q 为AD 的中点,∴PQ ⊥AD ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,∴PQ ⊥平面ABCD ,以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴,建立如图所求的空间直角坐标系,由题意知:Q (0,0,0),A (1,0,0),P (0,0,√3),B (0,√3,0),C (-2,√3,0)∴QM ⃗⃗⃗⃗⃗⃗⃗ =23QP ⃗⃗⃗⃗⃗ +13QC ⃗⃗⃗⃗⃗ =(-23,√33,2√33), 设n 1⃗⃗⃗⃗ 是平面MBQ 的一个法向量,则n 1⃗⃗⃗⃗ ⋅QM ⃗⃗⃗⃗⃗⃗⃗ =0,n 1⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ =0,∴{√3y =0−23x+√33y+2√33z=0,∴n 1⃗⃗⃗⃗ =(√3,0,1),又∵n 2⃗⃗⃗⃗ =(0,0,1)平面BQC 的一个法向量,∴cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=12,∴二面角M-BQ-C 的大小是60°.【解析】(1)由题设条件推导出PQ ⊥AD ,BQ ⊥AD ,从而得到AD ⊥平面PQB ,由此能够证明平面PQB ⊥平面PAD .(2)以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角M-BQ-C 的大小.本题考查平面与平面垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意向量法的合理运用.6.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=2,点E 是PC 的中点,F在直线PA 上.(1)若EF ⊥PA ,求PF PA 的值;(2)求二面角P-BD-E 的大小.【答案】解:(1)∵在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,∴以D 为原点,DA 为x 轴,DC 为y轴,DP 为z 轴,建立空间直角坐标系,∵PD=DC=2,点E 是PC 的中点,F在直线PA 上,∴P (0,0,2),A (2,0,0),C(0,2,0),E (0,1,1),设F (a ,0,c ),PF ⃗⃗⃗⃗⃗ =λPA⃗⃗⃗⃗⃗ ,则(a ,0,c -2)=λ(2,0,-2)=(2λ,0,-2λ),∴a =2λ,c =2-2λ,F (2λ,0,2-2λ),EF ⃗⃗⃗⃗⃗ =(2λ,-1,1-2λ),PA⃗⃗⃗⃗⃗ =(2,0,-2), ∵EF ⊥PA ,∴EF ⃗⃗⃗⃗⃗ ⋅PA ⃗⃗⃗⃗⃗ =4λ-2+4λ=0,解得λ=14, ∴PF PA =14.(2)P (0,0,2),B (2,2,0),D (0,0,0),E (0,1,1),DP ⃗⃗⃗⃗⃗ =(0,0,2),DB ⃗⃗⃗⃗⃗⃗ =(2,2,0),DE⃗⃗⃗⃗⃗⃗ =(0,1,1), 设平面BDP 的法向量n ⃗ =(x ,y ,z ),则{n ⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =2x +2y =0n⃗ ⋅DP ⃗⃗⃗⃗⃗ =2z =0,取x =1,得n ⃗ =(1,-1,0), 设平面BDE 的法向量m ⃗⃗⃗ =(x ,y ,z ),则{m ⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =2x +2y =0m ⃗⃗⃗ ⋅DE⃗⃗⃗⃗⃗⃗ =y +z =0,取x =1,得m ⃗⃗⃗ =(1,-1,1), 设二面角P-BD-E 的大小为θ,则cos θ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=2√2⋅√3=√63. ∴二面角P-BD-E 的大小为arccos √63. 【解析】(1)以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,利用向量法能求出PFPA 的值.(2)求出平面BDP 的法向量和设平面BDE 的法向量,由此能求出二面角P-BD-E 的大小.本题考查线段比值的求法,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.7.如图所示的几何体是由棱台ABC-A 1B 1C 1和棱锥D-AA 1C 1C 拼接而成的组合体,其底面四边形ABCD 是边长为2的菱形,且∠BAD=60°,BB 1⊥平面ABCD ,BB 1=2A 1B 1=2.(Ⅰ)求证:平面AB 1C ⊥平面BB 1D ;(Ⅱ)求二面角A 1-BD-C 1的余弦值.【答案】(Ⅰ)证明:∵BB 1⊥平面ABCD ,∴BB 1⊥AC ,∵ABCD 是菱形,∴BD ⊥AC ,又BD ∩BB 1=B ,∴AC ⊥平面BB 1D ,∵AC⊂平面AB 1C ,∴平面AB 1C ⊥平面BB 1D ;(Ⅱ)设BD 、AC 交于点O ,以O 为坐标原点,以OA 为x 轴,以OD 为y 轴,建立如图所示空间直角坐标系.则B(0,−1,0),D(0,1,0),B 1(0,−1,2),A(√3,0,0),A 1(√32,−12,2),C 1(−√32,−12,2), ∴BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,12,2),BD ⃗⃗⃗⃗⃗⃗ =(0,2,0),BC 1⃗⃗⃗⃗⃗⃗⃗ =(−√32,12,2).设平面A 1BD 的法向量n ⃗ =(x ,y ,z),由{n ⃗ ⋅BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x +12y +2z =0n ⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =2y =0,取z =√3,得n ⃗ =(−4,0,√3), 设平面DCF 的法向量m ⃗⃗⃗ =(x ,y ,z),由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =2y =0m ⃗⃗⃗ ⋅BC 1⃗⃗⃗⃗⃗⃗⃗ =−√32x +12y +2=0,取z =√3,得m ⃗⃗⃗ =(4,0,√3). 设二面角A 1-BD-C 1为θ,则cosθ=|m ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||m||n|=1319. 【解析】(Ⅰ)由BB 1⊥平面ABCD ,得BB 1⊥AC ,再由ABCD 是菱形,得BD ⊥AC ,由线面垂直的判定可得AC ⊥平面BB 1D ,进一步得到平面AB 1C ⊥平面BB 1D ;(Ⅱ)设BD 、AC 交于点O ,以O 为坐标原点,以OA 为x 轴,以OD 为y 轴,建立如图所示空间直角坐标系.求出所用点的坐标,得到平面A 1BD 与平面DCF 的法向量,由两法向量所成角的余弦值可得二面角A 1-BD-C 1的余弦值.本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.。

空间向量及其运算练习题含详细答案

空间向量及其运算练习题含详细答案

空间向量及其运算一、选择题1、与向量a =(12,5)平行的单位向量是( C )A.⎪⎭⎫ ⎝⎛135,1312B.⎪⎭⎫ ⎝⎛--135,1312C.⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛135,1312135,1312或D.⎪⎭⎫ ⎝⎛±±135,1312 2、A (1,1,-2)、B (1,1,1),则线段AB 的长度是( C ) A.1B.2C.3D.43、向量a =(1,2,-2),b =(-2,-4,4),则a 与b ( C ) A.相交 B.垂直 C.平行D.以上都不对4、m ={8,3,a },n ={2b ,6,5},若m ∥n ,则a +b 的值为( C ) A.0B.25 C.221 D.85、若a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则( C )A.x =1,y =1B.x =21,y =-21C.x =61,y =-23D.x =-61,y =236、a ={1,5,-2},b ={m ,2,m +2},若a ⊥b ,则m 的值为( B ) A.0B.6C.-6D.±67、若非零向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},则212121z zy y x x ==是a 与b 同向或反向的( A )A.充分不必要条件B.必要非充分条件C.充要条件D.不充分不必要条件8、已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角( C ) A .0 B .2π C .π D .32π9、已知()()()2,5,1,2,2,4,1,4,1A B C ---,则向量AB AC 与的夹角为( C ) A. 030 B.045 C.060 D.09010、设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG = x OA +y OB +z OC ,则(x ,y ,z )为( A )A.(41,41,41) B.(43,43,43) C.(31,31,31) D.(32,32,32) 11、在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成的角为的余弦值( D )AA DBC BCD1111MNA. 23 B.1010 C.53 D.5212、已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( D )A.627B.637C.607D.657二、填空题1、空间四边形ABCD ,则AB ·CD +BC ·AD +CA ·BD =_______.2、点A(1,2,1),B(-1,3,4)、D(1,1,1),若PB AP 2=,则|PD |的值是_____________.3、已知空间三点A 、B 、C 坐标分别为(0,0,2),(2,2,0),(-2,-4,-2),点P 在xOy 平面上且PA ⊥AB ,PA ⊥AC ,则P 点坐标为 .4、a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦为89,则λ=_____________.小组: 组号: 姓名:__________一、选择题(本题共12小题,每题5分,共60分)题号 123456789101112答案二、填空题(共4小题,每题5分,共20分)请把正确答案填写在相应的位置上.1、_______ ___2、___________3、_____________4、 三、解答题1.已知()()2,4,,2,,26a x b y a b ===⊥,若a 且,求x y +的值.2.设向量()()3,5,4,2,1,832,,a b a b a b =-=-⋅,计算并确定,λμ的关系,使a b z λμ+与轴垂直.选做题如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点. (1)求BN 的长;(2)求cos<11,CB BA >的值 (3)求证:A 1B ⊥C 1M .答案详解一、选择题1、C 解析:设此向量为(x ,y ),∴⎪⎩⎪⎨⎧==+x y y x 512122,∴⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==13513121351312y x y x 或 2、C 解析: |AB |=222)21()11()11(++-+-=3. 3、C 解析:a =(1,2,-2)=-21·b ∴a ∥b .4、C 解析: ∵m ∥n ,故(8,3,a )=k (2b ,6,5),∴8=2bk ,3=6k ,a =5k , ∴k =21 故a =25,b =8,∴a +b =25+8=2215、C6、B 解析:∵a ⊥b ∴1·m +5·2-2(m +2)=0. ∴m =6.7、A 解析:若212121z zy y x x ==,则a 与b 同向或反向,反之不成立. 8、C 9、C 10、A 11、D12、D 解析:∵a 、b 、c 三向量共面,所以存在实数m 、n ,使得c =ma +nb .即⎩⎪⎨⎪⎧7=2m -n5=-m +4n λ=3m -2n∴λ=657.二、填空题1、02、解析:设点P(x,y,z),则由PB AP 2=,得 (x-1,y-2,z-1)=2(-1-x,3-y,4-z),即⎪⎩⎪⎨⎧-=---=---=-,281,262,221z z y y x x 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=.3,38,31z y x则|PD |=222)13()138()131(-+-+--=377.3、(-8,6,0) 由向量的数量的积求得.4、解析: 因为a ·b =1×2+λ×(-1)+2×2=6-λ,又因为a ·b =|a ||b |·cos 〈a ,b 〉=5+λ2·9·89=835+λ2,所以835+λ2=6-λ,解得λ=-2或255.三、解答题1、解:由22262436a x =⇒++=………………………………①又0a b a b ⊥⇒⋅=即4420y x ++=………………………………………………② 由①②有:4,34,1x y x y ==-=-=或13x y ∴+=-或2、解:323(3,5,4)2(2,1,8)a b -=--=(9,15,-12)-(4,2,16)=(5,13,-28)a b ⋅=(3,5,-4)⋅(2,1,8)=6+5-32=-21由()(0,0,1)(32,5,48)a b λμλμλμλμ+⋅=++-+(0,0,1)⋅480λμ=-+=即当,λμ满足48λμ-+=0即使a b λμ+与z 轴垂直.选做题:解析:如图,建立空间直角坐标系O —xyz .(1)依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2)∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA . (3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,2},M C 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M .评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件.图。

空间向量试题和答案

空间向量试题和答案

空间向量及运算一、选择题:1.在平行六面体ABCD —A 1B 1C 1D 1中,设1123AC xAB yBC zCC =++,则x +y +z 等于 A .1B .23C .56D .1162.设a =(x ,4,3),b =(3,2,z ),且a ∥b ,则xz 的值为 A .9B .-9C .4D .6493.已知A (1,2,-1)关于面xoy 的对称点为B ,而B 关于x 轴对称的点为C ,则BC = A .(0,4,2)B .(0,-4,-2)C .(0,4,0)D .(2,0,-2)4.如图,在四面体O —ABC 中,是M 在OA 上,且OM =2MA ,N 为BC 中点,则MN = A .121232OA OB OC -+ B .112223OA OB OC +- C .211322OA OB OC -++D .221332OA OB OC +-5.已知a =3i +2j -k ,b =i -j +2k ,则5a 与3b 的数量积等于A .-1B .-3C .-5D .-156.设空间四点O ,A ,B ,P ,满足,OP OA t AB =+ 其中0<t <1,则有A .点P 在线段AB 上 B .点P 在线段AB 的延长线上C .点P 在线段BA 的延长线上D .点P 不一定在直线AB 上 7.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 等于 A .1B .15C .35D .758.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0,AB AC AC AD AB AD ⋅=⋅=⋅=则B 、C 、D 三点构成 A .直角三角形B .锐角三角形C .钝角三角形D .形状不能确定9.若向量,,MA MB MC 的起点与终点M 、A 、B 、C 互不重合且无三点共线,且满足下列关系(O 为空间任一点),则能使向量,,MA MB MC 成为空间一组基底的关系是 A .111333OM OA OB OC =++ B .MA MB MC ≠+ C .1233OM OA OB OC =++D .2MA MB MC =-10.已知a =(cos α,1,sin α),b =(sin α,1,cos α),且sin α≠cos α,则向量a +b 与a -b 的夹角是A .0°B .30°C .60°D .90°答题卡 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题: 11.已知a =(2,-1,2),b =(2,2,1),则以a ,b 为邻边的平行四边形的面积为 . 12.与向量a =(2,-1,2)共线,且满足方程a ·x = -18的向量x = . 13.若点A 、B 的坐标为A (3cos α,3sin α,1)、B (2cos θ,2sin θ,1)则 ||AB 取值范围 . 14.已知G 是△ABC 的重心,O 是空间与G 不重合的任一点,若OA OB OC OG λ++=,则λ= .15.已知a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),且|a |=5,|b |=6,a ·b =30,则123123a a ab b b ++=++ .三、解答题:16.(本题满分l2分)已知a =(1,1,0),b =(1,1,1),若b =b 1+b 2,且b 1∥a ,b 2⊥a ,试求b 1,b 2. 17.(本题满分12分)如图,BC =2,原点O 是BC 的中点,点A 的坐标为31(,,0)22,点D 在平面yoz 上,且∠BDC =90°,∠DCB =30°. ⑴求向量CD 的坐标;⑵求异面直线AD 与BC 所成角的余弦值.18.(本题满分14分)已知a ,b 是非零的空间向量,t 是实数,设u =a +t b . ⑴当|u |取得最小值时,求实数t 的值;⑵当|u |取得最小值时,求证:b ⊥(a +t b ).19.(本题满分14分)如图,已知四面体O —ABC 中,E 、F 分别为AB ,OC 上的点,且AE =13AB ,F 为中点,若AB =3,BC =1,BO =2,且∠ABC =90°,∠OBA =∠OBC =60°,求异面直线OE 与BF 所成角的余弦值.20.(本题满分14分)已知正方体ABCD—A1B1C1D1的棱长为2,P,Q分别是BC,CD上的动点,且|PQ|=2,建立如图所示的直角坐标系.⑴确定P,Q的位置,使得B1Q⊥D1P;⑵当B1Q⊥D1P时,求二面角C1—PQ—C的正切值.21.(本题满分14分)如图,正三棱柱ABC—A1B1C1的各棱长都是2,M是BC的中点,P是侧棱BB1上一点,且A1P⊥B1M.⑴试求A1P与平面APC所成角的正弦;⑵求点A1到平面APC的距离.第十单元 空间向量及运算参考答案二、填空题11.65 12.(-4,2,-4) 13.[1,5] 14.3 15.56三、解答题16.解:∵b 1∥a ,∴令b 1=(λ,λ,0),b 2=b -b 1=(1-λ,1-λ,1),又∵b 2⊥a ,∴a ·b 2=(1,1,0)·(1-λ,1-λ,1)=1-λ+1-λ=2-2λ=0, ∴λ=1,即b 1=(1,1,0),b 2=(0,0,1). 17.解:⑴过D 作DE ⊥BC 于E ,则DE =CD ·sin30°=32,OE =OB -BD cos60°=1-12=12,∴D 的坐标为(0,-12,32),又∵C (0,1,0),∴3(0,2CD =-⑵依题设有A 点坐标为A 1,0)2,∴33(,1,),(0,2,0)22AD BC =--=则cos ,5||||AD BC AD BC AD BC ⋅<>==-⋅.故异面直线AD 与BC 所成角的余弦值为105. 18.解:⑴∵22222222222()||||||2()||||()||||||a b a b u a tb a a b t t b b t a b b ⋅⋅=+=+⋅+=++-, ∴当t =2||a bb ⋅-时,|u |=|a +t b |最小. ⑵∵222()||||()0()||a bb a tb a b t b a b b b a tb b ⋅⋅+=⋅+=⋅+-=∴⊥+. 19.解:∵12(),23BF BO BC OE BA BO =+=-, ∴222117||(||||2)(412||||cos60),444BF BO BC BO BC BO BC =++⋅=++︒=222744||;||||||4444,|| 2.293BF OE BA BO BA BO OE ==+-⋅=+-==又212213(||)(241)23322BF OE BA BO BO BC BA BC BO ⋅=⋅-+⋅-⋅=--=-, ∴337cos ,14||||27BF OE BF OE BF OE ⋅-<>===-, 故异面直线OE 与BF 所成的角的余弦值为3714. 20.解:⑴设BP =t ,则222(2),22(2),CQ t DQ t =--=---∴B 1(2,0,2),D 1(0,2,2),P (2,t ,0),Q 2211(22(2),2,0).(2(2),2,2),(2,2,2)t QB t PD t ---=---=-- 又∵11110BQ D P QB PD ⊥⇔⋅=, ∴2222(2)2(2)220,2(2)t t t t -----+⨯=--=即解得t =1,即P 、Q 分别为中点时,B 1Q ⊥D 1P .⑵由⑴知PQ ∥BD ,且AC ⊥PQ ,设AC ∩PQ =E ,连C 1E ,∵CC 1⊥底面BD ,CE ⊥PQ , ∴C 1E ⊥PQ ,即∠CEC 1为所求二面角O —PQ —C 1的平面角,易得1tan 22CEC ∠=. 21.解:建立如图所示的空间直角坐标系,则相关各点的坐标为A 1(2,0,0),B 1(1,3,0),(1,3,)P z ,13(,,2),(0,0,2),(2,0,2)22M C A由A 1P ⊥B 1M 知110A PB M ⋅= ∴13131(1,3,)(,,2)20,,22222z z z -⋅--=-+=∴= 即点P 的坐标为P 1(1,3,)2. ⑴设平面APC的法向量为n =(x ,y ,z ),由20,0,3(0,,).3230,0,2x n CA n z z x y z n CP =⎧⎧⋅=⎪⎪∴=⎨⎨+-=⋅=⎪⎪⎩⎩即 取z = -1,则有n =3(0,,1)2--,方向指向平面APC 的左下方,又11(1,3,)2PA =--,111cos,119||PA nPA nPA n⋅<>===⋅.设直线A 1P与平面APC所成角为α,则sin119α=.⑵1||1A P=+=,设A1到平面P AC的距离为d,则1||sin27d A Pα====.。

空间向量的习题及答案

空间向量的习题及答案

空间向量的习题及答案空间向量是线性代数中的重要概念之一,它在解决几何问题时起到了关键作用。

本文将通过一些典型的习题来探讨空间向量的性质和应用,并给出详细的答案解析。

1. 习题一:已知向量a = (1, 2, -3),向量b = (-2, 1, 4),求向量a与向量b的数量积和向量积。

解析:向量a与向量b的数量积为:a·b = 1*(-2) + 2*1 + (-3)*4 = -2 + 2 - 12 = -12。

向量a与向量b的向量积为:a×b = (2*(-3) - 1*4, 1*(-3) - (-2)*4, 1*1 - (-2)*(-3)) = (-6 - 4, -3 + 8, 1 + 6) = (-10, 5, 7)。

2. 习题二:已知向量a = (2, -1, 3),向量b = (3, 4, -2),求向量a与向量b的夹角的余弦值。

解析:向量a与向量b的夹角的余弦值为:cosθ = (a·b) / (|a| * |b|)。

其中,a·b为向量a与向量b的数量积,|a|为向量a的模,|b|为向量b的模。

计算得到:a·b = 2*3 + (-1)*4 + 3*(-2) = 6 - 4 - 6 = -4,|a| = √(2^2 + (-1)^2+ 3^2) = √(4 + 1 + 9) = √14,|b| = √(3^2 + 4^2 + (-2)^2) = √(9 + 16 + 4)= √29。

代入公式得到:cosθ = (-4) / (√14 * √29)。

3. 习题三:已知向量a = (1, 2, 3),向量b = (4, 5, 6),求向量a与向量b的和、差和模长。

解析:向量a与向量b的和为:a + b = (1 + 4, 2 + 5, 3 + 6) = (5, 7, 9)。

向量a与向量b的差为:a - b = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)。

2024届新高考数学复习:专项(空间向量及其运算)历年好题练习(附答案)

2024届新高考数学复习:专项(空间向量及其运算)历年好题练习(附答案)


又AB =(6,-2,-3),AC =(x-4,3,-6)
6(x-4)-6+18=0,
得 x=2.

2
(x-4) =4,
1
12.2 (b+c-a)



答案解析:MN =ON -OM
1 →
1 →

=2 (OB +OC )-2 OA
1
=2 (b+c-a)
13.D
1
1 →


14.B ∵OE =2 C ⃗=2 (AB +AD +A ⃗),
∴〈a,c〉=60°,同理可得 C、D 不正确.
8.C a+b=(-2,y-1,5),∵a⊥(a+b),
∴-2×2-(y-1)+3×5=0,得 y=12.
9.C 依题意,
1 → →
1 →
→ 1 →
→ →
点 E,F 为 BC,AD 的中点,如图所示,AE ꞏAF =2 (AB +AC )ꞏ2 AD =4 (AB ꞏAD


=2 (-PB +BD )
1





=2 (-PB +PA -PB +PC -PB )
1 →
1 →
3 →
=-2 PB +2 PA +2 PC
3
1
1
=2 a-2 b+2 c
7.B ∵|a|= 12+02+(-1)2 = 2 ,设 b=(-1,1,0),|b|= 2 ,aꞏb=-1<0,
aꞏc
1
故 A 不正确;对于 B,设 c=(1,-1,0),aꞏc=1,|c|= 2 .∴cos 〈a,c〉=|a||c| =2 ,
D. 4 a2
A.a2

高中试卷-专题03 空间向量的应用(含答案)

高中试卷-专题03 空间向量的应用(含答案)

专题03 空间向量的应用一、单选题1.(2020·贵州省铜仁第一中学高二开学考试)已知两个异面直线的方向向量分别为a r ,b r ,且|a r |=|b r|=1,a r •12b r =-,则两直线的夹角为( )A .30°B .60°C .120°D .150°【答案】B【解析】设两直线的夹角为θ,则由题意可得1×1×cos a r <,12b =-r >,∴cos a r <,12b =-r >,∴a r <,23b p =r >,∴θ3p =,故选:B .2.(2019·穆棱市第一中学高二期末)若平面,a b 的法向量分别为1,1,3,(1,2,6)2a b æö=-=--ç÷èør r ,则( )A .//a bB .a 与b 相交但不垂直C .a b^D .//a b 或a 与b 重合【答案】D【解析】因为12a b =-r r ,所以平面,a b 的法向量共线,故//a b 或a 与b 重合.故选:D.3.(2020·北京高二期末)已知直线l 的方向向量为m u r ,平面a 的法向量为n r ,则“0m n ×=u r r”是“l ∥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】Q 0m n ×=u r r \m n^u r r Q 0m n ×=u r r ,即m n ^u r r ,不一定有l ∥a ,也可能l aÌ\“0m n ×=u r r ”是“l ∥a ”的不充分条件Q l ∥a ,可以推出m n ^u r r ,\“0m n ×=u r r ”是“l ∥a ”是必要条件,综上所述, “0m n ×=u r r ”是“l ∥a ”必要不充分条件.故选:B.4.(2019·山东省济南一中高二期中)在平面ABCD 中,(0,1,1)A ,(1,2,1)B ,(1,0,1)C --,若(1,,)a y z =-v ,且a v 为平面ABCD 的法向量,则2y 等于( )A .2B .0C .1D .无意义【答案】C【解析】由题得,(1,1,0)AB =uuu r ,(1,1,2)AC =--uuu r ,又a r 为平面ABCD 的法向量,则有00a AB a AC ì×=í×=îuuu v v uuu v v ,即10120y y z -+=ìí-+=î,则1y =,那么21y =.故选:C5.(2019·四川省双流中学高三月考)已知点P 是正方体1111ABCD A B C D -的棱CD 的中点,给出以下结论:①11A P C D ^;②1A P BD ^;③11A P BC ^;④1AP ^平面1BC D 其中正确命题的序号是( )A .①B .②C .③D .④【答案】C【解析】设正方体边长为2,建立如图空间直角坐标系.则()12,1,2A P =--uuur .对①, ()10,2,2C D =--uuuu r ,因为110242A P C D ×=-+=uuur uuuu r ,故①错误.对②, ()2,2,0BD =--uuu r ,因为1422A P BD ×=-=uuur uuu r ,故②错误.对③, ()12,0,2BC =-uuuu r ,因为1440A P BD ×=-=uuur uuu r ,故③正确.对④,由②有1A P BD ^不成立,故1AP ^平面1BC D 不成立.故④错误.故选:C6.(2019·穆棱市第一中学高二期末)如图,在正方体ABCD ­1111A B C D 中,以D 为原点建立空间直角坐标系,E 为B 1B 的中点,F 为11A D 的中点,则下列向量中,能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)【答案】B【解析】设正方体棱长为2,则A (2,0,0),E (2,2,1),F (1,0,2),∴AE uuu r =(0,2,1),AF uuu r =(﹣1,0,2)设向量n r=(x ,y ,z )是平面AEF 的一个法向量则2020n AE y z n AF x z ì×=+=ïí×=-+=ïîuuu r r uuu r r ,取y=1,得x=﹣4,z=﹣2∴n r =(﹣4,1,﹣2)是平面AEF 的一个法向量因此可得:只有B 选项的向量是平面AEF 的法向量故选:B .7.(2019·包头市第四中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M l l =<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )ABCD【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED uuuu v =(﹣2,0,1),EF uuu r =(0,2,0),EM uuuu r =(0,λ,1),设平面D 1EF 的法向量n r=(x ,y ,z ),则1·20·20n ED x z n EF y ì=-+=í==îuuuu v v uuuv v ,取x =1,得n r =(1,0,2),∴点M 到平面D 1EF=N 为EM 中点,所以N ,选D .8.(2020·湖南省高二期末)已知直三棱柱111ABC A B C -中,底面边长和侧棱长都相等,则异面直线1AB 与1BC 所成的角的余弦值为( )A .12B .18C .14D .34【答案】C【解析】立空间坐标系如图,设边长为2,得到A (2,0,0),1B (12),B (10),1C (0,0,2)向量()()112,­1,2AB BC =-=uuuv uuuu v 设异面直线夹角为q ,则1111cos =||||AB BC AB BC q ×=×uuuv uuuu v uuuv uuuu v 14故答案为C9.(2018·山西省山西大附中高二期中)过正方形ABCD 的顶点A ,作PA ^平面ABCD ,若PA BA =,则平面ABP 和平面CDP 所成的锐二面角的大小是A .30°B .45°C .60°D .90°【答案】B【解析】法一:建立如图(1)所示的空间直角坐标系,不难求出平面APB 与平面PCD 的法向量分别为n 1=(0,1,0),n 2=(0,1,1),故平面ABP 与平面CDP 所成二面角的余弦值为1212n n n n=,故所求的二面角的大小是45°.法二:将其补成正方体.如图(2),不难发现平面ABP 和平面CDP 所成的二面角就是平面ABQP 和平面CDPQ 所成的二面角,其大小为45°.10.(2020·山东省章丘四中高二月考)在正方形1111ABCD A B C D -中,棱AB ,11A D 的中点分别为E ,F ,则直线EF 与平面11AA D D 所成角的余弦值为( )A B C D 【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()2,1,0E , ()1,0,2F , ()1,1,2EF =--uuu r ,平面11AA D D 的法向量()0,1,0n =r ,设直线EF 与平面11AA D D 所成角为q ,0,2p éùqÎêúëû,则||sin ||||EF n EF n q ===uuu r r g uuu r r g .所以cos q ==\直线EF 与平面11AA D D 故选:D .二、多选题11.(2020·山东省高二期末)已知ν为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是( )A .12////n n a bÛB .12n n a b^Û^C .1////n l n aÛD .1//n l n a ^Û【答案】AB【解析】A 选项,平面α,β不重合,所以平面α,β的法向量平行等价于平面α,β平行,正确;B 选项,平面α,β不重合,所以平面α,β的法向量垂直等价于平面α,β垂直,正确;C 选项,直线的方向向量平行于平面的法向量等价于直线垂直于平面,错误;D 选项,直线的方向向量垂直于平面的法向量等价于直线平行于平面或直线在平面内,错误.故选:AB12.(2019·山东省高三)正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点.则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点C 和点G 到平面AEF 的距离相等【答案】BC【解析】对选项A :(方法一)以D 点为坐标原点,DA 、DC 、1DD 所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,则(0,0,0)D 、(1,0,0)A 、1(1,0,1)A 、1,1,02E æöç÷èø、10,1,2F æöç÷èø、11,1,2G æöç÷èø.从而1(0,0,1)DD =uuuu r ,11,1,2AF æö=-ç÷èø,从而1102DD AF ×=¹uuuu r uuu r ,所以1DD 与直线AF 不垂直,选项A 错误;(方法二)取1DD 的中点N ,连接AN ,则AN 为直线AF 在平面11ADD A 内的射影,AN 与1DD 不垂直,从而AF 与1DD 也不垂直,选项A 错误;取BC 的中点为M ,连接1A M 、GM ,则1A M AE ∥,GM EF ∥,易证1A MG AEF 平面∥平面,从而1A G AEF ∥平面,选项B 正确;对于选项C ,连接1AD ,1D F ,易知四边形1AEFD 为平面,且1D H AH ==,1A D =132AD H S D ==,而113948AD H AEFD S S ==四边形△,从而选项C 正确;对于选项D :(方法一)由于111111112222224GEF EBG BEFG S S S D D æö=-=+´-´´=ç÷èø梯形,而11112228ECF S D =´´=,而13A GEF EFG V S AB -D =×,13A ECF ECF V S AB -D =×,所以2A GEF A ECF V V --=,即2G AEFC AEF V V --=,点G 到平面AEF 的距离为点C 到平面AEF 的距离的二倍.从而D 错误.(方法二)假设点C 与点G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 的中点,连接CG交EF于点O ,易知O 不是CG 的中点,故假设不成立,从而选项D 错误.13.(2020·福建省高二期末)正方体1111ABCD A B C D -中,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,则下列结论正确的是( )A .1B G BC^B .平面AEF I 平面111AA D D AD =C .1//A H 面AEFD .二面角E AF C --的大小为4p 【答案】BC【解析】由题可知,1B G 在底面上的射影为BG ,而BC 不垂直BG ,则1B G 不垂直于BC ,则选项A 不正确;连接1AD 和1BC ,E 、F 、G 、H 分别为1CC 、BC 、CD 、BB 、1BB 的中点,可知11////EF BC AD ,所以AEF D Ì平面1AD EF ,则平面AEF I 平面111AA D D AD =,所以选项B 正确;由题知,可设正方体的棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,则各点坐标如下:()()()()()()12,0,0,0,2,0,0,2,1,2,0,2,2,2,1,1,2,0A C E A H F ()()()()110,2,1,1,2,0,1,0,1,0,0,2A H AF EF AA =-=-=-=uuuu r uuu r uuu r uuur ,设平面AEF 的法向量为(),,n x y z =r ,则00n AF n EF ì×=í×=îuuu v v uuu v v ,即200x y x z -+=ìí-=î,令1y =,得2,2x z ==,得平面AEF 的法向量为()2,1,2n =r ,所以10A H n ×=uuuu r r ,所以1//A H 平面AEF ,则C选项正确;由图可知,1AA ^平面AFC ,所以1AA uuur是平面AFC 的法向量,则1112cos ,3AA n AA n AA n×<>===×uuur r uuur r uuur r .得知二面角E AF C --的大小不是4p ,所以D 不正确.故选:BC.三、填空题14.(2019·山东省济南一中高二期中)若平面a的一个法向量为(n =v,直线l的一个方向向量为a =v ,则l 与a 所成角的正弦值为________.【答案】15【解析】由题,设l 与a 所成角为q,可得||1sin 5||||n a n a q ×===v v v v .故答案为:1515.(2019·陕西省西北大学附中高二期中)如图,在正三棱柱111ABC A B C -中,12,AB AC AA === ,E F 分别是,BA11A C 的中点.设D 是线段11B C 上的(包括两个端点)动点,当直线BD 与EF,则线段BD 的长为_______.【答案】【解析】以E 为原点,EA,EC 为x,y轴建立空间直角坐标系,如下图.1(0,0,0),,2),(0,1,0),(0,,2)(11)2E F B D t t --££1,2),(0,1,2)2EF BD t ==+uuu v uuuv cos q =解得t=1,所以BD =,填.点睛:利用空间向量求解空间角与距离的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.16.(2019·浙江省宁波市鄞州中学高二期中)正方体1111ABCD A B C D -中,,E F 分别是1,AA AB 的中点,则EF 与直线1AC 所成角的大小为______ ;EF 与对角面11BDD B 所成角的正弦值是 __________.【答案】2p 12【解析】如图所示建立空间直角坐标系,设正方体的边长为2,则()2,0,1E ,()2,1,0F ,()2,0,0A ,()10,2,2C ,故()0,1,1EF =-uuu r ,()12,2,2AC =-uuuu r .故10EF AC ×=uuu r uuuu r ,故EF 与直线1AC 所成角的大小为2p .易知对角面11BDD B 的一个法向量为()1,1,0n =-r ,设EF 与对角面11BDD B 所成角为q ,故1sin cos ,2EF n EF n EF n q ×===×uuu r r uuu r r uuu r r .故答案为:2p ;12.17.(2019·江西省会昌中学高二月考)已知正方体1111ABCD A B C D -的棱长为a ,点E ,F ,G 分别为棱A B ,1AA ,11C D 的中点,下列结论中,正确结论的序号是___________.①过E ,F ,G 三点作正方体的截面,所得截面为正六边形;②11//B D 平面EFG ;③1BD ^平面1ACB ;④异面直线EF 与1BD ;⑤四面体11ACB D 的体积等于312a .【答案】①③④【解析】延长EF 分别与1l B A ,1B B 的延长线交于N ,Q ,连接GN 交11A D 于H ,设HG 与11B C 的延长线交于P ,连接P Q 交1CC 于I ,交BC 于M ,连FH ,HG ,GI ,IM ,ME ,EF ,如图:则截面六边形EFHGIM 为正六边形,故①正确:因为11B D 与HG 相交,故11B D 与平面EFG 相交,所以②不正确:1,BD AC BD AC ^\^Q (三垂线定理),1111,BC B C BD B C ^\^Q (三垂线定理),且AC 与1B C 相交,所以1BD ^平面1ACB ,故③正确;以D 为原点,1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,则1(0,0,0),(,,0),(,0,),(,,0),(0,0,)22a a D E a F a B a a D a ,则(0,,)22a a EF =-uuu r ,1(,,)BD a a a =--uuuu r ,所以111cos ,||||EF BD EF BD EF BD ×<>=uuu r uuuu r uuu r uuuu r uuu r uuuur ===所以1sin ,EF BD <>==uuu r uuuu r=所以111sin ,tan ,cos ,EF BD EF BD EF BD <><>=<>uuu r uuuu r uuu r uuuu r uuu r uuuur ==,所以异面直线EF 与1BD,故④正确;因为四面体11ACB D 的体积等于正方体的体积减去四个正三棱锥的体积,即为3331114323a a a -´´=,故⑤不正确.故答案为:①③④四、解答题18.(2019·广西壮族自治区田东中学高二期中)已知三棱柱111ABC A B C -的侧棱垂直于底面,90BAC Ð=°,12AB AA ==,1AC =,M ,N 分别是11A B ,BC 的中点.(1)求证:1AB AC ^;(2)求证://MN 平面11ACC A .【答案】(1)证明见解析 (2) 证明见解析【解析】Q 三棱柱为直三棱柱 1AA \^平面ABC 1AA AC \^,1AA AB ^又90BAC Ð=o ,则1,,AB AC AA 两两互相垂直,可建立如下图所示的空间直角坐标系则()0,0,0A ,()0,2,0B ,()1,0,0C -,()11,0,2C -,()0,1,2M ,1,1,02N æö-ç÷èø(1)()0,2,0AB =uuu r Q ,()11,0,2AC =-uuuu r ()10120020AB AC \×=´-+´+´=uuu r uuuu r 1AB AC \^(2)由题意知:AB uuu r是平面11ACC A 的一个法向量()0,2,0AB =uuu r Q ,1,0,22MN æö=--ç÷èøuuuu r ()10200202AB MN æö\×=´-+´+´-=ç÷èøuuu r uuuu r AB MN \^uuu r uuuu r MN ËQ 平面11ACC A //MN \平面11ACC A 19.(2020·陕西省高二期末)如图,在棱长为2的正方体1111ABCD A B C D -中E ,F 分别为AB ,1A C的中点.(1)求EF ;(2)求证://EF 平面11AA D D【答案】(1;(2)证明见解析【解析】(1)由题知,(2,1,0)E ,(1,1,1)F ,∴(1,0,1)EF =-uuu r ,∴||EF ==uuu r (2)由题知,(2,0,0)A ,1(0,0,2)D ,∴1(2,0,2)AD =-uuuu r ,∴12AD EF =uuuu r uuu r ,故//AD EF ,又1AD Ì平面11AA D D ,EF Ë平面11AA D D∴EF ∥平面11AA D D .20.(2020·北京高二期末)如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =,点D 是AB 的中点.(1)求异面直线AC 与1BC 所成的角;(2)求证:1//AC 平面1CDB .【答案】(1)2p (2)证明见解析【解析】(1)因为3AC =,4BC =,5AB =,所以222AC BC AB +=,所以ABC D 是直角三角形,所以2ACB p=,所以AC BC^因为三棱柱111ABC A B C -为直三棱柱,所以1C C ^平面ABC ,所以1C C AC ^,1C C BC^以C 为原点,分别以CA 、CB 、1CC 为x 轴、y 轴、z 轴,建立空间直角坐标系,则(0C ,0,0),(3A ,0,0),(0B ,4,0),1(0C ,0,4)所以直线AC 的方向向量为(3,0,0)CA =uuu r ,直线1BC 的方向向量为1(0,4,4)BC =-uuuu r ,设异面直线AC 与1BC 所成的角为q ,因为10CA BC =uuu r uuuu r g ,所以cos 0q =,所以异面直线AC 与1BC 所成的角为2p.(2)由(1)可知3,2,02D æöç÷èø,1(0B ,4,4),则3,2,02CD æö=ç÷èøuuu r ,1(0,4,4)CB =uuur 设平面1CDB 的法向量为(,,)n x y z =r ,则1·0·0CD n CB n ì=ïí=ïîuuu v v uuuv v ,所以3202440x y y z ì+=ïíï+=î令4x =,则3y =-,3z =,所以(4,3,3)n =-r直线1AC 的方向向量为1(3,0,4)AC =-uuuu r ,因为10AC n =uuuu r r g ,1AC Ë平面1CDB , 所以1//AC 平面1CDB .21.(2020·银川三沙源上游学校高二期末)如图,在直三棱柱111ABC A B C -中,AB AC ^,2AB AC ==,1AA =,D 为棱BC 的中点.(1)求直线1DB 与平面11AA C C 所成角的正弦值;(2)求平面11AA C C 与平面1ADB 所成二面角的余弦值.【答案】(12).【解析】则(0,0,0)A ,1(0,0,A ,(2,0,0)C ,(0,2,0)B ,(1,1,0)D ,1(0,2,B ,所以(2,0,0)AC =uuu r ,1(0,0,AA =uuur ,(1,1,0)AD =uuu r ,1(1,1,DB =-uuuu r ,如下图:(1)设平面11AA C C 的一个法向量为(,,)m x y z =u r ,则100AC m AA m ì×=ïí×=ïîuuu v v uuuv v,即00ìïí=ïî,取(0,1,0)m =u r ,所以1cos ,DB m <=uuuu r u r ,所以直线1DB 与平面11AA C C(2)设平面1ADB 的一个法向量为111(,,)n x y z =r ,则100AD n DB n ì×=ïí×=ïîuuu v v uuuu v v,即1111100x y x y +=ìïí-++=ïî,取(1,n =-r ,所以cos ,m n <=u r r ,所以求平面11AA C C 与平面1ADB所成二面角的余弦值.22.(2019·江苏省苏州实验中学高一月考)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC Ð=°,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AA C C ;(2)线段AC 上是否存在一点G ,使面EFG ^面11AA C C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F ,所以22(,,)33EF a =-uuu r ,1(0,0,)A A a =uuur ,11(2,2,0)AC =uuuu r ,因为11113EF A A A C =-+uuu r uuur uuuu r ,所以EF uuu r ,1A A uuur ,11AC uuuu r 共面,又EF 不在平面11AA C C 内,所以//EF 平面11AA C C(2)线段AC 上存在一点G ,使面EFG ^面11AA C C ,且AG =证明如下:在三角形AGE 中,由余弦定理得EG ====,所以222AG EG AE +=,即EG AG ^,又1A A ^平面ABCD ,EG Ì平面ABCD ,所以1A A EG ^,而1AG A A A Ç=,所以EG ^平面11AA C C ,因为EG Ì平面EFG ,所以EFG ^面11AA C C .23.(2020·北京高二期末)如图,在底面是正方形的四棱锥P ABCD -中,PA ^平面ABCD ,2AP AB ==,,,E F G 是,,BC PC CD 的中点.(1)求证:BG ^平面PAE ;(2)在线段BG 上是否存在点H ,使得//FH 平面PAE ?若存在,求出BH BG 的值;若不存在,说明理由.【答案】(1)证明见解析;(2)存在,35.【解析】(1)证明:因为四棱锥P ABCD -底面是正方形,且PA ^平面ABCD ,以点A 为坐标原点,,,AB AD AP所在直线分别为,,x y z 轴建立如图所示空间直角坐标系.则(0,0,0),(2,0,0),(0,0,2),A B P ,(2,2,0),(0,2,0)C D ,因为,,E F G 是,,BC PC CD 的中点,所以(2,1,0),(1,1,1),(1,2,0)E F G ,所以(1,2,0)BG =-uuu v ,(0,0,2),(2,1,0),AP AE ==uuu v uuu v 所以0BG AP ×=uuu v uuu v ,且0BG AE ×=uuu v uuu v . 所以BG AP ^,BG AE ^,且AE AP A =I .所以BG ⊥平面PAE .(2)假设在线段BG 上存在点H ,使得FH //平面PAE . 设BH BG l =uuuv uuu v (01)l ££,则(1,21,1)FH FB BH AB AF BG l l l =+=-+=---uuuv uuu v uuuv uuu v uuu v uuu v .因为FH //平面PAE ,BG ⊥平面PAE ,所以(1)(12(21)0(1)530FH GB l l l ×=-×-+-+´-=-=uuuv uuu v . 所以35l =. 所以,在线段BG 上存在点H ,使得FH //平面PAE .其中35BH BG =.。

空间几何与向量练习题及解析

空间几何与向量练习题及解析

空间几何与向量练习题及解析一、选择题1. 已知向量A = 3A + 2A− A,向量A= −2A + A + 3A,求A与A的数量积A·A的值为:A. 1B. -1C. -10D. 10解析:数量积公式为:A·A = AAAA + AAAA + AAAA,其中AA、AA、AA分别表示向量A和A的A、A、A分量的乘积。

带入已知的A和A的分量进行计算:A·A = (3)(-2) + (2)(1) + (-1)(3) = -6 + 2 - 3 = -7答案:选项A. 12. 在空间直角坐标系中,已知点A(2, 1, 3)和点A(-1, 4, 2),向量A的末端与向量A的起点重合,A·A的值为:A. 3B. 17C. 11D. -9解析:点A(2, 1, 3)和点A(-1, 4, 2)可以确定唯一的向量A和A。

根据数量积A·A的定义,可以先求出A和A的分量,然后进行运算:A·A = (2)(-1) + (1)(4) + (3)(2) = -2 + 4 + 6 = 8答案:选项B. 17二、填空题1. 设向量A = 2A + 3A− A,向量A = 4A + A,若A = A + AAA,则A和A分别为______、______。

解析:根据已知条件,A的A分量为-1,而A的A分量为1。

因此A = 4,A = -1。

答案:4、-12. 已知点A(1, 2, 3)和点A(4, -1, -2),则向量AA的大小为________。

解析:向量AA可以由终点坐标减去起点坐标得到,即AA = (4-1)A + (-1-2)A + (-2-3)A = 3A - 3A - 5A。

根据向量的模的定义,可以得到:|AA| = √((3)^2 + (-3)^2 + (-5)^2) = √(9 + 9 + 25) = √43答案:√43三、计算题1. 已知向量A = 3A - 2A + 4A,向量A = A + A,求向量A与向量A 的夹角A的余弦值cos A。

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。

高三数学空间向量试题答案及解析

高三数学空间向量试题答案及解析

高三数学空间向量试题答案及解析1.在如图所示的多面体中,四边形和都为矩形.(Ⅰ)若,证明:直线平面;(Ⅱ)是否存在过的平面,使得直线平行,若存在请作出平面并证明,若不存在请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)存在,证明见解析【解析】(Ⅰ)由四边形和都为矩形知,⊥AB,⊥AC,由线面垂直判定定理知⊥面ABC,由线面垂直定义知⊥BC,又因为AC⊥BC,由线面垂直判定定理知,BC⊥面;(Ⅱ)取AB的中点为M,连结交于D,连结DE,显然E是的中点,根据三角形中位线定理得,DE∥,又由于DE在面过的平面内,根据线面平行的判定定理知和该平面平行.试题解析:(Ⅰ)证明:因为四边形和都是矩形,所以 2分因为为平面内的两条相交直线,所以 4分因为直线平面,所以又由已知,为平面内的两条相交直线,所以平面 7分(Ⅱ)存在 8分连接,设,取线段AB的中点M,连接.则平面为为所求的平面. 11分由作图可知分别为的中点,所以 13分又因为因此 14分考点: 空间线面垂直垂直的判定与性质;线面平行的判定;推理论证能力2.如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为AD的中点.(1)证明:MF⊥BD;(2)若二面角A-BF-D的平面角的余弦值为,求AB的长.【答案】(1)见解析(2)【解析】(1)证明由已知得△ADF为正三角形,所以MF⊥AD,因为平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,MF⊂平面ADEF,所以MF⊥BD.(2)设AB=x,以F为原点,AF,FE所在直线分别为x轴,y轴建立如图所示的空间直角坐标系,则F(0,0,0),A(-2,0,0),D(-1,,0),B(-2,0,x),所以=(1,-,0),=(2,0,-x).因为EF⊥平面ABF,所以平面ABF的法向量可取n1=(0,1,0).设n2=(x1,y1,z1)为平面BFD的法向量,则可取n2=.因为cos〈n1,n2〉==,得x=,所以AB=.3.已知向量=(2,4,5),=(3,x,y),若∥,则() A.x=6,y=15B.x=3,y=C.x=3,y=15D.x=6,y=【答案】D【解析】∵==,∴x=6,y=,选D项.4.如图,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则()A.EF至多与A1D,AC之一垂直B.EF⊥A1D,EF⊥ACC.EF与BD1相交D.EF与BD1异面【答案】B【解析】以D点为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E(,0,),F(,,0),B(1,1,0),D1(0,0,1),=(-1,0,-1),=(-1,1,0),=(,,-),=(-1,-1,1),=-,·=·=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.故选B.5.已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,则以b,c为方向向量的两直线的夹角为________.【答案】60°【解析】由题意得(2a+b)·c=0+10-20=-10.即2a·c+b·c=-10,又∵a·c=4,∴b·c=-18,∴cos〈b,c〉===-,∴〈b,c〉=120°,∴两直线的夹角为60°.6.已知点A(1,t,-1)关于x轴的对称点为B,关于xOy平面的对称点为C,则BC中点D的坐标为________.【答案】(1,0,1)【解析】因为A(1,t,-1)关于x轴的对称点为B(1,-t,1),关于xOy平面的对称点为C(1,t,1),所以BC中点D的坐标为(,,),即D(1,0,1).7.如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为,与的交点为.(1)证明:为的中点;(2)求此四棱柱被平面所分成上下两部分的体积之比;(3)若,,梯形的面积为6,求平面与底面所成二面角大小.【答案】(1)为的中点;(2);(3).【解析】(1)利用面面平行来证明线线平行∥,则出现相似三角形,于是根据三角形相似即可得出,即为的中点.(2)连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.先表示出和,就可求出,从而.(3)可以有两种方法进行求解.第一种方法,用常规法,作出二面角.在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.第二种方法,建立空间直角坐标系,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,再利用向量求出二面角.(1)证:因为∥,∥,,所以平面∥平面.从而平面与这两个平面的交线相互平行,即∥.故与的对应边相互平行,于是.所以,即为的中点.(2)解:如图,连接.设,梯形的高为,四棱柱被平面所分成上下两部分的体积分别为和,,则.,,所以,又所以,故.(3)解法1如第(20)题图1,在中,作,垂足为,连接.又且,所以平面,于是.所以为平面与底面所成二面角的平面角.因为∥,,所以.又因为梯形的面积为6,,所以.于是.故平面与底面所成二面角的大小为.解法2如图,以为原点,分别为轴和轴正方向建立空间直角坐标系.设.因为,所以.从而,,所以,.设平面的法向量,由得,所以.又因为平面的法向量,所以,故平面与底面所成而面积的大小为.【考点】1.二面角的求解;2.几何体的体积求解.8.如图,正方形与梯形所在的平面互相垂直,,∥,,,为的中点.(1)求证:∥平面;(2)求证:平面平面;(3)求平面与平面所成锐二面角的余弦值.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作出辅助线MN,N为中点,在中,利用中位线得到,且,结合已知条件,可证出四边形ABMN为平行四边形,所以,利用线面平行的判定,得∥平面;第二问,利用面面垂直的性质,判断面,再利用已知的边长,可证出,则利用线面垂直的判定得平面BDE,再利用面面垂直的判定得平面平面;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法建立空间直角坐标系,求出平面BEC和平面ADEF的法向量,利用夹角公式计算即可.(1)证明:取中点,连结.在△中,分别为的中点,所以∥,且.由已知∥,,所以∥,且.所以四边形为平行四边形,所以∥.又因为平面,且平面,所以∥平面. 4分(2)证明:在正方形中,.又因为平面平面,且平面平面,所以平面.所以. 6分在直角梯形中,,,可得.在△中,,所以. 7分所以平面. 8分又因为平面,所以平面平面. 9分(3)(方法一)延长和交于.在平面内过作于,连结.由平面平面,∥,,平面平面=,得,于是.又,平面,所以,于是就是平面与平面所成锐二面角的平面角. 12分由,得.又,于是有.在中,.所以平面与平面所成锐二面角的余弦值为. 14分(方法二)由(2)知平面,且.以为原点,所在直线分别为轴,建立空间直角坐标系.易得.平面的一个法向量为.设为平面的一个法向量,因为,所以,令,得.所以为平面的一个法向量.12分设平面与平面所成锐二面角为.则.所以平面与平面所成锐二面角的余弦值为. 14分【考点】中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角.9.如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1);(2)证明见解析.【解析】(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,, 10分,.又,平面. 12分【考点】(1)异面直线所成的角;(2)线面垂直.10.在如图所示的几何体中,平面,∥,是的中点,,.(1)证明:∥平面;(2)求二面角的大小的余弦值.【答案】(1)详见解析;(2)【解析】(1)要证明直线和平面平行,只需证明直线和平面内的一条直线平行,取中点,连接,则,且,由已知得,且,故,则四边形是平行四边形,可证明,进而证明∥平面,或可通过建立空间直角坐标系,用坐标表示相关点的坐标,证明直线的方向向量垂直于平面的法向量即可;(2)先求半平面和的法向量的夹角的余弦值,再观察二面角是锐二面角还是钝二面角,来决定二面角的大小的余弦值的正负,从而求解.(1)因为,∥,所以平面.故以为原点,建立如图所示的空间直角坐标系,则相关各点的坐标分别是,,,,,.所以,因为平面的一个法向量为,所以,又因为平面,所以平面. 6分(2)由(1)知,,,.设是平面的一个法向量,由得,取,得,则设是平面的一个法向量,由得,取,则,则设二面角的大小为,则,故二面角的大小的余弦值为.【考点】1、直线和平面平行的判断;2、二面角的求法.11.如图,在四棱锥中,底面是直角梯形,,,平面平面,若,,,,且.(1)求证:平面;(2)设平面与平面所成二面角的大小为,求的值.【答案】(1)参考解析;(2)【解析】(1)由,所以.又,.在三角形PAO中由余弦定理可得.所以.即.又平面平面且平面平面=AD,平面PAD.所以平面.(2)由题意可得建立空间坐标系,写出相应点的坐标,平面PAD的法向量易得,用待定系数写出平面PBC的法向量,根据两向量的法向量夹角的余弦值,求出二面角的余弦值.(1)因为,,所以, 1分在中,由余弦定理,得, 3分,, 4分, 5分又平面平面,平面平面,平面,平面. 6分(2)如图,过作交于,则,,两两垂直,以为坐标原点,分别以,,所在直线为轴,建立空间直角坐标系, 7分则,,8分,, 9分设平面的一个法向量为,由得即取则,所以为平面的一个法向量. 11分平面,为平面的一个法向量.所以, 12分. 13分【考点】1.线面垂直的证明.2.二面角.3.空间坐标系的表示.4.向量的夹角.12.如图,在直三棱柱中,已知,,.(1)求异面直线与夹角的余弦值;(2)求二面角平面角的余弦值.【答案】(1),(2).【解析】(1)利用空间向量求线线角,关键在于正确表示各点的坐标. 以为正交基底,建立空间直角坐标系.则,,,,所以,,因此,所以异面直线与夹角的余弦值为.(2)利用空间向量求二面角,关键在于求出一个法向量. 设平面的法向量为,则即取平面的一个法向量为;同理可得平面的一个法向量为;由两向量数量积可得二面角平面角的余弦值为.试题解析:如图,以为正交基底,建立空间直角坐标系.则,,,,所以,,,.(1)因为,所以异面直线与夹角的余弦值为. 4分(2)设平面的法向量为,则即取平面的一个法向量为;所以二面角平面角的余弦值为. 10分【考点】利用空间向量求线线角及二面角13.如图,在正四棱锥P-ABCD中,PA=AB=,点M,N分别在线段PA和BD上,BN=BD.(1)若PM=PA,求证:MN⊥AD;(2)若二面角M-BD-A的大小为,求线段MN的长度.【答案】(1)详见解析;(2).【解析】(1)由于这是一个正四棱锥,故易建立空间坐标系,易得各点的坐标,由,得,由,得,即可求得向量的坐标:.不难计算出它们的数量积,问题得证;(2)利用在上,可设,得出点的坐标,表示出,进而求出平面的法向量n=(λ-1,0,λ),由向量的夹角公式可得,解得,从而确定出,由两点间距离公式得.试题解析:证明:连接交于点,以为轴正方向,以为轴正方向,为轴建立空间直角坐标系.因为,则.(1)由,得,由,得,所以.因为.所以. 4分(2)因为在上,可设,得.所以.设平面的法向量,由得其中一组解为,所以可取n=(λ-1,0,λ). 8分因为平面的法向量为,所以,解得,从而,所以. 10分【考点】1.线线垂直的证明;2.二面角的计算14.如图,已知四棱锥的底面的菱形,,点是边的中点,交于点,(1)求证:;(2)若的大小;(3)在(2)的条件下,求异面直线与所成角的余弦值。

高考数学复习空间向量及其运算理专题训练(含答案)

高考数学复习空间向量及其运算理专题训练(含答案)

高考数学复习空间向量及其运算理专题训练(含答案)空间中具有大小和方向的量叫做空间向量。

向量的大小叫做向量的长度或模。

以下是查字典数学网整理的空间向量及其运算理专题训练,请考生练习。

一、填空题1.已知A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17),则这四个点________(填共面或不共面).[解析] =(3,4,5),=(1,2,2),=(9,14,16),设=x+y,即(9,14,16)=(3x+y,4x+2y,5x+2y),得x=2,y=3. [答案] 共面2.(2019济南调研)在下列命题中:若向量a,b共线,则向量a,b所在的直线平行;若向量a,b所在的直线为异面直线,则向量a,b一定不共面;若三个向量a,b,c,两两共面,则向量a,b,c共面;已知空间的三个向量a,b,c.则对于空间的任意一个向量p 总存在实数x,y,z得p=xa+yb+zc.其中不正确的命题是________(填序号).[解析] a与b共线,a,b所在直线也可能重合,故不正确.根据平移向量的意义知,空间任两向量a,b都共面,故错误.三个向量a,b,c中任两个一定共面,但它们三个却不一定共面,故不正确.只有当a,b,c不共面时,空间任意一向量p才能表示为p=xa+yb+zc,故不正确.[答案]3.已知空间四边形OABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设=a,OB=b,=c,则=________.(用a,b,c表示)[解析] =-=(+)-=b+c-a.[答案] b+c-a4.(2019上海高考)若a,b,c为任意向量,mR,则下列等式不一定成立的是________.(填序号)(a+b)c=ac+b(a+b)+c=a+(b+c);m(a+b)=ma+nb;(ab)c=a(bc).[解析] (ab)c=|a||b|cos c,a(bc)=|b||c|cos a,a与c的模不一定相等且不一定同向,故错.[答案] (4)5.已知P,A,B,C四点共面且对于空间任一点O都有=2++,则=________.[解析] 根据共面向量知P,A,B,C四点共面,则=x+y+z,且x+y+z=1,所以2++=1,=-.[答案] -6.若向量a=(1,,2),b=(2,-1,2)且a与b的夹角的余弦值为,则等于________.[解析] 由已知得==,解得=-2或=.[答案] -2或7.(2019徐州模拟)已知O点为空间直角坐标系的原点,向量=(1,2,3),=(2,1,2),=(1,1,2),且点Q在直线OP上运动,当取得最小值时,的坐标是________.[解析] 点Q在直线OP上,设点Q(,,2),则=(1-,2-,3-2),=(2-,1-,2-2),=(1-)(2-)+(2-)(1-)+(3-2)(2-2)=62-16+10=62-.当=时,取得最小值-.此时=.[答案]图768.如图76所示,已知空间四边形OABC,OB=OC,且AOB=AOC=,则cos〈,〉的值为________.[解析] 设=a,=b,=c,由已知条件〈a,b〉=〈a,c〉=,且|b|=|c|,=a(c-b)=ac-ab=|a||c|-|a||b|=0,即〈〉=,所以cos〈,〉=0.[答案] 0二、解答题9.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),(1)求以,为边的平行四边形的面积;(2)若|a|=,且a分别与,垂直,求a的坐标.[解] (1)由题意可得:=(-2,-1,3),=(1,-3,2),cos〈,〉===,sin〈,〉=,以,为边的平行四边形的面积为S=2||||sin〈,〉=14=7.(2)设a=(x,y,z),由题意得解得或向量a的坐标为(1,1,1)或(-1,-1,-1).图7710.(2019张家港调研)如图77,在棱长为a的正方体ABCDA1B1C1D1中,G为BC1D的重心,(1)试证:A1,G,C三点共线;(2)试证:A1C平面BC1D.[证明] (1)=++=++,可以证明:=(++)=,∥,即A1,G,C三点共线.(2)设=a,CD=b,=c,则|a|=|b|=|c|=a,且ab=bc=ca=0,=a+b+c,=c-a,=(a+b+c)(c-a)=c2-a2=0,因此,即CA1BC1,同理CA1BD,又BDBC1=B,A1C平面BC1D.要练说,得练看。

(完整版)空间向量小题(答案)

(完整版)空间向量小题(答案)

第3章(考试时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a =(x,2y,3),b =(1,1,6),且a ∥b ,则x +y 等于( ) A.12 B.34 C.32D .2解析: ∵a ∥b ,∴x =2y =36,∴x =12,y =14.∴x +y =34.答案: B2.若a =(0,1,-1),b =(1,1,0),且(a +λb )⊥a ,则实数λ的值是( ) A .-1 B .0 C .1D .-2 解析: a +λb =(0,1,-1)+(λ,λ,0)=(λ,1+λ,-1), 因为(a +λb )·a =(λ,1+λ,-1)·(0,1,-1) =1+λ+1=2+λ=0, 所以λ=-2. 答案: D3.若向量(1,0,z )与向量(2,1,0)的夹角的余弦值为25,则z 等于( ) A .0 B .1 C .-1 D .2解析: 由题知1,0,z ·2,1,01+z 2·5=25,21+z 2·5=25,1=1+z 2,∴z =0. 答案: A4.若a =e 1+e 2+e 3,b =e 1-e 2-e 3,c =e 1-e 2,d =3e 1+2e 2+e 3({e 1,e 2,e 3}为空间的一个基底),且d =x a +y b +z c ,则x ,y ,z 分别为( )A.52,32,-1 B.52,12,1 C .-52,12,1D.52,-12,1 解析: d =x a +y b +z c =x (e 1+e 2+e 3)+y (e 1-e 2-e 3) +z (e 1-e 2).∴{ x +y +z =3,x -y -z =2,x -y =1,∴⎩⎨⎧x =52,y =32,z =-1答案: A5.若直线l 的方向向量为a =(1,-1,2),平面α的法向量为u =(-2,2,-4),则( ) A .l ∥α B .l ⊥α C .l ⊂αD .l 与α斜交解析: ∵u =-2a ,∴u ∥a , ∴l ⊥α,故选B. 答案: B6.在平行六面休ABCD -A ′B ′C ′D ′中,若AC ′→=xAB →+2yBC →+3zC ′C →,则x +y +z 等于( )A .1 B.76 C.56D.23 解析: 如图,AC ′→=AB →+BC →+CC ′→=AB →+BC →-C ′C →,所以x =1,2y =1,3z =-1, 所以x =1,y =12,z =-13,因此x +y +z =1+12-13=76.答案: B7.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成的角的余弦值为( )A.1010B.15C.31010D.35解析: 以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,1,0),E (1,0,1),C (0,1,0),D 1(0,0,2).∴BE →=(0,-1,1),CD 1→=(0,-1,2).∴cos 〈BE →,CD 1→〉=BE →·CD 1→|BE →||CD 1→|=32×5=31010.故选C.答案: C8.已知空间四个点A (1,1,1),B (-4,0,2),C (-3,-1,0),D (-1,0,4),则直线AD 与平面ABC 所成的角为( )A .60°B .45°C .30°D .90°解析: 设n =(x ,y,1)是平面ABC 的一个法向量. ∵AB →=(-5,-1,1),AC →=(-4,-2,-1), ∴{ -5x -y +1=0,-4x -2y -1=0,∴⎩⎨⎧x =12,y =-32,∴n =⎝ ⎛⎭⎪⎫12,-32,1.又AD →=(-2,-1,3),设AD 与平面ABC 所成的角为θ, 则sin θ=|AD →·n ||AD →||n |=727=12,∴θ=30°.故选C.答案: C9.在正方体ABCD -A 1B 1C 1D 1中,平面A 1BD 与平面C 1BD 所成二面角的余弦值为( ) A.12 B.13 C.32D.33解析:以点D 为原点,DA ,DC ,DD 1为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体的棱长为1,则A 1C →=(-1,1,-1),AC 1→=(-1,1,1).又可以证明A 1C ⊥平面BC 1D ,AC 1⊥平面A 1BD ,又cos 〈AC 1→,A 1C →〉=13,结合图形可知平面A 1BD 与平面C 1BD 所成二面角的余弦值为13.故选B.答案: B10.如右图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( )A. 3B.22C.23D.55解析: 因为A 1B 1∥EF ,G 在A 1B 1上,所以G 到平面D 1EF 的距离即为A 1到平面D 1EF 的距离, 即是A 1到D 1E 的距离,D 1E =52, 由三角形面积可得所求距离为1×1252=55.故选D.答案: D二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若a =(2,-3,5),b =(-3,1,-4),则|a -2b |=________. 解析: 因为a -2b =(8,-5,13), 所以|a -2b |=82+-52+132=258.答案:25812.设a =(2,-3,1),b =(-1,-2,5),d =(1,2,-7),c ⊥a ,c ⊥b ,且c ·d =10,则c =________.解析: 设c =(x ,y ,z ),根据题意得{ 2x -3y +z =0,x -2y +5z =0,x +2y -7z =10.解得⎩⎨⎧x =6512,y =154,z =512.答案: ⎝ ⎛⎭⎪⎫6512,154,512 13.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是________.解析:以C 为坐标原点,CA 、CB 、CP 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系. 则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95, 所以AB →=(-4,3,0), AP →=⎝⎛⎭⎪⎫-4,0,95,所以AP →在AB 上的投影长为|AP →·AB →||AB →|=165,所以P 到AB 的距离为d =|AP |2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.答案: 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量专题练习一、填空题(本大题共4小题,共20.0分)1.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为 ______ .【答案】π3或2π3 【解析】解:设平面α的法向量为m ⃗⃗⃗ =(1,0,-1),平面β的法向量为n ⃗ =(0,-1,1),则cos <m⃗⃗⃗ ,n ⃗ >=2⋅2=-12, ∴<m⃗⃗⃗ ,n ⃗ >=2π3. ∵平面α与平面β所成的角与<m⃗⃗⃗ ,n ⃗ >相等或互补, ∴α与β所成的角为π3或2π3.故答案为:π3或2π3.利用法向量的夹角与二面角的关系即可得出.本题考查了利用用法向量的夹角求二面角的方法,考查了计算能力,属于基础题.2.平面α经过三点A (-1,0,1),B (1,1,2),C (2,-1,0),则平面α的法向量u⃗ 可以是 ______ (写出一个即可) 【答案】(0,1,-1)【解析】解:AB ⃗⃗⃗⃗⃗ =(2,1,1),AC⃗⃗⃗⃗⃗ =(3,-1,-1), 设平面α的法向量u ⃗ =(x ,y ,z ),则{u ⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x +y +z =0u ⃗ ⋅AC⃗⃗⃗⃗⃗ =3x −y −z =0,令z =-1,y =1,x =0. ∴u ⃗ =(0,1,-1).故答案为:(0,1,-1).设平面α的法向量u ⃗ =(x ,y ,z ),则{u ⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x +y +z =0u⃗ ⋅AC ⃗⃗⃗⃗⃗ =3x −y −z =0,解出即可. 本题考查了线面垂直与数量积的关系、平面的法向量,属于基础题.3.已知AB ⃗⃗⃗⃗⃗ =(1,0,2),AC⃗⃗⃗⃗⃗ =(2,1,1),则平面ABC 的一个法向量为 ______ . 【答案】(-2,3,1)【解析】解:AB ⃗⃗⃗⃗⃗ =(1,0,2),AC ⃗⃗⃗⃗⃗ =(2,1,1),设平面ABC 的法向量为n ⃗ =(x ,y ,z ),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AC⃗⃗⃗⃗⃗ =0,即{x +2z =02x +y +z =0,取x =-2,则z =1,y =3.∴n ⃗ =(-2,3,1).故答案为:(-2,3,1).设平面ABC 的法向量为n ⃗ =(x ,y ,z ),则{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅AC⃗⃗⃗⃗⃗ =0,解出即可. 本题考查了平面的法向量、线面垂直与数量积的关系,属于基础题.4.在三角形ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1),若向量n⃗ 与平面ABC 垂直,且|n⃗ |=√21,则n ⃗ 的坐标为 ______ . 【答案】(2,-4,-1)或(-2,4,1)【解析】解:设平面ABC 的法向量为m ⃗⃗⃗ =(x ,y ,z ),则m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,且m ⃗⃗⃗ •AC⃗⃗⃗⃗⃗ =0, ∵AB ⃗⃗⃗⃗⃗ =(-1,-1,2),AC⃗⃗⃗⃗⃗ =(1,0,2), ∴{−x −y +2z =0x +2z =0, 即{x =−2z y =4z, 令z =1,则x =-2,y =4,即m ⃗⃗⃗ =(-2,4,1),若向量n⃗ 与平面ABC 垂直, ∴向量n⃗ ∥m ⃗⃗⃗ , 设n ⃗ =λm ⃗⃗⃗ =(-2λ,4λ,λ),∵|n⃗ |=√21, ∴√21•|λ|=√21,即|λ|=1,解得λ=±1,∴n ⃗ 的坐标为(2,-4,-1)或(-2,4,1),故答案为:(2,-4,-1)或(-2,4,1)根据条件求出平面的法向量,结合向量的长度公式即可得到结论.本题主要考查空间向量坐标的计算,根据直线和平面垂直求出平面的法向量是解决本题的关键.二、解答题(本大题共3小题,共36.0分)5.如图,在四棱锥P-ABCD 中,底面ABCD 为菱形,∠BAD=60°,Q 为AD 的中点.(1)若PA=PD ,求证:平面PQB ⊥平面PAD ;(2)点M 在线段PC 上,PM =13PC ,若平面PAD ⊥平面ABCD ,且PA=PD=AD=2,求二面角M-BQ-C 的大小.【答案】解:(1)证明:由题意知:PQ ⊥AD ,BQ ⊥AD ,PQ ∩BQ=Q ,∴AD ⊥平面PQB ,又∵AD⊂平面PAD ,∴平面PQB ⊥平面PAD .(2)∵PA=PD=AD ,Q 为AD 的中点,∴PQ ⊥AD ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,∴PQ ⊥平面ABCD ,以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴,建立如图所求的空间直角坐标系,由题意知:Q (0,0,0),A (1,0,0),P (0,0,√3),B (0,√3,0),C (-2,√3,0)∴QM ⃗⃗⃗⃗⃗⃗⃗ =23QP ⃗⃗⃗⃗⃗ +13QC ⃗⃗⃗⃗⃗ =(-23,√33,2√33), 设n 1⃗⃗⃗⃗ 是平面MBQ 的一个法向量,则n 1⃗⃗⃗⃗ ⋅QM ⃗⃗⃗⃗⃗⃗⃗ =0,n 1⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ =0,∴{√3y =0−23x+√33y+2√33z=0,∴n 1⃗⃗⃗⃗ =(√3,0,1),又∵n 2⃗⃗⃗⃗ =(0,0,1)平面BQC 的一个法向量,∴cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=12,∴二面角M-BQ-C 的大小是60°.【解析】(1)由题设条件推导出PQ ⊥AD ,BQ ⊥AD ,从而得到AD ⊥平面PQB ,由此能够证明平面PQB ⊥平面PAD .(2)以Q 这坐标原点,分别以QA ,QB ,QP 为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角M-BQ-C 的大小.本题考查平面与平面垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意向量法的合理运用.6.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=2,点E 是PC 的中点,F在直线PA 上.(1)若EF ⊥PA ,求PF PA 的值;(2)求二面角P-BD-E 的大小.【答案】解:(1)∵在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,∴以D 为原点,DA 为x 轴,DC 为y轴,DP 为z 轴,建立空间直角坐标系,∵PD=DC=2,点E 是PC 的中点,F在直线PA 上,∴P (0,0,2),A (2,0,0),C(0,2,0),E (0,1,1),设F (a ,0,c ),PF ⃗⃗⃗⃗⃗ =λPA⃗⃗⃗⃗⃗ ,则(a ,0,c -2)=λ(2,0,-2)=(2λ,0,-2λ),∴a =2λ,c =2-2λ,F (2λ,0,2-2λ),EF ⃗⃗⃗⃗⃗ =(2λ,-1,1-2λ),PA⃗⃗⃗⃗⃗ =(2,0,-2), ∵EF ⊥PA ,∴EF ⃗⃗⃗⃗⃗ ⋅PA ⃗⃗⃗⃗⃗ =4λ-2+4λ=0,解得λ=14, ∴PF PA =14.(2)P (0,0,2),B (2,2,0),D (0,0,0),E (0,1,1),DP ⃗⃗⃗⃗⃗ =(0,0,2),DB ⃗⃗⃗⃗⃗⃗ =(2,2,0),DE⃗⃗⃗⃗⃗⃗ =(0,1,1), 设平面BDP 的法向量n ⃗ =(x ,y ,z ),则{n ⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =2x +2y =0n⃗ ⋅DP ⃗⃗⃗⃗⃗ =2z =0,取x =1,得n ⃗ =(1,-1,0), 设平面BDE 的法向量m ⃗⃗⃗ =(x ,y ,z ),则{m ⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =2x +2y =0m ⃗⃗⃗ ⋅DE⃗⃗⃗⃗⃗⃗ =y +z =0,取x =1,得m ⃗⃗⃗ =(1,-1,1), 设二面角P-BD-E 的大小为θ,则cos θ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ |⋅|n ⃗⃗ |=2√2⋅√3=√63. ∴二面角P-BD-E 的大小为arccos √63. 【解析】(1)以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴,建立空间直角坐标系,利用向量法能求出PFPA 的值.(2)求出平面BDP 的法向量和设平面BDE 的法向量,由此能求出二面角P-BD-E 的大小.本题考查线段比值的求法,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.7.如图所示的几何体是由棱台ABC-A 1B 1C 1和棱锥D-AA 1C 1C 拼接而成的组合体,其底面四边形ABCD 是边长为2的菱形,且∠BAD=60°,BB 1⊥平面ABCD ,BB 1=2A 1B 1=2.(Ⅰ)求证:平面AB 1C ⊥平面BB 1D ;(Ⅱ)求二面角A 1-BD-C 1的余弦值.【答案】(Ⅰ)证明:∵BB 1⊥平面ABCD ,∴BB 1⊥AC ,∵ABCD 是菱形,∴BD ⊥AC ,又BD ∩BB 1=B ,∴AC ⊥平面BB 1D ,∵AC⊂平面AB 1C ,∴平面AB 1C ⊥平面BB 1D ;(Ⅱ)设BD 、AC 交于点O ,以O 为坐标原点,以OA 为x 轴,以OD 为y 轴,建立如图所示空间直角坐标系.则B(0,−1,0),D(0,1,0),B 1(0,−1,2),A(√3,0,0),A 1(√32,−12,2),C 1(−√32,−12,2), ∴BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,12,2),BD ⃗⃗⃗⃗⃗⃗ =(0,2,0),BC 1⃗⃗⃗⃗⃗⃗⃗ =(−√32,12,2).设平面A 1BD 的法向量n ⃗ =(x ,y ,z),由{n ⃗ ⋅BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x +12y +2z =0n ⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =2y =0,取z =√3,得n ⃗ =(−4,0,√3), 设平面DCF 的法向量m ⃗⃗⃗ =(x ,y ,z),由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =2y =0m ⃗⃗⃗ ⋅BC 1⃗⃗⃗⃗⃗⃗⃗ =−√32x +12y +2=0,取z =√3,得m ⃗⃗⃗ =(4,0,√3). 设二面角A 1-BD-C 1为θ,则cosθ=|m ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||m||n|=1319. 【解析】(Ⅰ)由BB 1⊥平面ABCD ,得BB 1⊥AC ,再由ABCD 是菱形,得BD ⊥AC ,由线面垂直的判定可得AC ⊥平面BB 1D ,进一步得到平面AB 1C ⊥平面BB 1D ;(Ⅱ)设BD 、AC 交于点O ,以O 为坐标原点,以OA 为x 轴,以OD 为y 轴,建立如图所示空间直角坐标系.求出所用点的坐标,得到平面A 1BD 与平面DCF 的法向量,由两法向量所成角的余弦值可得二面角A 1-BD-C 1的余弦值.本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.。

相关文档
最新文档