常用逻辑用语复习教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-1 第一章常用逻辑用语

小结与复习(教案)

【知识归类】

1.命题:能够判断真假的陈述句.

2. 四种命题的构成:原命题:若p则q;逆命题:若q则p;否命题:若p

⌝则⌝则p

⌝.

⌝;逆否命题: 若q

q

一个命题的真假与其他三个命题的真假有如下关系:

原命题为真,它的逆命题真假不一定. 原命题为真,它的否命题真假不一定.

原命题为真,它的逆否命题真命题. 逆命题为真,它的否命题真命题.

原命题与逆否命题互为逆否命题,它们的真假性是同真同假.

逆命题与否命题互为逆否命题,它们同真同假.

3. 充分条件与必要条件:

⇒:p是q充分条件; q是p必要条件;

p q

⇔是的充分必要条件,简称充要条件.

:

p q p q

4. 逻辑联接词: “且”、“或”、“非”分别用符号“∧”“∨”“⌝”表示,意义为:

或:两个简单命题至少一个成立;且:两个简单命题都成立;非:对一个命题的否定.

按要求写出下面命题构成的各复合命题,并注明复合命题的“真”与“假”.

p:矩形有外接圆; :q矩形有内切圆.

或矩形有外接圆或内切圆(真)

p q

:

且矩形有外接圆且有内切圆(假)

p q

:

非p:矩形没有外接圆(假)

5. 全称量词与全称命题:常用的全称量词有:“所有的”、“任意的”、“每一个”、“一切”、“任给”等,并用符号“∀”表示.含有全称量词的命题叫全称命题.

6. 存在量词与特称命题:常用的存在量词有:“存在一个”、“至少有一个”、

“有些”、“有的”、“某个”等,并用符号“∃”表示.含有存在量词的命题叫特

称命题. 7. 对常用的正面叙述的词语填上它们的否定词语:

正面词语 等于= 大于(>) 小于(<) 是 都是 任意的

否定词语 不等于≠ 不大于≤ 不小于≥

不是 不都是 某个

正面词语 所有的 任意两个 至多有一个

至少有一个 至多有n 个

否定词语 某些 某两个 至少有两个

一个也没有 至少有n+1个

8. 反证法的逻辑基础:

(1) p 与p ⌝的真假相异,因此,欲证p 为真,可证p ⌝为假,即将p ⌝作为条

件进行推理,如果导致矛盾,那么p ⌝必为假,从而p 为真.

(2) “,p q 若则”与“q p ⌝⌝若则”等价.欲证“,p q 若则”为真,可由假设

“q ⌝”来证明“p ⌝”,即将“q ⌝”作为条件进行推理,导致与已知条件p 矛盾.

(3)由“,p q 若则”的真假表可知,“,p q 若则”为假,当且仅当p 真q 假,

所以我们假设“p 真q 假”,即从条件p 和q ⌝出发进行推理,如果导致与公理、

定理、定义矛盾,就说明这个假设是错误的,从而就证明了“,p q 若则”是真命

题.

后两条的逻辑基础,可以概括成一句话:“否定结论,推出矛盾”.

【题型归类】

题型一:四种命题之间的关系

例1 命题“20(b a b +=∈2若a 、R ),则a=b=0”的逆否命题是( D ).

(A) ≠≠若 a b 0∈(a,b R),则20b +≠2a

(B) ≠若 a=b 0∈(a,b R),则20b +≠2a

(C) 0≠≠若 a 且b 0∈(a,b R),则20b +≠2a

(D) 0≠≠若 a 或b 0∈(a,b R),则20b +≠2a

【审题要津】命题结论中的a=b=0如何否定是关键.

解: a=b=0是a=0且b=0,否定时“且”应变为“或”,所以逆否命题为:

0≠≠若 a 或b 0∈(a,b R),则20b +≠2a ,故应选D

【方法总结】一个命题结论当条件,条件作结论得到的命题为原命题的逆否

命题.

题型二:充分、必要条件题型

例2 “,,αβγ 成等差数列”是“等式αγβsin(+)=sin2成立”的 ( A ).

(A )充分而不必要条件 (B )必要而不充分条件

(C )充要条件 (D )既不充分有不必要的条

【审题要津】,,αβγ 成等差数列,说明2αγβ+= ,问题的关键是由两个角

的正弦值相等是否一定有两个角相等.

解: 由,,αβγ 成等差数列,所以2αγβ+= ,所以αγβsin(+)=sin2成立,充

分;反之,由αγβsin(+)=sin2成立,不见得有,,αβγ 成等差数列,故应选A.

【方法总结】p q ⇒:p 是q 充分条件; q 是p 必要条件,否则:p 是q 的不充

分条件; q 是p 不必要条件.

变式练习:“1a =”是“,21a x x x

+

≥对任意的正数”的 ( A ). (A )充分而不必要条件 (B )必要而不充分条件

(C )充要条件 (D )既不充分有不必要的条件

例3 221:212;:210(0)3

x p q x x m m --≤-

≤-+-≤>已知,若p ⌝是q ⌝的必要但不充分条件,求实数m 的取值范围. 【审题要津】命题p ,q 可以化的更简,由p ⌝和q ⌝的关系可以得到p 与q 的

关系,利用集合的理论方法将问题解决.

解: 由22210x x m -+-≤得:11,(0)m x m m -≤≤+>,

{}:11,0q A x x m x m m ∴⌝=>+<->或.

{}112210,:2103

x x p B x x x -≤-≤-≤≤∴⌝=<->由-2得或. 由p ⌝是q ⌝的必要但不充分条件知:p 是q 的充分但不必要条件,即B A

⊆于是:

相关文档
最新文档