排列组合练习题与答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合习题精选

一、纯排列与组合问题:

1.从9人中选派2人参加某一活动,有多少种不同选法?

2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派法?

3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的案,那么男、女同学的人数是()

A.男同学2人,女同学6人

B.男同学3人,女同学5人

C. 男同学5人,女同学3人

D. 男同学6人,女同学2人

4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有()

A.12个

B.13个

C.14个

D.15个

2221322

选C.

二、相邻问题:

1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?

2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )

A.720

B.1440

C.2880

D.3600

答案:1.24

2448

A A= (2) 选

B 325

3251440

A A A=

三、不相邻问题:

1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任两个舞蹈节目都不相邻,有多少种不同排法?

2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?

3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有( ) A.2880 B.1152 C.48 D.144

4.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?

5.8椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?

6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?

7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?

8. 在一次文艺演出中,需给舞台上安装一排彩灯共15只,以不同的点灯式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮式是 ( )

A.28种

B.84种

C.180种

D.360种

答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C = 四、定序问题:

1. 有4名男生,3名女生。现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法?

2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不 同排法?

答案:1.7733840A A = 2.9

966

504A A =

五、分组分配问题:

1.某校高中二年级有6个班,分派3名教师任教,每名教师任教两个班,不同的安排法有多少

种?

2. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种?

3.8项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包案有多少种?

4. 6人住ABC 三个房间,每间至少住1人,有多少种不同住宿案?

5.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法?

6. 把标有a ,b ,c ,d ,e,f,g,h,8件不同纪念品平均赠给甲、乙两位同学,其中a 、b 不赠给同一个人,则不同的赠送法有 种(用数字作答)。

答案:1.

222364233390C C C A A = (2)1233

6533360C C C A = (3)312

22854222

21680C C C C A A = (4)11422231233

36546423653332323540C C C C C C A C C C A A A A ++= (5)211

13421432

2

144C C C C A A = (6)3311

22

6321222222

40C C C C A A A A ⋅=

六、相同元素问题:

1. 不定程 的正整数解的组数是 ,非负整数解的组数是 。

2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有 ( ) A.84种 B.120种 C.63种 D.301种

3.将7个相同的小球全部放入4个不同盒子中, (1)每盒至少1球的法有多少种? (2)恰有一个空盒的法共有多少种?

4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有( ) A.9种 B.12种 C.15种 D.18种

5.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种?

答案:1.3361020 , 120C C == 2.选A 6984C = 3.(1)3620C = (2)124660C C = (4)选C,2615

C =(5)6

11

462C = 七、直接与间接问题:

1.有6名男同学,4名女同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不 同选法?

12347x x x x +++=

相关文档
最新文档