数字通信系统原理第5章 信道编码(差错控制编码)
数字通信原理章 (5)
第5章 信道编码技术
5.1.2 差错控制编码的基本思想 差错控制编码的基本实现方法是在发送端给被传输的
信息附上一些监督码元,这些多余的码元与信息码元之间 以某种确定的规则相互关联。在接收端按照既定的规则校 验信息码元与监督码元之间的关系,一旦传输发生错误, 则信息码元与监督码元的关系就受到破坏,从而使接收端 可以发现错误,进而纠正错误。因此,各种编码和译码方 法是差错控制编码所要研究的问题。 5.1.3 差错控制方式
距应满足
dmin≥t+e+1 (e>t)
(5-3)
第5章 信道编码技术 图 5-2 纠错码纠错能力图示一
第5章 信道编码技术 图 5-3 纠错码纠错能力图示二
第5章 信道编码技术
5.2.3 奇偶监督码 奇偶监督码(又称为奇偶校验码)是一种最简单的检错
码,它的基本思想是在n-1位信息码元后面附加一位监督 码元,构成(n,n-1)的分组码,监督码元的作用是使码长 为n的码组中“1” 的个数保持为奇数或偶数。码组中“1” 的个数保持为奇数的编码称为奇数监督码,保持为偶数的 编码称为偶数监督码。
的一种改进形式,它不仅对每一行进行奇偶校验,同时对每 一列也进行奇偶校验。如表5-2所示的例子采用的是偶校验。
发送时,该码是按11001100、00100111、00011110、 11000000、01111011、00100111、01101001的顺序发送,而 在接收端将所接收的信号以列的形式排列,可得表5-2所示 的阵列。
(5-5)
奇偶监督码最小码距为2,无论是奇校验还是偶校验,
都只能检测出单个或奇数个错误,而不能检测出偶数个错
误,因此检错能力低,但编码效率随着n的增加而提高。
通信原理教程信道编码和差错控制课件
总结词
线性分组码是一种通过将信息位与固定数量的冗余位进行线性组合来检测和纠正错误的编码方式。
详细描述
线性分组码将信息位和冗余位组成一个更大的分组,然后使用线性方程组来描述这些位之间的关系。通过检测这些方程的满足情况,可以在一定程度上检测和纠正错误。常见的线性分组码包括汉明码和格雷码等。
差错控制
在计算机通信、网络通信等领域应用广泛,用于保证数据传输的正确性和完整性。
应用场景比较
信道编码在长距离、高噪声环境下具有优势,而差错控制更适合短距离、低噪声环境。
应用场景比较
随着通信技术的发展,信道编码技术也在不断进步,如LDPC码、Turbo码等新型编码技术的出现,提高了数据传输的可靠性和速率。
奇偶校验
总结词:高效可靠
详细描述:循环冗余校验是一种通过模2除法运算来检测错误的方法。发送方计算数据的CRC值并附加在数据后面,接收方通过同样的方式计算接收到的数据的CRC值并与附加的CRC值进行比较。如果两个值相等,则数据被认为是正确的;否则,数据被认为有错误。CRC是一种高效的差错控制方法,能够检测出大部分错误。
03
信道编码分类
线性编码
线性编码是指将输入信息序列映射为线性码字序列的过程。常见的线性编码包括奇偶校验码、循环冗余校验码等。
非线性编码
非线性编码是指将输入信息序列映射为非线性码字序列的过程。常见的非线性编码包括卷积码、交织码等。
信道编码在数据传输中广泛应用,如TCP/IP协议中的差错控制机制、无线通信中的QPSK、QAM等调制方式。
01
差错控制
在数据传输过程中,对传输的数据进行检测、纠正和恢复,以确保数据的完整性和准确性。
02
差错产生原因
通信系统中的信道编码与纠错技术
通信系统中的信道编码与纠错技术引言:信道编码与纠错技术是通信系统中非常关键的一部分。
它们通过在发送端对数据进行编码,使数据在信道中传输时能够更容易地被接收端正确解码,并通过纠错技术修复由信道传输过程中引起的错误。
本文将详细介绍信道编码与纠错技术的基本概念、原理以及应用。
一、信道编码的基本概念和原理1. 信道编码的概念信道编码是一种用于提高通信系统传输可靠性的技术。
它通过在发送端对数据进行编码,将原始数据转换成一种冗余数据,增加了数据传输的冗余度,从而使数据更具鲁棒性,减少在信道传输过程中引起的误码率。
2. 信道编码的原理信道编码的原理是通过重新组织数据位来减小出错的可能性。
最常见的信道编码方式是使用冗余比特(Redundant Bits),即在原始数据中添加额外的冗余比特。
常见的冗余编码方式包括奇偶校验码、循环冗余校验码(CRC码)等。
3. 奇偶校验码奇偶校验码是最简单的一种纠错码。
它将一个比特作为校验位,使得数据位中的1的个数为奇数或偶数。
接收端根据接收到的数据位个数来判断是否存在错误。
4. 循环冗余校验码(CRC码)循环冗余校验码是一种通过多项式除法实现的纠错码。
发送端通过对数据进行一系列运算生成CRC码,并将CRC码添加到数据帧中发送出去。
接收端同样通过一系列运算计算接收到的数据帧的CRC码,并与发送端传送的CRC码进行比较,从而判断是否存在错误。
二、纠错编码的基本概念和原理1. 纠错编码的概念纠错编码是一种能够检测和纠正数据传输过程中出现的错误的技术。
当信道中的噪声或干扰引起数据发生错误时,纠错编码能够通过冗余信息恢复原始数据,并确保数据传输的完整性和准确性。
2. 纠错编码的原理纠错编码的原理是通过添加冗余信息来提高数据的可靠性。
纠错编码可以通过循环冗余校验码(CRC码)、海明码(Hamming码)等方式来实现。
3. 海明码(Hamming码)海明码是一种常用的纠错编码技术。
它通过在原始数据中添加一定数量的冗余比特,使得接收端可以根据接收到的数据位推断出错误的位,并进行纠正。
通信系统中的信道编码与纠错码
通信系统中的信道编码与纠错码在传统的通信系统中,由于信道噪声、传输距离等因素的存在,会导致数据传输过程中出现错误。
为了提高数据传输的可靠性,减少错误率,信道编码与纠错码成为了不可或缺的关键技术。
本文将详细介绍信道编码与纠错码的概念、分类、基本原理以及实际应用,并给出相应的步骤和实例。
一、信道编码的概念与分类信道编码是指将输入数据序列变换为具有更好纠错能力的输出码序列的过程。
根据编码方式的不同,信道编码可分为系统级编码和部分编码。
系统级编码对整个传输链路进行编码,包括源编码、信道编码和解码。
而部分编码仅仅对输入数据序列进行编码,对码序列不做任何处理。
二、纠错码的概念与分类纠错码是一种特殊的信道编码,它能够在接收端将产生的错误恢复到原始数据。
纠错码根据纠错能力不同可分为前向纠错码和远程纠错码。
前向纠错码能够在接收端对错误数据进行纠正,而远程纠错码则需要依靠反馈通道与发送端进行交互。
三、信道编码与纠错码的原理信道编码和纠错码的基本原理是通过对数据进行冗余编码,以增加数据的可靠性和纠错能力。
信道编码一般采用字节级和位级两种方式进行,而纠错码则通常使用海明码、码距码和布尔码等。
当接收端检测到错误数据时,根据编码规则进行纠错操作,恢复原始数据。
四、信道编码与纠错码的实际应用信道编码与纠错码广泛应用于各种通信系统中,包括无线通信、光纤通信和卫星通信等。
在无线通信领域,信道编码与纠错码能够提高信号的抗干扰能力,减少信号衰减和多径效应对数据传输的影响。
在光纤通信中,信道编码与纠错码可以增加传输距离和传输速率,提高光纤通信的可靠性。
而在卫星通信方面,信道编码与纠错码则能够提高卫星信号的接收质量和恢复能力。
五、信道编码与纠错码的步骤1. 确定需求:根据通信系统的特点和数据传输的要求,确定所需的信道编码与纠错码的类型和参数。
2. 编码方案设计:根据所选取的信道编码与纠错码类型,设计相应的编码方案,包括码率、码长和纠错能力等。
信道编码和差错控制之间有何区别?
信道编码和差错控制之间有何区别?一、信道编码的基本概念信道编码是一种通过在数据传输中添加冗余信息来提高数据可靠性的技术。
其基本原理是将原始数据进行转换或编码,以增加冗余度,从而能够在数据传输过程中检测和纠正错误。
二、差错控制的基本概念差错控制是一种通过检测和纠正传输过程中产生的错误来确保数据的准确性的技术。
其主要目的是通过引入冗余信息,检测并纠正在传输过程中可能引起的错误,从而实现数据的可靠传输。
三、信道编码和差错控制的区别1. 目的不同:信道编码的主要目的是在数据传输过程中增加冗余信息,以提高数据的可靠性。
而差错控制的主要目的是通过使用冗余信息来检测和纠正传输过程中产生的错误。
2. 实现方式不同:信道编码通过对数据进行编码,将冗余信息添加到原始数据中,以增加信息的冗余度。
差错控制则是通过引入差错检测码或纠错码,对数据进行校验和纠正。
3. 错误处理方式不同:信道编码通常采用反馈机制,一旦出现错误,将自动进行纠错,降低了数据传输的错误率。
而差错控制则需要在接收端进行错误检测和纠正的操作,纠正功能是被动的,需要由接收端主动处理错误。
4. 效果不同:信道编码通过增加冗余信息,可以提高数据传输的可靠性,减少传输过程中出错的概率。
而差错控制可以检测和纠正传输过程中产生的错误,确保数据的准确性。
综上所述,信道编码和差错控制虽然都是为了提高数据传输的可靠性,但在目的、实现方式、错误处理方式和效果等方面存在明显的区别。
了解和掌握这些区别,有助于我们在实际应用中选择合适的技术来满足不同的需求。
通过信道编码和差错控制的结合应用,可以进一步提高数据传输的可靠性和稳定性,满足现代通信系统对数据传输质量的要求。
信道编码和纠错编码相关概念
外码 译码输出 译码
• 优点:性能较一般短码有译很码器 大改善 • 缺点:编码效率低;当R/C →1时性能迅速恶化
信道编码和纠错编码相关概念
产生背景(续)
• 软输入软输出和迭代译码
对数似然比LLR
^
L' (d)
L(d
|
x)
log
P(d P(d
1| 1|
x) x)
logPP((xx
| |
d d
信道编码和纠错编码相关概念
(2)编码原理
• 原理图
uj0 uj1 uj,k-1
...
xj0
uj-m,0
xj1
...
... ...
uj-m,1
映射
uj-m,k-1
xj,n-1
... ... ...
m stage delay
信道编码和纠错编码相关概念
编码原理(续)
• 几个例子
xj0
+
uj
uj
+
xj1
1) 1)
logPP((dd
1) 1)
L(x| d)L(d) Lc(x)L(d)
^
^
^
^
L(d) L'(d)Le(d) Lc(x)L(d)Le(d)
信道编码和纠错编码相关概念
产生背景(续)
• 软输入软输出和迭代译码
feedback for the next iteration
L(d)
Lc(x)
信道编码和纠错编码相关概念
(2)线性分组码----举例
• 奇偶监督码 • 汉明码 • BCH码 • RS码 • CRC码
信道编码和纠错编码相关概念
奇偶监督码
信道编码(差错控制编码)
行监督码元 ↓
0101101100
1
0101010010ຫໍສະໝຸດ 00011000011
0
1100011100
1
0011111111
0
0001001111
1
1110110000
1
列监督码元 0 0 1 1 1 0 0 0 0 1
0
5.2.3 群计数码
把信息码元中“1”的个数用二进制数字 表示,并作为监督码元放在信息码元的后面, 这样构成的码称为群计数码。
表5-2
国际通用的七中取三码
5.2.5 ISBN国际统一图书编号
国际统一图书编号也是一种检错码,主 要目的是为了防止书号在通信过程中发生误 传。图书编号的格式有统一的规定。
5.3 线性分组码
5.3.1 线性分组码基本概念 5.3.2 汉明码 5.3.3 对一般线性分组码的讨论
上一节介绍了一些简单编码,其中奇偶 监督码的编码原理利用了代数关系式,这类 建立在代数学基础上的编码称为代数码。
系。
图5-5 最小码距与检纠错能力的关系示意图
5.2 几种常用的检错码
5.2.1 奇偶监督码(奇偶校验码) 5.2.2 二维奇偶监督码 5.2.3 群计数码 5.2.4 恒比码 5.2.5 ISBN国际统一图书编号
5.2.1 奇偶监督码(奇偶校验码)
奇偶监督码(又称为奇偶校验码)是一 种最简单也是最基本的检错码,在计算机数 据传输中得到了广泛的应用。
第5章 信道编码(差错控制编码)
5.1 信道编码基本概念 5.2 几种常用的检错码 5.3 线性分组码 5.4 循环码 5.5 卷积码 5.6 交织编码 本章内容小结
学习要点
信源编码的概念 差错控制编码的分类及其工作原理 常用的检错码 线性分组码 循环码 卷积码 交织码
通信原理教程信道编码和差错控制PPT课件
人工智能在信道编码和差错控制中的应用
01
人工智能技术在信道编码和差错控制领域的应用逐渐
成为研究热点。
02
通过机器学习和深度学习算法,可以自动优化信道编
码方案,提高编码性能和纠错能力。
03
人工智能技术也可以用于差错控制中的信号处理和数
据恢复,例如利用神经网络进行信号去噪和恢复。
THANKS
感谢观看
包。
当接收端发现数据包丢失时, 会发送一个重传请求给发送端
。
发送端收到重传请求后,会重 新发送丢失的数据包。
ARQ通过快速重传丢失的数据 包来保证数据的可靠传输。
前向纠错(FEC)
01 FEC是一种差错纠正算法,用于在数据传 输过程中纠正错误。
02 FEC通过在数据中添加冗余信息来实现纠 错。
03
链路自适应技术
总结词
链路自适应技术可以根据信道状态自适 应地调整传输参数,以优化传输性能。
VS
详细描述
链路自适应技术是一种可以根据信道状态 自适应地调整传输参数的差错控制技术。 它通过实时监测信道状态,并根据信道质 量的好坏调整传输速率、调制方式和功率 等参数,以优化传输性能并降低误码率。 链路自适应技术可以有效地适应不同的信 道条件,提高数据传输的可靠性和效率。
02
信道编码原理
线性分组码
总结词
线性分组码是一种将信息序列分成固定长度的组,然后对每组进行线性编码的 方法。
详细描述
线性分组码通过将信息序列分成固定长度的组,然后对每组进行线性编码,以 增加信息在传输过程中的抗干扰能力。线性分组码包括汉明码、奇偶校验码等。
循环码
总结词
循环码是一类具有循环特性的线性码,其编码后的码字仍具有循环移位的性质。
差错控制编码的基本概念
随机信道、突发信道、混合信道。 对不同类型的信道应该采用不同的差错控制技术。
1.2 纠错码的分类
(1)根据码的用途,可分为检错码和纠错码。检错码以检 错为目的,不一定能纠错;而纠错码以纠错为目的,一定能 检错。
(2)根据纠错码各码组信息元和监督元的函数关系,可分 为线性码和非线性码。如果函数关系是线性的,即满足一组 线性方程式,则称为线性码,否则为非线性码。
(3)按照信息码元和监督码元之间的约束方式不同,可 以将它分为分组码和卷积码。分组码的各码元仅与本码组的 信息元有关;卷积码中的码元不仅与本码组的信息元有关, 而且还与前面若干信息元有关。
特点:适合突发信道。
3 .恒比码
码字中 1 的数目与 0 的数目保持恒定比例的码称为恒比 码。接收端只要检测接收到的码组“1”的数目是否对,就可 以知道有无错误。 例:“5中取3”恒比码,有C53 =10种不同组合,表示10个阿 拉伯数字。如表 10.2 所示。 “7中取3”恒比码,有C73 =35种不同组合,表示26个英文字 母和其他符号。 而每个汉字又是以四位十进制数来代表的。。
换
器器 器器 介 器
调制信道
解 译 解信 调 码 密宿 器 器器
编码信道
由于数字信号传输过程中受到加性干扰和乘性干扰的影
响,会产生误码。由加性干扰引起的码间干扰,通常可以采 用信道均衡、匹配滤波器、升余弦系统特性、增加发射功率、 合理选择调制/解调方法等措施,减少误码。由于乘性干扰 影响,或采用了上述方法后,仍不能有效地抑制加性干扰的 影响时, 就要采用差错控制技术。
an1 an2 a1 a0 0
信道编码和差错控制编码
信道编码和差错控制编码信道编码和差错控制编码是通信领域中的重要概念,它们有密切的联系,但并非完全等同。
信道编码是一种广义的概念,而差错控制编码是信道编码的一种特殊形式。
信道编码是一种提高数字信号传输可靠性的有效方法。
它的主要目的是在发送端的信息码元序列中加入一定的冗余度,以增加信号的抗干扰能力。
在接收端,利用这些冗余信息来检测和纠正传输过程中可能出现的错误。
信道编码可以降低误码率,提高数字通信的可靠性。
差错控制编码是信道编码的一种特殊形式,主要目的是在发送端和接收端之间实现差错检测和纠正。
根据差错控制方式的不同,差错控制编码可以分为以下三种:1. 检错重发(ARQ):在发送端发送能够检测错误的码,接收端收到通过信道传来的码后,根据编码规则判断收到的码序列中有无错误。
若发现错误,则通过反向信道把这一判决结果反馈给发端。
发端根据这些判决信号,把接收端认为有错误的信息再次传送,直到接收端认为正确为止。
这种方式需要具备双向信道。
2. 前向纠错(FEC):发送端发送能够被纠错的码,接收端收到这些码后,通过纠错译码器不仅能自动发现错误,而且能够自动纠正接收码字传输中的错误。
这种方式不需要反向信道来传递重发指令,也不存在由于反复重发而带来的时延,实时性好。
纠错设备要比检错设备复杂,纠错能力越强,编译码设备就越复杂。
3. 混合纠错:信头差错校验法(HEC)是一种混合纠错方式,它结合了ARQ和FEC的优点。
在发送端,对信息码元添加一定的校验位;在接收端,首先利用校验位进行差错检测,若发现错误,则请求重发。
这种方式可以在一定程度上减少传输错误,提高通信质量。
总结一下,信道编码是一种广义的概念,包括差错控制编码在内。
差错控制编码是信道编码的一种特殊形式,主要目的是在发送端和接收端之间实现差错检测和纠正。
信道编码和差错控制编码都是为了提高通信系统的可靠性和抗干扰能力。
差错控制编码
第3章信道编码 (2)3.1差错控制方式 (2)3.2信道编码 (3)3.2.1 差错控制编码的基本原理 (3)3.2.2 差错控制编码的分类 (4)3.2.3 差错控制编码的基本概念 (5)3.3常见的几种检错码 (7)3.3.1 奇偶校验码 (7)3.3.2 水平奇偶校验码 (8)3.3.3 水平垂直奇偶校验码 (9)3.3.4 恒比码 (9)3.3.5群计数码 (10)3.4线性分组码 (11)3.4.1 基本概念 (11)3.4.2 线性分组码的编码 (12)3.4.3 线性分组码的译码 (16)3.5循环码 (18)3.5.1 基本概念 (18)3.5.2 循环码的编码 (25)3.5.3 循环码的译码 (27)3.5.4 常见的几种循环码 (29)3.6BCH码 (30)3.7RS码 (33)3.7.1 RS码的编码 (34)3.7.2 RS码的译码 (35)3.8卷积码 (36)3.8.1 基本概念 (36)3.8.2 卷积码的图解表示 (38)3.8.3 卷积码的译码 (40)3.9几种新的编码方法 (42)3.9.1 网格编码调制(TCM) (42)3.9.2 TURBO码 (47)8.9.3LDPC码 (49)3.9.4喷泉码 (51)本章小结 (56)习题 (57)第3章信道编码在数字通信系统中,干扰会使信号产生变形,致使接收端产生误码,这将严重影响数字通信系统的可靠性。
为了提高数字通信系统的可靠性,除了可采用均衡技术来消除乘性干扰引起的码间串扰外,还可以通过对所传数字信息进行特殊的处理(即信道编码)对误码进行检错和纠错,进一步降低误码率,以满足通信的传输要求。
因此,信道编码是提高数字通信系统可靠性的有效措施之一,能提高传输质量1~2个数量级。
信道编码的目的就是通过加入冗余码来减小误码,进而提高数字通信的可靠性。
香农第二定理指出:对于一个给定的有扰信道,若该信道容量为C,则只要信道中的信息传输速率R小于C,就一定存在一种编码方式,使编码后的误码率随着码长n的增加而按指数下降到任意小的值。
通信原理教程信道编码和差错控制
.
2
➢ 编码序列的参数
n - 编码序列中总码元数量 k - 编码序列中信息码元数量
r - 编码序列中差错控制码元数量 (差错控制码元,以后称为监督码元或监督位 )
k/n - 码率 (n - k) / k = r / k - 冗余度
.
3
➢ 自动要求重发(ARQ)系统 停止等待ARQ系统
以降低系统的总误码率。
.
10
10.3 纠错编码系统的性能
10-1
10.3.1 误码率性能和带宽的关系
10-2
采用编码降低误码率
10-3
所付出的代价是带宽的增大。 Pe
10-4
10-5
10-6
• 2PSK A •E
•B 编码后 • •C
D
Eb/n0 (dB)
编码和误码率关系
.
11
10.3.2 功率和带宽的关系
a5
111
a6
000
无错码
例:若接收码组为0000011,则按上三式计算得到:S1 = 0,S2 = 1,S3 = 1。这样,由上表可知,错码位置在a3。
(0,1,1)
(1,1,1)
(0,0,0)
(1,0,0) a2
a0 (0,0,1) (1,0,1)
一般而言,码距是 n 维空间中单位正多面体顶点之间的汉 明距离。
.
8
一种编码的纠检错能力:决定于最小码距d0的值。 为了能检测e个错码,要求最小码距
d0 e1
01 A
e
23 B 汉明距离
d0
码距等于3的两个码组 为了能纠正 t 个错码,要求最小码距
ARQ和前向纠错比较:
优点 监督码元较少,即码率较高 检错的计算复杂度较低 能适应不同特性的信道
第五章差错控制与信道编码数据通信原理
PPT文档演模板
第五章差错控制与信道编码数据通信 原理
•5.1.1 差错控制
差错控制 ——通过某种方法,发现并纠正传输中出现的错误。 香农信道编码定理 ——在具有确定信道容量的有扰信道中,若以低于信道容量的速率传 输数据,则存在某种编码方案,可以使传输的误码率足够小。
•5.2.4 重复码
重复码 •——重复码只有一位信息码元,监督码元是信息码元的重复, • 所以仅有两个码字; •—— (3,1)重复码两个码字为000和111,其最小码距为3; •—— (n,1)重复码也只有全0码和全1码两个码字,其最小码距为n, • 却有2n-2个禁用码组,随着码长的增大,其冗余也变得很大; •—— 该码随码长增加,具有很强的纠检错能力, • 但其编码效率的急剧下降; •——重复码并不是一种优秀的编码方案, • 仅用于速率很低的数据通信系统中。
•本节内容提要:
•——本节将对线性分组码的特点、编译码规则以及应用情况作介 绍,主要包括以下四方面内容。
5.3.1 基本概念 5.3.2 线性分组码编码 5.3.3 汉明码 5.3.4 循环码
PPT文档演模板
第五章差错控制与信道编码数据通信 原理
•5.3.1 基本概念
•1.有限域
•——定义了加法“+”和乘法“·”两种运算的有限集合; •——q个元素的有限域又称为伽罗瓦域,记作GF(q); •——对域的逆元操作又演绎出了减法“-”和除法运算 “÷”, 域具有封闭特性
PPT文档演模板
第五章差错控制与信道编码数据通信 原理
•5.2.1 奇偶监督码
奇偶监督码 •——码重为奇数或偶数的(n , n-1)系统分组码
差错控制与信道编码数据通信原理
差错控制与信道编码数据通信原理1. 引言在数据通信中,差错控制和信道编码是两个重要的概念。
差错控制是指通过在发送端和接收端添加一些冗余信息,以检测和纠正数据传输中出现的错误。
信道编码则是通过对数据进行编码,在发送端添加一些冗余信息,以提高在有噪声或其他干扰的信道中的传输质量。
本文将介绍差错控制和信道编码的基本原理及其在数据通信中的应用。
2. 差错控制差错控制是一种在数据传输中检测和纠正错误的技术。
它可以有效地减少在数据传输过程中产生的差错,提高数据传输的可靠性。
差错控制一般包括两个主要方面:错误检测和错误纠正。
2.1 错误检测错误检测是指通过在数据中添加冗余信息,使接收端能够检测出在传输过程中是否发生了错误。
常见的错误检测方法包括纵向冗余校验(Vertical Redundancy Check,简称VRC)、循环冗余校验(Cyclic Redundancy Check,简称CRC)等。
在VRC中,数据在传输前会添加一个校验位,该校验位是通过对数据中每个字节进行奇偶校验得到的。
接收端在接收到数据后,会重新计算校验位,并与接收到的校验位进行比较,从而判断出是否存在错误。
在CRC中,数据在传输前会进行一系列的运算,生成一段校验码,并将该校验码添加到数据中。
接收端在接收到数据后,会重新进行运算,生成校验码,并与接收到的校验码进行比较,从而判断是否存在错误。
CRC具有更高的错误检测能力,广泛应用于数据通信中。
2.2 错误纠正错误纠正是指通过添加冗余信息,使接收端能够检测出并纠正在传输过程中发生的错误。
常见的错误纠正方法包括海明码(Hamming Code)和奇偶校验码等。
在海明码中,数据会经过一系列的运算,生成一段冗余码,并将该冗余码添加到数据中。
接收端在接收到数据后,会进行一系列的运算,检测并纠正数据中的错误。
海明码具有较好的纠错能力,广泛应用于存储介质和数据通信中。
在奇偶校验码中,数据在传输前会进行奇偶校验处理,生成一个校验位,并将该校验位添加到数据中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信道编码(channel coding)是为了提 高通信系统传输可靠性而进行的一种信号变 换。 有的文献或书籍也称其为差错控制编码、 纠错编码、可靠性编码或抗干扰编码等。 本章着重分析信道编码的基本概念、常 用纠错码、线性分组码、卷积码等的构造原 理及其应用。
系统码的性能大体上与非系统码相同, 但是在某些卷积码中非系统码的性能优于系 统码。 由于非系统码中的信息位已“面目全 非”,这对观察和译码都带来麻烦,因此很 少使用。 系统码的编码和译码相对简单些,因而 得到了广泛的应用。
按照纠正错误的类型不同,差错控制编 码可以分为纠正随机错误的码和纠正突发错 误的码。 前者主要用于发生零星独立错误的信道, 如卫星信道容易出现随机性错误;而后者则 用于对付以突发错误为主的信道,如短波信 道或存储系统。
接收端则按照既定的规则校验信息码元 与监督码元之间的关系,一旦传输发生差错, 信息码元与监督码元的关系就受到破坏,从 而接收端可以发现错误乃至纠正错误。 研究各种编码和译码方法是差错控制编 码所要解决的问题。 随着差错控制编码理论的完善和数字电 路技术的发展,信道编码已经成功地应用于 各种通信系统中,并且在计算机、磁记录与 存储中也得到日益广泛的应用。
按照构造差错控制编码的数学方法来分 类,差错控制编码可以分为代数码、几何码 和算术码。 代数码建立在近似代数学基础上,是目 前发展最为完善的编码。 线性码就是代数码的一个最重要的分支。
需要指出的是,在传统的数字传输系统 中,纠错编码与数字调制是各自独立设计实 现的。 目前已把编码器和调制器合成一个统一 的整体,这就是所谓的网格编码调制(TCM)。 限于篇幅,本书对此不作介绍。 各种分类方法之间的关系如图5-2所示。
图5-2 差错控制编码分类之间的相互关系示意图
5.1.4 差错控制编码基本原理
1.纠错和检错的基本原理
前已述及,差错控制包括检错和纠错,它们能够 有效地检测出通信过程中产生的差错,并进行纠正, 从而提高通信质量。 通常,原始的待传输的数据码序列本身变化是随 机的,一般不带有任何规律性。 但是,通过加进冗余码可使其具有某种规律性; 在接收端,通过对规律性的检测,就可发现传输中 的错误。 为了便于理解纠错和检错的基本原理,下面通过 一个例子来说明。
按照这些基本思想,在数字通信中,利 用差错控制编码进行差错控制的基本工作方 式一般分为三种:检错重发、前向纠错和混 合纠错,如图5-1所示。 这些方法的关键是要识别或纠正传输中 的差错。
图5-1 差错控制的基本方式
5.1.3 差错控制编码分类
差错控制编码有多种分类方法。 按照信息码元和附加的监督码元之间的 检验关系,差错控制编码可以分为线性码和 非线性码。 若信息码元与监督码元之间的关系为线 性关系,则称为线性码;反之,若两者不存 在线性关系,则称为非线性码。
按照信息码元在编码后是否保持原来的 形式不变,差错控制编码可划分为系统码和 非系统码。 在差错控制编码中,通常信息码元和监 督码元在分组内有确定的位置,一般是信息 码元集中在码组前k位,而监督码元集中在后 r = n − k位(有时两者也可以倒置)。 在系统码中,编码后的信息码元保持原 样不变,而非系统码中信息码元则改变了原 有的信号形式。
5.1 信道编码基本概念
5.1.1 5.1.2 5.1.3 5.1.4
差错控制编码概念 差错控制的基本方式 差错控制编码分类 差错控制编码基本原理
5.1.1 差错控制编码概念
差错控制编码是检错码和纠错码的总称。 具有检测差错能力的在发送端将 被传输的信息附上一些多余的码元(称为监 督码元),这些监督码元与信息码元之间以 某种确定的规则相互关联(约束)。
5.1.2 差错控制的基本方式
差错控制的根本目的是发现传输过程中 出现的差错并加以纠正。 差错控制的基本工作方式主要基于两种 基本思想:一是通过抗干扰编码,使得系统 接收端译码器能发现错误并能准确地判断错 误的位置,从而自动纠正它们;二是在系统 接收端仅能发现错误,但不知差错的确切位 置,无法自动纠错,必须通过请求发送端重 发等方式达到纠正错误的目的。
第5章 信道编码(差错控制编码)
5.1 信道编码基本概念 5.2 几种常用的检错码
5.3 线性分组码
5.4 循环码 5.5 卷积码
5.6 交织编码
本章内容小结
学习要点
信源编码的概念 差错控制编码的分类及其工作原理 常用的检错码 线性分组码 循环码 卷积码 交织码
学习重点
我们先考察由三位二进制码构成的码组: 三位二进制码有8种不同的组合,即000,001, 010,011,100,101,110,111,我们用这 些组合表示8种不同的天气,例如000(晴), 001(云),010(阴),011(雨),100 (雪),101(霜),110(雾),111(雹)。 其中任一码组在传输中若发现错误,则 将变成另一码组,由于是其中的一个码组, 这时传输错误在接收端就无法发现。
若将上述8种码组选择其中的4种作为许 用码组,例如选择 000 = 晴 011 = 云 101 = 阴 110 = 雨 用来传输信息,令其余4种作为禁用码组,即 001,010,100,111。
本来4种不同信息,用两位二进制码的不 同组合表示即可,若用三位表示,则有一位 是多余的,称之为冗余码。 用三位二进制码的不同组合表示4种信息, 在接收端可用来发现传输中的一位错误。 例如,发送的是000(晴),传输中发生 了一位错误,可能变成001(云),010(阴) 或100(雪)。
按照信息码元和监督码元之间的约束方 式不同,差错控制编码可以分为分组码和卷 积码。 在分组码中,编码后的码元序列每n位分 为一组,其中k个是信息码元,r个是附加的 监督码元,r = n − k。 监督码元仅与本码组的信息码元有关, 而与其他码组的信息码元无关。 卷积码的编码序列也划分为码组,但监 督码元不但与本组信息码有关,而且与前面 码组的信息码元也有约束关系。