(完整版)浙教版一元二次方程知识点及习题,推荐文档

合集下载

浙教版一元二次方程知识点及习题

浙教版一元二次方程知识点及习题

一元二次方程知识点及习题(一)1、认识一元二次方程:概念:只含有一个未知数,并且可以化为ax2bx c0 ( a, b, c 为常数,a0) 的整式方程叫一元二次方程。

构成一元二次方程的三个重要条件:①、方程必须是整式方程 ( 分母不含未知数的方程 ) 。

如:x22 3 0 是分式方程,所以 x22 3 0不是一元二次方程。

x x②、只含有一个未知数。

③、未知数的最高次数是 2 次。

2、一元二次方程的一般形式:一般形式: ax2bx c 0 ( a0 ) ,系数a,b,c中,a一定不能为 0, b 、c 则可以为0,其中,ax2叫做二次项, a 叫做二次项系数;bx叫做一次项,b叫做一次项系数; c叫做常数项。

任何一个一元二次方程经过整理(去括号、移项、合并同类项 ) 都可以化为一般形式。

例题:将方程 ( x 3)(3 x 1)x2化成一元二次方程的一般形式.解:( x 3)(3 x1)x2去括号,得:3x28x3x2移项、合并同类项,得:2x28x 3 0(一般形式的等号右边一定等于0)3、一元二次方程的解法:(1) 、直接开方法:(利用平方根的定义直接开平方求一元二次方程的解)形式: ( x a)2b(2)、配方法:(理论依据:根据完全平方公式: a2 2ab b2 (a b)2,将原方程配成 (x a) 2 b 的形式,再用直接开方法求解.)(3) 、公式法:(求根公式: x b b24ac )2a(4) 、分解因式法:(理论依据: a ? b0,则 a0 或 b0;利用提公因式、运用公式、十字相乘等分解因式方法将原方程化成两个因式相乘等于0 的形一:一元二次方程的定义例 1、下列方程中是关于 x 的一元二次方程的是()A 3 x122x1B 1120 x2xC ax 2bx c0D x 22x x212、若方程( m2) x|m|3mx10 是关于x的一元二次方程,则(). m2B .m=2C. m2D.m2A3、关于 x 的一元二次方程( a-1)x2+x+a2-l=0的一个根是0。

2.1 一元二次方程 浙教版八年级数学下册同步练习(含解析)

2.1 一元二次方程 浙教版八年级数学下册同步练习(含解析)

第2章一元二次方程2.1一元二次方程基础过关全练知识点1一元二次方程的相关概念1.(2022浙江诸暨浣纱中学月考)下列方程是一元二次方程的是()A.x2-y=1B.x2+2x-3=0C.x2+1=3 D.x-5y=6x2.已知关于x的方程x2+kx-10=0的一个根是2,则k=.3.若方程(a-2)x2-3ax=5是关于x的一元二次方程,则a的取值范围是.知识点2一元二次方程的一般形式4.下列方程是一元二次方程的一般形式的是()A.2x2-3x=0B.x2=1C.2x2-3x=-1D.2x2=-3x5.【新独家原创】四位同学一起做游戏,分别出一个一元二次方程,甲:x2-2x+3=0,乙:x2-2x=3,丙:3(x2-2x+1)=3,丁:3x2-x=3,当这四个方程化为一般形式时,常数项为0的赢,则这次游戏谁赢了()A.甲B.乙C.丙D.丁6.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项为0,则m等于() A.2 B.-2 C.2或-2 D.07.将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为.知识点3列一元二次方程8.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1 260张,如果全班有x名同学,根据题意,列出方程为() A.x(x+1)=1 260 B.2x(x+1)=1 260C.x(x-1)=1 260D.x(x-1)=1 260×29.【教材变式·P26合作学习(1)变式】把面积为16 m2的大长方形铁皮割成如图所示的正方形和长方形两个部分,已知长方形的一边长为 6 m,求其邻边长(只需列出方程).10.根据下列问题列一元二次方程,并将方程化为一般形式.(1)三个连续奇数的平方和是251,求这三个数;(2)一个长方形花坛,长20 m,宽8 m,在它的四周有等宽的鹅卵石路,形成一个大长方形,其面积是花坛面积的1.8倍,求路的宽度;(3)用一根长30 cm的铁丝折成一个斜边长13 cm的直角三角形,求这个三角形的直角边长.能力提升全练11.(2022浙江温州外国语学校期中,6,)关于x的一元二次方程(m-3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为()A.0B.±3C.3D.-312.若关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根为x=-1,则下列等式成立的是() A.a+b+c=0 B.a-b+c=0C.-a-b+c=0D.-a+b+c=013.若(1-m)x m2+1+3mx-2=0是关于x的一元二次方程,则该方程的一次项系数是() A.-1 B.±1 C.-3 D.±314.方程5x2-1=4x化成一般形式后,二次项系数为正,其中一次项系数,常数项分别是()A.4,-1B.4,1C.-4,-1D.-4,115.已知x1=1,x2=-3是一元二次方程ax2+bx-3=0(a≠0)的两个根,求a,b 的值.16.已知关于x的方程(k-2)x2-kx=x2-1.(1)当k为何值时,方程为一元二次方程?(2)当k为何值时,方程为一元一次方程?17.有一个三角形,面积为30 cm2,其中一边比这边上的高的4倍少1 cm,若设这边上的高为x cm,请你列出关于x的方程,并判断它是什么方程,若是一元二次方程,把它化为一般形式,并指出二次项系数、一次项系数和常数项.素养探究全练18.【代数推理】【运算能力】已知实数a是一元二次方程x2-2 022x+1=0的值.的解,求代数式a2-2 021a-a2+12 022答案全解全析基础过关全练1.B x2-y=1中含有2个未知数,不是一元二次方程,所以A不符合题意;x2+2x-3=0符合一元二次方程的定义,是一元二次方程,所以B符合题意;x2+1x =3中1x不是整式,不是一元二次方程,所以C不符合题意;x-5y=6中含有2个未知数,不是一元二次方程,所以D不符合题意.故选B.2.3解析因为关于x的方程x2+kx-10=0的一个根是2,所以22+2k-10=0,解得k=3.3.a≠2解析因为方程(a-2)x2-3ax=5是关于x的一元二次方程,所以a-2≠0,解得a≠2.4.A形如ax2+bx+c=0(a,b,c是常数,且a≠0)是一元二次方程的一般形式.只有A符合题意,故选A.5.C x2-2x+3=0的常数项为3,所以甲输了;x2-2x=3化为一般形式为x2-2x-3=0,常数项为-3,所以乙输了;3(x2-2x+1)=3化为一般形式为x2-2x=0,常数项为0,所以丙赢了;3x2-x=3化为一般形式为3x2-x-3=0,常数项为-3,所以丁输了.故选C.6.B因为常数项为0,所以m2-4=0,解得m=2或-2,当m=2时,方程(m-2)x2+5x+m2-4=0变为5x=0,不是一元二次方程,所以m=2要舍去,故m=-2.7.5,-4,1解析5x2+1=4x移项,得5x2-4x+1=0,所以将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为5,-4,1.8.C全班有x名同学,根据“都将自己的照片向本班其他同学送一张留念”可知全班一共送了x(x-1)张照片,又全班一共送了1 260张照片,所以x(x-1)=1 260.9.解析设其邻边长为x m,则可列方程为x(x+6)=16.10.解析(1)设中间的奇数为x,则(x-2)2+x2+(x+2)2=251,化为一般形式:3x2-243=0.(2)设路的宽度为x m,则(20+2x)(8+2x)=1.8×20×8,化为一般形式:4x2+56x-128=0.(3)设一条直角边长为x cm,则另一条直角边长为(17-x)cm,则x2+(17-x)2=132,化为一般形式:2x2-34x+120=0.能力提升全练11.D将(m-3)x2+m2x=9x+5整理得(m-3)x2+(m2-9)x-5=0,由题意得m-3≠0,m2-9=0,解得m=-3,故选D.12.B把x=-1代入方程ax2+bx+c=0得a-b+c=0.13.C由题意得1-m≠0且m2+1=2,解得m=-1.∴该方程的一次项系数为3m=-3.14.C5x2-1=4x化成一般形式是5x2-4x-1=0,它的一次项系数是-4,常数项是-1.故选C.15.解析 把x 1=1,x 2=-3分别代入一元二次方程ax 2+bx -3=0(a ≠0),得{a +b −3=0,9a −3b −3=0,解得{a =1,b =2.16.解析 原方程可化为(k -3)x 2-kx +1=0.(1)当k -3≠0,即k ≠3时,方程(k -2)x 2-kx =x 2-1是一元二次方程.(2)当k -3=0,-k ≠0,即k =3时,方程(k -2)x 2-kx =x 2-1是一元一次方程.17.解析 根据题意可得关于x 的方程为12x (4x -1)=30,它是一元二次方程,整理为一般形式为2x 2-12x -30=0,二次项系数为2,一次项系数为-12,常数项为-30.素养探究全练18.解析 因为实数a 是一元二次方程x 2-2 022x +1=0的解,所以a 2- 2 022a +1=0,所以a 2-2 022a =-1,a 2+1=2 022a , 所以原式=a 2-2 021a -2 022a 2 022=a 2-2 022a =-1.。

第2章 一元二次方程 知识讲解-浙教版八年级数学下册

第2章 一元二次方程 知识讲解-浙教版八年级数学下册

一元二次方程一、一元二次方程的概念1.定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.2.一般形式:)(0a 0c bx ax 2≠=++,其中2ax 是二次项,a 是二次项系数,bx 是一次项,b 是一次项系数,c 是常数项.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值就是这个一元二次方程的解,也叫作一元二次方程的根.二、一元二次方程的解法1.直接开平方法:如果方程能化成p x 2=或p n mx 2=+)(的形式,那么可得p x ±=或p n mx ±=+.2.配方法:通过配成完全平方式来解一元二次方程的方法,叫做配方法.配方的目的是为了降次,把一个一元二次方程转化成两个一元一次方程来解.3.因式分解法:通过因式分解,使一元二次方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.4.求根公式法:当0ac 4-b 2≥=△时,方程)(0a 0c bx ax 2≠=++的实数根可写成a2ac 4-b b -x 2±=的形式,这个式子叫做一元二次方程)(0a 0c bx ax 2≠=++的求根公式,把各系数直接代入公式,求出方程的根,这种解法叫做公式法.【用公式法解一元二次方程的步骤】把方程化为一般式→确定a ,b ,c 的值→计算ac 4-b 2的值→如果非负,则代入求解,如果为负数,则方程无实数根.三、一元二次方程根的判别式和根与系数的关系1.根的判别式:一般地,式子ac 4-b 2叫做一元二次方程)(0a 0c bx ax 2≠=++根的判别式,通常用“△”表示,即ac 4-b 2=△.知识梳理⎪⎩⎪⎨⎧⇔⇔⇔=方程没有实数根△<方程有两个相等实数根△=根方程有两个不相等实数△>△00 0ac 4-b 2【注】①使用时,要先将一元二次方程化为一般形式,才能确定a ,b ,c ,求出△;②当0ac 4-b 2≥=△时,方程有实数根.2.根与系数的关系(1)韦达定理:若一元二次方程)(0a 0c bx ax 2≠=++有实数根,设这两个实数根分别为1x 、2x ,可得a b -x x 21=+,ac x x 21=. (2)拓展①212212221x x 2-x x x x )(+=+; ②212121x x x x x 1x 1+=+; ③2212121a x x a x x a x a x +++=++)())((. 四、一元二次方程的应用1.增长率问题(1)增长量=原产量×增长率;(2)增产后的产量=原产量×(1+增长率).2.数字问题例:一个两位数等于其个位数字的平方,个位数字比十位数字大3,求这个两位数.3.利润问题题型:售价每上升/下降a 元,销量减少/增加b 件.问应把售价上升/下降多少元能使利润达到c 元? 解决方法:此类题型一般设售价上升/下降x 元,利用单件利润×销量=总利润为等量关系列方程解决问题.4.面积问题5.动点问题(1)求动点运动时间转化为求动点运动路程,即线段长度;(2)利用图形面积或勾股定理构造方程.。

浙教版一元二次方程知识点及习题教案资料

浙教版一元二次方程知识点及习题教案资料

浙教版一元二次方程知识点及习题一元二次方程知识点及习题(一)1、认识一元二次方程:概念:只含有一个未知数,并且可以化为ax2 bx c 0 (a,b,c为常数,a 0)的整式方程叫一元二次方程。

构成一元二次方程的三个重要条件:①、方程必须是整式方程(分母不含未知数的方程)。

女口:x2 2 3 0是分式方程,所以x2 - 3 0不是一元二次方x x程。

②、只含有一个未知数。

③、未知数的最高次数是2次。

2 、一元二次方程的一般形式:一般形式:ax2 bx c 0 ( a 0),系数a,b,c中,a一定不能为0,b、c则可以为0,其中,ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

任何一个一元二次方程经过整理(去括号、移项、合并同类项…)都可以化为一般形式。

例题:将方程(x 3)(3x 1) x2化成一元二次方程的一般形式.解:(x 3)(3x 1) x去括号,得:3x2 8x 3 x2移项、合并同类项,得:2x2 8x 3 0 (一般形式的等号右边一定等于0)3、一元二次方程的解法:(1)、直接开方法:(利用平方根的定义直接开平方求一元二次方程的解)形式:(x a)2 b(2)、配方法:(理论依据:根据完全平方公式:a2 2ab b2(a b)2,将原方程配成(x a)2 b的形式,再用直接开方法求解.)⑶、公式法:(求根公式:x —- 4aC)2a⑷、分解因式法:(理论依据:a?b 0,则a 0或b 0;利用提公因式、运用公式、十字相乘等分解因式方法将原方程化成两个因式相乘等于0的形:一元二次方程的定义例1、下列方程中是关于x的「元二次方程的是()A 3 x122x 1 1 1B2 2x xC ax2bx c0D x22x x212若方程(m2)x|m|3mx 10是关于x的一元二次方程,则()、A. m 2B.m=2 C . m 2 D.m 23、关于x的一元二次方程(a- 1)x2+ x+a2—1=0的一个根是0。

浙教版2022-2023学年数学八年级下册第2章 一元二次方程2

浙教版2022-2023学年数学八年级下册第2章 一元二次方程2

浙教版2022-2023学年数学七年级下册第2章 二元一次方程组2.1二元一次方程【知识重点】一、二元一次方程的概念像3x +4y =5这样,含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程.二、二元一次方程三个条件(1)含有两个未知数;(2)未知数的项的次数是一次;(3)都是整式.三、二元一次方程的解使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解.四、二元一次方程变形二元一次方程变形一般是用含一个未知数的代数式表示另一个未知数的形式(1)用含x 的代数式表示y ,则应变形为“y =…”的形式;(2)用含y 的代数式表示x ,则应变形为“x =…”的形式.【经典例题】【例1】下列方程中,①x+y=6;②x(y+1)=6;③3x+y=z+1;④mn+m=7,是二元一次方程的有( ) A .1个 B .2个 C .3个 D .4个【例2】若x |m−2|+(m-1)y=6是关于x ,y 的二元一次方程,则m 的值是( ) A .3 B .1 C .任意数 D .1或3【例3】已知{x =3y =1是方程mx-y=2的解,则m 的值是 .【基础训练】1.下列方程中,属于二元一次方程的是()A .x +3y =1B .x -2y =3zC .1x +1y =1D .x 2−1=0 2.下列各方程中是二元一次方程的是( )A .x 2+y 4=﹣1B .xy+z=5C .2x 2+3y ﹣5=0D .2x+1y =23.在方程12x =x +1,2x +3y =5,2y −1=x ,x −y +z =0中二元一次方程的个数为( )A .1个B .2个C .3个D .4个4.若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( )A .0B .2C .0或2D .1或25.已知{x =1y =2是方程ax-2y=6的一个解,那么a 的值是( )A .-10B .-9C .9D .106.若{x =m y =2m 是方程3x+y=-5的一个解,则m 的值是( )A .-1B .-5C .1D .57.把x =1代入方程x −2y =4…①,那么方程①变成关于 的一元一次方程. 8.已知{x =2t y =3t 是二元一次方程2x +5y −19=0的解,求t 的值.9.方程2x m+1+3y 2n =5是二元一次方程,求m ,n .10.求方程11x+5y=12的正整数解.【培优训练】 11.下列方程:①x+y =1;②2x −y 2=1;③x 2+y 2=1;④5(x+y )=7(x ﹣y );⑤x 2=1;⑥x+12=4,其中二元一次方程的是( )A .①B .①③C .①②④D .①②④⑥ 12.已知二元一次方程3x ﹣4y =1,则用含x 的代数式表示y 是( ) A .y =1−3x 4 B .y =3x−14 C .x =4y+13 D .x =1−4y 3 13.若方程 x 2a−b −3y a+b =2 是关于x 、y 的二元一次方程,则 ab = . 14.若x m−1+5y n+1=3是关于x 、y 的二元一次方程,则m = ,n = .15.若(2m −4)x |m|−1+(n +2)y n 2−3=0是关于x 、y 的二元一次方程,则m = ,n= .16.二元一次方程2x +3y =8的正整数解为 . 17.已知{x =1y =2是方程ax +by =3的解,则代数式2a +4b −2023的值为. 18.如果关于x ,y 的方程2x-y+2m-1=0有一个解是 {x =2y =−1 ,请你再写出该方程的一个整数解使得这个解中的x ,y 异号.19.已知{x =12y =4是二元一次方程2x +y =a 的一个解. (1)则a =(2)试直接写出二元一次方程2x +y =a 的所有正整数解.20.已知二元一次方程5x +3y =18(1)把方程写成用含x 的代数式表示y 的形式,即y = ;【直击中考】 21.已知{x =1y =2是方程ax+by =3的解,则代数式2a+4b ﹣5的值为 . 22.已知 {x =2y =m 是方程 3x +2y =10 的一个解,则m 的值是. 23.已知二元一次方程x +3y =14,请写出该方程的一组整数解 .。

一元二次方程综合复习(含知识点和练习)(含答案)

一元二次方程综合复习(含知识点和练习)(含答案)

一元二次方程本章内容“一元二次方程”是《课程标准》“数与代数”的重要内容,也是方程中重点内容,是学习二次函数等内容的基础,本节是本章的起始内容,主要学习下列三个内容:建立一元二次方程此内容是本节课的难点之一,在后续的内容中将继续学习,为此设计较易的[拓展应用]的例4及其变式题,[课时作业]的第6、7题。

1.一元二次方程的概念此内容是本节课的重点,是学习一元二次方程的基础,为此设计[拓展应用]的例1、例3,[当堂检测]的第1、2、4题,[课时作业]的第1—5题。

2.一元二次方程的解的含义利用方程解的含义,可求方程中的待定系数,也可由此把二次三项式变形求值,为此设计[拓展应用]的例2,[当堂检测]的第3题,[选做题]和[备选题目]的问题。

点击一:一元二次方程的定义答案:(5)针对练习。

答案:一元二次方程二次项的系数不等于零。

故m≠-3点击二:一元二次方程的一般形式元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,bx是一次项,c是常数项,a是二次项系数,b是一次项系数,c是常数.任何一个一元二次方程都可以通过整理转化成一般形式.由此,对于一个方程从形式上,应先将这个方程进行整理,看是否符合ax2+bx+c=0(a≠0)的一般形式.其中,尤其注意a≠0的条件,有了a≠0的条件,就能说明ax2+bx+c=0是一元二次方程.若不能确定a≠0,并且b≠0,则需分类讨论:当a≠0时,它是一元二次方程;当a=0时,它是一元一次方程.针对练习3:答案:原方程化为一般形式是:5x2+8x-2=0(若写成-5x2-8x+2=0,则不符合人们的习惯),其中二次项是5x2,二次项系数是5,一次项是8x,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的负号).点击三:一元二次方程的根的定义的意义一元二次方程的根的定义可以当作性质定理使用,即若有实数m是一元二次方程ax 2+bx +c =0(a ≠0)的根,则m 必然满足该方程,将m 代入该方程,便有am 2+bm +c =0(a ≠0);定义也可以当作判定定理使用,即若有数m 能使am 2+bm +c =0(a ≠0)成立,则m 一定是ax 2+bx +c =0的根.我们经常用定义法来解一些常规方法难以解决的问题,能收到事半功倍的效果.针对练习答案: m 3+2m 2+2009=m 3+ m 2+m 2+2009=m (m 2+ m )+ m 2+2009=m+ m 2+2009=1+2009=2010.类型之一:一元二次方程的定义例1.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件? 【解析】先把这个方程变为一般形式,只要二次项的系数不为0即可.【解答】由mx 2-3x=x 2-mx+2得到(m -1)x 2+(m -3)x -2=0,所以m -1≠0,即m≠1.所以关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足m≠1.【点评】要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.类型之二:考查一元二次方程一般形式一元二次方程的一般形式是ax 2+bx+c=0(a 、b 、c 是已知数,a≠0),其中a 叫做二次项系数,b 叫做一次项系数c 叫做常数项.只有将方程化为一般形式之后,才能确定它的二次项系数、一次项系数和常数项.这里特别要注意各项系数的符号。

第二章一元二次方程的复习讲义浙教版八年级数学下册

第二章一元二次方程的复习讲义浙教版八年级数学下册

一.一元二次方程的的概念 一元二次方程定义:只含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程.要判断一个方程是否是一元二次方程,必须符合以下三个标准:①整式方程.②方程中只含有一个未知数.③方程中未知数的最高次数是2.一元二次方程的一般式:20ax bx c ++=()0a ≠.其中,2ax 为二次项,其系数为a ;bx 为一次项,其系数为b ;c 为常数项.一元二次方程的根:如果0x 满足2000(0)ax bx c a ++=≠,则0x 就是方程20(0)ax bx c a ++=≠的一个根.1.判断下列方程是不是一元二次方程.⑴ 2210x kx --=(k 为常数) ⑵ 2413x =+ ⑶ 210x -=;⑷ 250x = ⑸ 20x y += ⑹ ()()2233x x +=-;⑺ 2320mx x -+=(m 为常数)2.将下列一元二次方程化成一般形式,并写出其中的二次项系数、一次项系数和常数项.⑴2216x x -=;⑵ ()()3213x x x -+=- ⑶()()()3253115x x x x ++--=;类型:方程根的应用1.如果一元二次方程()200ax bx c a ++=≠有两个根1和1-,那么a b c ++= ________,a b c -+=___________.2.已知关于x 的一元二次方程()221210m x x m -++-=有一个根是0,则m 的值为_______.3.已知m 是方程210x x --=的一个根,求代数式2552006m m -+的值.二.一元二次方程的解法方法一 直接开平方法对于形如2x m =或()()200ax b m a m +=≠≥,的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解.用直接开平方法解关于x 的方程:八下第二章一元二次方程复习(1)()211x += (2) 3x 2-12=0 (3)(2x -1)2-7=0方法二 配方法配方法:通过配方的方法把一元二次方程转化成形如()2ax b m +=的方程,再运用直接开平方的方法求解,即用配方法解方程用配方法解方程:1.220x x += 2. 2x 2-x -1=0 3. x 2=4√3x −11例1. 关于x 的二次三项式x 2+4x +9进行配方得x 2+4x +9=(x +m )2+n(1)则m= ,n= ;(2)求x 为何值时,此二次三项式的值为7?方法三 因式分解法因式分解法:因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:若0ab =,则0a =或0b =;因式分解法的一般步骤:将方程化为一元二次方程的一般形式;把方程的左边分解为两个一次因式的积,右边等于0;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解.用因式分解法解方程:⑴x 2-4x=0 ⑵ 2y 2=7y ⑶ 4x 2-12x +9=0方法四 公式法公式法的一般步骤:①把一元二次方程化为一般式;②确定a b c ,,的值;③代入24b ac -中计算其值,判断方程是否有实数根;④若240b ac -≥代入求根公式求值;否则,原方程无实数根.用公式法解方程:1.2220x x --=; 2.231x =; 3.2312x x -=-;三.一元二次方程根的判别式设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根1,2x =. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.1.不解方程,直接判断下列方程的解的情况: ⑴ 2710x x --= ⑵ ()29431x x =-2.关于x 的方程()25860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .93.若关于y 的一元二次方程24334ky y y --=+有实数根,则k 的取值范围是( )A .74k -≥且0k ≠B .74k >-且0k ≠C .74k -≥D .74k >- 4.设a b ,是方程220100x x +-=的两个实数根(a b ≠),求22a a b ++的值.5. 已知关于x 的一元二次方程x 2﹣(k +3)x +3k=0.(1)求证:不论k 取何实数,该方程总有实数根.(2)若等腰△ABC 的一边长为2,另两边长恰好是方程的两个根,求△ABC 的周长.四.一元二次方程的应用增长率问题的模式为:原来数量为A ,后来数量为B ,经过某两个时间单位,设增长率(降低率)为x . 则有关系式: 或. 。

(完整word)2018浙教版最新一元二次方程的概念及解法

(完整word)2018浙教版最新一元二次方程的概念及解法

一元二次方程的概念及解法知识点一:一元二次方程的概念(1)定义:只含有一个未知数........,并且未知数的最高次数是.........2.,这样的整式方程....就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax(3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式:02=++c bx ax 时,应满足(a ≠0)例1:下列方程①x 2+1=0;②2y(3y —5)=6y 2+4;③ax 2+bx+c=0 ;④0351=--x x,其中是一元二次方程的有 .变式:方程:①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次程的是 。

例2:一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。

变式:有一个一元二次方程,未知数为y,二次项的系数为-1,一次项的系数为3,常数项为-6,请你写出它的一般形式______________。

例3:在关于x 的方程(m —5)x m-7+(m+3)x-3=0中:当m=_____时,它是一元二次方程;当m=_____时,它是一元一次方程。

变式:已知关于x 的方程(m+1)x 2-mx+1=0,它是( ) A .一元二次方程 B .一元一次方程 C .一元一次方程或一元二次方程 D .以上答案都不对知识点二:一元二次方程的解(1)概念:使方程两边相等的未知数的值,就是方程的解。

(2)应用:利用根的概念求代数式的值;【典型例题】1。

已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( ) A .3-B .3C .0D .0或32。

浙教版2022-2023学年数学八年级下册第2章 一元二次方程2

浙教版2022-2023学年数学八年级下册第2章 一元二次方程2

浙教版2022-2023学年数学八年级下册第2章 一元二次方程(解析版)2.3一元二次方程的应用(1)【知识重点】1. 利润问题:总利润=单位利润×销售量;利润=售价-进价;利润率=进价进价售价-×100%. 2. 增长率问题:基数×(1+增长率)2=增长两次后的数量.【经典例题】【例1】疫情期间“停课不停学”,因此王老师在线上开通公众号进行公益授课,4月份该公众号关注人数为6000,6月份该公众号关注人数达到7260,若从4月份到6月份,每月该公众号关注人数的平均增长率都相同,求该公众号关注人数的月平均增长率.【答案】解:设月平均增长率为 x ,根据题意得: 6000(1+x)2=7260 ,解得: x 1=0.1 , x 2=−2.1 (舍去),故该公众号关注人数的月平均增长率为0.1,答:该公众号关注人数的月平均增长率为0.1.【解析】根据题意先求出 6000(1+x)2=7260 , 再解方程即可。

【例2】直播带货逐渐走进了人们的生活,某电商在APP 上对一款成本价为40/件的小商品进行直播销售,如果按每件60元销售,每星期可卖出300件,通过市场调查发现,每件小商品的售价每降价0.5元,每星期可多卖出10件,在顾客得实惠的前提下,电商还想获得6080元利润,每件小商品的售价应定为多少元?这时电商每月能售出小商品多少件?【答案】解:设每件商品售价应定为x 元,则每件商品的销售利润为(x −40)元,每月的销售量为300+60−x 0.5×10=1500−20x (件), 依题意得:(x −40)(1500−20x)=6080,解得x 1=56,x 2=59.∵在顾客得实惠的前提下,∴x =56,当x =56时,1500−20×56=380答:每件小商品的售价应定为56元,这时电商每月能售出小商品380件.【解析】 设每件商品售价应定为x 元,则每件商品的销售利润为(x −40)元,每月的销售量为300+60−x 0.5×10=1500−20x (件), 根据总利润=单件的利润×销售量列出方程并解之即可. 【例3】土豆(马铃薯)色泽光鲜,含淀粉高,不容易腐烂,具有比其它地方土豆多淀粉、蛋白质、维生素C 等营养成分.某合作社2020年到2022年每年种植土豆100亩,2020年土豆的平均亩产量为1000千克,2021年到2022年引进先进的种植技术,2022年土豆的平均亩产量达到1440千克.(1)若2021年和2022年土豆的平均亩产量的年增长率相同,求土豆平均亩产量的年增长率为多少?(2)2023年该合作社计划在保证土豆种植的总成本不变的情况下,增加土豆的种植面积,经过统计调查发现,2022年每亩土豆的种植成本为1200元,若土豆的种植面积每增加1亩,则每亩土豆的种植成本将下降10元,求该合作社增加土豆种植面积多少亩,才能保证土豆种植的总成本不变?【答案】(1)解:设2021年和2022年土豆平均亩产量的年增长率为x .根据题意,得1000(1+x)2=1440.解得x 1=0.2,x 2=−2.2.(不合题意,舍去)答:土豆平均亩产量的年增长率为20%.(2)解:设增加土豆种植面积a 亩.根据题意,得(100+a)(1200−10a)=1200×100.解得a 1=0(不合题意,舍去),a 2=20.答:该合作社增加土豆的种植面积20亩时,才能保证土豆种植的总成本保持不变.【解析】(1)设2021年和2022年土豆平均亩产量的年增长率为x ,根据2020年土豆的平均亩产量×(1+年增长率)2=2022年土豆平均亩产量,列出方程并解之即可;(2)根据2023年每亩土豆的实际成本×亩数=2022年的总成本列出方程并解之即可.【基础训练】1.秦杨商场去年第一季度销售利润是100万元,第二季度和第三季度的销售利润逐步攀升,第三季度销售利润是196万元.设第二季度和第三季度平均增长的百分率为x,那么所列方程正确的是()A.100(1+x)2=196B.100(1+2x)=196C.196(1−x)2=100D.100+100(1+x)+100(1+x)2=196【答案】A【解析】设秦杨商场第二、三季度的利润平均增长率为x,根据题意得:100(1+x)2=196,故A符合题意.故答案为:A.2.华为某型号手机经过2次降价后的价格是2次降价前价格的1625,则每次降价的平均百分比是()A.10%B.20%C.15%D.25%【答案】B【解析】设平均降低率为x,起始价格为m元,根据题意,得m(1−x)2=1625m,解得x=0.2或x=1.8(舍去),故答案为:B.3.随着生产技术的进步,某厂生产一件产品的成本从两年前的100元,下降到现在的64 元,求年平均下降率.设年平均下降率为x,通过解方程得到一个根为1.8,则正确的解释是()A.年平均下降率为80%,符合题意B.年平均下降率为18%,符合题意C.年平均下降率为1.8%,不符合题意D.年平均下降率为180%,不符合题意【答案】D【解析】由已知可得,平均年下降率是大于0且小于1的数,故选项D说法正确.故答案为:D.4.某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P(件)与每件的销售价x(元)满足关系:P=100−2x.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是()A.(x−30)(100−2x)=200B.x(100−2x)=200C.(30−x)(100−2x)=200D.(x−30)(2x−100)=200【答案】A【解析】设每件商品的售价应定为x元,每天要销售这种商品p件.根据题意得:(x-30)(100-2x)=200,整理得:x2-80x+1600=0.故答案为:A5.某超市销售一种商品,其进价为每千克30元,按每千克45元出售,每天可售出300千克,为让利于民,超市采取降价措施,当售价每千克降低1元时,每天销量可增加50千克,若每天的利润要达到5500元,则实际售价应定为多少元?设售价每千克降低x元,可列方程为()A.(45-30-x)(300+50x)=5500B.(x-30)(300+50x)=5500C.(x-30)[300+50(x-45)]=5500D.(45-x)(300+50x)=5500【答案】A【解析】由题意可知,当售价每千克降低x元时,每千克的售价为(45−x)元,此时每天销量为(300+ 50x)千克,则可列方程为(45−x−30)(300+50x)=5500,故答案为:A.6.陕西重型汽车有限公司(简称陕汽重卡)是由湘火炬汽车集团股份有限公司与陕西汽车集团有限责任公司合资组建的大型汽车公司企业,该企业随着生产技术的不断提升,生产的某款汽车的价格由2021年8月份的39万元/辆下降到10月份的31.59万元/辆,若月平均降价的百分率保持不变,则月平均降价率是%.【答案】10【解析】月平均降价率是x,则有39(1−x)2=31.59解得:x1=0.1=10%,x2=1.9(舍去)故答案为:10.7.2021年端午节期间,合肥某食品专卖店准备了一批粽子,每盒利润为50元,平均每天可卖300盒,经过调查发现每降价1元,可多销售10盒,为了尽快减少库存,决定采取降价措施,专卖店要想平均每天盈利16000元,设每盒粽子降价x元,可列方程.【答案】(50−x)(300+10x)=16000【解析】由题意得:(50−x)(300+10x)=16000;故答案为(50−x)(300+10x)=16000.8.随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2019年为10万只,预计2021年将达到12.1万只.求该地区2019年到2021年高效节能灯年销售量的平均增长率.【答案】解:设该地区2019年到2021年高效节能灯年销售量的平均增长率为x,依题意得:10(1+x)2=12.1解得:x1=0.1=10%,x2=−2.1(不合题意,舍去).答:该地区2019年到2021年高效节能灯年销售量的平均增长率为10%.【解析】设该地区2019年到2021年高效节能灯年销售量的平均增长率为x,则2020年为10(1+x)万只,2021年为10(1+x)2万只,然后根据预计2021年将达到12.1万只列出方程,求解即可.9.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场每天要获得利润1200元,请计算出每件衬衫应降价多少元?【答案】解:设每件衬衫应降价x元,由题意得:(40−x)(20+2x)=1200,解得:x1=10,x2=20,∵要尽快减少库存,∴每件衬衫应降价20元.【解析】设每件衬衫应降价x元,降价后每件衬衫的利润为(40-x)元,销售的数量为(20+2x)件,根据每一件衬衫的利润×销售量=1200,据此列方程,然后求出方程的解,根据要尽快减少库存,可得到符合题意的x的值.10.2022年冬季奥运会和冬季残奥会两件赛事在我国首都北京和河北省石家庄市举行,某商家购进了冬季残奥会吉祥物“雪容融”纪念品,每个的进价是30元.为了增大“雪容融”类纪念品的销售量,商家决定对“雪容融”类纪念品进行降价销售,当销售价为每个44元时,每天可以售出20个,每降价1元,每天将多售出5个.请问商家应将“雪容融”类纪念品每个降价多少元时,每天售出此类纪念品能获利400元?【答案】解:设降价x元,每天售出此类纪念品能获利400元,由题意得:(44−x−30)(20+5x)=400解得:x1=4,x2=6,答:商家应将“雪容融”类纪念品每个降价4元或6元时,每天售出此类纪念品能获利400元.【解析】设降价x元,每天售出此类纪念品能获利400元,由题意可得每个的利润为(44-x-30)元,每天的销售量为(20+5x)个,然后根据每个的利润×销售量=总利润可得关于x的方程,求解即可.【培优训练】11.某电影上映第一天票房收入约1亿元,以后每天票房收入按相同的增长率增长,三天后累计票房收入达到4亿元.若增长率为x,则下列方程正确的是()A.1+x=4B.(1+x)2=4C.1+(1+x)2=4D.1+(1+x)+(1+x)2=4【答案】D【解析】由题意得:1+(1+x)+(1+x)2=4;故答案为:D.12.某市积极响应国家的号召“房子是用来住的,不是用来炒的”,在宏观调控下,商品房成交价由今年1月份的每平方米10000元下降到3月份的每平方米8100元,且今年房价在2月份、3月份、4月份的下降率保持一致,则4月份的房价单价为每平方米().A.7300元B.7290元C.7280元D.7270元【答案】B【解析】设房价的下降率为x,根据题意得:10000(1−x)2=8100,解得:x1=0.1,x2=1.9(舍去)∴房价的下降率为10%,∴4月份的房价单价为每平方米8100(1−10%)=7290元.故答案为:B.13.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是多少?若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175B.50+50(1+x)+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)2=175【答案】B【解析】二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故第一季度总产值为:50+50(1+x)+50(1+x)2=175.故答案为:B.14."桃花流水窅然去,别有天地非人间."桃花园景点2017年三月共接待游客a万人,2018年三月比2017年三月旅游人数增加5%,已知2017年三月至2019年三月欣赏桃花的游客人数平均年增长率为8%,设2019年三月比2018年三月游客人数增加b% ,则可列方程为()A.a(1+5%)(1+b%)=a(1+8%×2)B.a(1+5%)(1+b%)=a(1+8%)2C.a(1+5%)(1+8%)=a(1+b%×2)D.a(1+5%)(1+8%)=2a(1+b%)2【答案】B【解析】2018年三月共接待游客a(1+5%) 万人,2019年三月共接待游客a(1+5%)(1+b%) 万人,又2017年三月至2019年三月欣赏桃花的游客人数平均年增长率为8%,则2019年三月共接待游客a(1+8%)2,故方程为:a(1+5%) (1+b%)=a(1+8%)2 .故答案为:B.15.某超市销售一批玩具,平均每天可售出120件,每件盈利4元,市场调查发现售价每涨1元,销售量减少10件;售价每降1元,销售量增加10件。

一元二次方程--浙教版

一元二次方程--浙教版

课时训练
1. 如果代数式4y2-2y+5的值为7,那么代数式 2y2-y+1的值等于 (A ) A.2 B.3 C.-2 D.4
2. 若a的值使得x2+4x+a=(x+2)2-1成立, 则a的值为 ( C ) A.5 B.4 C.3 D.2
3.已知m是方程x2-x-2=0的一个根,则 代数式m2-m的值等于 2 。
第二章第二课时:
一元二次方程
Wjl321 制作
要点、考点聚焦
.一元二次方程及其解法 (1)一般形式:ax2+bx+c=0(a≠0). (2)一元二次方程的四种解法: ①直接开平方法:形如 x2=k(k≥0) 的形式均可用此法求 解. ②配方法:要先化二次项系数为 1 ,然后方程两边同加 上一次项系数的一半的平方,配成左边是完全平方,右 边是常数的形式,然后用直接开平方法求解. ③公式法:这是解一元二次方程通用的方法,只要化成 2 2 b b 4ac ax +bx+c=0(a≠0)利用求根公式:x= 2a ④因式分解法. (b2-4ac≥0
课前热身
4.解方程x2+3x=10 解:x2+3x-10=0 (x+5)(x-2)=0 x=-5或x=2
典型例题解析
【例1】 若3是关于(4/3)x2-2a+1=0的一个解, 则2a的值是 ( C ) A.11 B.12 C.13 D.14
例2。若方程y2-3y+m=0的一个根是1,则它的另一个根是 2 ,m的值是 . 2
典型例题解析
【例3】选用适当的方法解下列方程: (1)x2 - 4=0 (2) (3x+ 1)2=4(x- 1)2

浙教版八下一元二次方程概念及其解法

浙教版八下一元二次方程概念及其解法

浙教版八下一元二次方程概念及其解法一、知识框架1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。

2、一元二次方程的解法(1) 直接开平方法 (也可以使用因式分解法)①2(0)x a a =≥ 解为:x =②2()(0)x a b b +=≥ 解为:x a +=③2()(0)ax b c c +=≥ 解为:ax b +=④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2) 因式分解法:提公因式分,平方公式,平方差,十字相乘法如:20(,0)()0ax bx a b x ax b +=≠⇔+= 此类方程适合用提供因此,而且其中一个根为0 290(3)(3)0x x x -=⇔+-=230(3)0x x x x -=⇔-=3(21)5(21)0(35)(21)0x x x x x ---=⇔--=注意:提取整个因式的方法非常常见,解题的过程中一定要认真观察。

22694(3)4x x x -+=⇔-=2241290(23)0x x x -+=⇔-=24120(6)(2)0x x x x --=⇔-+=225120(23)(4)0x x x x +-=⇔-+=十字相乘法非常实用,注意在解题的过程中多考虑。

(3) 配方法①二次项的系数为“1”的时候:直接将一次项的系数除于2进行配方,如下所示:2220()()022P P x Px q x q ++=⇔+-+= 示例:22233310()()1022x x x -+=⇔--+= ②二次项的系数不为“1”的时候:先提取二次项的系数,之后的方法同上:22220 (0)()0 ()()022b b b ax bx c a a x x c a x a c a a a++=≠++=⇒-⇒++= 222224()()2424b b b b ac a x c x a a a a-⇒+=-⇒+= 示例:22221111210(4)10(2)2102222x x x x x --=⇔--=⇔--⨯-=备注:实际在解方程的过程中,一般也只是针对1a =±且b 为偶数时,才使用配方法,否则可以考虑使用公式法来更加简单。

浙教版八年级下册2.2一元二次方程及解法培优讲义(含解析)

浙教版八年级下册2.2一元二次方程及解法培优讲义(含解析)

第1讲 一元二次方程及解法命题点一:利用一元二次方程的概念求值例1已知关于x 的方程(m +2)x |m |+3x =mx +1是一元二次方程,则m 的值为 2 . 例2方程(m +1)xm 2+1+(m -3)x -1=0,(1)当m 取何值时,是一元二次方程?并求出此方程的解. (2)当m 取何值时,是一元一次方程?解:(1)若方程是一元二次方程,则m 2+1=2,∴m =±1. 显然m =-1时,m +1=0,不符合题意.故m =1符合题意. 当m =1时,原方程可化简为2x 2-2x -1=0, ∴x 1=1+32,x 2=1-32.因此m =1,方程的两根为x 1=1+32,x 2=1-32. (2)当m +1=0时,解得m =-1,此时方程为-4x -1=0; 当m 2+1=1时,解得m =0,此时方程为-2x -1=0. ∴当m =-1或m =0时,方程为一元一次方程. 命题点二:用适当的方法解下列方程 例3解下列方程:(1)3(1-x )2=27. (2)4(3x +1)2=25(x -2)2. (3)x 2-12x =9 964. (4)x 2-33x +6=0.解:(1)由原方程,得(1-x )2=3,∴1-x =3或1-x =-3, 解得x 1=1-3,x 2=1+ 3.(2)移项,得4(3x +1)2-25(x -2)2=0,将方程的左边因式分解,得[2(3x +1)-5(x -2)][2(3x +1)+5(x -2)]=0, 即(x +12)(11x -8)=0.∴x +12=0或11x -8=0,解得x 1=-12,x 2=811. (3)方程两边都加上36,得x 2-12x +36=9 964+36,即(x -6)2=10 000.∴x -6=100或x -6=-100,解得x 1=106,x 2=-94. (4)对于方程x 2-33x +6=0,a =1,b =-33,c =6,b 2-4ac =(-33)2-4×1×6=3, ∴x =-(-33)±32×1.∴x 1=23,x 2= 3.【思路点拨】方程ax 2+bx +c =0(a ≠0)的常见变形: ①ax 2+bx =-c ; ②ax 2=-bx -c ; ③ax +c x=-b (x ≠0). 例4解下列方程:(1)x 2-3x =3x +1. (2)x 2+3=32x . (3)2x 2+(3m -n )x -2m 2+3mn -n 2=0. 解:(1)由原方程移项,得x 2-6x -1=0,a =1,b =-6,c =-1,b 2-4ac =(-6)2-4×1×(-1)=40. ∴x =6±2102×1.∴x 1=3+10,x 2=3-10.(2)由原方程移项,得x 2-32x +3=0,a =1,b =-32,c =3,b 2-4ac =(-32)2-4×1×3=6.∴x =32±62×1.x 1=32+62,x 2=32-62.(3)由原方程移项,得2x 2+(3m -n )x -(2m -n )(m -n )=0. 因式分解,得(x +2m -n )(2x +n -m )=0, ∴x 1=n -2m ,x 2=m -n 2.命题点三:利用一元二次方程求代数式的值 例5若a 2-3a +1=0,则a 2+1a2的值为 7 .例6若y 2+4y +2=0,则y 2y 4-2y 2+4= 110.命题点四:利用公共根求值例7一元二次方程x2-2x-54=0的某个根,也是一元二次方程x2-(k+2)x+94=0的根,求k的值.解:x2-2x-54=0,移项,得x2-2x=54.配方,得x2-2x+1=94,即(x-1)2=94.开方,得x-1=±32,解得x1=52,x2=-12.Δ=(k+2)2-9≥0,即k≥1或k≤-5.①根据题意,把x=52代入x2-(k+2)x+94=0,得⎝⎛⎭⎪⎫522-52(k+2)+9 4=0,解得k=75;②把x=-12代入x2-(k+2)x+94=0,得⎝⎛⎭⎪⎫-122+12(k+2)+94=0,解得k=-7.∵75>1,-7<-5,∴两个k均符合题意.综上所述,k的值为-7或7 5 .例8已知a是关于x的方程x2-(2k+1)x+4=0及3x2-(6k-1)x+8=0的公共解,则a= 1 ,k= 2 .命题点五:利用判别式解决问题例9已知关于x的一元二次方程mx2-(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根.(2)当m为何整数时,方程有两个不相等的正整数根?解:(1)∵该方程是关于x的一元二次方程,∴m≠0,Δ=(m+2)2-8m=m2-4m+4=(m-2)2.∵不论m为何值时,(m-2)2≥0,∴Δ≥0.∴方程总有实数根.(2)解方程,得x=m+2±(m-2)2m,x1=2m,x2=1.∵方程有两个不相等的正整数根,∴m=1或2. 当m=2时,x1=x2=1不合题意,∴m =1.例10已知关于x 的方程x 2-(2m +1)x +m (m +1)=0.(1)求证:方程总有两个不相等的实数根.(2)已知方程的一个根为x =0,求代数式(2m -1)2+(3+m )(3-m )+7m -5的值(先化简,再求值).解:(1)∵该方程是关于x 的一元二次方程x 2-(2m +1)x +m (m +1)=0, ∴Δ=(2m +1)2-4m (m +1)=1>0. ∴方程总有两个不相等的实数根. (2)∵x =0是此方程的一个根,∴把x =0代入方程中,得到m (m +1)=0. ∴(2m -1)2+(3+m )(3-m )+7m -5 =4m 2-4m +1+9-m 2+7m -5 =3m 2+3m +5 =3m (m +1)+5 =5.命题点六:解特殊方程例11(1)方程x 2-||x -3-3=0,则此方程的根是 x =-3或2 .(2)解方程:(x 2-2x )2+(x 2-2x )-2=0. 解:因式分解,得(x 2-2x -1)(x 2-2x +2)=0. ∵x 2-2x +2始终大于0, ∴x 2-2x -1=0.∴x 1=1+2,x 2=1- 2.(3)解方程:x 2-2x +2xx 2-2=3.解:设a =x 2-2x ,则原式为a +2a =3.解a +2a=3,得a 1=1,a 2=2.当a =1时,x 1=2,x 2=-1; 当a =2时,x 1=1+3,x 2=1- 3.(4)如果x 2-x -1=(x +1)0,那么x 的值为( C ) A .2或-1 B .0或1 C .2 D.-1 (5)解方程:2x 2-15x -2x 2-15x +1 998=-18. 解:令t =2x 2-15x +1 998,则t 2-t -1 980=0.因式分解,得(t -45)(t +44)=0,解得t 1=45,t 2=-44(舍去). ∴2x 2-15x -27=0.因式分解,得(2x +3)(x -9)=0, 解得x 1=-32,x 2=9.例12(1)解方程:(x 2-1)2-5(x 2-1)+4=0.解:原式=(x 2-2)(x 2-5)=0,x 2=2或x 2=5,∴x 1=2,x 2=-2,x 3=5,x 4=- 5. (2)解方程:⎝ ⎛⎭⎪⎫2x -1x 2-4x -2x =3.解:设a =2x -1x,则原式=a 2-2a =3,解得a 1=3,a 2=-1. 当a =3时,x =-1; 当a =-1时,x =13.∴x 1=-1,x 2=13.(3)方程x 2-2 012||x +2 013=0的所有实数解的和为( B ) A .-2 012 B .0 C .2 012 D .2 013 (4)方程(x 2+x -1)x +3=1的所有整数解的个数是( C ) A .2 B .3 C .4 D .51 (5)解方程:3x -5+36-3x =1. 解:令t =3x -5,得1-t =31-t 2. 由原式,得t (t -1)(t -3)=0,解得t 1=0,t 2=1,t 3=3. ∴x 1=53,x 2=2,x 3=143.课后练习1.我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是( D )A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-3 2.(2018·包头)已知关于x 的一元二次方程x 2+2x +m -2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为( B )A .6B .5C .4 D.33.设方程(x -a )(x -b )-x =0的两个根为c ,d ,则方程(x -c )(x -d )+x =0的根为( A )A .a ,bB .-a ,-bC .c ,dD .-c ,-d4.已知三个关于x 的一元二次方程ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0恰有一个公共实数根,则a 2bc +b 2ca +c 2ab的值为( D )A .0B .1C .2D .35.若x =0是一元二次方程(m -2)x 2+3x +m 2+2m -8=0的解,则m 的值为 -4 . 6.若方程x 2-8x +12=0的两个根是等腰三角形两条边的长,则该三角形的底边长为 2 . 7.若一元二次方程ax 2=b (ab >0)的两个根分别为m +1与2m -4,则ba= 4 .8.已知a ,b 是方程x 2-x -3=0的两个根,则代数式2a 3+b 2+3a 2-11a -b +5的值为 23 . 9.设a ,b 是整数,方程x 2+ax +b =0的根是4-23,则a +b = 0 . 10.已知关于x 的方程x 2-(m +2)x +2m -1=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以这两个根为边长的直角三角形的周长.解:(1)∵Δ=(m +2)2-4(2m -1)=(m -2)2+4,∴在实数范围内,m 无论取何值,(m -2)2+4≥4,即Δ≥4. ∴关于x 的方程x 2-(m +2)x +2m -1=0恒有两个不相等的实数根. (2)根据题意,得12-1×(m +2)+2m -1=0,解得m=2,则方程的另一个根为3.①当该直角三角形的两直角边是1,3时,由勾股定理得斜边的长度为10,则该直角三角形的周长为1+3+10=4+10;②当该直角三角形的直角边和斜边分别是1和3时,由勾股定理得该直角三角形的另一直角边为22,则该直角三角形的周长为1+3+22=4+2 2.11.已知实数m满足m2-3m+1=0,求代数式m2+19m2+2的值.解:∵m2-3m+1=0,∴m2=3m-1.∴m2+19m2+2=3m-1+193m-1+2=3m-1+193m+1=9m2-1+193m+1=9m2+183m+1=9(3m-1)+183m+1=9(3m+1) 3m+1=9.12.已知关于x的方程x2-x+3m=0,x2+x+m=0(m≠0),若前一个方程中有一个根是后一个方程的某个根的3倍,求实数m的值.解:设α是方程x2+x+m=0的一个根,则3α是方程x2-x+3m=0的一个根.∴α2+α+m=0,①9α2-3α+3m=0,即3α2-α+m=0.②②-①,得2α2-2α=0,解得α=0或1.当α=0时,02+0+m=0,m=0(舍去);当α=1时,12+1+m=0,m=-2.故实数m的值为-2.13.(自主招生模拟题)满足(2-m)m2-m-2=1的所有实数m的和为( A ) A.3 B.4 C.5 D.614.(自主招生真题)解方程:方程2x2+5x-2-2x2+5x-9=1的解为x1=2,x2=-92.15.(自主招生真题)设k ≥0,解方程x 3+2kx 2+k 2x +9k +27=0.解:原方程化为xk 2+(2x 2+9)k +x 3+27=0.解得k =-x -3或k =-x 2-3x +9x .∴x 1=-k -3,x 2=3-k +(k -9)(k +3)2,x 3=3-k -(k -9)(k +3)2.。

浙教版数学八年级下册第二章 一元二次方程.docx

浙教版数学八年级下册第二章 一元二次方程.docx

第二章 一元二次方程2.2一元二次方程的解法(1)一、选择题1. 一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .0 C .1和2 D .-1和22.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( ) A .x -6=-4B .x -6=4C .x +6=4D .x +6=-43.用因式分解法解下列方程,变形正确的是 ( )A .(3x -3)(3x -4)=0,于是3x -3=0或3x -4=0B .(x +3)(x -1)=1,于是x +3=1或x -1=1C .(x -2)(x -3)=6,于是x -2=2或x -3=3D .x (x +2)=0,于是x +2=04. 已知等腰三角形的底边长和腰长是方程(x -2)(x -4)=0的两个根,则这个三角形的周长是 ( )A .8B .10C .8或10D .不能确定★5. 若实数x ,y 满足(x 2+y 2+2)(x 2+y 2-1)=0,则x 2+y 2的值为 ( )A .1B .-2C .2或-1D .-2或1二、填空题6.(重庆)方程022=-x x 的根是__ __.7. 方程4x 2=(x +1)2的解是__ __.8. 方程x 2+25x =-5的解是__ __.9.(永州)已知关于x 的一元二次方程x 2+x+m 2﹣2m=0有一个实数根为﹣1,则m= ,方程的另一实根是 .★10. 如果x=﹣3是一元二次方程ax 2=c 的一个根,那么该方程的另一个根是三、解答题11. 解方程:8x 2﹣72=012. 解方程:x (x ﹣2)=x .13. 解方程:x(x﹣3)=3﹣x14. 如图,在长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用含a,b,x的代数式表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.★15.(襄阳) a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,求a的值答案1.B2.D3.A4.B5.A6. x1=0 x1=27. x1=1, x2=-2/38. x1= x2=59.010.x=311. x1=3, x2=-312. x1=0, x2=313. x1=3, x2=-114.(1) ab-4x2(2)315.a=0或a=5初中数学试卷。

浙教版九年级上册数学第三章

浙教版九年级上册数学第三章

浙教版九年级上册数学第三章一、知识框架。

1. 一元二次方程的概念。

- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

- 举例:判断方程是否为一元二次方程,如x^2+2x - 3 = 0是一元二次方程,而x^3+2x^2-x = 0不是(因为最高次数是3)。

2. 一元二次方程的解法。

- 直接开平方法。

- 适用情况:对于形如x^2=k(k≥0)的方程,可以直接开平方得到x=±√(k)。

- 示例:解方程x^2=9,解得x = 3或x=- 3。

- 配方法。

- 步骤:- 把方程化为ax^2+bx = - c的形式。

- 在方程两边加上一次项系数一半的平方((b)/(2a))^2。

- 将左边配成完全平方式(x +(b)/(2a))^2,然后用直接开平方法求解。

- 示例:解方程x^2+4x - 1 = 0。

- 移项得x^2+4x=1。

- 配方:x^2+4x + 4 = 1+4,即(x + 2)^2=5。

- 解得x=-2±√(5)。

- 公式法。

- 一元二次方程ax^2+bx + c = 0(a≠0)的求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

- 判别式Δ=b^2-4ac:- 当Δ>0时,方程有两个不相等的实数根。

- 当Δ = 0时,方程有两个相等的实数根。

- 当Δ<0时,方程没有实数根。

- 示例:解方程2x^2-3x - 2 = 0,其中a = 2,b=-3,c = - 2。

- 先计算Δ=(-3)^2-4×2×(-2)=9 + 16 = 25>0。

- 再代入求根公式x=(3±√(25))/(4)=(3±5)/(4),解得x = 2或x=-(1)/(2)。

新浙教版初二下数学第二章《一元二次方程》各节知识点及典型例题

新浙教版初二下数学第二章《一元二次方程》各节知识点及典型例题

新浙教版初二下数学第二章《一元二次方程》各节知识点及典型例题第二章一元二次方程第一节一元二次方程第二节一元二次方程的解法第三节一元二次方程的应用第四节一元二次方程根与系数的关系五大知识点:1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)3、根的判别式4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)5、一元二次方程根与系数的关系(韦达定理)【课本相关知识点】1、一元二次方程:只含有未知数,并且未和数的是2,这样的整式方程叫做一元二次方程。

2、能使一元二次方程的未知数的值叫做一元二次方程的解(或根)3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为的形式,这个形式叫做一元二次方程的一般形式。

其中ax2是,a是,bx是,b是,c 是常数项【典型例题】【题型一】应用一元二次方程的定义,求字母的值例1、当a为何值时,关于x的方程(a-1)x|a|+1+2x-7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为()A.-1 B.0 C.-1 D.-1或1例2、已知多项式ax2-bx+c,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b的值(2)直接写出关于x的一元二次方程ax2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x的方程(k2-1)x2-(k+1)x-2=0(1)当k取何值时,此方程为一元一次方程?并求出此方程的根(2)当k取何值时,此方程为一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项。

巩固练习1、下列方程中,是一元二次方程的为()A. x2= -1B. 2x(x-1)+1=2x2C. x2+3x=2xD. ax2+bx+c-02、已知关于x的方程mx2+(m-1)x-1=2x2-x,当m取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a-2)x 2+ 是一元二次方程,则a 的取值范围是4、把方程 (x-1)2-3x (x-2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a-2+231a +的值6、若关于x 的方程ax 2+bx+c=0(a ≠0)中,abc 满足a+b+c=0和a-b+c=0,则方程的根是()A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx-40=0的一个解,且a ≠b ,求2222a b a b --的值【课本相关知识点】(一)1、利用因式分解的方法实现“降次”,把解一元二次方程转化为解一元一次方程的方法,叫做因式分解法。

2.1一元二次方程浙教版数学八年级下册知识梳理+经典例题+培优练习+中考链接

2.1一元二次方程浙教版数学八年级下册知识梳理+经典例题+培优练习+中考链接

浙江版八年级数学下册第2章 一元二次方程2.1 一元二次方程【知识清单】一、一元二次方程定义:像方程3x 2+4x -6=0的等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫做一元二次方程.二、一元二次方程的解(或根):能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根).三、一元二次方程的一般形式:1.任何一个关于x 的一元二次方程都可以化为ax 2+bx +c =0的形式.2.ax 2+bx +c =0(a ,b ,c 为已知数,a ≠0)称为一元二次方程的一般形式,其中ax 2,bx ,c 分别称为二次项、一次项和常数项,a ,b 分别称为二次项系数和一次项系数.【经典例题】例题1、将方程15)3(33)32(-+=-x x x 化为一元二次方程的一般式,并写出二次项系数、一次项系数、常数项. 【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),首先把方程左右两边的分母去掉(等式的性质),再去括号,移项使方程右边变为0,然后合并同类项即可.【解答】方程15)2(33)32(-+=-x x x , 去分母,得:5x (2x -3)=9(x +2)-15去括号,得:10x 2-15x =9x +18-15,故化成一般形式是:10x 2-24x -3=0.故二次项系数、一次项系数、常数项分别为10、-24、-3. 【点评】主要考查了一元二次方程的概念.去分母、去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化,合并同类项只合并系数.例题2、关于x 的一元二次方程为0532=--b a x x ,试写出满足要求的所有a ,b 的值.【考点】一元二次方程相关概念.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.解:⎩⎨⎧==22b a 或⎩⎨⎧==12b a 或⎩⎨⎧==02b a 或⎩⎨⎧==21b a 或⎩⎨⎧==20b a . 【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a ≠0).特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.【夯实基础】1、下列各式中一定是二次根式的是( ).A. ax 2+bx +c =0B.x 2-y 2=6C. 25x =5D. x x=2 2、方程5x 2=-4x +6的二次项系数、一次项系数和常数项分别为( )A .5、-4、6B .5、4、-6C .5、4、-6D .5、-4、-63、把方程)2(2)23)(23(+-=-+x x x x 化成一元二次方程的一般形式是( )A .5x 2+4x -4=0B .5x 2-4=0C .5x 2-4x -4=0D .5x 2+4x +4=04、关于x 的一元二次方程(a -2)x 2-5x +a 2-4=0的一个根就0,则a 的值为( )A .2B .-2C .±2D .±45、已知关于x 的方程65)3(12=+--x x m m 是一元二次方程,则m6、已知关于x 的方程ax 2+bx +c =0(a ≠0),(1)若有一个根为1,则a +b +c = 若有一个根为-1,则b 与 a 、c 的关系为若有一个根为7、已知x =-4是方程x 2-mx +4=0的一个根,试化简:22816144m m m m +--+-8、试说明关于的方程(a 2-a +1)x 2-5ax -3=0无论a 取何值,该方程都是一元二次方程.【提优特训】9、若方程2019)3(2=+-x m x m 是关于x 的一元二次方程,则m 的取值范围是( ).A .m 为全体实数B .m ≥0C .m ≥0且m ≠3D .m ≠3x10、关于x 的一元二次方程为3ax 2+2bx -3=0的一个根为x =1,则2028-9a -6b 的值是( ).A .2016B .2017C .2018D .201911、已知关于x 方程ax 2+bx +c =0(a ≠0),下列关于a 、b 、c 的描述正确的是( ).A .abc =0是不可能的B .ab =0是不可能的C .a +b +c =0是不可能的D .a 2+b 2+c 2=0是不可能的12、已知方程3ax 2-bx -2=0和ax 2+2bx -10=0有共同的根-1则13、若2n (n ≠0)是关于x 的方程x 2-2mx +2n =0的根,则m -n 的值为 .14、若ax 2-6x =5是一元二次方程,则不等式5a +10>015、有一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请你根据这一问题列出方程,并化成一般形式,不必求解.16、设a ,b ,c 分别是一元二次方程的二次项系数、一次项系数、常数项,根据下列条件,写出一元二次方程.(1)a ︰b ︰c =2︰3︰4,a +b +c =18;(2)a +b +c +11=12-a +16-b +14-c ,17、已知233+---=c c a ,(1)求a 、c 的值;(2)若关于x 的一元二次方程ax 2+bx +c =0,有一个根是1,求b 的值.18、已知16+=x ,求x 3-9x +6的值.【中考链接】19、(2018•扬州)若m 是方程2x 2-3x -1=0的一个根,则6m 2﹣9m +2015的值为 .20、(2018•苏州)若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n = .21、(2018•通辽)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为 .22、 (2018•泰州)已知3x -y =3a 2-6a +9,x +y =a 2+6a -9,若x ≤y ,则实数a 的值为 .参考答案1、C2、B3、A4、B5、6、(1) a +b +c =0,(2)b =a +c ,(3)c =0. 9、C 10、D11、D 12、a =2,b =-4 13、21 14、a >-2且a ≠0 19、2018 20、-2 21、21x (x -1)=21 22、3 7、已知x =-4是方程x 2-mx +4=0的一个根,试化简:22816144m m m m +--+-解:∵x =-4是方程x 2-mx +4=0的一个根,∴(-4)2-(-4)m +4=0.解得m =-5.22816144m m m m +--+-=22)4()12(m m ---=1-2m -(4-m )=-3-m =2.8、试说明关于的方程(a 2-a +1)x 2-5ax -3=0无论a 取何值,该方程都是一元二次方程.证明:∵a 2-a+1=43)21(2≥+-a ∴无论a 取何值,a 2-a+1≥∴关于x 的方程(a 2-a +1)x 2-5ax -3=0,无论a 取何值,该方程都是一元二次方程.15、有一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请你根据这一问题列出方程,并化成一般形式,不必求解.解:设竹竿的长为x 尺.由题意得:(x -4)2+(x -2)2=x 2.即:x 2-12x +20=016、设a ,b ,c 分别是一元二次方程的二次项系数、一次项系数、常数项,根据下列条件,写出一元二次方程.(1)a ︰b ︰c =2︰3︰4,a +b +c =18;(2)a +b +c +11=12-a +16-b +14-c ,解:(1) ∵a ︰b ︰c =2︰4︰3,a +b +c =18;∴a =2x ,b =4x ,c =3x .∴2x +4x +3x =18.解得x =2.∴a =4,b =8,c =6.∴一元二次方程为2x 2+8x +6=0.(2)∵a +b +c +11=12-a +16-b +14-c , ∴011141612=+------++c b a c b a ,∴[][][]0414)1(916)1(112)1(222=+---++---++---c c b b a a , ∴0)21()31()11(222=--+--+--c b a ,1-=0,31--b =0,21--c =0.∴a =2,b =10,c =5.∴一元二次方程为2x 2+10x+5=0.x17、已知233+---=c c a ,(1)求a 、c 的值;(2)若关于x 的一元二次方程ax 2+bx +c =0,有一个根是1,求b 的值.解:(1) ∵233+---=c c a ,∴c -3≥0,3-c ≥0,∴c ≥3,c ≤3,∴c =3.∴a =2.(2)由(1)可知于x 的一元二次方程ax 2+bx +c =0为,2x 2+bx +3=0,∵这个方程有一个根是1,∴2+b +3=0,∴b =-5.18、已知16+=x ,求x 3-9x +6的值.解:∵16+=x , ∴22)6()1(=-x ,∴x 2-2x -5=0,x 3-9x +6=x 3-2x 2-5x +2x 2-4x +6=x (x 2-2x -5)+2(x 2-2x -5)+10+6=16.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.
B.
C. 2 或
D.
4、已知 a、b、c 为 ABC 的三边,且关于 x 的一元二次方程
c bx2 2a cx 3 a c 0 有两个相等的实数根,那么这个三角形是
4 。
5、如果关于 x 的方程 mx2 2m 2x m 5 0 没有实数根,那么关于 x 的方
程 m 5x2 2m 2x m 0 的实根个数是
12.已知
x 3y x2
x 32
9
0,求
x 1 的值。 y 1
13.已知关于 x 的方程 x2 2(a 1)x a2 7a 4 0 的两根为 x1 、 x2 ,且满足
x1x2
3x1
3x2
2
0
.求
(1
4 a2
) 4
a
a
2
的值。
A. m 2
B.m=2
C. m 2
D. m 2
3、关于 x 的一元二次方程(a-1)x2+x+a2-l=0 的一个根是 0。则 a 的值为(
)
A、 1
B、-l
C、 1 或-1 D、 1 2
4、若方程 m 1x2 m x 1 是关于 x 的一元二次方程,则 m 的取值范围是

5、关于 x 的方程 (a 2 a 2)x2 ax b 0 是一元二次方程的条件是( )
x
x
②、只含有一个未知数。 ③、未知数的最高次数是 2 次。
2、一元二次方程的一般形式:
一般形式: ax2 bx c 0
( a 0 ),系数 a,b, c 中, a 一定不能为
0, b 、 c 则可以为 0, 其中, ax2 叫做二次项, a 叫做二次项系数; bx 叫做一
次项, b 叫做一次项系数; c 叫做常数项。任何一个一元二次方程经过整理(去 括号、移项、合并同类项…)都可以化为一般形式。
3、 x 2 6x 8 0
五、整体法
例: a 2 b2 2 a 2 b2 6 0, 、a 2 b2
变式 1:若 x y2 x y 3 0 ,则 x+y 的值为
。 。
变式 2:若 x2 xy y 14 , y 2 xy x 28 ,则 x+y 的值为

变式 3:已知 (x 2 y 2 1)(x 2 y 2 3) 5 ,则 x 2 y 2 的值等于

四:一元二次方程中的代换思想(降次)
典例分析:
1、已知 x2 3x 2 0 ,求代数式 x 13 x2 1 的值。
x 1
2、如果 x 2 x 1 0 ,那么代数式 x3 2x 2 7 的值。
形式: (x a)2 b
(2)、配方法:(理论依据:根据完全平方公式: a2 2ab b2 (a b)2 ,将 原方程配成 (x a)2 b 的形式,再用直接开方法求解.)
(3)、公式法:(求根公式: x b b2 4ac ) 2a
(4)、分解因式法:(理论依据: a b 0 ,则 a 0 或 b 0 ;利用提公因式、 运用
3、已知 x2 y 2 4x 6 y 13 0、x、y 为实数,求 x y 的值。
4、已知 x、y 为实数,求代数式 x2 y 2 2x 4 y 7 的最小值。
三、公式法 1、 x 2 2x 8 0
2、 2x 2 5x 1 0
四、因式分解法
1、 x 2 2x
2、 (x 1)2 (2x 3)2 0

A、 k >9
B、 k <9 且 k ≠0
C、 k <9
D、 k ≤9 且
k ≠0
3、关于 x 的一元二次方程 m 1x2 2mx m 0 有实数根,则 m 的取值范围是
() A. m 0、m 1
B. m 0
C. m 1
D. m 1
4、对于任意实数 m,关于 x 的方程
A. 有两个正的实数根 C. 有一个正实数根、一个负实数根
例题:将方程 (x 3)(3x 1) x2 化成一元二次方程的一般形式.
解: (x 3)(3x 1) x2
去括号,得: 3x2 8x 3 x2
移项、合并同类项,得: 2x2 8x 3 0
(一般形式的等号右边一定等于
0)
3、一元二次方程的解法:
(1)、直接开方法:(利用平方根的定义直接开平方求一元二次方程的解)
A、 a ≠1
B、 a ≠-2
C、 a ≠1 且 a ≠-2
D、 a ≠1 或
a ≠-2
二:一元二次方程的解
1、关于 x 的一元二次方程 a 2x2 x a 2 4 0 的一个根为 0,则 a 的值为

2、已知方程 x2 kx 10 0 的一根是 2,则 k 为 。
,另一根是
3、已知 a 是 x2 3x 1 0 的根,则 2a 2 6a
2ab 3 5b (4)3c 5c2÷2 2a
1 1 8.已知 2 5x= 5,求 x 的值.
9.已知 A 1 , B 1 , 求 1 1 的值。
3 2 2 3 2 2 A1 B 1
10. 已知 a 1 1 10 ,求 a2 1 的值。a Nhomakorabeaa2
11.已知 x2 3x 1 0 ,求
x2 1 2 的值。 x2

6、已知关于 x 的方程 x2 k 2x 2k 0
(1)求证:无论 k 取何值时,方程总有实数根; (2)若等腰 ABC 的一边长为 1,另两边长恰好是方程的两个根,求 ABC 的 周长。
7.用简便方法计算. (1)-6 45×(-4 48);
(2)(-64) × (-81);
(3)1452-242;
3、已知 2 y 2 y 3 的值为 2,则 4 y 2 2 y 1 的值为

4、已知关于 x 的一元二次方程 ax2 bx c 0a 0的系数满足 a c b ,则
此方程必有一根为

三:一元二次方程的求解方法
一、直接开平方法 1 x2 9 0;
二、配方法

练习 1、如果二次三项式 x2 (2 m 1)x 16 是一个完全平方式,那么 m 的值是 _______________ 2、试用配方法说明 x2 2x 3 的值恒大于 0。

4、若方程 ax2+bx+c=0(a≠0)中,a,b,c 满足 a+b+c=0 和 a-b+c=0,则方程的根是
_______。
5、方程 a bx2 b cx c a 0 的一个根为( )
A 1
B1
C bc
D a
课堂练习: 1、已知一元二次方程 x2+3x+m=0 的一个根为 -1,则另一个根为 2、已知 x=1 是一元二次方程 x2+bx+5=0 的一个解,求 b 的值及方程的 另一个根.
一定( )
B. 有两个负的实数根 D. 没有实数根
课堂练习: 1、已知关于 x 的方程 x2 (2m 1)x m2 2 0 有两个不等实根,试判断直线
y (2m 3)x 4m 7 能否通过 A(-2,4),并说明理由。
2、若关于 x 的方程 kx2 4x 3 0 有实数根,则 k 的非负整数值是 。 3、已知关于 x 的方程 x 2 (k 2)x 6 k 0 有两个相等的正实数根,则 k 的值是( )
公式、十字相乘等分解因式方法将原方程化成两个因式相乘等于 0 的形式。
一:一元二次方程的定义
例 1、下列方程中是关于 x 的一元二次方程的是( )
A 3x 12 2x 1
B 1 120 x2 x
C ax 2 bx c 0
D x2 2x x2 1
2、若方程 (m 2)x|m| 3mx 1 0 是关于 x 的一元二次方程,则( )
一元二次方程知识点及习题(一)
1、认识一元二次方程:
概念:只含有一个未知数,并且可以化为 ax2 bx c 0 ( a,b, c 为常数,
a 0 )的整式方程叫一元二次方程。
程。
构成一元二次方程的三个重要条件:
①、方程必须是整式方程(分母不含未知数的方程)。
如: x2 2 3 0 是分式方程,所以 x2 2 3 0 不是一元二次方
3、已知 , 是方程 x2 x 1 0 的两个根,那么 4 3
.
4、已知 a
是一元二次方程
x2
3x
1
0
的一根,求
a3
2a 2
5a
1
的值。
a2 1
五:根的判别式
1、若关于 x 的方程 x2 2 k x 1 0 有两个不相等的实数根,则 k 的取值范围


2、关于 X 的方程 kx2 6x 1 0 有两个不相等的实数根,则 k 的取值范围是(
相关文档
最新文档