计数原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计数原理、排列组合(提高
考纲要求
1.理解分类加法计数原理和分步乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.
2.理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式;能解决简单的实际问题.
知识网络
考点梳理
要点一、分类加法计数原理与分步乘法计数原理
1.分类加法计数原理
2.完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2方案中有n种不同的方法。那么完成这件事共有N=m+n种不同的方法。
要点诠释:
如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论哪一类办法中哪一种方法都能完成这件事,求完成这件事的方法种数,就用分类加法计数原理;在解题时,应首先分清楚怎样才算完成这件事,有些题目在解决时需要进行分类讨论,分类时要适当地确定分类的标准,按照分类的原则进行,做到不重不漏。
2.分步乘法计数原理
完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
要点诠释:
如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,计算完成这件事的方法种数就用分步乘法计数原理。解题时,关键是分清楚完成这件事是分类还分步,在应用分步乘法计数原理时,各个步骤都完成,才算完成这件事,步骤之间互不影响,即前一步用什么方法,不影响后一步采取什么方法,运用分步乘法计数原理,要确定好次序,还要注意元素是否可以重复选取
3.两个计数原理的综合应用
(1)在解决实际问题的过程中,并不一定是单一的分类或分步,而是可能同应用计数原理,即分类时,每类的方法可能要运用分步完成的,而分步时,每步的方法数可能会采取分类的思想求。另外,具体问题是先分类后分步,还是先分步后分类,应视问题的特点而定。解题时经常是两个原理交叉在一起使用,分类的关键在于要做到“不重不漏”,分类的关键在于要正确设计分步的程序,即合理分类,准确分步。
(2)对于复杂问题,只用分类加法计数原理或分步乘法计数原理不能解决时,可以综合应用两个原理,可以先分类,在某一类中再分步,也可先分步,在某步中再分类。
要点二、排列与组合基础知识
1. 定义、公式
公
式
排列数公式组合数公式
性质(1)(2)
备
注
要点诠释:
区分某一问题是排列问题还是组合问题,关键是看所选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题,否则是组合问题。
2. 排列数、组合数计算
(1)排列数公式:右边第一个因数为n,后面每个因数都比它前面那个因数少1,最后一个因数是n-m+1,共m个
因数。公式主要用于含有字母的排列数的式子的变形与论证;
(2)组合数公式有乘积形式与阶乘形式两种,与排列数公式的应用一样,前者多用于数字计算,后者多用于对含有字母的组合数的式子进行变形和论证。
还应注意组合数公式的逆用,即由写出。
要点诠释:
在排列数、组合数计算过程要注意阶乘的运算及组合数性质的运用,注意含有排列数或组合数的方程都是在某个正整数范围内求解。
要点三、排列应用题
求排列应用题的主要方法有:
(1)直接法:把符合条件的排列数直接列式计算;
(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置;
(3)排列、组合混合问题先选后排的方法;
(4)相邻问题捆绑处理的方法。即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的内部排列;
(5)不相邻问题插空处理的方法。即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;
(6)分排问题直排处理的方法;
(7)“小集团”排列问题中先集体后局部的处理方法;
(8)定序问题除法处理的方法。即可以先不考虑顺序限制,排列后再除以定序元素的全排列;
(9)正难则反,等价转化的方法。
要点四、组合应用题
组合问题常有以下两类题型变化:
(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取。
(2)“至少”或“最多”含有几个元素的题型:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解。用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理。
考点梳理
要点五、排列、组合应用题
1. 排列、组合问题几大解题方法:
①直接法.
②排除法.
③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.
④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.
⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.
⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素
进行全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n
个元素排成一列,其中m个元素次序一定,共有种排列方法.
⑦平均法:若把kn个不同元素平均分成k组,每组n个,共有
.
⑧隔板法:常用于解正整数解组数的问题.
例如:的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为显然,故()是方程的一组解.反之,方程的任何一组解,对应着
惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数.
注意:若为非负数解的x个数,即用中等于,
有,进而转化为求a的正整数解的个数为.
2. 解排列组合的应用题要注意以下几点:
(1)仔细审题,判断是排列问题还是组合问题;要按元素的性质分类,按事件发生的过程进行分类;
(2)深入分析,严密周详,注意分清是乘还是加,要防止重复和遗漏,辩证思维,多角度分析,全面考虑;
(3)对限制条件较复杂的排列组合应用题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后用两个计数原理来解决;
(4)由于排列组合问题的答案一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决方案是否完备,有无重复和遗漏,也可采用多种不同的方法求解,看看结果是否相同。在对排列组合问题分类时,分类标