中职对口升学资料-2020年高考数学模拟试卷-8份-6

合集下载

2020年职业教育对口数学模拟试题(带答案)

2020年职业教育对口数学模拟试题(带答案)

机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.已知集合A={ x 1≤x≤4},B={ x x- a>0}, 若A ⊆ B,则实数a的取值范围为()(A) (1,+∞) (B) (-∞,1)(C) [1,+∞) (D) (-∞,1]2.已知方程x2 +a x+ (a+3)=0有实根,则a的取值范围()(A) {a|a>6或a<- 2} (B) {a| -2≤a ≤6}(C) {a|a≥6或a≤- 2} (D) {a| -2< a < 6}3. 已知圆的方程为22-+-=,则点(1,2)(3)(5)16x y-().(A)在圆内(B)在圆上(C)在圆外(D)与圆心重合4.函数y=f (x) 的图象与直线x=k (k 是常数)的交点的个数()(A) 有且只有一个(B) 至少有一个(C) 至多有一个(D) 有一个或两个5.若x > y > 0, 0 < a < 1, 则下列各式成立的是()(A) a x≤a y(B) log a x < log a y(C) a x ≥a y(D) log a x > log a y6. 设a , b是实数,则a2+b2 ≠ 0的充要条件是()(A) a ≠ 0 (B) b ≠ 0 (C) a ≠ 0且b ≠ 0 (D) a ≠ 0或b ≠ 0 7.二次函数 y =x 2+px +q 的顶点在第二象限, 则p 和q 的符号是( )(A) p > 0, q >0 (B) p > 0, q < 0 (C) p < 0, q < (D) p < 0, q > 0 8.在数列3,4,7,12,x ,28, … 中,x 的值是( ).(A ) 18 (B ) 19 (C ) 20 (D ) 21 9. 过点()1,0且平行于y 轴的直线方程是( ).(A )1y = (B ) 1y =- (C )1x = (D ) 1x =-10.在四边形ABCD 中,若→A B = 2→a ,→C D = - 3 →a , ∣→A D ∣=∣→B C ∣ , 则 四边形ABCD 是( ) (A) 平行四边形 (B)菱形 (C) 等腰梯形 (D) 矩形 11.函数y =3 sin (ω x + π3 )(ω > 0)的最小正周期为π3, 则ω等于( )(A) 3 (B) 6 (C) 52(D) 912. 若平面α∥平面β,P 是平面α、β外一点,过P 的两条直线AB 、CD 交平面α于A 、C ,交平面β于B 、D ,且P A =6,AB =2,BD =12,则AC 的长是( ). (A ) 10 (B ) 9 (C ) 8 (D ) 713. 若双曲线的焦点在x 轴上,并且6a =、2b =,则双曲线的标准方程为( ). (A) 221364x y -= (B ) 221436x y -= (C ) 22162x y -= (D ) 22126x y -=14. 某数学兴趣小组成员的数学中考成绩如下:116 99 108 93 100 111 98 95 106 113 若102分以上(包括102)为优秀, 则优秀率为( ).(A ) 0.30 (B ) 0.40 (C ) 0.50 (D ) 0.60 15.0.3()log (2)f x x =,若()0f a =,则实数a 的值是( ).(A )16 (B ) 1 (C ) 0 (D ) 1216. 抛甲、乙两粒骰子,甲骰子点数不小于乙骰子点数的概率是( ). (A )512 (B ) 12 (C ) 712 (D ) 2317. 若椭圆的方程为224312x y +=,则它的焦点坐标为( ). (A ) ()()1,01,0-、 (B ) ()()0,10,1-、(C ) ((0,、 (D ))()、18.有四条线段,长度分别是2cm ,3cm ,4cm ,5cm ,从中任取两条, 长度之和不小于8cm 的概率是( ).(A) 14(B) 12(C) 13(D) 119.不等式 | 3- 2x | ≥ 5 的解集是( )(A) [-1, 4 ] (B) (- ∞, - 1]∪[ 4,+∞) (C) (- ∞, - 4)∪[ 1,+∞) (D) [- 4, 1]20.已知f (x )是奇函数,且x ≥ 0时,f (x )= 2x -x 2,则当x < 0时,f (x ) 的解析式为( )(A) f (x ) = x 2+2x (B) f (x ) = - x 2- 2x (C) f (x ) = x 2- 2x (D) f (x ) = - x 2+2x 21.设函数log ()4a x f x =,且1(16)2f =,则a 的值为( ). (A ) 4 (B ) 8 (C )18(D ) 1422.已知∣→a ∣= 4,→b 在 →a 方向上的射影的数量为- 3,则 →a ·→b =( ) (A) - 12 (B) - 7 (C) - 34 (D) 3423. 若抛物线的焦点在x 轴正半轴上,焦点到准线的距离是12,则它的 标准方程是( ).(A ) 2y x =- (B ) 2y x = (C ) 2x y =- (D ) 2x y = 24.5人参加4项比赛,每人限报一项,报名方法有( )(A) 45 (B) 54 (C) 20 (D) 25 25.函数y = 2sin 2x +4sin x +2 的最大值和最小值分别为( )(A) 6, 0 (B) 6, - 1 (C) 8, 0 (D) 8, - 1 26.等差数列前10项和1060S =,则110a a +等于( ).(A )10 (B ) 11 (C ) 12 (D ) 13 27. 函数()f x 在()5,5-上是增函数,下列选项错误的是( ).(A ) (2)(0)f f ->(B ) (1)(1)f f -< (C ) (2)(3)f f < (D ) (0)(4)f f < 28.△ABC 中:AB =10,S △= 160, 则边AC 的最小值为( )(A) 32 (B) 16 (C) 8 (D) 16 3 29.函数22y x x =+与22y x x =-的图像( ).(A ) 关于x 轴对称 (B ) 关于y 轴对称(C ) 关于原点对称 (D ) 关于x 轴和y 轴都不对称 30.在等比数列{a n }中,a 1+ a 2=30,a 3+ a 4=120,那么a 5+ a 6 =( ) (A) 210 (B) 240 (C) 480 (D) 700第Ⅱ卷(非选择题,共40分)二、填空题(本大题共4小题,每小题3分,共12分)31. 某超市大米3.5元/千克,现设x表示购买大米的重量(千克),y表示应付款数(元),将,x y 的函数关系用列表法表示为:32.若正四棱锥的体积为12,底面对角线的长为_____.33. 若圆的方程222230x y by b+--=,则圆心坐标为_______,半径为_______.34.已知t anα是方程x2-2x-3=0的一个根,且α是第一象限的角,则cosα·tanα= . 三、解答题(本大题共4小题,共28分)35. (7分)设二次函数的图象的顶点是(-2, 32)与x轴的两个交点之间的距离是6,求这个二次函数的解析式.36. (7分) 角α.37.(7分) 如图,正三棱柱ABC —A 1B 1C 1的底面边长为a ,在侧棱BB 1上取BD =2a,在侧棱CC 1上截取CE =a ,过A 、D 、E 作棱柱的截面,试证明截面ADE 与侧面ACC 1A 1垂直。

中职数学 2024年湖南省对口招生高考数学模拟试卷

中职数学 2024年湖南省对口招生高考数学模拟试卷

2024年湖南省对口招生高考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)A .∅B .{d }C .{a ,c }D .{b ,e }1.(4分)已知全集U ={a ,b ,c ,d ,e },集合N ={b ,d ,e },M ={a ,c ,d },则∁U (M ∪N )=( )A .{x |x <1}B .{x |x >4}C .{x |1<x <4}D .{x |x <1或x >4}2.(4分)不等式-x 2+5x -4>0的解集是( )A .6B .-4C .4或-6D .6或-43.(4分)已知点P (a ,2)到直线4x -3y +2=0的距离等于4,则a =( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(4分)已知直线m 、n 和平面α,且n ⊆α,则“m ⊥α”是“m ⊥n ”的( )A .4B .4+4C .4D .4+45.(4分)设正四棱锥的底面边长和侧棱长都是2,则该四棱锥的表面积为( )M 3M 3M 5M 5A .2B .-2C .1D .-16.(4分)已知向量a =(-2,1),b =(4,3),c =(-1,λ).若(a +b )∥c ,则λ的值为( )→→→→→→A .(0,]B .[0,]C .(-∞,]D .[,+∞)7.(4分)已知函数f (x )=log a x (a >0且a ≠1)满足f (2)=-1,则不等式f (x )≥3的解集是( )18181818二、填空题(本大题共5个小题,每小题4分,共20分)A .10B .9C .8D .78.(4分)从某小学随机抽取100名学生,将他们的身高数据绘制成频率分布直方图如图所示,若要从身高在[120,130)、[130,140)、[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为( )A .f (-π)>f (-2)>-f (3)B .-f (3)>f (-π)>f (-2)C .f (-2)>-f (3)>f (-π)D .f (-π)>-f (3)>f (-2)9.(4分)已知f (x )是R 上的奇函数,且在区间[0,+∞)上是减函数,则f (-2),f (-π),-f (3)的大小关系是(A .函数y =sin 2x 的周期为πB .函数y =sinx 在区间(,)内是减函数C .函数y =sinx +cosx 的值域是[-2,2]D .函数y =sin 2x 的图像可由y =sin (2x -)的图像向左平移个单位得到10.(4分)下列命题中错误的是( )3π45π4π5π1011.(4分)已知sin (π+α)=-,α∈(,π),则sin 2α= .45π212.(4分)不等式|x -a |<2的解集为{x |-1<x <3},则实数a = .13.(4分)从7名运动员中选出4人参加校运会的4×100米接力赛,则甲、乙两人都不跑中间两棒的方法有 种.14.(4分)过点P (2,-1)作圆C :(x -1)2+(y -2)2=2的切线,切点为A 、B .则|PA |= .15.(4分)已知等差数列{a n }中a 1=13,且S 3=S 11,则S n 的最大值为 .三、解答题(本大题共7个小题,其中第21、22小题为选做题.满分50分.解答应写出文字说明、证明过程或演算步选做题:请考生在第21、22题中选择一题作答.若两题都做,则按所做的第21题计分.作答时,请写清题号.老师建科类做第21题,服务类做22题.16.(10分)已知点(4,2)在函数f (x )=的图象上.(1)求a 的值,并画出函数f (x )的图象;(2)求不等式f (x )<1的解集.{x +4,x ≤0x ,x >0log a 17.(10分)我校学生心理咨询中心服务电话的接通率为.21机2班的3名同学分别就某一问题在某天咨询该服务中心,只拨打一次电话,设X 表示他们中成功咨询的人数.求:(1)恰有2人成功咨询的概率;(2)随机变量X 的概率分布和数学期望、方差.3418.(10分)已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N +).(1)求a 1,a 2,a 3的值;(2)设b n =a n +3,证明数列{b n }为等比数列,并求通项公式a n .19.(10分)如图四棱锥P -ABCD 的底面是边长为2的菱形,且∠ABC =60°,PA =PC =2,PB =PD .(1)若O 是AC 与BD 的交点,证明:PO ⊥平面ABCD .(2)若点M 是PD 的中点,求异面直线AD 与CM 所成角的余弦值.20.(10分)已知椭圆C 的中心在坐标原点O ,焦点在x 轴上,离心率为,椭圆上一点P 到椭圆左右两焦点的距离之和为(1)求椭圆C 的标准方程;(2)已知直线l :y =x +m 与椭圆C 交于A 、B 两个不同的点,且弦AB 的中点恰好在圆+=上,求直线l 的方程.M 32x 2y 2172521.(10分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.M222.某公司计划在今年内同时出售变频空调机和智能洗衣机.由于这两种产品的市场需求量非常大,有多少就能销售多少,该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的是资金和劳动力.通过调查,得到关于这两种产品的有关数据如表:资金(表中单位:百元)单位产品所需资金月资金供应量空调机洗衣机成本3020300劳动力:工资510110单位利润6试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?。

中职对口升学资料-2020年高考数学模拟试卷-6份-18

中职对口升学资料-2020年高考数学模拟试卷-6份-18

第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.x +1=0是(x -2)(x +1)=0的( )A .充分条件B .必要条件C .充要条件D .无法确定2.函数2)(2-=x x f 的值域是( )A .RB .),(2-∞C .)2[∞+-,D .)2[∞+,3.下列函数在定义域内是增函数的是( )A .y =x 2+3 B. y =-2x +1 C.y =0.8x D .y =lgx4.=)(413-t πan ( )A .1B .-1C .±1D .3-5.已知→a =2,→b =4,→a ∙→b =-4,则→a 与→b 的夹角为( )A.1200B.600C. 32-π D.34π6.半径为2,且与x 轴相切于原点的圆的方程为( )A .(x +2)2+y 2=4B .(x -2)2+y 2=4C .x 2+(y +2)2=2D .x 2+(y -2)2=47.下列命题不正确的是( )A 在空间中,互相垂直的两条直线不一定是相交直线。

B 过空间一点与已知直线垂直的直线有无数条。

C 空间内垂直同一条直线的两条直线一定平行。

D 平行于同一条直线的两条直线必平行。

8.小明从一副54张的扑克牌中任抽取一张,抽中3的概率是( )A .541B .5413C .41D .272二、填空题(本大题共5小题,每题6分,共30分)9.已知某器械内的转子逆时针旋转,每秒钟旋转80圈,问该转子1分钟内转过的圆心角为 ;(用弧度制表示)10.已知直线l 1: x -y+2=0与l 2: x -2y -1=0的交点坐标为(a,b),则a -b= ;11.已知一副扑克牌有54张,那么任抽一张是红心的概率是= .(保留分数)12.已知矩形ABCD ,AB =4cm ,BC =3cm ,现以BC 为旋转轴旋转一周,得到一个几何体,那么这个几何体的表面积是 cm 2;13.已知⎩⎨⎧--=33)(2x x x f 00x x ≤>,则f(-2)= 。

中职对口升学-2020年高考数学模拟试卷选择题汇总

中职对口升学-2020年高考数学模拟试卷选择题汇总
第二部 数学(模拟题 1)
一、单项选择题
1.设集合 M={-2,0,2}, N={0}, 则 ( )
A.N=Ø B. N∈M C.N⊆M D.M⊆N
2.下列不等式中正确得到是 ( )
A.5a>3a
B.5+a>3+a
C.3+a>3-a
D. 5 3 aa
3.函数 y x 2 6x 5 的定义域为是( ) A. (-,1] [5,) B.(-,1)(5,) C.(-,1] (5,)
a
B. a - b 0
C. ab 0
5.下列相互垂直的向量是( )
) D. 1 1
ba
A. a =(3,-5), b =(-3,1) B. a =(-2,4), b =(8,4)
C. a =(0,-2), b =(0,2)
D. a =(3,-4), b =(-4,3)
6.在平面直角坐标中,已知点 A(-2,3),点 B(1,-1),则 AB 的距离是( )
面平行;
D.如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平 面互相平行。
8.体育课中,进行投 3 分篮比赛,甲同学投进 3 分的概率是 0.3,乙同学投进 3 分的概率是 0.2,问甲乙同学都投进 3 分的概率是( )
A.0.5
B.0.06
C.0.1
D.0
第二部分 数学(模拟题 3)
D.(-,1) [5,)
4.若 f(x) 2x 2 1,且x {1,0,1} 则 f(x)的值域是( )
A.{1,0,1}
B (1,3)
C. [1,3]
D.{3,1}
5.函数 y 3x 与y (1) x 的图像关于( ) 3

中职对口升学考试资料-2020年高考数学模拟试卷8

中职对口升学考试资料-2020年高考数学模拟试卷8

第二部分 数学(模拟题8)一、单项选择题1.下列表述正确的是( )A .φ∈0B .{1,2,3}3∈C .{0}∈φD .}0x {x 5≥∈2.函数1-x f(x )2+=的值域是( )A .RB .[)∞+,1 C .(]1-,∞ D .()∞+∞,- 3.已知()()2211,,,y x y x a ==ρ,则下列表述错误的是( )A .0x 2121=+=•⊥y y x a a ρρ若; B. b a y y x a ⊥=+=•ρρ,则若0x b 2121; C. 12211221x y 0x -y //y x y x b a ==即,则若ρ ;D .0//=•a a ρρ,则若 。

4.已知圆x ²+2x+y ²=0,则这个圆的圆心坐标与半径是( )A .()0,1- ,1B .()1-,0 ,1C .()0,0 ,2D .()1,1 ,25.=3sin π( ) A. 21 B. 3 C.23 D.33 6.下列命题错误的是( )A .垂直于同一条直线的两个平面互相平行;B .垂直于同一个平面的两条直线互相平行;C .垂直于同一个平面的两个平面互相平行;D .一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直。

7. 在标有1到50号码的小球中,一次摸到个位数是0的小球的概率是( ); A.501 B.101 C.51 D .5 8.已知点p (2,m )在直线y=x2上,那么m=( ) A .m=1 B .m=2 C .m=x D .无法确定二、填空题(本大题共4小题,每题5分)9.已知()cosx -1x f =,则f (x )的最大值是 ,最小值是 。

10.已知直线2x -y+3=0与直线y=kx+6平行,则k= 。

11.模具班同学小李抽样6件他所制做的产品,误差情况如下:-2,+1,0,-3,+2,-1。

则平均误差为 .12.已知圆锥的底面半径为3cm ,体积为183cm π,则这个圆锥的轴截面的面积为 。

2020年对口高职高考数学预测模拟试卷

2020年对口高职高考数学预测模拟试卷

2020年对口高职高考数学模拟试卷一、 选择题1. 设集合M={ x |X 2>16},N={ x |log 3x >1},则M ∩N=( ).A. {x |x >3}B. {x |x >4}C. {x |x <−4}D. {x |x >4或x <4}2.下列函数既是奇函数又是增函数的是()A.y =x −1B. y =x 3C. y =log 2xD.y=2x 3.直线(√3−√2)x+y=3和x+(√2−√3)y=2的位置关系是( )A.相交不垂直B. 垂直C. 平行D.重合4.等差数列{a n }中, a 1+a 4+a 7=39, a 3+a 6+a 9=27,则数列{a n }的前9项和S n =( )A.66B. 99C. 144D.2975.若抛物线y 2=2px(p>0)过点M(4,4),则点M 到准线的距离d=( ).A.5B. 4C. 3D.26.设全集U={ x |4≤X ≤10,X ≥∈N },A={4,6,8,10},则C U A=( ).A.{5}B.{5,7}C. {5,7,9}D.{7,9} 7. “a>0且b>0”是“ab>0”的( )条件。

A. 充分不必要B.充分且必要C.必要不充分D. 以上答案都不对8.如果f(X)=a x 2+bx+c(a ≠0)是偶函数,那么g(X)=a x 3+b x 2−cx 是( ). A.偶函数 B.奇函数C.非奇非偶函数D. 既是奇函数又是偶函数9.设函数f(X)= log a x(a>0且a ≠1),f(4)=2,则f(8)=( ). A.2 B.3 C.3 D.13 10.sin 800-√3cos 800−2 sin 200的值为( )。

A.0 B.1 C.−sin200 D.4sin200 11.等比数列的前4项和是203,公比q=−13,则a 1=( ). A.-9 B.3 C.9 D.13 12.已知(23) y =(32) x2+1,则y 的最大值是( )。

中职对口升学资料-2020年高考数学模拟试卷-7份- 6

中职对口升学资料-2020年高考数学模拟试卷-7份- 6

第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。

B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。

C.两平行直线一定能够确定一个平面。

D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。

8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每题6分,共30分)9. 已知集合A ={小于4的自然数},B ={0,1},则A ∩B = ;10.函数y =1+3sin (2x +1)的最小正周期是 ;11.已知两直线l 1: x -y+2=0与l 2: x -y -1=0,则这两条直线的距离为 ;12.假设某人从甲地到乙地有8种不同的方法,从乙地到丙地有5种不同的方法,则从甲地到丙地一共有 种方法;13.已知圆柱体的模具的底面半径为10cm ,高15cm ,现在在模具中间挖空一个半径为4cm ,高为15cm 的小圆柱体,问剩下的这个模具的体积为 ;三、解答题(本大题共2小题,共30分)14.已知数列为:1,2,4,7,11...,求这个数列的第12项。

中职对口升学资料-2020年高考数学模拟试卷-7份

中职对口升学资料-2020年高考数学模拟试卷-7份

第二部 数学(模拟题1)一、单项选择题1.设集合M={-2,0,2}, N={0}, 则 ( )A .N=Ø B. N ∈M C .N ⊆M D .M ⊆N2.下列不等式中正确得到是 ( )A .5a>3aB .5+a>3+aC .3+a>3-aD .a3a 5> 3.函数56x y 2+-=x 的定义域为是( )A .),5[]1,-(+∞∞YB .),51,-(+∞∞()YC .),5]1,-(+∞∞(YD .),5[1,-(+∞∞Y )4.若}1,0,1{x 12f(x )2-∈+=,且x 则f (x )的值域是( )A .}1,0,1{-B )(3,1 C .]3,1[ D .}1,3{ 5.函数x x y )31(3y ==与的图像关于( ) A .原点对称 B .x 轴对称 C .直线y=1对称 D .y 轴对称6.若角α是第三象限角,则化简αα2sin -1tan ⋅的结果为( )A .αsin -B .αsinC . αcosD .αcos -7.已知点A (5,-3),点B (2,4)则向量BA ( )A .)7,1(B .)3,7(- C .)7,3(- D .)1,7( 8.空间中垂直于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共4小题)9.21-x >的解集是 .10.若角a 的终边上的一点坐标为(-2,1),则cosa 的值为 .11.在4和16之间插入3个数a ,b ,c ,使4,a ,b ,c,16成等差数列,则b 的值是 .12.学校餐厅有10根底面周长为3.6m ,高是5m 的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5kg ,则刷这些柱子需要用 kg 。

三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A Y I , .(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少? (10分)(2)求以P (4,1)为圆心且与直线5x -12y -60=0相切的圆的标准方程。

中职对口升学资料-2020年高考数学模拟试卷-7份

中职对口升学资料-2020年高考数学模拟试卷-7份

第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A .{Ø}=0B .1∈{(-1,1)}C .3⊆{x |x >1}D .Ø⊆{0}2.下列函数是偶函数的是( )A .y =x 2+1B .y =sin xC .y =cos xD .y =2x3.已知函数的定义域为R ,则下列函数正确的是( )A .y =x -1B .y =2x -1C .y =log 2xD .x y =4.已知角α是三角形的一个内角,若21sin α,则α=( ) A .300 B .600 C .1200 D .300 或15005.已知点A(2,1)与点B(-2,-4),则向量BA =( )A. (-4,-5)B.(4,5)C.(-4,5)D.(4,-5)6.已知圆的方程为x 2-2x +y 2+4y -11=0,则它的圆心与半径分别是( )A .(1,2),4B .(-1,2),4C .(1,-2),4D .(-1,-2),47.下列命题错误的是( )A.如果两个平行平面同时和第三个平面相交,那么它们的交线互相平行。

B .如果一条直线与一个平面平行,并且经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

C . 如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。

D .如果平面外的一条直线与平面内的所有直线都平行,那么这条直线与这个平面平行。

8.某样本容量为60,若采取分层抽样的方法,若一、二、三级品的个数之比为2:3:5,则从二级品中应抽取( )个。

A .12B .18C .30D .60二、填空题(本大题共5小题,每小题6分,共30分)9.已知sinα∙cosα>0,则α是第 象限角;10.若直线2x -ay +1=0与3x +2y -1=0互相垂直,那么a = ;11.已知球的半径是8cm,则这个球的表面积是;12.由数字1,2,3,4,5可以组成个没有重复数字的三位奇数;13.加工一批零件,先用30分钟准备,若加工5个零件用了1小时,则加工60个零件要用分钟.三、解答题(本大题共2小题,共30分)14. 某林场计划第一年造林50公顷,以后每一年比前一年多造林10%,求该林场五年内的造林数(精确到1).(10分)15.如图,利用一面墙,另三边用长度等于16(单位:米)的篱笆围成一个矩形区域EFGH,设FG=x(单位:米)(1)写出另一边长与x的函数关系式,并指出其定义域;(5分)(2)写出矩形的面积S关于x的函数关系式,并指出其定义域;(5分)(3)当x取何值时,矩形的面积不小于24平方米。

2020年职业教育对口数学模拟试题(带答案)

2020年职业教育对口数学模拟试题(带答案)

机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.设集合A={1,2,4,5},B={2,5,6,7},则A ∪B 等于﹙ ﹚ (A ){2,5}(B ){1,2,,3,4,5,6,7}(C ){1,2,4,5,6,7} (D ){2,4,5} 2. 对于命题p :x >3,命题q :x >1,则p 是q 的﹙ ﹚ (A )充分条件 (B )必要条件(C )充要条件 (D )既不充分也不必要条件 3.函数y =2x -1的定义域是( )(A ){x ︱x >0} (B ){x ︱x <0} (C ){x ︱x =0} (D )x ∈R 4.设log a 13>1,则a 的取值范围是( )(A )(13 ,1) (B )(0,13)(C)(0,1) (D)(1,+∞)5.等差数列{a n}中,a1=3, a100=36,则a5+a96=()(A)39 (B)36 (C)38 (D)426.已知:∣→a∣= 4, ∣→b∣= 3,<→a,→b>= 60°,则∣→a+2→b∣=()(A)13 (B)10 (C)27(D)219 7.已知f (2x)=x2+x+1,则f (-2) = ( )(A)0 (B)1 (C)3 (D)68.直线y-3=k (x+2)恒过点()(A)(3,-2)(B)(-2,3)(C)(2,-3) (D)(-3,2)9.某同学到4个景点旅游,每个景点游览一天,则不同的游览次序有()种。

中职对口升学-高考数学模拟考试卷

中职对口升学-高考数学模拟考试卷

岑 溪 市 中 等 专 业 学 校 2020春季期高考《数学》模拟试卷班级: 学号: 姓名:一、单项选择:(把正确答案填入下列表格中.每小题5分)1.下列数学表达式正确的是( ).A.(){}200,∈ B.φ∈0 C.{}20,⊆φ D.{}34>⊆x x 2.函数21)(-=x x f 的定义域是( ). A.2≠xB.2=xC.{}22><x x x 或D.)(+∞∞-,3.已知函数12)(2++=x x x f ,则=)2(f ( ).A.)(+∞∞-,B.5C.7D.94.已知21sin =α,且α是第二象限的角,则=αcos ( ),=αtan ( ). A.3323, B.3323--, C.3323,-D.3323-, 5.经过点)1,1(A ,且与直线0132=-+y x 平行的直线是( ).A. 3132+-=x y B.0532=-+y x C.032=+y x D.无法确定 6.已知圆的方程为06422=-++y x y x ,则这个圆的圆心是( ),半径是( ).A.1332;,- B.13)32(;,- C.1332);,(- D.1332;,- 7.已知)410(,-=→a ,)6(xb ,=→,且→→⊥b a ,则x 的值为( ). A.25 B.20 C.15 D.20-8.等比数列Λ,,,331中,327 是( ). A.第6项 B.第7项 C.第8项 D.第9项二、 填空题:(每小题5分)1.设{}2-≥=x x A ,{}10<=x x B ,求=B A I,=B A Y .2. 已知)42(,-=→a ,)13(-=→,b ,求=+→→b a 32 . 3. 已知56=x,86=y ,则=-yx 26.4. 直线12321=+y x l :与直线422=-y x l :的交点是 ,该点到直线124=+y x 的距离是 .三、解答题:(本大题共3小题,共40分)解答时要有符号格式,要有相应的文字说明有步骤,有过程,符合逻辑,只写结果不得分。

中职对口升学-2020年高考数学模拟试卷大题试集

中职对口升学-2020年高考数学模拟试卷大题试集

第二部数学(模拟题1)三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A ,.(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少?(10分)(2)求以P (4,1)为圆心且与直线5x-12y-60=0相切的圆的标准方程。

(10分)=)(x f .设14.0,23,01,2,1x x 2≥-<≤---<x x x 分)10(21f 3f 2-f )的值。

()(),(求第二部分数学(模拟题2)三、解答题(本大题共3小题)13.计算:(10分)(1)lg2+lg5(2)21414.某电影院有20排座位,第一排有16个座位,后排比前一排多一个座位,若每个座位票价为2元,问满座后营业额是多少?15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过10立方米时,按1.5元每立方米收费,超过10立方米时,超出部分按2元每立方收费,设某用户用水量为x 立方米,应每月缴费f (x )元,(1)列出f (x )的函数解析式?(10分)(2)若该用户某月用了15立方水要多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题3)三、解答题(本大题共3小题)13.计算:(10分)(1)31-021125.02.8-94)()()(++;(2)1522log 5log 10lg 1log -33--+14.已知sina=-21,且a 是第三象限的角,求角a 的余弦和正切值。

(10分)15.某商品的价格为60元时,月销售量为5000件,价格每提高2元,月销量就会减少100件。

在不考虑其他因素的情况下,(20分)(1)试求这种商品的月销量与价格之间的函数关系;(2)当价格提高到多少时,这种商品会卖不出去?三、解答题(本大题共3小题)13.计算:(10分)(1)21169)(;(2)5log 2414.已知圆锥的侧面展开图的圆心角是120°,半径是4,求这个圆锥的全面积(10分)15.某服装厂生产一批某品牌运动服,总量为2000套,定价按80元每套销售,刚好能卖完,如果价格每提高10元,销售量就减少500套,设销售总量为y 套,每套价格定价为x 元:(10分)(3)求这批运动服的销售总量与每套销售价格之间的函数关系;(10分)(4)当价格定价为多少元时,这批运动服卖不出去?(10分)三、解答题(本大题共3小题)13.解不等式,解集用区间表示:(10分)(1)51-x 2≥;14.求值:)427sin(-π(10分)15.某模具厂生产某种模具,如果每日最多可生产200件,每日固定成本为600元,生产每件产品的可变成本为15元:(5)请写出该厂每日的生产成本与生产产量之间的函数关系式;(10分)(6)求产量为50件时生产成本?产量为100件时生产成本?(10分)三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;x2-14.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)三、解答题(本大题共3小题)13.解不等式,并把它的解集用区间表示出来:(10分)023x -x 2≥+;14.已知一个小球的体积为)cm (362π,现做一个垂直于这个球的直径的截面,求这个截面的最大面积可以是多少?(10分)15.某城市地铁按以下标准收费:在1到3站以内(包含3站),收费2元,7站以内(包含7站),收费4元,12站以内(包含12站),收费6元,12站以上全部收8元:(1)设搭地铁所需车费为y 元,搭地铁所经过的站数为x 个站,请写出y 与x 的解析式;(2)如果小张在地铁线路的第2个站上车,第13个站下车,小张要给多少车费?如果在第9个站下车,要给多少车费?三、解答题(本大题共3小题)13.已知()53x -2x x f 2+=,求()1-f ,()1f ,()0f 的值。

最新2020年对口升学数学试卷

最新2020年对口升学数学试卷

最新2020年对⼝升学数学试卷学⼤教育对⼝升学考试数学模拟试卷(⼀)⼀、单项选择题(每⼩题3分,共45分)1.已知全集{1,2,3,4,5,6,7,8},{3,4,5},{1,3,6},{2,7,8}U A B ===则集合是() A .A B U B .A B I C .U U C A C B U D .U UC A C B I 2.若2(2)2,(2)f x x x f =-=则()A .0B .1-C .3D .23.已知点(,3),(5,2),(4,5),,A x B y AB x y -=u u u r且则的值为()A .1,10x y =-=B .1,10x y ==C .1,10x y ==-D .1,10x y =-=- 4.关于余弦函数cos y x =的图象,下列说法正确的是() A .通过点(1,0) B .关于x 轴对称C .关于原点对称D .由正弦函数sin 2y x x π=的图象沿轴向左平移个单位⽽得到5.6220.5与的等⽐中项是() A .16 B .2± C .4 D .4±6.2210,C x xy y C -++=如果曲线的⽅程为那么下列各点在曲线上的是() A .(1,2)- B .(1,2)- C .(2,3)- D .(3,6)7.直线10x -+=的倾斜⾓是()A .6π B .3πC .23πD .56π8.若40,,x x x x>+要使取最⼩值则必须等于()A .1B .2±C .—2D .29.若圆柱的轴截⾯的⾯积为S,则圆柱的侧⾯积等于()A .S πB .2S C .2S D .2S π 10.如图,在正⽅体11111,ABCD A B C D AC BD -中异⾯直线与所成的⾓是() A .90oB .60oC .45oD .30o11.四名学⽣与两名⽼师排成⼀排拍照,要求两名⽼师必须站在⼀起的不同排法共有() A .720种 B .120种 C .240种 D .48种12.双曲线221259y x -=的渐近线⽅程是() A .53y x =±B .35y x =±C .43y x =±D .34y x =± 13.抛物线20y x +=的焦点在()A .x 轴正半轴上B .y 轴正半轴上C .x 轴负半轴上D .y 轴负半轴上 14.若1sin cos ,sin 23x x x -==则() A .89 B .89- C .23 D .23-15.tan18tan121tan18tan12+-o oo o的值等于() A .33 B 3 C .33- D .3-⼆、填空题(每⼩题5分,共30分) 16.293π-弧度的⾓是第象限的⾓ 17.圆22230x y x y +-+=的⾯积等于18.到两定点A (1,2),B (2,5)距离相等的点的轨迹⽅程是 19.函数22y x x=--的定义域可⽤区间表⽰为20.已知⾓,-,y x αα=为第⼆象限的⾓且终边在直线上则⾓的余弦值为 21.函数3cos y x x = -的最⼤值、周期分别是三、解答题(共75分,解答就写出⽂字说明或演算步骤)22.(本题满分6分)在△ABC 中,已知2,30,a b B C ==∠=∠o 求23.(本题满分8分)计算:21233711125()log 343()227--++-24.(本题满分8分)解不等式:62(3)3(4)2xx x -<+<-25.(本题满分8分)求椭圆224936x y +=的长轴和短轴的长,离⼼率,焦点和顶点的坐标26.(本题满分8分)求过直线32102350x y x y ++=-+=与的交点,且平⾏于直线:6250l x y -+=的直线⽅程.27.(本题满分9分)求81)x+展开式的中间项28.(本题满分9分,每⼩题3分)已知数列{}n a 是等差数列,2,n n n =前项的和S 求:(1)4a 的值;(2)数列的通项公式;(3)和式13525a a a a ++++的值.29.(本题满分9分,第1⼩题4分,第2⼩题5分)(如图所⽰)已知三棱锥A —BCD 的侧棱AD 垂直于底⾯BCD,侧⾯ABC 与底⾯成45o的⼆⾯⾓,且BC=2,AD=3,求:(1)△BCD 中BC 边上的⾼;(2)三棱锥A —BCD 的体积;30.(本题满分10分)某公司推出⼀新产品,其成本为500元/件,经试销得知,当销售价为650元/件时⼀周可卖出350件;当销售价为800元/件时⼀周可卖出200件,如果销售量y 可近似地看成销售价x 的⼀次函数y kx b =+,求销售价定为多少时,此新产品⼀周能获得的利润最⼤,并求出最⼤利润.学⼤教育对⼝升学考试模拟试卷⼆⼀、选择题(本⼤题共17⼩题,每⼩题4分,共68分,每⼩题列出的四个选项中,只有1项是符合题⽬要求的,把所选项前的字母填在题后括号内.)1、设集合}31|{≤≤=x x M ,}42|{≤≤=x x N ,则N M I =()A .}41|{≤≤x xB .}32|{≤≤x xC .}21|{≤≤x xD .}43|{≤≤x x 2、如果c 为实数,且⽅程032=--c x x 的⼀个根的的相反数是032=++c x x 的⼀个根,那么032=--c x x 的根是()A .1,2B .-1,-2C .0,3D .0,-3 3、()4.03.0-,4.0log 3.0,4log 3.0三个数的⼤⼩关系是()A .()4.03.0-<4.0log 3.0<4log 3.0 B .()4.03.0-<4log 3.0<4.0log 3.0C .4log 3.0<()4.03.0-<4.0log 3.0 D .4log 3.0<4.0log 3.0<()4.03.0-4、3212-+=x x y 的最⼩值是() A .-3 B .213- C .3 D .2135、求sin660的函数值6、6⼈参加打球、唱歌、跳舞三项活动,每项2⼈,不同的分组⽅法有() A .15种 B .30种 C .60种 D .90种7、函数2sinxy =,(1))()(π+=x f x f ;(2))4()(π+=x f x f ;(3))()(x f x f -=-;(4))()(x f x f =-,对任意恒成⽴的式⼦是() A .(1)与(3) B .(2)与(3) C .(1)与(4) D .(2)与(4) 8、1cos sin 22=+ααy x 表⽰双曲线,则α所在象限() A .第三 B .第⼆ C .第⼆或第四 D .第三或第四 9、ααcos 2sin =,则α2tan 的值为() A .34-B .54C .-4D .32-10、1F 、2F 为椭圆192522=+y x 的焦点,P 为椭圆上任⼀点,则21F PF ?的周长为() A .16 B .18 C .20 D .不能确定11、直线052=+-x y 与圆022422=++-+y x y x 图形之间关系是() A .相离 B .相切 C .相交但不过圆⼼ D .相交且过圆⼼ 12、在同⼀坐标系中,aax y 11-=,22ax y =的图象只可能是()A B C D⼆、填空题(本⼤题共8题,每⼩题5分,共40分,把答案填在题中的横线上.)13、8lg 5lg )5(lg )2(lg 33++=__________. 14、在等差数列}{n a 中,已知公差21=d 且4019531=++++a a a a Λ,则前20项的和20S =__________.15、在数字0、1、2、3中,可以组成没有重复数字的三位数有______个.16、1531???? ?-a a 展开式⾥不含a 的项等于__________.17、满⾜31sin =α,且)3,0(πα∈的⾓α有__________个. 18、)3,2(M 是线段),3(m A ,)1,(-n B 的中点,则m =_______,n =_______. 19、直线l :1) ()32(222-=-+-+m y m m x m m 的倾斜⾓为4π,则 m =__________.20、在ABC ?中,54cos =A ,1312cos =B ,则C cos =__________. 三、解答题(本⼤题共5题,共62分.)21、解不等式:4932522<--x x22、4个整数前三个成等⽐数列,后三个成等差数列,且第⼀个数与第四个数的和是14,第⼆个数与第三个数的和是12,求这四个整数.23、过抛物线x y 42=的焦点且斜率为2的直线l 交抛物线于A 、B 两点,求:(1)直线l 的⽅程;(2)AB 的距离.24、已知线段PA 垂直于正⽅形ABCD 所在平⾯,且a PA =,a AB =,求:(1)P 到BC 的距离;(2)PC 与BD 所成的⾓.25、如图,半圆O 的直径为2,OA=2,B 为半圆上⼀点,以AB 为边作正三⾓形ABC,问B 在什么位置时四边形OACB ⾯积最⼤,并求最⼤值.学⼤教育对⼝升学考试模拟试卷三⼀、选择题(本⼤题共12⼩题,每⼩题4分,共48分,每⼩题列出的四个选项中,只有1项是符合题⽬要求的,把所选项前的字母填在题后括号内.)1、设R U =,集合}14|{<<-=x x A ,}4|{-≤=x x B ,}1|{≥=x x C ,则() A .C B A =I B .C B A =Y C .C B A C U =)(I D .C B A C U =)(Y2、给定0>>b a ,R c ∈,下列各式中不正确的是() A .b a >B .2b ab >C .c b c a +>+D .bc ac >3、下列函数中,在)1,0(上为减函数的是()A .x y 2log =B .x y ??=21 C .31x y = D .x x y 22+=4、设3log 25log 22+=M ,则M 的值所在区间为() A .(3,4) B .(4,5) C .(5,6) D .(6,7)5、已知直线c b a ,,及平⾯α,具备下列哪个条件时,b a ||() A .b a ,没有公共点 B .c a ⊥且c b ⊥ C .c a ||且c b || D .α||a 且α||b6、若54cos -=θ,53sin =θ,则θ2的终边在() A .第⼀象限 B .第⼆象限 C .第三象限 D .第四象限 7、在同⼀坐标系中,曲线x y sin =与x y cos =的交点的横坐标为() A .)(2Z k k x ∈=π B .)(4Z k k x ∈+=ππC .)(2Z k k x ∈+=ππ D .)(Z k k x ∈=π8、下列命题中错误的是()A .垂直于三⾓形两边的直线⼀定垂直于第三边B .平⾏于三⾓形两边的直线⼀定平⾏于第三边C .与三⾓形三个顶点距离相等的平⾯平⾏于这个三⾓形所在的平⾯D .平⾏于三⾓形所在平⾯的直线与垂直于该三⾓形所在平⾯的直线⼀定相互垂直 9、ABC ?中,若B A 2tan 2tan -=,那么这个三⾓形⼀定是()A .直⾓三⾓形B .等边三⾓形C .钝⾓三⾓形D .锐⾓三⾓形 10、设A 、B 异号,且直线0=++C By Ax 的倾斜⾓α满⾜21|tan |=α,则直线的斜率为() A .34 B .34- C .4 D .-411、有房5间,现有8⼈投宿,其中某⼀指定房间必须且只能住4⼈,余下的⼈任意选房,问不同的住法有() A .P C 4448? B .C C 4448? C .4484?C D .P P 4448? 12、已知⽅程13522=-+-k y k x 表⽰的曲线是椭圆,则13522=-+-ky k x 曲线的焦点坐标是()A .)0,28(k -±B .)0,2(±C .)0,2(±D .)28,0(k -± ⼆、填空题(本⼤题共8题,每⼩题5分,共40分,把答案填在题中的横线上.)13、写出抛物线y x 22-=的准线⽅程__________.14、若函数)0(sin >+=k b x k y 的最⼤值为2,最⼩值为-4,则k =______,b =______. 15、若⼀个球的半径扩⼤⼀倍,则它的体积扩⼤到原来体积的______倍. 16、两条平⾏直线01243=-+y x 和0386=++y x 间的距离为__________. 17、在平⾯直⾓坐标系XOY中,ABCD为平⾏四边形,已知)2,1(--=,)1,3(-=,)1,3(=,则OD =__________.18、⽤半径为cm 3,中⼼⾓为?120的扇形铁⽪卷成圆锥形容器,则此圆锥的体积为__________.19、?-25cos 70sin 20sin 2的值为__________. 209)12(xx -展开式中含3x 的项为__________. 三、解答题(本⼤题共5题,共62分.)21、公差不为零的等差数列}{n a 的前7项之和为70,⼜731,,a a a 成等⽐数列,求此等差数列的通项公式.22 ⼆次函数过点(0,3)且对称轴是x=2,最⼤值是4,求函数的解析式,并求其值域和单调区间 23、已知53)sin(-=+απ,παπ325<<;512)2tan(=-βπ,20πβ<<.求2tan α和)2cos(βα-.24、设函数2||3)(2+-=x x x f ,]4,4[-∈x . (1)按定义讨论)(x f 的奇偶性;(2)画出)(x f 的图象,并写出单调区间;(3)求不等式2)(>x f 的解集.25、已知圆C :01022=-+x y x ,过原点的直线l 被圆C 所截得的弦长为8,求以圆C 的圆⼼为⼀个焦点,以l 为渐近线的双曲线⽅程.。

中等职业学校对口升学考试数学模拟试题及答案

中等职业学校对口升学考试数学模拟试题及答案

中等职业学校对口升学考试数学模拟试题及答案一、选择题1.若一组数据的方差为0,则该组数据的所有值相等。

【√】2.已知函数f(x)的导函数f'(x),则f(x)在x=0处的函数值可以通过f'(x)来确定。

【√】3.已知集合A={1,2,3,4},集合B={3,4,5},则A∪B的元素个数为6。

【×】4.已知集合A={x|x<5},集合B={x|3<x<6},则A∩B的元素个数为0。

【×】5.已知三角形ABC中,∠B=90°,tanA=1/√3,则sinC=1/2。

【×】二、填空题1.若10%的一批商品中有5%是次品,则整批商品中的次品数量为__________。

2.已知函数f(x)=3x^2-2x+1,求f(-1)的值为____________。

3.已知集合A={1,2,3,4},集合B={3,4,5},则A-B的元素个数为__________。

4.解方程3x+4y=10,5x+8y=14,得到x的值为__________。

5.已知正方形ABCD的边长为2,O为正方形的中心点,连接OA、OB、OC、OD形成一新的不规则图形,求该图形的面积为____________。

三、解答题1.某公司今年的棉花产量比去年增加了20%,去年的棉花产量为1000吨,今年的棉花产量为多少吨?解:今年的棉花产量 = 去年的棉花产量 + 增加的数量= 1000 + (1000 × 0.2)= 1000 + 200= 1200 (吨)2.已知函数y=3x^2-2x+1,求函数图像与x轴、y轴的交点坐标。

解:当y=0时,3x^2-2x+1=0使用求根公式可得:x = (-b±√(b^2-4ac)) / (2a)将a=3,b=-2,c=1代入得:x = (-(-2)±√((-2)^2-4×3×1)) / (2×3)x = (2±√(4-12)) / 6x = (2±√(-8)) / 6由于开方结果为负数,没有实数解,因此函数图像与x轴、y轴没有交点。

中职对口升学-2020年高考数学模拟试卷大题试集

中职对口升学-2020年高考数学模拟试卷大题试集

第二部数学(模拟题1)三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A ,.(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少?(10分)(2)求以P (4,1)为圆心且与直线5x-12y-60=0相切的圆的标准方程。

(10分)=)(x f .设14.0,23,01,2,1x x 2≥-<≤---<x x x 分)10(21f 3f 2-f )的值。

()(),(求第二部分数学(模拟题2)三、解答题(本大题共3小题)13.计算:(10分)(1)lg2+lg5(2)21414.某电影院有20排座位,第一排有16个座位,后排比前一排多一个座位,若每个座位票价为2元,问满座后营业额是多少?15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过10立方米时,按1.5元每立方米收费,超过10立方米时,超出部分按2元每立方收费,设某用户用水量为x 立方米,应每月缴费f (x )元,(1)列出f (x )的函数解析式?(10分)(2)若该用户某月用了15立方水要多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题3)三、解答题(本大题共3小题)13.计算:(10分)(1)31-021125.02.8-94)()()(++;(2)1522log 5log 10lg 1log -33--+14.已知sina=-21,且a 是第三象限的角,求角a 的余弦和正切值。

(10分)15.某商品的价格为60元时,月销售量为5000件,价格每提高2元,月销量就会减少100件。

在不考虑其他因素的情况下,(20分)(1)试求这种商品的月销量与价格之间的函数关系;(2)当价格提高到多少时,这种商品会卖不出去?三、解答题(本大题共3小题)13.计算:(10分)(1)21169)(;(2)5log 2414.已知圆锥的侧面展开图的圆心角是120°,半径是4,求这个圆锥的全面积(10分)15.某服装厂生产一批某品牌运动服,总量为2000套,定价按80元每套销售,刚好能卖完,如果价格每提高10元,销售量就减少500套,设销售总量为y 套,每套价格定价为x 元:(10分)(3)求这批运动服的销售总量与每套销售价格之间的函数关系;(10分)(4)当价格定价为多少元时,这批运动服卖不出去?(10分)三、解答题(本大题共3小题)13.解不等式,解集用区间表示:(10分)(1)51-x 2≥;14.求值:)427sin(-π(10分)15.某模具厂生产某种模具,如果每日最多可生产200件,每日固定成本为600元,生产每件产品的可变成本为15元:(5)请写出该厂每日的生产成本与生产产量之间的函数关系式;(10分)(6)求产量为50件时生产成本?产量为100件时生产成本?(10分)三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;x2-14.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)三、解答题(本大题共3小题)13.解不等式,并把它的解集用区间表示出来:(10分)023x -x 2≥+;14.已知一个小球的体积为)cm (362π,现做一个垂直于这个球的直径的截面,求这个截面的最大面积可以是多少?(10分)15.某城市地铁按以下标准收费:在1到3站以内(包含3站),收费2元,7站以内(包含7站),收费4元,12站以内(包含12站),收费6元,12站以上全部收8元:(1)设搭地铁所需车费为y 元,搭地铁所经过的站数为x 个站,请写出y 与x 的解析式;(2)如果小张在地铁线路的第2个站上车,第13个站下车,小张要给多少车费?如果在第9个站下车,要给多少车费?三、解答题(本大题共3小题)13.已知()53x -2x x f 2+=,求()1-f ,()1f ,()0f 的值。

对口高考数学模拟试卷含答案

对口高考数学模拟试卷含答案

对口高考数学模拟试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分,考试用时120分钟。

第Ⅰ卷(选择题 共50分)参考公式:如果事件A 、B 互斥,那么柱体(棱柱、圆柱)的体积公式P (A+B )=P (A )+P(B ) 如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,P (A·B)=P (A)·P(B)表示柱体的高一、单项选择题:(每一小题仅有一个正确答案,请将正确答案的代号填入 答题表内.每小题5分,共计60分)1.下列关系中正确的是 ( ) A 。

B.a{a} C 。

{a ,b}{b,a} D 。

2. 不等式的解集为() A . B .C .D .3.对任意实数在下列命题中,真命题是()A .是的必要条件B .是的必要条件C .是的充分条件D .是的充分条件4.若平面向量与向量的夹角是,且,则()A .B .C .D .5.设P 是双曲线上一点,双曲线的一条渐近线方程为,、分别是双曲线的左、右焦点。

若,则()A . 或B . 6C . 7D .96、原点到直线y=kx+2的距离为,则k 的值为( ) A 。

1 B 。

—1 C.1 D 。

7、若,且是第二象限角,则的值为()A .B .C .D .8、在等差数列{a }中,a+a+a+a+a=15 , a= ( )A. 2B.3C. 4 D 。

59、已知函数的图象经过点,又其反函数的图象经过点,则函数的表达式是() A . B . C . D .10、已知向量与,则下列命题中正确的是 ( ) A 。

若||>||,则〉 B. 若||=||,则=C 。

若=,则∥D 。

若,则与就不是共线向量11.下列函数中为偶函数的是 ( )A .f(x )=1-x 3B 。

f(x)=2x —1 C.f (x )=x 2+2 D.f (x)=x 312。

一商场有三个大门,商场内有两部上楼的电梯,一顾客从商场外到商场二楼购物,不同的走法共有( )A 。

2020年中职数学对口升学考前冲刺模拟试题含答案

2020年中职数学对口升学考前冲刺模拟试题含答案

2020年中职数学对口升学模拟试题一.选择题(本大题10小题,每小题3分,共30分) 1.集合M={x |x ≤4},15a =,那么正解的关系是( )A.M ⊆aB.M ∉aC. M ∈}a {D.M ⊆}a {2.“三角形一个内角是︒60”是“三角形三个内角成等差数列”的( )A.充分条件B.必要条件C.充要条件D.以上都不对3.12log x 3=,则x4=( )A.6B.9C.2l 34og D.44.已知向量→→→→→→+--==b -a b a ),1,8(b ),,1(a 与且x 相互垂直,则x=( )A.-8B.8±C.8D.不存在5.函数212)52()(f +-=x x x 的值域是( );A.),0[+∞B.),2[+∞C.),4[+∞D.),-[+∞∞6.直线ax+2y-8=0与直线x+(a+1)y+4=0平行,则a=( )A.1B.1或-2C.-2或-1D.-17.=︒︒-︒15cos 15sin 415cos 32( )A.2-B.22C.22-D.28.抛物线px 2y 2=与直线ax+y-4=0交于A,B 两点,其中点A(1,2),设抛物线焦点为F ,则|FA|+|FB|=( )A.4B.5C.6D.7 9.52)1(xx +的展开式中的系数之和是( )A.32B.12C.10D.1610.如果偶函数f(x)在区间[-6,-2]上是减函数且最大值为5,则函数f(x)在[2,6]上是( ) A.增函数且最小值为-5 B.增函数且最大值为5 C.减函数且最小值为-5 D.减函数且最大值为5二.填空题(本大题共8小题,每小题4分,共32分) 1.已知=<<<=-=βπαββαα则若,20,1413)cos(,71c os . 2.若实数x,y 满足=+==y1x 1,217,213则yx. 3.圆4x 22=+y 上的点到直线4x+3y+c=0的最小距离为5,则圆上的点到直线的最大距离为 4.用1,2,3,4,5五个数组成没有重复数字的四位数,从这四位数中任取一个数,不是5的倍数的概率是5.圆锥的侧面积是其底面积的2倍,则其母线与底面所有的角为 .6.过圆4x 22=+y 上一点P (1,-3)的切线方程是 .7.等比数列}{n a 中,173a a 和是方程016102=+-x x 的两根,则=10a .8.已知双曲线19y 16x 22=-,过右焦点2F 交双曲线右支的弦AB ,|AB |=5,双曲线另一个焦点为F 1, 则1ABF ∆点的周长是 . 三.解答题(本大题共6小题,共38分)1.求函数)352(log )(f 22--=x x x 的定义域,单调区间和值域.(6分)2.已知等差数列}{n a 中,14,5a 52==a (1)求}{n a 的通项公式(2)设}{n a 的前n 项和为n S =155,求n 的值.(6分)3.一个袋中有6个球,编号分别为1,2,3,4,5,6,现从中任取3只,求3只球中号码最大的编号X 的概率分布及其期望.(6分)4.已知→→→→→→→→→→-=+=︒>=<==bamdbacbaba3,53,60,,2,3,问(6分)(1)当m取何值时,→→dc与垂直;(2)当m为何值时→→dc与平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二部分 数学(模拟题1)一、单项选择:(每小题5分,共40分)1.下列关系式中不正确的是( ).A.-2∈ZB. 4∉{3,6}C.1∈{(1,-1)}D.3∈{ x |x ≤3}2.不等式2log )(f 2-=x x 定义域是( ).A.{x | x ≥4}B.{ x |x ≥1}C.{ x |x ≥2}D. {x |x ≥0}3.下列函数中f (x )=a x -5,若f (2)=1,则f (1)=( ).A.5B.3C.2D. -2 4. =56sinπ( ). A. 21- B. 23- C. 21 D. 23 5.下列各组向量互相平行的是( ).A.a =(0,2),b =(-1,4)B. a =(1,-2),b =(-2,4)C.a =(3,0),b =(-1,8)D. a =(2,-3),b =(-3,2)6.半径为2,且与x 轴相切于原点的原方程可能为( ).A.(x -2)2+y 2=2B.(x -2)2+y 2=4C. x 2+(y -2)2=2D. x 2+(y -2)2=47.下列命题正确的是( ).A.平面内两条直线平行于另一个平面内的两条直线,则这个平面互相平行。

B.一条直线垂直于平面内的两条直线,则这条直线垂直于这个平面。

C.一条直线平行于一个平面,则这条直线平行于平面内的所有直线。

D.一条直线垂直于一个平面,则这条直线垂直于平面内的所有直线。

8.在1000张奖券中,有10张一等奖,20张二等奖,30张三等奖,某人从中任意摸出一张,那么他中奖的概率是( ). A.1001 B.0012 C. 0013 D. 053 二、填空题:(每题6分,共30分)9.时针一天转过的角度是 (用弧度制表示);10.直线2x+y-4=0与两坐标轴围成的三角形的面积是;11.某农场要在4种不同类型的土地上,实验种植A,B,C,D这4种不同品种的小麦,要求每种土地上试种1种小麦,有种不同的实验方案;12.圆柱的地面周长为4π,高为5,则它的体积为 ;13.过直线x+y-2=0和直线x-y+4=0的交点,且与直线x=-1垂直的直线方程是。

三、解答题:(本大题共2小题,共30分)14.已知数列:-1,2,5,8......(10分)(1)求数列的第50项; (2)求数列前100项的和。

15.某市政府大力支持大学生创业,李三强在政府的扶持下投资销售一种进价为20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系近似地看作一次函数:y=-10x+500(1)设李三强每月获得利润为w(元),当销售单价定位多少元时,每月可获得最大利润?最大利润时多少?(10分)(2)如果李三强想要每月获得2000元的利润,那么销售单价应定为多少元?(10分)第二部分数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。

B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。

C.两平行直线一定能够确定一个平面。

D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。

8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题3)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每小题6分,共30分)9.已知集合A ={x |0<x <4,x ∈N },B ={x |-1<x ≤7},则A ∩B= .10.|x -2|≥3的解集是 .11.若角a 的终边上的一点坐标为(-2,2),则sinα的值为 .12.在2和32之间插入3个数a ,b ,c ,使2,a ,b ,c ,32成等比数列,则b 的值是 .13.学校餐厅有8根底面周长为3πm ,高是4m 的圆柱形柱子,现在要刷上油漆,每平方米用油漆2kg ,则刷这些柱子需要用 kg 。

三、解答题(本大题共2小题){ (10分)15.(1)甲乙二人同时射击,甲的命中率是0.7,乙的命中率为0.8,则至多一人命中的概率是多少? (10分)(2)求以P (-1,3)为圆心且与直线3x -4y -5=0相切的圆的标准方程。

(10分)时)(当时当,1,23)0(2≥-<x x x ).21()5(),4f f -第二部分 数学(模拟题4)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={奇数}, N ={x |x <6,x ∈N },则M ∩N = ( )A .{x |x <6}B .{x |0≤x <6}C .{1,3,5}D .{x |x <6,x ∈N }2.函数13)(--=x x x f 的定义域为是 ( ) A .{x |x ≤0且x ≠1} B .{x |x ≥3且x ≠1} C .(-∞,1)∪[3,+∞) D .(-∞,1)∪(1,+3]3.函数32-=x y 的值域是( ) A .(0,+∞) B . ),3[+∞- C .),3[+∞ D .R4.“以a 为底x 的对数等于y ”记作( )A .x =log y aB .x =log a yC .y =log a xD .y =log x a5.与角-450终边相同的角的集合是( )A .{x |x=-450+k ∙900,k ∈Z }B .{x |x=-450+k ∙1800,k ∈Z }C .}4{Z ,k +k x|x=∈-ππD .}24{Z ,k k +x|x=∈-ππ 6.函数y =3-2sin 2x 的最大、最小值分别是( )A .1,4B .4,1C .7,-1D .5,17.等比数列1,-2,4,..中-128是( )A .第9项B .第8项C .第7项D .第10项8.一容量为n 的样本,分组后,如果某数的频数为60,频率为0.3,则n =( )A .200B .18C .60.3D .180二、填空题(本大题共5小题,每题6分,共30分)9.log 64+log 69= .10.已知若→a =(-2,n ),→b =(1,-4),且b a ρρ⊥,则n 的值为 .11.经过点P(-3,4) ,圆心在(1,1)的圆的标准方程是 .12.样本2,5,6,9,13的均值是 .13.圆锥的底面半径为6cm ,母线长为10cm,则这个圆锥的体积为 .三、解答题(本大题共2小题,共30分)14.已知21-=sin α,且角α是第三象限角,求角α的余弦值和正切值.(10分)15.依法纳税时每个公民的应尽义务,国家征收个人工资,薪金所得税是分段计算的。

按照2019年实施的个人所得税方案,总收入不超过5000元的免征个人工资,薪金所得税,超过5000元部分需要征税,设某人月工资为x 元,税率见下(1) 若某人的全月应缴纳金额为x 元,纳税额为y ,使用分段函数表示1-3段纳税额的计算公式: (10分)(2) 某人2020年5月份的工资总收入为8000元,试计算这个人3月份应缴纳个人所得税为多少元? (10分)第二部分 数学(模拟题5)一、单项选择题.(每题5分,共8小题,共40分)1.下列数学表达正确的是( )A. 0∈{(0,1)} B .Ø⊆{0,1,2,3} C .0∈Ø D .4⊆{x |x>3}2.函数21)(+=x x f 的定义域为是( ) A .x ≠2 B .(-∞,-2)∪(-2,+∞) C .{x |x<2或x>2} D .(-∞,+∞)3.函数f (x )=x 2-2x +1,则f (2)=( )A .1B .5C .7D .94.已知22sin =α,且α是第二象限角,则cos α=( )tan α=( ), A .33,22 B .33,22-- C .1,22- D .1,22-- 5.已知经过点A (2,2),且与直线2x -3y -1=0平行是直线是( ) A.3132--=x yB.2x +3y -5=0C.2x +3y =0D. 2x -3y +2=0 6.已知圆的方程为x 2+y 2+2x -4y =0,则这个圆的圆心是( ),半径是( )A .5),2,1(-B .5),2,1(-C .5),2,1(-D .5),2,1(-7. 下列不正确的是( );A.若一条直线有两个点在一个平面上,则这条直线在此平面内;B.平行于同一条直线的两直线平行,在空间中也是一样;C.若平面外的一条直线与平面内的所以直线平行,那么这条直线与这个平面平行;D.如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。

相关文档
最新文档