2020中考专题8——最值问题之将军饮马

合集下载

最值问题----将军饮马(一)

最值问题----将军饮马(一)

本节课你的收获是什么?
【问题解析】 △PMN周长即PM+PN+MN的最小值,此处 M、N均为折点,分别作点P关于OB、OA对称点P'、P'', 化PM+PN+MN为P'N+MN+P''M.当P'、N、M、P''共线时, 得△PMN周长的最小值,即线段P'P''长,连接OP'、OP'', 可得△OP'P''为等边三角形,所以P'P''=OP'=OP=8.
【问题解析】:此处点P为折点,可以作点D关于折点P 所在直线OA的对称: 也可以作点C的对称:
05 正方形中的将军饮马。
【问题描述】:如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,
DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4
B.5
C.6
D.7
【问题解析】:作点C关于P点 所在直线AB的对称点C',当C'、 P、D共线时,PC+PD最小, 最小值为5,故选B.
05 正方形中的将军饮马。
【问题描述】:如图,正方形ABCD的边长是4,M在DC上,且DM=1, N是AC边上 的一动点,则△DMN周长的最小值是________。
【问题解析】:考虑DM为定值, 故求△DMN周长最小值即求 DN+MN最小值.点N为折点, 作点D关于AC的对称点,即点B, 连接BN交AC于点N,此时 △DMN周长最小.
04 将军饮马模型系列“一定两动”之点到线。
【问题描述】:在OA、OB上分别取点M、N,使得PM+MN最小。

2020中考数学复习 最值问题-将军饮马问题 (51张PPT)

2020中考数学复习  最值问题-将军饮马问题 (51张PPT)

02、将军饮马模型系列 ————“一定两动”之点到点
当P'、N、M、P''共线时,得△PMN周长的最小值,即线段P'P''长,连接OP'、 OP'',可得△OP'P''为等边三角形,所以P'P''=OP'=OP=8.
02、将军饮马模型系列 ————“两定两动”之点到点
在OA、OB上分别取点M、N使得四边 形PMNQ的周长最小。
05、将军过桥
【分析】 考虑MN长度恒定,只要求AM+NB最小值即可。问题 在于AM、NB彼此分离,所以首先通过平移,使AM与 NB连在一起,将AM向下平移使得M、N重合,此时A 点落在A'位置。
问题化为求A'N+NB最小值,显 然,当共线时,值最小,并得出 桥应建的位置.
05、将军过桥
通过几何变换将若干段原本彼此分离线段组合到一起,是解决问题的关键~
此处M点为折点,作点P关于OA对称 的点P',将折线段PM+MN转化为 P'M+MN,即过点P'作OB垂线分别 交OA、OB于点M、N,得PM+MN 最小值(点到直线的连线中,垂线段 最短)
03、几何图形中的将军饮马
寻找几何图形中 端点关于折点所在直线的对称点位置
03、几何图形中的将军饮马 ----正方形中的“将军饮马”
则PC+PD的最小值为( )
A.4
B.5 C.6
D.7
03、几何图形中的将军饮马 ----正方形中的“将军饮马”
【分析】作点C关于P点所在直线AB的对称点C',当C'、P、D共线时, PC+PD最小,最小值为5,故选B.

2020年中考复习 将军饮马问题 讲义

2020年中考复习 将军饮马问题 讲义

将军饮马(作对称点求最短线段终极版)背景知识:早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.常用知识点:两点之间线段最短,垂线段最短,三角形三边关系,轴对称,平移;解题思路:找对称点,变折线为直线。

常见模型:一、两定点一动点型:如图:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小。

解题思路:连接AB,与直线的交点为点Q,即此时点P运动到点Q处,最小值为AB.证明:运用三角形三边关系:两边之和大于第三边,当A、P、B三点共线可取等于。

在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.解题思路:作定点B关于直线l的对称点C,连接AC,交直线于点Q,当点P运动到点Q,最小值为AC.证明:关键是作其中一个定点的对称点,使得PB=PC,求PA+PB的最小值,即求PA+PC的最小值。

再转化为上述题型。

PA-值最大。

引申1:此题型也可以求PB解题思路:延长AB交直线l于点Q,当点P运动到点Q,PBPA-最大值为AB.证明:三角形任意两边之差小于第三边,当A、B、P三点共线可取等于.(提示:如果两定点不在直线的同侧,可以作其中一个定点关于直线l的对称点)PA-值最小。

引申2:此题型也可以求PB解题思路:连接AB,作AB的垂直平分线角l于点P.证明:垂直平分线上的点到线段的两端距离相等,可得PA=PB二.两动点一定点型(两动点在角的两边上)如图,在∠MON 的内部有一点A ,在OM 上找一点B ,在ON 上找一点C ,使得△BAC 周长最短.解题思路:作点A 关于OM 的对称点'A ,作点A 关于ON 的对称点''A ,连接'''A A ,与OM 交于点B , 与ON 交于点C ,连接AB ,AC ,此△ABC 周长最短.证明:两点之间,线段最短变式1:如图:在∠MON 的内部有一点A ,在OM 上找一点B ,在ON 上找一点C ,使得AB +BC 最短.解题思路:作点A 关于OM 的对称点'A ,过点'A 作C A '⊥ON ,交OM 于点B ,交ON 于点C,即为所求。

将军饮马(最完整讲义)

将军饮马(最完整讲义)

第1讲将军饮马模型➢知识点睛一、“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题, 会与直线、角、三角形、四边形、圆、抛物线等图形结合, 在近年的中考和竞赛中经常出现, 而且大多以压轴题的形式出现。

二、定直线与两定点模型作法结论当两定点在直线异侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最大.当两定点在直线异侧时, 在直线上找上点, 使最大.当两定点在直线同侧时, 在直线上找上点, 使最小.二、角到定点模型作法结论点在的内部, 在上找一点, 在上找一点,使得周长最小.点在的内部, 在上找一点, 在上找一点,使得最小.点在的内部, 在上找一点, 在上找一点,使得四边形周长最小.点在的外部, 在射线上找一点, 使与点到射线的距离和最小.点在的内部, 在射线上找一点, 使与点到射线的距离和最小.点分别在的边是, 在上找一点, 在上找一点,使得最小.三、两定点一定长模型作法结论如图在直线上找上两点(在左), 使最小,且.如图, , 之间的距离为, 在上分别找两点, 使, 且最小.如图, , ,之间的距离为, 之间的距离为, 在上分别找两点, 使, 在上分别找两点, 使且最小.如图, 在⊙上找一点, 在直线找一点,使得最小.➢精讲精练例1: 如图, 点P是∠AOB内任意一点, ∠AOB=30°, OP=8, 点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值.例2: 如图, 正方形ABCD 的边长是4, M 在DC 上, 且DM=1, N 是AC 边上的一动点, 则△DMN 周长的最小值.A .例3: 如图, 在Rt △ABO 中, ∠OBA=90°, A (4,4), 点C 在边AB 上, 且AC:CB=1:3, 点D 为OB 的中点, 点P 为边OA 上的动点, 当点P 在OA 上移动时, 使四边形PDBC 周长最小的点P 的坐标为 B. ,C .,D .第3题图 第4题图 第5题图例4: 如图, 在△ABC 中, AC=BC, ∠ACB=90°, 点D 在BC 上, BD=3, DC=1, 点P 是AB 上的动点, 则PC+PD 的最小值为 A. 4 B. 5 C. 6 D. 7例5:如图, 在等边△ABC 中, AB=6, N 为AB 上一点且BN=2AN, BC 的高线AD 交BC 于点D, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值是___________.A BCDMN例6: 如图, 在Rt △ABD 中, AB=6, ∠BAD=30°, ∠D=90°, N 为AB 上一点且BN=2AN, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值.例7: 如图, 在Rt △ABC 中, ∠ACB=90°, AC=6. AB=12, AD 平分∠CAB, 点F 是AC 的中点, 点E 是AD 上的动点, 则CE+EF 的最小值为 A. 3 B. 4 C.D.第7题图 第8题图 第9题图A .例8: 如图, 在锐角三角形ABC 中, BC=4, ∠ABC=60°, BD 平分∠ABC, 交AC 于点D, M 、N 分别是BD, BC 上的动点, 则CM+MN 的最小值是B. 2C.D. 4例9: 如图, 在菱形ABCD 中, AC=, BD=6, E 是BC 的中点, P 、M 分别是AC.AB 上的动点, 连接PE 、PM, 则PE+PM 的最小值是A. 6B.C.D. 4.5E AFCDBNM DCBAEPDCBAMA .例10: 如图, 矩形ABOC 的顶点A 的坐标为(-4,5), D 是OB 的中点, E 是OC 上的一点, 当△ADE 的周长最小时, 点E 的坐标是B. C. D.第10题图 第11题图 第12题图例11: 如图, 在矩形ABCD 中, AB=6, AD=3, 动点P 满足, 则点P 到A.B 两点距离之和PA+PB 的最小值为A. B. C. D.例12: 如图, 矩形ABCD 中, AB=10, BC=5, 点E 、F 、G 、H 分别在矩形ABCD 各边上, 且AE=CG, BF=DH, 则四边形EFGH 周长的最小值为A. B. C. D.例13: 如图, ∠AOB=60°, 点P 是∠AOB 内的定点且OP=, 若点M 、N 分别是射线OA.OB 上异于点O 的动点, 则△PMN 周长的最小值是A. B. C. 6 D. 3第13题图 第14题图CBH FGEDCB AABMOPN例14: 如图, ∠AOB 的边OB 与x 轴正半轴重合, 点P 是OA 上的一动点, 点N (3,0)是OB 上的一定点, 点M 是ON 的中点, ∠AOB=30°, 要使PM+PN 最小, 则点P 的坐标为 .例15:如图, 已知正比例函数y=kx (k>0)的图像与x 轴相交所成的锐角为70°, 定点A 的坐标为(0, 4), P 为y 轴上的一个动点, M 、N 为函数y=kx (k>0)的图像上的两个动点, 则AM+MP+PN 的最小值为___________.第15题图例16: 如图, 在平面直角坐标系中, 矩形ABCD 的顶点B 在原点, 点A.C 在坐标轴上, 点D 的坐标为(6, 4), E 为CD 的中点, 点P 、Q 为BC 边上两个动点, 且PQ=2, 要使四边形APQE 的周长最小, 则点P 的坐示应为______________.例17:如图, 矩形ABCD 中, AD=2, AB=4, AC 为对角线, E 、F 分别为边AB 、CD 上的动点, 且EF ⊥AC 于点M,连接AF 、CE, 求AF+CE 的最小值.x例18: 如图, 正方形ABCD的面积是12, △ABE是等边三角形, 点E在正方形ABCD内, 在对角线AC上有一点P, 求PD+PE的最小值。

2020中考数学复习微专题:最值问题(将军饮马)突破与提升策略

2020中考数学复习微专题:最值问题(将军饮马)突破与提升策略

2020中考数学复习微专题:最值问题(将军饮马)突破与提升策略【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。

而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?P【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.P''A当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。

2020中考数学总复习:将军饮马型最值问题-解题技巧总结精选全文

2020中考数学总复习:将军饮马型最值问题-解题技巧总结精选全文
求点P的坐标.
图T3-13
1
10
3
3
(3)∵y=- x2+ x,∴抛物线的对称轴为直线 x=5.
∵A,O 两点关于对称轴对称,∴PA=PO,
当 P,O,D 三点在一条直线上时,PA+PD=PO+PD=OD,此时△ PAD 的周长最小.
如图,OD 与对称轴的交点即为满足条件的点 P,
由(2)可知 D 点坐标为(10,5).
1
1
1
∵S△ PAB=3S 矩形 ABCD,∴2AB·h=3AB·AD,
2
∴h=3AD=2,∴动点 P 在与 AB 平行且与 AB 的距离是 2 的线段 l 上,如图,作点 A
关于直线 l 的对称点 A',连接 AA',BA',则 BA'即为所求的最短距离.在 Rt△ ABA'中,
AB=4,AA'=2+2=4,∴BA'= 2 + '2 = 42 + 42 =4 2,即 PA+PB 的最小值为
)
D.80°
[答案]D
[解析]分别作A关于直线BC和CD的对称点A',A″,连接A'A″,交BC于E,交CD于F,则
A'A″长即为△AEF周长的最小值.作DA延长线AH,易知∠DAB=130°,∠HAA'=50°.
又∠EA'A=∠EAA',∠FAD=∠A″,且∠EA'A+∠EAA'=∠AEF,∠FAD+∠A″=
图T3-4
.
[答案] 2 5
[解析]如图,在 CB 上截取 CM=CA,连接 DM.
= ,
在△ CDA 与△ CDM 中, ∠ = ∠,

专题 几何最值之将军饮马问题【热点专题】

专题   几何最值之将军饮马问题【热点专题】

专题几何最值之将军饮马问题【热点专题】“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现.【抽象模型】如图,在直线上找一点P使得PA+PB最小?【模型解析】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)题型一:两定一动模型当两定点【例1】1.如图,点C的坐标为(3,y),当△ABC的周长最短时,求y的值.【例2】2.如图,正方形ABCD中,AB=7,M是DC上的一点,且DM=3,N是AC上的一动点,求|DN-MN|的最小值与最大值.【例3】3.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点A(1,0),B(5,0),C(0,4).(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足PA+PC的值为最小的点P坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由.(请在图2中探索)题型二:一定两动模型模型作法结论点P 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得△PCD 周长最小.分别作点P 关于OA 、OB 的对称点P ′、P ″,连接P ′P ″,交OA 、OB 于点C 、D ,点C 、D 即为所求.△PCD 周长的最小值为P ′P ″点P在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得PD +CD 最小.作点P 关于OB 的对称点P ′,过P ′作P ′C ⊥OA 交OB 于D ,点C 、点D 即为所求.PD +CD 的最小值为P ′C【例4】4.如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.【例5】5.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【例6】6.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.【例7】7.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x 轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.题型三:两定两动模型模型作法结论点P、Q在∠AOB内部,在OB边上找点D,OA边上找点C,使得四边形PQDC周长最小.分别作点P、Q关于OA、OB的对称点P′、Q′,连接P′Q′,分别交OA、OB于点C、D,点C、D即为所求.PC+CD+DQ的最小值为P′Q′,所以四边形PQDC周长的最小值为PQ+P′Q′【例8】8.如图,在矩形ABCD 中,AB =4,BC =7,E 为CD 的中点,若P 、Q 为BC 边上的两个动点,且PQ =2,若想使得四边形APQE 的周长最小,则BP 的长度应为__________.【例9】9.如图,已知直线l 1∥l 2,l 1、l 2之间的距离为8,点P 到直线l 1的距离为6,点Q 到直线l 2的距离为4,PQ =430,在直线l 1上有一动点A ,直线l 2上有一动点B ,满足AB ⊥l 2,且PA +AB +BQ 最小,此时PA +BQ =______.题型四:两定点一定长模型作法结论如图,在直线l 上找M 、N 两点(M 在左),使得AM +MN+NB 最小,且MN =d .将A 向右平移d 个单位到A ′,作A ′关于l 的对称点A ",连接A "B 与直线l 交于点N ,将点N 向左平移d 个单位即为M ,点M ,N 即为所求.AM +MN +NB 的最小值为A "B +d如图,l 1//l 2,l 1、l 2间距离为d ,在l 1、l 2分别找M 、N 两点,将A 向下平移d 个单位到A ,连接A ′B 交直线l 2于点N ,过点N 作MN ⊥l 1,连接AM .点M 、N 即为所求.AM +MN +NB 的最小值为A 'B +d .使得MN⊥l1,且AM+MN+NB最小.【例10】10.在平面直角坐标系中,矩形OABC如图所示,点A在x轴正半轴上,点C在y轴正半轴上,且OA=6,OC=4,D为OC中点,点E、F在线段OA上,点E在点F左侧,EF=2,当四边形BDEF的周长最小时,求点E的坐标【例11】11.村庄A和村庄B位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应如何选择,才使A与B之间的距离最短?12.如图,在Rt△ABC中,∠ACB=90°,AC=6,AB=12,AD平分∠CAB,点F是AC的中点,点E是AD 上的动点,则CE+EF的最小值为()A.3B.4C.33D.2313.如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于点D,M、N分别是BD,BC 上的动点,则CM+MN的最小值是()A.3B.2C.23D.414.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD 的最小值是()A.310B.103C.9D.9215.如图,在正方形ABCD中,E是AB上一点,BE=2,AB=8,P是AC上一动点,则PB+PE的最小值_____.16.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M 是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.17.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?18.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,A(3,0),B(0,4),D为边OB的中点.(1)若E为边OA上的一个动点,求△CDE的周长最小值;(2)若E、F为边OA上的两个动点,且EF=1,当四边形CDEF的周长最小时,求点E、F的坐标.19.如图所示抛物线y=ax2+bx+c过点A−1,0,点C0,3,且OB=OC(1)求抛物线的解析式及其对称轴;(2)点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3∶5两部分,求点P的坐标.20.如图,在平面直角坐标系中,矩形OABC的边BC交x轴于点D,AD⊥x轴,反比例函数y=k(x>0)的图x象经过点A,点D的坐标为(3,0),AB=BD.(1)求反比例函数的解析式;(2)点P为y轴上一动点,当PA+PB的值最小时,求出点P的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.。

2020年安徽中考常见最值问题——将军饮马1(共16张)

2020年安徽中考常见最值问题——将军饮马1(共16张)

解:设△PAB中AB边上的高是PE
1
1
S△PAB
3
S矩形ABCD
53 3
5
1
5
S△PAB 2 AB PE 2 PE
PE= 2
动点P在与AB平行且与AB的距离是2的对称点B',连接AB',则AB'就是所求的最短距离。
在Rt△ABE中,∵AB=5,BB'=2+2=4,
C.5 2 ;
D. 41 .
————竹竹子子系系本本科科生生
0
PRAT 01 将军饮马1
• 总结:
特征:
(1)两个定点一个动点,即“两定一动” (2)定点在动点轨迹l(即对称轴)的同侧 ( 3 ) 求 动 点 到 两 个 定 点 距 离 和 的 最 小 值 ( 如 : PA + P B )
l P
解法:
Q

坐标


x y
-1 x
3
解得:xy
=
-1 2
∴Q(−1,2)。
————竹竹子子系系本本科科生生
0
PRAT 01 将军饮马1
• 总结:
特征:
(1)两个定点一个动点,即“两定一动” (2)定点在动点轨迹l(即对称轴)的同侧 ( 3 ) 求 动 点 到 两 个 定 点 距 离 和 的 最 小 值 ( 如 : PA + P B )
AB' AB2 BB'2 52 42 41
即PA PB的最小值为 41
————竹竹子子系系本本科科生生
0
引例:
如图,在矩形
ABCD
中,AB=5,AD=3,动点
P
满足 S△PAB

1最值系列之将军饮马

1最值系列之将军饮马

最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。

而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B军军军军军【问题简化】如图,在直线上找一点P使得PA+PB最小?【问题分析】这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。

初中数学最值系列之将军饮马

初中数学最值系列之将军饮马

最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。

而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?【问题分析】这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.P''A当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。

2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总

2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总

2020年中考数学压轴题线段和差最值问题汇总---------将军饮马专题古老的数学问题“将军饮马”,“费马点”,“胡不归问题”,“阿氏圆”等都运用了化折为直的数学思想这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢?【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:1.定起点的最短路径问题:即已知起始结点,求最短路径的问题.2.确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.3.定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径.4.全局最短路径问题:求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”。

【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】直线、角、三角形、菱形、矩形、正方形、圆、坐标轴、抛物线等.【解题思路】“化曲为直”题型一:两定一动,偷过敌营。

题型二:两定一动,将军饮马。

例1:如图, AM ⊥EF ,BN ⊥EF ,垂足为M 、N ,MN =12m ,AM =5m ,BN =4m , P 是EF 上任意一点,则PA +PB 的最小值是______m .分析:这是最基本的将军饮马问题,A ,B 是定点,P 是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A 关于EF 的对称点A ’,根据两点之间,线段最短,连接A ’B ,此时A ’P +PB 即为A ’B ,最短.而要求A ’B ,则需要构造直角三角形,利用勾股定理解决. 解答:作点A 关于EF 的对称点A ’,过点A ’作A ’C ⊥BN 的延长线于C .易知A ’M =AM =NC =5m ,BC =9m ,A ’C =MN =12m ,在Rt △A ’BC 中,A ’B =15m ,即PA +PB 的最小值是15m .例2:如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值解:点C 关于直线AD 的对称点是点B ,连接BE ,交AD 于点M ,则ME+MD 最小, 过点B 作BH ⊥AC 于点H ,则EH = AH – AE = 3 – 2 = 1,BH = BC 2 - CH 2 = 62 - 32 = 3 3在直角△BHE 中,BE = BH 2 + HE 2 = (33)2 + 12 = 27DB CD CBP E D C B A E D C B AA (3对应练习题1.如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC+ED 的最小值是 。

2020中考数学总复习:将军饮马型最值问题 解题技巧总结

2020中考数学总复习:将军饮马型最值问题 解题技巧总结

4.如图T3-5,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任
意一点,则PK+QK的最小值为
.
图T3-5
[答案] 3 [解析]如图,作点 P 关于 BD 的对称点 P',则 PK+QK=P'K+QK.当 P',K,Q 三点共线, 且 P'Q⊥CD 时,PK+QK 取得最小值.过点 A 作 AE⊥CD 于点 E.∵在菱形 ABCD 中,AB=AD=2,∠BAD=120°,∴∠ADC=60°,∴AE=AD·sin∠ADC=2×23 = 3. ∵P'Q⊥CD,AE⊥CD,AB∥CD,∴P'Q=AE= 3.∴PK+QK 的最小值为 3.
MD=1AM=1,所以 MN=2,NQ=MN·
2
图T3-2
cosN=2×23 = 3.
2.如图T3-3,在矩形ABCD中,AD=4,∠DAC=
30°,点P,E分别在AC,AD上,则PE+PD的最小
值是
.
[答案] 2 3 [解析]如图,作点 D 关于直线 AC 的对称点 D'.当 D',P,E 三点共线, 且 D'E⊥AD 时,PE+PD 最小.易得 CD=433,∠ADD'=60°,DD'=4,所以 D'E=2 3.
图T3-3
3.[2019·合肥二模]如图T3-4,△ABC中,∠ACB=90°,AC=4,BC=6,CD平分∠ACB交
AB于点D,点E是AC的中点,点P是CD上一动点,则PA+PE的最小值是
.
图T3-4
[答案] 2 5
[解析]如图,在 CB 上截取 CM=CA,连接 DM. ������������ = ������������,

2020中考数学专题8——最值问题之将军饮马 -含答案

2020中考数学专题8——最值问题之将军饮马 -含答案

【模型解析】2020 中考专题 8——最值问题之将军饮马班级姓名.总结:以上四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短”解决。

特点:①动点在直线上;②起点,终点固定;方法:作定点关于动点所在直线的对称点。

【例题分析】例1.如图,在平面直角坐标系中,Rt△OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3 ),点C 的坐标为(1,0),点2P 为斜边OB 上的一动点,则PA+PC 的最小值为.例 2.如图,在五边形ABCDE 中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,在BC、DE 上分别找一点M、N.(1)当△AMN 的周长最小时,∠AMN+∠ANM=;(2)求△AMN 的周长最小值.例3.如图,正方形ABCD 的边长为 4,点E 在边BC 上且CE=1,长为 2 的线段MN 在AC 上运动.(1)求四边形BMNE 周长最小值;(2)当四边形BMNE 的周长最小时,则tan∠MBC 的值为.例4.在平面直角坐标系中,已知点A(一 2,0),点B(0,4),点E 在OB 上,且∠OAE=∠OB A.如图,将△AEO 沿x 轴向右平移得到△AE′O′,连接A'B、BE'.当AB+BE'取得最小值时,求点E'的坐标.例5.如图,已知正比例函数y=kx(k>0)的图像与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P 为y 轴上的一个动点,M、N 为函数y=kx(k>0)的图像上的两个动点,则AM+MP+PN 的最小值为.【巩固训练】1.如图1 所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为.图1 图2 图3 图42.如图2,在菱形ABCD 中,对角线AC=6,BD=8,点E、F、P 分别是边AB、BC、AC 上的动点,PE+PF 的最小值是.3.如图3,在边长为2 的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为.4.如图 4,钝角三角形ABC 的面积为 9,最长边AB=6,BD 平分∠ABC,点M、N 分别是BD、BC 上的动点,则CM+MN 的最小值为.5.如图5,在△ABC 中,AM 平分∠BAC,点D、E 分别为AM、AB 上的动点,=6,则BD+DE的最小值为(1)若AC=4,S△ABC(2)若∠BAC=30°,AB=8,则BD+DE 的最小值为.(3)若AB=17,BC=10,CA=21,则BD+DE 的最小值为.6.如图6,在△ABC中,AB=BC=4,S△ABC=4一点,则PK+QK 的最小值为.,点P、Q、K 分别为线段AB、BC、AC 上任意图6 图7 图8 图97.如图7,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点,则PM+PN 的最小值为.8.如图 8,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D,M、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是.9.如图 9,圆柱形玻璃杯高为 12cm、底面周长为 18cm,在杯内离杯底 4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cm.10.如图 10,菱形OABC 中,点A 在x 轴上,顶点C 的坐标为(1,OC、OB 上,则CE+DE+DB 的最小值是.),动点D、E 分别在射线图10 图11 图12 图1311.如图 11,点A(a,1)、B(-1,b)都在双曲线y=-3(x<0)上,点P、Q 分别是x 轴、y 轴上x的动点,当四边形PABQ 的周长取最小值时,PQ 所在直线的解析式是.12.如图12,点P 是∠AOB 内任意一点,OP=5cm,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm,则∠AOB 的度数是.13.如图13,∠AOB=30°,点M、N 分别在边OA、OB 上,且OM=1,ON=3,点P、Q 分别在边OB、OA 上,则MP+PQ+QN 的最小值是.14.如图 14,在Rt△ABC 中,∠ACB=90°,点D 是AB 边的中点,过D 作DE⊥BC 于点E. (1)点P 是边BC 上的一个动点,在线段BC 上找一点P,使得AP+PD 最小,在下图中画出点P; (2)在(1)的条件下,连接CD 交AP 于点Q,求AQ 与PQ 的数量关系;图 143315. 在矩形 ABCD 中,AB =6,BC =8,G 为边 AD 的中点.(1) 如图 1,若 E 为 AB 上的一个动点,当△CGE 的周长最小时,求 AE 的长.(2) 如图 2,若 E 、F 为边 AB 上的两个动点,且 EF =4,当四边形 CGEF 的周长最小时,求 AF的长.16. 如图,抛物线 y = - 1x 2+ 2x + 4 交y 轴于点B ,点A 为x 轴上的一点,OA =2,过点A 作直线MN ⊥ AB2 交抛物线与 M 、N 两点. (1) 求直线 AB 的解析式;(2) 将线段 AB 沿 y 轴负方向平移 t 个单位长度,得到线段 A 1B 1 ,求 MA 1 + MB 1 取最小值时实数 t 的值.33172020 中考专题 8——最值问题之将军饮马参考答案例1.解:作A 关于OB 的对称点D,连接CD 交OB 于P,连接AP,过D 作DN⊥OA 于N,则此时PA+PC 的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B(3,),∴AB=,OA=3,∵tan∠AOB=AB=3,∴∠AOB=30°,∴OB=2AB=2 ,OA 31 1 3 3由三角形面积公式得:×OA×AB=2×OB×AM,∴AM=2,∴AD=2×2=3,2∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=1AD=23,由勾股定理得:2DN=33 ,2∵C(1,0),∴CN=3﹣1﹣2 23=1,在Rt△DNC 中,由勾股定理得:DC=,2 2即PA+PC 的最小值是31.2例2.解:作A 关于BC 和ED 的对称点A′,A″,连接A′A″,交BC 于M,交ED 于N,则A′A″即为△AMN 的周长最小值.⑴作EA 延长线的垂线,垂足为H,∠BAE=120°,∴∠AA′A″+∠AA″A′=60°,∠AA′A″=∠A′AM,∠AA″A′=∠EAN,∴∠CAN=120°-∠AA′A″-∠AA″A′=60°,也就是说∠AMN+∠ANM=180°-60°=120°.⑵过点A′作EA 延长线的垂线,垂足为H,∵AB=BC=1,AE=DE=2,∴AA′=2BA=2,AA″=2AE=4,则Rt△A′HA 中,∵∠EAB=120°,∴∠HAA′=60°,∵A′H⊥HA,∴∠AA″H=30°,∴AH=1AA′=1,∴A′H=2,A″H=1+4=5,∴A′A″=2 ,例3.解:作EF∥AC 且EF=于P,,连结DF 交AC 于M,在AC 上截取MN=,延长DF 交BC 作FQ⊥BC 于Q,作出点E 关于AC 的对称点E′,则CE′=CE=1,将MN 平移至E′F′处,3332242 - 22 3 3 则四边形 MNE ′F ′为平行四边形,当 BM +EN =BM +FM =BF ′时,四边形 BMNE 的周长最小, 由∠FEQ =∠ACB =45°,可求得 FQ =EQ =1,∵∠DPC =∠FPQ ,∠DCP =∠FQP ,∴△PFQ ∽△PDC , ∴PQ PQ + QE + EC = PQ ,∴ CD PQ PQ + 2 1 = ,解得:PQ = 4 2 ,∴PC = 8 ,3 3由对称性可求得 tan ∠MBC =tan ∠PDC = 2 .3例 4.【提示】将△AEO 向右平移转化为△AEO 不动,点 B 向左平移,则点 B 移动的轨迹为一平行于 x 轴的直线,所以作点 E 关于该直线的对称点 E 1,连接 AE 1,与该直线交点 F 即为最小时点 B 的位置,求出 BF 长度即可求出点 E 向右平移的距离.例 5.解:如图所示,直线 OC 、y 轴关于直线 y =kx 对称,直线 OD 、直线 y =kx 关于 y 轴对称,点A ′是点 A 关于直线 y =kx 的对称点.作 A ′E ⊥OD 垂足为 E ,交 y 轴于点 P ,交直线 y =kx 于 M ,作 PN ⊥直线 y =kx 垂足为 N , ∵PN =PE ,AM =A ′M ,∴AM +PM +PN =A ′M +PM +PE =A ′E 最小(垂线段最短), 在 RT △A ′EO 中,∵∠A ′EO =90°,OA ′=4,∠A ′OE =3∠AOM =60°, ∴OE =1OA ′=2,A ′E = =2 .2 ∴AM +MP +PN 的最小值为 2 .333337【巩固训练】答案1.解:连接BD,∵点B 与D 关于AC 对称,∴PD=PB,∴PD+PE=PB+PE=BE 最小.∵正方形ABCD 的面积为 12,∴AB=2又∵△ABE 是等边三角形,∴BE=AB=2,,故所求最小值为2 .2.解:∵四边形ABCD 是菱形,对角线AC=6,BD=8,∴AB=5,作E 关于AC 的对称点E′,作E′F⊥BC 于F 交AC 于P,连接PE,则E′F 即为PE+PF 的最小值,∵1⋅AC⋅BD=AD⋅E′F,∴E′F=24,∴PE+PF 的最小值为24.2 5 53.解:作B 关于AC 的对称点B′,连接BB′、B′D,交AC 于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D 就是BE+ED 的最小值,∵B、B′关于AC 的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC 是边长为2,D 为BC 的中点,∴AD⊥BC,AD=,BD=CD=1,BB′=2AD=2 ,作B′G⊥BC 的延长线于G,∴B′G=AD=,在Rt△B′BG 中,BG=3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG 中,B′D=.故BE+ED 的最小值为7 .4.解:过点C 作CE⊥AB 于点E,交BD 于点M,过点M 作MN⊥BC 于N,∵BD 平分∠ABC,ME⊥AB 于点E,MN⊥BC 于N,∴MN=ME,∴CE=CM+ME=CM+MN 是最小值.∵三角形ABC 的面积为 9,AB即CM+MN 的最小值为 3.=6,∴12×6⋅CE=9,∴CE=3.333335.提示:作点E 关于AM 的对称点E′,BH⊥AC 于H,易知BD+DE 的最小值即为BH 的长. 答案:(1)3;(2)4;(3)8.6.解:如图,过A 作AH⊥BC 交CB 的延长线于H,∵AB=CB=4,S△ABC=4,∴AH=2,∴cos∠HAB=AH=2 3=3,∴∠HAB=30°,∴∠ABH=60°,∴∠ABC=120°,AB 4 2∵∠BAC=∠C=30°,作点P 关于直线AC 的对称点P′,过P′作P′Q⊥BC 于Q 交AC 于K,则P′Q 的长度=PK+QK 的最小值,∴∠P′AK=∠BAC=30°,∴∠HAP′=90°,∴∠H=∠HAP′=∠P′QH=90°,∴四边形AP′QH 是矩形,∴P′Q=AH=2 ,即PK+QK 的最小值为2 .7.解:作点N 关于AB 的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB 的交点即为PM+PN 的最小时的点,PM+PN 的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N 是弧MB 的中点,∴∠BON=12∠MOB=1×40°=20°,2由对称性,∠N′OB=∠BON=20°,∴∠MON′=∠MOB+∠N′OB=40°+20°=60°,∴△MON′是等边三角形,∴MN′=OM=OB=1AB=18 =4,2 2∴PM+PN 的最小值为 4,22338.解:如图,作BH⊥AC,垂足为H,交AD 于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD 是∠BAC 的平分线,∴M′H=M′N′,∴BH 是点 B 到直线AC 的最短距离,∵AB=4,∠BAC=45°,∴BH=AB sin45°=4×2=2 .2∵BM+MN 的最小值是BM′+M′N′=BM′+M′H=BH=2 .9.解:沿过A 的圆柱的高剪开,得出矩形EFGH,过C 作CQ⊥EF 于Q,作A 关于EH 的对称点A′,连接A′C 交EH 于P,连接AP,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=1×182cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC 中,由勾股定理得:A′C=15cm,故答案为:15.10.解:连接AC,作B 关于直线OC 的对称点E′,连接AE′,交OC 于D,交OB 于E,此时CE+DE+BD 的值最小,∵四边形OCBA 是菱形,∴AC⊥OB,AO=OC,即A 和C 关于OB 对称,∴CE=AE,∴DE+CE=DE+AE=AD,∵B 和E′关于OC 对称,∴DE′=DB,∴CE+DE+DB=AD+DE′=AE′,过C 作CN⊥OA 于N,∵C(1,),∴ON=1,CN=,由勾股定理得:O C=2,即AB=BC=OA=OC=2,∴∠CON=60°,∴∠CBA=∠COA=60°,∵四边形COAB 是菱形,∴BC∥OA,∴∠DCB=∠COA=60°,∵B 和E′关于OC 对称,∴∠BFC=90°,∴∠E′BC=90°﹣60°=30°,∴∠E′BA=60°+30°=90°,CF=1BC=1,由勾股定理得:BF=2=E′F,在Rt△EBA 中,由勾股定理得:AE′=4,即CE+DE+DB 的最小值是 4.310 ⎩⎩11.解:把点 A (a ,1)、B (﹣1,b )代入 y =﹣ 3(x <0)得 a =﹣3,b =3,则 A (﹣3,1)、B (﹣1,x3),作 A 点关于 x 轴的对称点 C ,B 点关于 y 轴的对称点 D ,所以 C 点为(﹣3,﹣1),D 点为(1, 3),连结 CD 分别交 x 轴、y 轴于 P 点、Q 点,此时四边形 PABQ 的周长最小,设直线 CD 的解析式为 y =kx +b ,则⎧-3k + b = -1 ,解得⎧k = 1,所以直线 CD 的解析式为 y =x +2.⎨k + b = 3 ⎨b = 212.解:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接 CD ,分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN 、MN ,如图所示:∵点 P 关于 OA 的对称点为 D ,关于 OB 的对称点为 C ,∴PM =DM ,OP =OD ,∠DOA =∠ POA ;∵点 P 关于 OB 的对称点为 C ,∴PN =CN ,OP =OC ,∠COB =∠POB , ∴OC =OP =OD ,∠AOB =1∠COD ,2∵△PMN 周长的最小值是 5cm ,∴PM +PN +MN =5,∴DM +CN +MN =5,即 CD =5=OP , ∴OC =OD =CD ,即△OCD 是等边三角形,∴∠COD =60°,∴∠AOB =30°;13 解:作 M 关于 OB 的对称点 M ′,作 N 关于 OA 的对称点 N ′,连接 M ′N ′,即为 MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°, ∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°, ∴在 Rt △M′ON′中,M ′N ′= .故答案为 .10314.解:(1)作点 A 关于BC 的对称点 A′,连 DA′交BC 于点P.(2)由(1)可证得PA 垂直平分CD,∴AQ=CQ=3PQ15.解:(1)∵E 为AB 上的一个动点,∴作G 关于AB 的对称点M,连接CM 交AB 于E,那么E 满足使△CGE 的周长最小;∵在矩形ABCD 中,AB=6,BC=8,G 为边AD 的中点,∴AG=AM=4,MD=12,而AE∥CD,∴△AEM∽△DCM,∴AE:CD=MA:MD,∴AE=CD ⨯MA=2;MD(2)∵E 为AB 上的一个动点,∴如图,作G 关于AB 的对称点M,在CD 上截取CH=4,然后连接HM 交AB 于E,接着在EB 上截取EF=4,那么E、F 两点即可满足使四边形CGEF 的周长最小.∵在矩形ABCD 中,AB=6,BC=8,G 为边AD 的中点,∴AG=AM=4,MD=12,而CH=4,∴DH=2,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE=HD ⨯MAMD=2,3∴AF =4+2=14.3 316.解:(1)依题意,易得B(0,4),A(2,0),则AB解析式:y=-2x+4(2)∵AB⊥MN∴直线MN:y =1x - 12⎧y =-1x2+ 2x + 4⎪与抛物线联立可得:⎨⎪y =⎩21x - 1 2解得:M(-2,-2)将AB向负方向平移t个单位后,A1(2,-t),B1(0,4-t)则A1 关于直线x=-2 的对称点A2 为(-6,-t)当A2、M、B1 三点共线时,MA1 +MB1取最小值∴t =143。

2020年中考复习专题:中考中“将军饮马”问题的常见模型及典型例题 课件(共38张PPT)【优秀课件】

2020年中考复习专题:中考中“将军饮马”问题的常见模型及典型例题 课件(共38张PPT)【优秀课件】

【变式】如图,已知菱形ABCD两条对角线的长度分别为6和8,M、N
? 分别为BC、CD的中点,P是对角线BD上一点,求PM+PN的最小值。
2020年中考复习专题:中考中“将军 饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)【优秀课件】
2020年中考复习专题:中考中“将军 饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)【优秀课件】
说明理由。
y
C
P
A
B
O
x
【技巧】此类问题有一个动点在一条直线上运动,在直线的一侧有两个 定点,先找出其中一个定点关于这条直线的对称点,然后连接这个对称 点和另一个定点,与已知直线有个交点,这个交点就是使得这个动点到 两个定点距离之和最小的点。
2020年中考复习专题:中考中“将军 饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)【优秀课件】
2020年中考复习专题:中考中“将军 饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)【优秀课件】
(3)通过以上解答,充分展开联想,运用数形结合思想,请你尝试解决
下面问题:若 y x2 1
求出这个最小值。
B.
A.
9 x2 4 ,当x为何值时,y的值最小,并
B A
图1
C
图2
D
2020年中考复习专题:中考中“将军 饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)【优秀课件】
2020年中考复习专题:中考中“将军 饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)【优秀课件】
D、 6

A
D

P
E

B
C

最值系列之将军饮马 - 解析

最值系列之将军饮马 - 解析

最值系列之——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。

而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?P【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB 上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.AP''当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。

中考复习专题:中考中“将军饮马”问题的常见模型及典型例题 课件

中考复习专题:中考中“将军饮马”问题的常见模型及典型例题 课件

使得△PBC的周长最小,如果存在,请求出点P的坐标;如果不存在,请
说明理由。
y
C
P
A
B
O
x
【技巧】此类问题有一个动点在一条直线上运动,在直线的一侧有两个 定点,先找出其中一个定点关于这条直线的对称点,然后连接这个对称 点和另一个定点,与已知直线有个交点,这个交点就是使得这个动点到 两个定点距离之和最小的点。
y A
D E OC B x
y
A
C
D
E
C′O C
B
x
数学活动室
1.一次函数 y kx b 的图象与x、y轴分别交于点A(2,0)、B
(0,4).
学 (1)求该函数的解析式;
(2)O为坐标原点,设OA的中点为C,D、P分别为AB、OB上一
以 动点,求△PCD的最小值,并求取得最小值时P点坐标。
y

B

D P
O CA
x
2020年中考复习专题:中考中“将军 饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)中考复习课件中 考ppt课 件中考 专题复 习课件 优秀课 件
梳理体系
【将军饮马问题模型4】双动点双对称(四边形周长的最小值问题)
P1
M
a
A
B b
N
P2
2020年中考复习专题:中考中“将军 饮马” 问题的 常见模 型及典 型例题 课件(共38张PPT)中考复习课件中 考ppt课 件中考 专题复 习课件 优秀课 件
数学活动室
1.如图,在平面直角坐标系中,点O为坐标原点,直线 y x 4 与x轴交于点A,过点A的抛物线 y ax2 bx与直线 y x 4 交于
另一点B,且点B的横坐标为1.

2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总

2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总

2020年中考数学压轴题线段和差最值问题汇总---------将军饮马专题古老的数学问题“将军饮马”,“费马点”,“胡不归问题”,“阿氏圆”等都运用了化折为直的数学思想这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢?【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:1.定起点的最短路径问题:即已知起始结点,求最短路径的问题.2.确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.3.定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径.4.全局最短路径问题:求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”。

【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】直线、角、三角形、菱形、矩形、正方形、圆、坐标轴、抛物线等.【解题思路】“化曲为直”题型一:两定一动,偷过敌营。

题型二:两定一动,将军饮马。

例1:如图, AM ⊥EF ,BN ⊥EF ,垂足为M 、N ,MN =12m ,AM =5m ,BN =4m , P 是EF 上任意一点,则PA +PB 的最小值是______m .分析:这是最基本的将军饮马问题,A ,B 是定点,P 是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A 关于EF 的对称点A ’,根据两点之间,线段最短,连接A ’B ,此时A ’P +PB 即为A ’B ,最短.而要求A ’B ,则需要构造直角三角形,利用勾股定理解决. 解答:作点A 关于EF 的对称点A ’,过点A ’作A ’C ⊥BN 的延长线于C .易知A ’M =AM =NC =5m ,BC =9m ,A ’C =MN =12m ,在Rt △A ’BC 中,A ’B =15m ,即PA +PB 的最小值是15m .例2:如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值解:点C 关于直线AD 的对称点是点B ,连接BE ,交AD 于点M ,则ME+MD 最小, 过点B 作BH ⊥AC 于点H ,则EH = AH – AE = 3 – 2 = 1,BH = BC 2 - CH 2 = 62 - 32 = 3 3在直角△BHE 中,BE = BH 2 + HE 2 = (33)2 + 12 = 27DB CD CBP E D C B A E D C B AA (3对应练习题1.如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC+ED 的最小值是 。

中考专题系列之最值——将军饮马

中考专题系列之最值——将军饮马

中考专题系列之最值——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。

而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。

【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.P''A当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。

最值问题----将军饮马(三)

最值问题----将军饮马(三)
最值问题
----之将军饮马(三)
什么是将军饮马?
【问题描述】: 如图,将军在图中点A处,现在他要带马去河 边喝水,之后返回军营,问:将军怎么走能使得路程最短?
【问题简化】: 如图,在直线上找一点P使得PA+PB最小?
【问题分析】:这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结 果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段 最短”等,所以此处,需转化问题,将折线段变为直线段.
【问题解决】作点A关于直线的 对称点A',连接PA',则PA'=PA, 所以PA+PB=PA'+PB.
当A'、P、B三点共线的时 候,PA'+PB=A'B,此时为最小 值(两点之间线段最短)
09 将军饮马(面积与折点)。
【问题描述】:如图,在矩形ABCD中,AB=6,AD=3,动点P满足△APB的面积是矩形 ABCD面积的三分之一,则点P到A、B两点距离之和PA+PB的最小值为_________.
【解析】:此处点P为折点, 作点M关于OA的对称对称点 M'如图所示,连接PM',化 PM+PN为PM'+PN.
当M'、P、N共线时,得最 小值,又∠M'ON=60°且 ON=2OM',可得∠OM'N=90°, 故P点坐标可求。
13 将军饮马( 20°角的对称)。
【问题描述】:如图,已知正比例函数y=kx(k>0)的图像与x轴相交所成的锐角为 70°,定点A的坐标为(0,4),P为y轴上的一个动点,M、N为函数y=kx(k>0)的图 像上的两个动点,则AM+MP+PN的最小值为___________ .

中考数学二次函数压轴题突破最值问题之将军饮马

中考数学二次函数压轴题突破最值问题之将军饮马

O
N
P''
此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N
所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、
N、P’’共线时,△PMN周长最小.
【例题】如图,点 P 是∠AOB 内任意一点,∠AOB=30°,OP=8,点 M 和点 N 分别是射线 OA 和射线 OB 上的动点,则△PMN 周长的最小值为___________.
形 PMNQ 的周长最小。
【一定两动之点线】
在OA、OB上分别取M、N使得PM+MN最小。
A
A
P'
M P
M
P
O
N
B
ON
B
此处 M 点为折点,作点 P 关于 OA 对称的点 P’,将折线段 PM+MN 转化为 P’M+MN ,即 过点 P’作 OB 垂线分别交 OA、OB 于点 M、N,得 PM+MN 最小值(点到直线的连线中, 垂线段最短)
二次中物函理 数压轴题突破 ——最值问题之将军饮马
中物理
将军饮马(一)
1 一、什么是将军饮马?
【问题引入】 “白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人 李颀《古从军行》里的一句诗。而由此却引申出一系 列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】 如图,将军在图中点A处,现在他要带马去河边喝水,之后返 回军营,问:将军怎么走能使得路程最短?
当A’、P、B三点共线的时候,PA’+PB=A’B, 此时为最小值(两点之间线段最短)
【思路概述】
作端点(点A或点B)关于折点(上图P点)所在直线的对称,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的长.
16.如图,抛物线 y 1 x2 2x 4 交 y 轴于点 B,点 A 为 x 轴上的一点,OA=2,过点 A 作直线 MN AB 2
交抛物线与 M、N 两点. (1)求直线 AB 的解析式; (2)将线段 AB 沿 y 轴负方向平移 t 个单位长度,得到线段 A1B1 ,求 MA1 MB1 取最小值时实数 t 的值.
[南瓜讲数学]系列之中考专题
2020 中考专题 8——最值问题之将军饮马
【模型解析】
班级
姓名
.
总结:以上四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短”解决。
特点:①动点在直线上;②起点,终点固定;
方法:作定点关于动点所在直线的对称点。
【例题分析】
例 1.如图,在平面直角坐标系中,Rt△OAB 的顶点 A 在 x 轴的正半轴上,顶点 B 的坐标为(3, 3 ),
例 5.解:如图所示,直线 OC、y 轴关于直线 y=kx 对称,直线 OD、直线 y=kx 关于 y 轴对称,点 A′是点 A 关于直线 y=kx 的对称点.
作 A′E⊥OD 垂足为 E,交 y 轴于点 P,交直线 y=kx 于 M,作 PN⊥直线 y=kx 垂足为 N, ∵PN=PE,AM=A′M,∴AM+PM+PN=A′M+PM+PE=A′E 最小(垂线段最短), 在 RT△A′EO 中,∵∠A′EO=90°,OA′=4,∠A′OE=3∠AOM=60°, ∴OE= 1 OA′=2,A′E= 42 22 =2 3 .
值为

4.如图 4,钝角三角形 ABC 的面积为 9,最长边 AB=6,BD 平分∠ABC,点 M、N 分别是 BD、BC
上的动点,则 CM+MN 的最小值为

5.如图 5,在△ABC 中,AM 平分∠BAC,点 D、E 分别为 AM、AB 上的动点,
(1)若 AC=4,S△ABC=6,则 BD+DE 的最小值为

图6
图7
图8
图9
7.如图 7,AB 是⊙O 的直径,AB=8,点 M 在⊙O 上,∠MAB=20°,N 是弧 MB 的中点,P 是直
径 AB 上的一动点,则 PM+PN 的最小值为

8.如图 8,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交 BC 于点 D,M、N 分别是
AD 和 AB 上的动点,则 BM+MN 的最小值是
当 BM+EN=BM+FM=BF′时,四边形 BMNE 的周长最小,
由∠FEQ=∠ACB=45°,可求得 FQ=EQ=1,
∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,

PQ
= PQ ,∴ PQ = 1 ,解得:PQ= 2 ,∴PC= 8 ,
PQ QE EC CD
PQ 2 4
4.解:过点 C 作 CE⊥AB 于点 E,交 BD 于点 M,过点 M 作 MN⊥BC 于 N, ∵BD 平分∠ABC,ME⊥AB 于点 E,MN⊥BC 于 N,∴MN=ME, ∴CE=CM+ME=CM+MN 是最小值. ∵三角形 ABC 的面积为 9,AB=6,∴ 1 ×6CE=9,∴CE=3.
∴cos∠HAB= AH = 2 3 = 3 ,∴∠HAB=30°,∴∠ABH=60°,∴∠ABC=120°,
AB 4
2
∵∠BAC=∠C=30°,
3
3
由对称性可求得 tan∠MBC=tan∠PDC= 2 . 3
例 4.【提示】 将△AEO 向右平移转化为△AEO 不动,点 B 向左平移,则点 B
移动的轨迹为一平行于 x 轴的直线,所以作点 E 关于该直线的对称 点 E1,连接 AE1,与该直线交点 F 即为最小时点 B 的位置,求出 BF 长度即可求出点 E 向右平移的距离.
例 5.如图,已知正比例函数 y=kx(k>0)的图像与 x 轴相交所成的锐角为 70°,定点 A 的坐标为(0,
4),P 为 y 轴上的一个动点,M、N 为函数 y=kx(k>0)的图像上的两个动点,则 AM+MP+PN 的
最小值为

【巩固训练】
1.如图 1 所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对
角线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为

图1
图2
图3
图4
2.如图 2,在菱形 ABCD 中,对角线 AC=6,BD=8,点 E、F、P 分别是边 AB、BC、AC 上的动
点,PE+PF 的最小值是

3.如图 3,在边长为 2 的等边△ABC 中,D 为 BC 的中点,E 是 AC 边上一点,则 BE+DE 的最小
2 ∴AM+MP+PN 的最小值为 2 3 .

6
[南瓜讲数学]系列之中考专题
【巩固训练】答案
1. 解:连接 BD, ∵点 B 与 D 关于 AC 对称,∴PD=PB,∴PD+PE=PB+PE=BE 最小. ∵正方形 ABCD 的面积为 12,∴AB=2 3 , 又∵△ABE 是等边三角形,∴BE=AB=2 3 ,故所求最小值为 2 3 .
点 C 的坐标为( 1 ,0),点 P 为斜边 OB 上的一动点,则 PA+PC 的最小值为

2
例 2.如图,在五边形 ABCDE 中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,
在 BC、DE 上分别找一点 M、N.
(1)当△AMN 的周长最小时,∠AMN+∠ANM=

OC、OB 上,则 CE+DE+DB 的最小值是

图 10
图 11
图 12
图 13
11.如图 11,点 A(a,1)、B(-1,b)都在双曲线 y=- 3 (x<0)上,点 P、Q 分别是 x 轴、y 轴上 x
的动点,当四边形 PABQ 的周长取最小值时,PQ 所在直线的解析式是

12.如图 12,点 P 是∠AOB 内任意一点,OP=5cm,点 M 和点 N 分别是射线 OA 和射线 OB 上的

9. 如图 9,圆柱形玻璃杯高为 12cm、底面周长为 18cm,在杯内离杯底 4cm 的点 C 处有一滴蜂蜜,
此时一只蚂蚁正好在杯外壁,离杯上沿 4cm 与蜂蜜相对的点 A 处,则蚂蚁到达蜂蜜的最短距离为
cm.
10.如图 10,菱形 OABC 中,点 A 在 x 轴上,顶点 C 的坐标为(1, 3 ),动点 D、E 分别在射线
(2)求△AMN 的周长最小值.
例 3.如图,正方形 ABCD 的边长为 4,点 E 在边 BC 上且 CE=1,长为 2 的线段 MN 在 AC 上运
动.
(1)求四边形 BMNE 周长最小值;
(2)当四边形 BMNE 的周长最小时,则 tan∠MBC 的值为

1
[南瓜讲数学]系列之中考专题
例 4.在平面直角坐标系中,已知点 A(一 2,0),点 B(0,4),点 E 在 OB 上,且∠OAE=∠OBA.如 图,将△AEO 沿 x 轴向右平移得到△AE′O′,连接 A'B、BE'.当 AB+BE'取得最小值 时,求点 E'的坐标.
(2)若∠BAC=30°,AB=8,则 BD+DE 的最小值为

(3)若 AB=17,BC=10,CA=21,则 BD+DE 的最小值为

2
图5
[南瓜讲数学]系列之中考专题
6.如图 6,在△ABC 中,AB=BC=4,S△ABC=4 3 ,点 P、Q、K 分别为线段 AB、BC、AC 上任意
一点,则 PK+QK 的最小值为
(1)点 P 是边 BC 上的一个动点,在线段 BC 上找一点 P,使得 AP+PD 最小,在下图中画出点 P;
(2)在(1)的条件下,连接 CD 交 AP 于点 Q,求 AQ 与 PQ 的数量关系;
图 14
3
[南瓜讲数学]系列之中考专题
15.在矩形 ABCD 中,AB=6,BC=8,G 为边 AD 的中点. (1)如图 1,若 E 为 AB 上的一个动点,当△CGE 的周长最小时,求 AE 的长. (2)如图 2,若 E、F 为边 AB 上的两个动点,且 EF=4,当四边形 CGEF 的周长最小时,求 AF
例 3.解:作 EF∥AC 且 EF= 2 ,连结 DF 交 AC 于 M,在 AC 上截取 MN= 2 ,延长 DF 交 BC 于 P,
作 FQ⊥BC 于 Q,作出点 E 关于 AC 的对称点 E′,则 CE′=CE=1,将 MN 平移至 E′F′处,
5
[南瓜讲数学]系列之中考专题
则四边形 MNE′F′为平行四边形,
2 即 CM+MN 的最小值为 3.
7
[南瓜讲数学]系列之中考专题
5.提示:作点 E 关于 AM 的对称点 E′,BH⊥AC 于 H,易知 BD+DE 的最小值即为 BH 的长. 答案:(1)3;(2)4;(3)8.
6.解:如图,过 A 作 AH⊥BC 交 CB 的延长线于 H,
∵AB=CB=4,S△ABC=4 3 ,∴AH=2 3 ,
2.解:∵四边形 ABCD 是菱形,对角线 AC=6,BD=8,∴AB=5,
作 E 关于 AC 的对称点 E′,作 E′F⊥BC 于 F 交 AC 于 P,连接 PE,则 E′F 即为 PE+PF 的最
小值,∵ 1 ACBD=ADE′F,∴E′F= 24 ,∴PE+PF 的最小值为 24 .
2
5
5
3.解:作 B 关于 AC 的对称点 B′,连接 BB′、B′D,交 AC 于 E,此时 BE+ED=B′E+ED=B′D, 根据两点之间线段最短可知 B′D 就是 BE+ED 的最小值, ∵B、B′关于 AC 的对称,∴AC、BB′互相垂直平分,∴四边形 ABCB′是平行四边形, ∵三角形 ABC 是边长为 2,D 为 BC 的中点,∴AD⊥BC,AD= 3 ,BD=CD=1,BB′=2AD=2 3 , 作 B′G⊥BC 的延长线于 G,∴B′G=AD= 3 , 在 Rt△B′BG 中,BG=3,∴DG=BG﹣BD=3﹣1=2,在 Rt△B′DG 中,B′D= 7 . 故 BE+ED 的最小值为 7 .
相关文档
最新文档