任意角和弧度制测试题(含解析)

合集下载

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.如图,A,B是单位圆上的两个质点,点B坐标为(1,0),∠BOA=60°.质点A以1 rad/s的角速度按逆时针方向在单位圆上运动,质点B以1 rad/s的角速度按顺时针方向在单位圆上运动.(1)求经过1 s 后,∠BOA的弧度;(2)求质点A,B在单位圆上第一次相遇所用的时间.【答案】(1)+2.(2)s【解析】解:(1)经过1 s 后,∠BOA的弧度为+2.(2)设经过t s 后质点A,B在单位圆上第一次相遇,则t(1+1)+=2π,所以t=,即经过s 后质点A,B在单位圆上第一次相遇.3.设角α是第三象限角,且=-sin,则角是第________象限角.【答案】四【解析】由α是第三象限角,知2kπ+π<α<2kπ+ (k∈Z),kπ+<<kπ+ (k∈Z),知是第二或第四象限角,再由=-sin知sin<0,所以只能是第四象限角.4.点P从(1,0)出发,沿单位圆x2+y2=1逆时针方向运动弧长到达Q点,则Q点的坐标为()A.(-,)B.(-,-)C.(-,-)D.(-,)【解析】设α=∠POQ,由三角函数定义可知,Q点的坐标(x,y)满足x=cosα,y=sinα,∴x=-,y=,∴Q点的坐标为(-,).5.已知角α终边经过点P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.【答案】sinα=-,tanα=【解析】解:∵P(x,-)(x≠0),∴P到原点的距离r=.又cosα=x,∴cosα==x,∵x≠0,∴x=±,∴r=2.当x=时,P点坐标为(,-),由三角函数定义,有sinα=-,tanα=-.当x=-时,P点坐标为(-,-),∴sinα=-,tanα=.6. [2014·潍坊质检]已知角α的终边经过点P(m,-3),且cosα=-,则m等于()A.-B.C.-4D.4【答案】C【解析】cosα==- (m<0),解之得m=-4,选C项.7.角终边上有一点,则下列各点中在角的终边上的点是()A.B.C.D.【答案】B【解析】因为角终边上有一点,所以因此即角的终边上的点在第三象限,所以选C.【考点】三角函数定义8.把表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是()A.B.C.D.【解析】∵∴与是终边相同的角,且此时=是最小的,选A.9.若角α,β满足-<α<β<π,则α-β的取值范围是()A.(-,)B.(-,0)C.(0,)D.(-,0)【答案】B【解析】由-<α<β<π知,-<α<π,-<β<π,且α<β,所以-π<-β<,所以-<α-β<且α-β<0,所以-<α-β<0.10.计算2sin(-600°)+tan(-855°)的值为()A.B.1C.2D.0【答案】C【解析】∵sin(-600°)=-sin600°=-sin(360°+240°)=-sin240°=-sin(180°+60°)=sin60°=,同理tan(-855°)=-tan(2×360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1,∴原式=2×+×1=2.11.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为()A.B.C.D.【答案】C【解析】∵sin>0,cos>0,∴角α的终边在第一象限,∴tanα====,∴角α的最小正值为.12.若角θ的终边在射线y=-2x(x<0)上,则cosθ=.【答案】-【解析】由已知得角的终边落在第二象限,故可设角终边上一点P(-1,2),则r2=(-1)2+22=5,∴r=,此时cosθ==-.13.已知点P落在角θ的终边上,且θ∈[0,2π],则θ的值为________.【答案】【解析】由题意可知,点P在第四象限,且点P落在角θ的终边上,所以tan θ=-1,故θ=.14.已知则= .【答案】【解析】.【考点】三角函数求值.15.已知角x的终边上一点坐标为,则角x的最小正值为( ) A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值16.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值17.角的终边经过点,则的可能取值为( )A.B.C.D.【答案】D【解析】.【考点】1.任意角的三角函数;2.同角三角函数的基本关系18.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】B【解析】已知弧度数为2的圆心角所对的弦长也是2,所以,即,所以.【考点】弧度制.19.求值:________.【答案】【解析】.【考点】三角函数的计算及诱导公式.20.如图,在平面直角坐标系中,以x轴为始边作两个锐角、,它们的终边分别与单位圆交于A、B两点.已知点A的横坐标为;B点的纵坐标为.则 .【答案】【解析】单位圆的半径是1,根据勾股定理以及点A的横坐标为,B点的纵坐标为,可知点A的纵坐标为,点B的横坐标为,所以,,,,因为,是锐角,所以,所以.【考点】1.任意角的三角函数;2.三角函数的和角公式21.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】C【解析】.故选C.【考点】扇形弧长公式.22.在平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则sin5α=.【答案】【解析】根据题意,由于平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则可知,那么可知sin5α=sin,故答案为【考点】三角函数定义点评:解决的关键是利用三角函数的定义来求解三角函数值,属于基础题。

高中数学新教材必修第一册第五章 三角函数 5.1 任意角和弧度制(南开题库详解)

高中数学新教材必修第一册第五章  三角函数 5.1  任意角和弧度制(南开题库详解)

第五章三角函数 5.1 任意角和弧度制一、选择题(共60小题;共300分)1. 下列结论正确的是A. 终边相同的角一定相等B. 轴上的角均可表示为C. 第一象限的角都是锐角D. 钝角一定是第二象限的角2. 如果,,则是A. 第一或第三象限角B. 第一或第二象限角C. 第二或第四象限角D. 第三或第四象限角3. 已知角,的终边相同,那么的终边在A. 轴非负半轴上B. 轴非负半轴上C. 轴非正半轴上D. 轴非正半轴上4. 在半径不等的两个圆内,弧度的圆心角A. 所对弧长相等B. 所对的弦长相等C. 所对弧长等于各自半径D. 所对弦长等于各自半径5. 下列四个选项中,与角终边相同的角是A. B. C. D.6. 与的终边相同的角是A. B. C. D.7. 下列命题正确的是A. 第一象限角一定不是负角B. 小于的角一定是锐角C. 钝角一定是第二象限角D. 终边相同的角一定相等8. 若是第二象限角,则是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角9. 的弧度数是A. B. C. D.10. 已知一个扇形的圆心角的弧度数为,则该扇形的弧长与半径的比等于A. B. C. D.11. 半径为,中心角为的弧长为A. B. C. D.12. 下列各组角中,终边相同的是A. 与,B. 与,C. 与,D. 与,13. 一个扇形的圆心角为,半径为,则此扇形的面积为A. B. C. D.14. 与角终边相同的角是A. B. C. D.15. 圆弧长度等于圆弧所在圆的内接正三角形的边长,则圆弧所对圆心角的弧度数为A. B. C. D.16. 集合中,各角的终边都在A. 轴正半轴上B. 轴正半轴上C. 轴或轴上D. 轴正半轴或轴正半轴上17. 已知扇形的半径为,周长为,则扇形的圆心角等于A. B. C. D.18. 设集合,,那么A. B. C. D.19. 把表示成的形式,使最小的的值是A. B. C. D.20. 设小于的角,锐角,第一象限的角,小于但不小于的角,那么有A. B.C. D.21. 已知为第二象限角,则所在的象限是A. 第一或第二象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限22. 下列命题正确的是A. 第一象限角一定不是负角B. 小于的角一定是锐角C. 钝角一定是第二象限角D. 终边相同的角一定相等23. 将表的分针拨快分钟,则分针旋转过程中形成的角的弧度数是A. B. C. D.24. 将化为弧度为A. B. C. D.25. 是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角26. 对于始边相同的角,下列命题正确的是A. 第一象限角必定为锐角B. 终边相同的角必定相等C. 相等的角,其终边位置必定相同D. 不相等的角,其终边位置必定不同27. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.28. 下列选项中叙述正确的是A. 三角形的内角是第一象限角或第二象限角B. 锐角是第一象限的角C. 第二象限的角比第一象限的角大D. 终边不同的角同一三角函数值不相等29. 与角的终边相同的角是A. B. C. D.30. 角的终边所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限31. ,则的终边在A. 第一象限B. 第二象限C. 第三象限D. 第四象限32. 已知集合,,则等于A.B.C.D. 或33. 将分针拨慢分钟,则分钟转过的弧度数是A. B. C. D.34. 下列说法正确的是A. 第二象限的角比第一象限的角大B. 若,则C. 三角形的内角是第一象限角或第二象限角D. 不论用角度制还是弧度制度量一个角,它们与扇形所对应的半径的大小无关35. 时钟经过一小时,时针转过了A. B. C. D.36. 若一扇形的圆心角为,半径为,则扇形的面积为A. B. C. D.37. 时钟经过一小时,时针转过了A. B. C. D.38. 已知第一象限角,锐角,小于的角,那么,,之间的关系是A. B. C. D.39. 周长为,圆心角为的扇形面积为A. B. C. D.40. 已知扇形的圆心角为,半径等于,则扇形的弧长为A. B. C. D.41. 在单位圆中,面积为的扇形所对的弧长为A. B. C. D.42. 集合中的角的终边所在的范围(阴影部分)是A. B.C. D.43. 已知扇形的周长是,面积是,则扇形的圆心角的弧度数是A. 或B.C.D.44. 给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;④若,则与的终边相同;⑤若,则是第二或第三象限的角.其中正确命题的个数是A. B. C. D.45. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.46. 已知弧度的圆心角所对的弦长为,则这个圆心角所对的弧长是A. B. C. D.47. 一圆内切于圆心角为,半径为的扇形,则该圆的面积与扇形面积之比为A. B. C. D.48. 中心角为的扇形,它的弧长为,则三角形的内切圆半径为A. B. C. D.49. 若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为A. B. C. D.50. 设集合,,那么A. B. C. D.51. 下列结论中错误的是A. 若,则B. 若是第二象限角,则为第一象限或第三象限角C. 若角的终边过点,则D. 若扇形的周长为,半径为,则其中心角的大小为弧度52. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.53. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.54. 设,下列终边相同的角是A. 与B. 与C. 与D. 与55. 在一块顶角为,腰长为的等腰三角形钢板废料中裁剪扇形,现有如图所示两种方案,则A. 方案一中扇形的周长更长B. 方案二中扇形的周长更长C. 方案一中扇形的面积更大D. 方案二中扇形的面积更大56. 已知第一象限角,锐角,小于的角,那么,,关系是A. B. C. D.57. 设集合,集合,则.A. B. C. D.58. 下列命题中正确的是A. 若,则是第一或第三象限角B. 若,则C. 若,则与的终边相同D. 若角的终边在坐标轴上,则,59. 已知,则是A. 第一象限或第二象限的角B. 第二象限或第四象限的角C. 第一象限或第三象限的角D. 第二象限或第三象限的角60. 若是第二象限角,那么和都不是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角二、填空题(共30小题;共150分)61. 若角,则角的终边在第象限.62. 与角终边相同的角的集合是,它们中最小的正角是,最大的负角是,它们是第象限角.63. 某蒸汽机上的飞轮直径为,每分钟按顺时针方向旋转转,则飞轮每秒钟转过的弧度数是;轮周上的一点每秒钟经过的弧长为.64. 设,且角的终边与角的终边相同,则.65. 如图所示,用集合表示终边在阴影部分的角的集合为.66. 已知扇形的半径为,圆心角为弧度,则该扇形的面积为.67. 有下列四个结论:①角和的终边重合,则,;②角和的终边关于原点对称,则,;③角和的终边关于轴对称,则,;④角和的终边关于轴对称,则,.其中正确的有.(填序号)68. 若是第四象限,则是第象限角.69. 如果把化为(,)的形式,那么,.70. 已知角的终边经过点,且为第三象限角,则的取值范围是.71. 在集合中,属于区间的角的集合是.72. 终边与角的终边互相垂直的角的集合是.73. 若角的终边与角的终边关于直线对称,且,则.74. 已知扇形的面积为,扇形圆心角的弧度数是,那么扇形的周长为.75. 巳知一扇形的圆心角,那么此扇形的面积与其内切圆的面积之比为.76. 如图,已知扇形的圆心角为,半径为,则扇形中所含弓形的面积是.77. 已知扇形的周长为,那么当扇形的半径为时,扇形的面积最大.78. 已知圆心角为的扇形的弧长为,则它的内切圆半径是.79. 若某扇形的面积是,它的周长是,则该扇形圆心角的弧度数为.80. 若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.81. 若将时钟拨慢,则时针转了;若将时钟拨快,则分针转了.82. 下列说法:①终边相同的角一定相等;②第二象限角大于第一象限角;③的角是第一象限角;④小于的角是钝角,直角或锐角.⑤弧度是的圆心角所对的弧;⑥弧度是长度等于半径的圆弧所对圆心角;⑦弧度等于.其中正确的序号为(把正确的序号都写出来).83. 给出下列命题:第二象限角大于第一象限角;三角形的内角是第一象限角或第二象限角;不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;若,则与的终边相同;若,则是第二或第三象限的角.其中不正确的命题是.84. 若扇形的圆心角为,弧长为,则扇形的半径为.85. 如图,点,,是圆上的点,且,,则劣弧的长为.86. ()终边在直线上的角的集合是.()若角的终边与角的终边相同,则在内终边与角的终边相同的角的个数为.87. 用弧度制表示终边在直线上的角的集合是.88. 有下列四个结论:①角和角的终边重合,则,;②角和角的终边关于原点对称,则,;③角和角的终边关于轴对称,则,;④角和角的终边关于轴对称,则,.其中正确的有.(填序号)89. 圆的半径为,为圆周上一点,现将如图放置的边长为的正方形(实线所示,正方形的顶点与点重合)沿圆周逆时针滚动,点第一次回到点的位置,则点走过的路径的长度为.90. 如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为.三、解答题(共10小题;共130分)91. 已知,若的终边与角的终边重合,求角.92. 试求出终边在如图所示阴影区域内的角的集合.93. 已知,求,并指出的终边位置.94. 今天是周日,那天后是周几?过多少天是周二?在数轴上表达:如图,周二是那些天?如何统一表达?95. (1)写出与下列各角终边相同的角的集合,并把中适合不等式的元素写出来:①;②(2)试写出终边在直线上的角的集合,并把中适合不等式的元素写出来.96. 已知扇形的圆心角是,半径是,弧长为.(1)若,,求扇形的面积;(2)若扇形的周长为,求扇形面积的最大值,并求此时扇形圆心角的弧度数.97. 如图,动点,从点出发,沿着圆周做匀速运动.点按逆时针方向每秒转,点按顺时针方向每秒转,求点,第一次相遇时所用的时间及点,各自走过的弧长.98. 己知弦长为,它所对的圆心角,求所夹的扇形面积以及所对的弓形的周长.99. 设是第二象限角,试比较,,的大小.100. 如图,在扇形中,,弧长为,求此扇形内切圆的面积.答案第一部分1. D2. A3. A4. C5. C6. D7. C8. A9. A10. C11. D12. D13. A 【解析】因为扇形的圆心角为,半径为,所以扇形的面积.14. D15. C16. C17. B18. B19. C20. D21. C22. C23. C 【解析】将表的分针拨快应按顺时针方向旋转,为负角.故A、B不正确,又因为拨快分钟,故转过的角的大小应为圆周的 .故所求角的弧度数为 .24. B25. B26. C27. A 【解析】设扇形的弧长为,扇形所在圆的半径为,由题意得解得.扇形28. B29. A30. C【解析】由,知角和角终边相同,在第三象限.31. C32. D33. C【解析】钟表的指针按顺时针方向转动,角为负角..36. B 【解析】,所以扇形37. B 【解析】钟表的指针按顺时针方向转动,角为负角.38. A39. A40. A41. B42. C 【解析】当时,;当时,,应选C.43. A44. A 【解析】由于第一象限角不小于第二象限角,故①错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于,但与的终边不相同,故④错;当,时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.45. A【解析】由题意得解得所以.46. C 【解析】由题设,圆弧的半径,所以圆心角所对的弧长.47. B48. B49. D 【解析】如图,等边三角形是半径为的圆的内接三角形,则线段所对的圆心角,作,垂足为,在中,,,所以,,所以,由弧长公式得.50. B51. C52. B53. B【解析】因为为顶角为,腰长为的等腰三角形,所以,,,所以方案一中扇形的周长,方案二中扇形的周长,方案一中扇形的面积,方案二中扇形的面积.56. B 【解析】因为第一象限角,小于的角,锐角,所以.集合57. D 【解析】集合,所以.58. D 【解析】当时,,但不是第一或第三象限角,所以A不正确;当,时,,所以B不正确;当,时,,但是与的终边不相同,所以C不正确;D 正确.59. C 【解析】提示:由已知,所以,即.故是第一象限或第三象限的角.60. B【解析】因为是第二象限角,所以,,所以,,所以是第一或第三象限角,而是第三象限角,所以是第四象限角.第二部分61. 二62. ;,;,;,三63. ,64.65.【解析】由题图知,终边落在射线上的角为,以为终边的角与角的终边相同,所以终边落在图中阴影部分的角的集合为.66.【解析】根据扇形的弧长公式可得,根据扇形的面积公式可得.67. ①②③④68. 三69. 略,略70.71.72. 略73.74.【解析】设扇形的半径为,则,所以,所以扇形的周长为.75.【解析】设扇形的半径为,内切圆的半径为,则,即.又扇,内切圆,所以扇内切圆.76.【解析】因为扇形(),(),所以弓形扇形().77.【解析】设扇形的圆心角为,半径为,扇形的弧长.因为,,所以扇形当时,扇形的面积最大.78.【解析】如图,设内切圆半径为,则扇形的半径为,扇形弧长,解得.79.【解析】设扇形的半径为,弧长为,由题意知解得所以扇形的圆心角的弧度数为.80.【解析】设圆半径为,则圆内接正方形的对角线长为,所以正方形边长为,所以圆心角的弧度数是.81. ,【解析】将时针拨慢,时针按逆时针方向转动,转过的是正角,转过的度数为.将时针拨快,分针按顺时针方向转动,转过的是负角,转过的度数为.82. ⑥【解析】(1)明确各种角的定义,逐一判断即可.对于①,终边相同的角不一定相等,终边相同的角有无数多个,它们相差的整数倍,故①是错误的;对于②,角是第一象限角,角是第二象限角,,所以②错误;对于③,的角是指的角,其中角不是任何象限的角,为轴线角,故③错误;对于④,小于的角指满足的角,其中也包括负角和零角,故④错误.(2)弧度角的定义:把长度等于半径长的弧所对的圆心角叫做弧度的角.由此可知,只有⑥正确.⑤⑦错误.83.【解析】由于第一象限角不小于第二象限角,故错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故错;正确;由于,但与的终边不相同,故错;当,时既不是第二象限角,又不是第三象限角,故错.综上可知只有正确.84.【解析】由,解得.85.【解析】.86. ,【解析】()在内终边在直线上的角为,所以终边在直线上的角的集合为.()因为,所以,依题意,,所以,所以=,即在内与角的终边相同的角为,,共三个.87.【解析】,,,解得,又,故,,,角为,,.88. ①②③④89. .【解析】每次转动一个边长时,圆心角转过,正方形有边,所以需要转动次,回到起点.在这次中,半径为的次,半径为的次,半径为的次,点走过的路径的长度= + = .90.【解析】设,,由题意知劣弧长为,由于圆的半径为,所以.设,则,,所以的坐标为.第三部分91. 略92. 因为,所以终边在题图所示阴影区域内的角的集合为.93. 略94. 略.95. (1)①,其中适合不等式的元素为:,,;②,其中适合不等式的元素为:,,.(2)终边在直线上的角的集合其中适合不等式的元素为:,.96. (1).(2)由题意知,即,,当时,的最大值为,当时,,.即扇形面积的最大值为,此时扇形圆心角的弧度数为.97. ,得秒,走过的弧长为,走过的弧长为.98. ();().99. 因为是第二象限角,所以,,所以,,所以是第一或第三象限角(如图阴影部分).结合单位圆上的三角函数线可得,(i)当是第一象限角时,,,,从而得;(ii)当是第三象限角时,,,,从而得.综上,当是第一象限角,即,时,;当是第三象限角,即,时,.100. 设扇形的半径为,其内切圆的半径为,由已知得,.又因为,所以.所以内切圆的面积为.。

高中数学新教材必修第一册第五章 三角函数 5.1 任意角和弧度制(南开题库含详解)

高中数学新教材必修第一册第五章  三角函数 5.1  任意角和弧度制(南开题库含详解)

第五章三角函数 5.1 任意角和弧度制一、选择题(共40小题;共200分)1. 下列四个选项中,与角终边相同的角是A. B. C. D.2. 已知一个扇形的圆心角的弧度数为,则该扇形的弧长与半径的比等于A. B. C. D.3. 的弧度数是A. B. C. D.4. 与的终边相同的角是A. B. C. D.5. 把表示成的形式,使最小的的值是A. B. C. D.6. 与角的终边相同的角是A. B. C. D.7. 将化为弧度为A. B. C. D.8. 是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角9. 一个扇形的圆心角为,半径为,则此扇形的面积为A. B. C. D.10. 已知为第二象限角,则所在的象限是A. 第一或第二象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限11. 在单位圆中,面积为的扇形所对的弧长为A. B. C. D.12. 与角终边相同的角是A. B. C. D.13. 下列说法正确的是A. 第二象限的角比第一象限的角大B. 若,则C. 三角形的内角是第一象限角或第二象限角14. 将分针拨慢分钟,则分钟转过的弧度数是A. B. C. D.15. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.16. 已知集合,,则等于A.B.C.D. 或17. ,则的终边在A. 第一象限B. 第二象限C. 第三象限D. 第四象限18. 圆弧长度等于圆弧所在圆的内接正三角形的边长,则圆弧所对圆心角的弧度数为A. B. C. D.19. 时钟经过一小时,时针转过了A. B. C. D.20. 集合中的角的终边所在的范围(阴影部分)是A. B.C. D.21. 下列命题中:①小于的角是锐角,②第二象限角是钝角,③终边相同的角相等,④若与有相同的终边,则必有,正确的个数是A. B. C. D.22. 时钟经过一小时,时针转过了A. B. C. D.23. 设小于的角,锐角,第一象限的角,小于但不小于的角,那么有A. B.C. D.A. 轴正半轴上B. 轴正半轴上C. 轴或轴上D. 轴正半轴或轴正半轴上25. 已知扇形的半径为,周长为,则扇形的圆心角等于A. B. C. D.26. 设集合,,那么A. B. C. D.27. 若一扇形的圆心角为,半径为,则扇形的面积为A. B. C. D.28. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.29. 下列结论中错误的是A. 若,则B. 若是第二象限角,则为第一象限或第三象限角C. 若角的终边过点,则D. 若扇形的周长为,半径为,则其中心角的大小为弧度30. 给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;④若,则与的终边相同;⑤若,则是第二或第三象限的角.其中正确命题的个数是A. B. C. D.31. 设集合,集合,则.A. B. C. D.32. 若是第二象限角,那么和都不是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角33. 若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为A. B. C. D.34. 设集合,,那么A. B. C. D.35. 已知扇形的周长是,面积是,则扇形的圆心角的弧度数是A. 或B.C.D.36. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.37. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.38. 设,下列终边相同的角是A. 与B. 与C. 与D. 与39. 中心角为的扇形,它的弧长为,则三角形的内切圆半径为A. B. C. D.40. 一圆内切于圆心角为,半径为的扇形,则该圆的面积与扇形面积之比为A. B. C. D.二、填空题(共40小题;共200分)41. 若是第三象限的角,则是第象限角.42. 若角,则角的终边在第象限.43. 如图,射线绕顶点顺时针旋转到,再逆时针旋转到达,则的度数为.44. 将化为弧度为.45. 若是第四象限,则是第象限角.46. 已知扇形的半径为,圆心角为弧度,则该扇形的面积为.47. 已知角的终边经过点,且为第三象限角,则的取值范围是.48. 若扇形的中心角为,则扇形的内切圆的面积与扇形面积之比为.49. 终边与角的终边互相垂直的角的集合是.50. 某蒸汽机上的飞轮直径为,每分钟按顺时针方向旋转转,则飞轮每秒钟转过的弧度数是;轮周上的一点每秒钟经过的弧长为.51. 与角终边相同的角的集合是,它们中最小的正角是,最大的负角是,它们是第象限角.52. 的角化为角度制的结果为,的角化为弧度制的结果为.53. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为.54. 设,且角的终边与角的终边相同,则.55. 如图所示,用集合表示终边在阴影部分的角的集合为.56. 已知,的终边所在的象限是.57. 有下列四个结论:①角和的终边重合,则,;②角和的终边关于原点对称,则,;③角和的终边关于轴对称,则,;④角和的终边关于轴对称,则,.其中正确的有.(填序号)58. 如果把化为(,)的形式,那么,.59. 在集合中,属于区间的角的集合是.60. 若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.61. 把写成的形式为.62. 已知圆心角为的扇形的弧长为,则它的内切圆半径是.63. 如图,点,,是圆上的点,且,,则劣弧的长为.64. 如图,已知扇形的圆心角为,半径为,则扇形中所含弓形的面积是.65. 若将时钟拨慢,则时针转了;若将时钟拨快,则分针转了.66. 已知扇形的面积为,扇形圆心角的弧度数是,那么扇形的周长为.68. 巳知一扇形的圆心角,那么此扇形的面积与其内切圆的面积之比为.69. 下列说法:①终边相同的角一定相等;②第二象限角大于第一象限角;③的角是第一象限角;④小于的角是钝角,直角或锐角.⑤弧度是的圆心角所对的弧;⑥弧度是长度等于半径的圆弧所对圆心角;⑦弧度等于.其中正确的序号为(把正确的序号都写出来).70. 给出下列命题:第二象限角大于第一象限角;三角形的内角是第一象限角或第二象限角;不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;若,则与的终边相同;若,则是第二或第三象限的角.其中不正确的命题是.71. 若扇形的圆心角为,弧长为,则扇形的半径为.72. ()终边在直线上的角的集合是.()若角的终边与角的终边相同,则在内终边与角的终边相同的角的个数为.73. 若角的终边与角的终边关于直线对称,且,则.74. 有下列四个结论:①角和角的终边重合,则,;②角和角的终边关于原点对称,则,;③角和角的终边关于轴对称,则,;④角和角的终边关于轴对称,则,.其中正确的有.(填序号)75. 扇形的周长为,若这个扇形的面积为,则圆心角的大小为 .76. 已知扇形的周长为,那么当扇形的半径为时,扇形的面积最大.77. 若某扇形的面积是,它的周长是,则该扇形圆心角的弧度数为.78. 如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为.79. 圆的半径为,为圆周上一点,现将如图放置的边长为的正方形(实线所示,正方形的顶点和点重合)沿着圆周顺时针滚动,经过若干次滚动,点第一次回到点的位置,则点走过的路径的长度为.80. 圆的半径为,为圆周上一点,现将如图放置的边长为的正方形(实线所示,正方形的顶点与点重合)沿圆周逆时针滚动,点第一次回到点的位置,则点走过的路径的长度为.三、解答题(共20小题;共260分)81. 将集合中的角(角度制)在数轴上表达出来,并表示出第一象限角,锐角,负角的区间.82. 今天是周日,那天后是周几?过多少天是周二?在数轴上表达:如图,周二是那些天?如何统一表达?83. 已知角的终边与的终边相同,求在内与终边相同的角.84. 已知,若的终边与角的终边重合,求角.85. 用弧度制表达.写出终边在下列阴影部分内的角的集合(含边界).(1)(2)86. 已知,求,并指出的终边位置.87. 集合,,试确定集合与之间的关系.88. (1)写出与下列各角终边相同的角的集合,并把中适合不等式的元素写出来:①;②(2)试写出终边在直线上的角的集合,并把中适合不等式的元素写出来.89. 试求出终边在如图所示阴影区域内的角的集合.90. 如图,三棱锥内接于一个圆锥(有公共顶点和底面,侧棱与圆锥母线重合).已知,,,,(1)求圆锥的侧面积及侧面展开图的中心角;(2)求经过圆锥的侧面到点的最短距离.91. 如图,动点,从点出发,沿着圆周做匀速运动.点按逆时针方向每秒转,点按顺时针方向每秒转,求点,第一次相遇时所用的时间及点,各自走过的弧长.92. 请回答下列问题:(1)设,,用弧度制表示它们,并指出它们各自所在的象限.(2)设,,用角度制表示它们,并在~的范围内找出终边相同的所有角.93. 己知弦长为,它所对的圆心角,求所夹的扇形面积以及所对的弓形的周长.94. 已知是第二象限的角,求,是第几象限的角.95. 设是第二象限角,试比较,,的大小.96. 如图,在扇形中,,弧长为,求此扇形内切圆的面积.97. 如图所示,点在半径为且圆心在原点的圆上,.点从点出发,依逆时针方向匀速地沿圆周旋转,已知在内转过的角度为,经过到达第三象限,经过后又回到出发点,求,并判断其是第几象限角.98. 已知扇形的圆心角是,半径是,弧长为.(1)若,,求扇形的面积;(2)若扇形的周长为,求扇形面积的最大值,并求此时扇形圆心角的弧度数.99. (1)已知扇形的周长为,面积为,求扇形的圆心角的弧度数.(2)已知扇形的周长为,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?100. 如图,一个扇形的周长为,问它的圆心角取何值时,扇形的面积最大?并求出最大值.答案第一部分1. C2. C3. A4. D5. C6. A7. B8. B9. A 【解析】因为扇形的圆心角为,半径为,所以扇形的面积.10. C11. B12. D13. D14. C15. A【解析】设扇形的弧长为,扇形所在圆的半径为,由题意得解得.扇形16. D17. C18. C19. B 【解析】钟表的指针按顺时针方向转动,角为负角.20. C【解析】当时,;当时,,应选C.21. B22. B 【解析】钟表的指针按顺时针方向转动,角为负角.23. D24. C25. B26. B.27. B 【解析】,所以扇形28. A 【解析】由题意得解得所以.29. C30. A【解析】由于第一象限角不小于第二象限角,故①错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于,但与的终边不相同,故④错;当,时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.集合31. D 【解析】集合,所以.32. B 【解析】因为是第二象限角,所以,,所以,,所以是第一或第三象限角,而是第三象限角,所以是第四象限角.33. D 【解析】如图,等边三角形是半径为的圆的内接三角形,则线段所对的圆心角,作,垂足为,在中,,,所以,,所以,由弧长公式得.34. B35. A36. B37. B38. A39. B40. B第二部分41. 四42. 二43.44.45. 三46.【解析】根据扇形的弧长公式可得,根据扇形的面积公式可得.47.48.49. 略50. ,51. ;,;,;,三52. ,53.【解析】设扇形的半径为,所以,,所以,扇形的弧长为,半径为,扇形的面积为.54.55.【解析】由题图知,终边落在射线上的角为,以为终边的角与角的终边相同,所以终边落在图中阴影部分的角的集合为.56. 一、二象限57. ①②③④58. 略,略59.60.【解析】设圆半径为,则圆内接正方形的对角线长为,所以正方形边长为,所以圆心角的弧度数是.61.62.【解析】如图,设内切圆半径为,则扇形的半径为,扇形弧长,解得.63.【解析】.64.【解析】因为扇形(),(),所以弓形扇形().65. ,【解析】将时针拨慢,时针按逆时针方向转动,转过的是正角,转过的度数为.将时针拨快,分针按顺时针方向转动,转过的是负角,转过的度数为.66.【解析】设扇形的半径为,则,所以,所以扇形的周长为.67.【解析】,,,解得,又,故,,,角为,,.68.【解析】设扇形的半径为,内切圆的半径为,则,即.又扇,内切圆,所以扇内切圆.69. ⑥【解析】(1)明确各种角的定义,逐一判断即可.对于①,终边相同的角不一定相等,终边相同的角有无数多个,它们相差的整数倍,故①是错误的;对于②,角是第一象限角,角是第二象限角,,所以②错误;对于③,的角是指的角,其中角不是任何象限的角,为轴线角,故③错误;对于④,小于的角指满足的角,其中也包括负角和零角,故④错误.(2)弧度角的定义:把长度等于半径长的弧所对的圆心角叫做弧度的角.由此可知,只有⑥正确.⑤⑦错误.70.【解析】由于第一象限角不小于第二象限角,故错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故错;正确;由于,但与的终边不相同,故错;当,时既不是第二象限角,又不是第三象限角,故错.综上可知只有正确.71.【解析】由,解得.72. ,【解析】()在内终边在直线上的角为,所以终边在直线上的角的集合为.()因为,所以,依题意,,所以,所以=,即在内与角的终边相同的角为,,共三个.73.74. ①②③④75. 或76.【解析】设扇形的圆心角为,半径为,扇形的弧长.因为,,所以扇形当时,扇形的面积最大.77.【解析】设扇形的半径为,弧长为,由题意知解得所以扇形的圆心角的弧度数为.78.【解析】设,,由题意知劣弧长为,由于圆的半径为,所以.设,则,,所以的坐标为.79.【解析】由题意知,圆的半径,正方形的边长.由图可知,以正方形的边为弦时所对的圆心角为.正方形在圆上滚动时点的顺序依次为如图所示.当点首次回到点的位置时,正方形滚动了圈共次.设第次滚动,点的路程为,则;;;,因此,点所走过的路径的长度为.80. .【解析】每次转动一个边长时,圆心角转过,正方形有边,所以需要转动次,回到起点.在这次中,半径为的次,半径为的次,半径为的次,点走过的路径的长度= + = .第三部分81. 略.82. 略.83. 略84. 略85. (1)略.(2)略.86. 略87. 因为集合表示终边在四个象限的角平分线上角的集合,集合表示终边在坐标轴上(为偶数时)和四个象限的角平分线上(为奇数时)的角的集合,所以.88. (1)①,其中适合不等式的元素为:,,;②,其中适合不等式的元素为:,,.(2)终边在直线上的角的集合其中适合不等式的元素为:,.89. 因为,所以终边在题图所示阴影区域内的角的集合为.90. (1)因为,,,所以为底面圆的直径侧.圆锥的侧面展开图是一个扇形,设此扇形的中心角为,弧长为,则,所以,所以.(2)沿着圆锥的侧棱展开,在展开图中,,,.91. ,得秒,走过的弧长为,走过的弧长为.92. (1),所以在第二象限;,所以在第一象限.(2),与它终边相同的角可表示为,,由,得,所以,,即在~的范围内与终边相同的角是,.同理,在~范围内与终边相同的角是.93. ();().94. ①因为为第二象限角,则,,所以,,所以是第三或第四象限角,以及终边落在轴的非正半轴上的角.②,.令,则,所以为第一象限角.令,则,所以为第二象限角.令,则,所以为第四象限角.所以是第一或第二或第四象限角.95. 因为是第二象限角,所以,,所以,,所以是第一或第三象限角(如图阴影部分).结合单位圆上的三角函数线可得,(i)当是第一象限角时,,,,从而得;(ii)当是第三象限角时,,,,从而得.综上,当是第一象限角,即,时,;当是第三象限角,即,时,.96. 设扇形的半径为,其内切圆的半径为,由已知得,.又因为,所以.所以内切圆的面积为.97. 由题意,有.所以.又,即,所以,且所以或.故或.易知,故当,是第一象限角;当,是第二象限角.98. (1).(2)由题意知,即,,当时,的最大值为,当时,,.即扇形面积的最大值为,此时扇形圆心角的弧度数为.99. (1)设扇形的圆心角的弧度数为,弧长为,半径为.由题意得:解得:,当时,,此时(舍)当时,,此时,∴扇形圆心角的弧度数是.(2)设扇形的圆心角为,半径为,弧长为,面积为,.所以当时,扇形的面积最大,这个最大值是,此时.当它的半径和圆心角分别取和弧度时,才能使扇形的面积最大,最大面积是.100. 设扇形的半径为,则周长,所以..因为,当且仅当,即时等号成立.此时,所以当时,取得最大值为.。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.若为第三象限,则的值为()A.B.C.D.【答案】B【解析】因为为第三象限,所以.因此,故选择B.【考点】同角三角函数基本关系及三角函数符号.2.下列各式中,值为的是A.B.C.D.【答案】D【解析】;;;.【考点】二倍角的正弦、余弦、正切公式.3.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.4.是第( )象限角.A.一B.二C.三D.四【答案】C【解析】本题主要考查三角函数终边相同的角.由得出终边在第三象限,故选C.【考点】终边相同的角的表示.5.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.6.已知点P()在第三象限,则角在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由已知得,即,则角在第二象限。

【考点】(1)三角函数值符号的判断;(2)象限角的判断。

7. 2400化成弧度制是()A.B.C.D.【答案】C【解析】本题考查度与弧度的互化,利用公式弧度,可得.【考点】度与弧度的互化.8.的值是()A.B.C.D.【答案】C【解析】.任意角的三角函数值可利用诱导公将角化为锐角的三角函数值求得.【考点】诱导公式,特殊角的三角函数值.9.若,且,则角的终边所在的象限是().A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,又因为,所以,所以角的终边所在象限是第四象限,故选D.【考点】1、三角函数值的符号;2、二倍角的正弦.10.设为第四象限角,其终边上的一个点是,且,求和.【答案】;.【解析】利用余弦函数的定义求得,再利用正弦函数的定义即可求得的值与的值.∵为第四象限角,∴,∴,∴,∴,∴=,∴,.【考点】任意角的三角函数的定义.11.将120o化为弧度为()A.B.C.D.【答案】B【解析】,故.【考点】弧度制与角度的相互转化.12.下列角中终边与330°相同的角是()A.30°B.-30°C.630°D.-630°【答案】B【解析】与330°终边相同的角可写为,当时,可得-30°.【考点】终边相同的角之间的关系.13.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.14.圆心角为弧度,半径为6的扇形的面积为 .【答案】【解析】扇形面积公式,即(必须为弧度制).【考点】扇形面积公式.15.比较大小:(用“”,“”或“”连接).【答案】>.【解析】在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0.【考点】三角函数线.16.已知【答案】【解析】由已知得,又因为,所以,而,故答案为.【考点】1.诱导函数;2.特殊角的三角函数值.17.一钟表的分针长5 cm,经过40分钟后,分针外端点转过的弧长是________cm【答案】【解析】分针每60分钟转一周,故每分钟转过的弧度数是,分针经40分钟,分针的端点所转过的角的弧度数为2π×=,代入弧长公式l=αr,得出分针的端点所转过的长为×5=(cm).故答案为:。

高中数学总复习练习题---任意角和弧度制(解析版)

高中数学总复习练习题---任意角和弧度制(解析版)

高中数学总复习练习题专题47 任意角和弧度制一、选择题1.(2019·广西高一期末(文))150o 化成弧度制为( ) A.56πB.4π C.23π D.3π 【答案】A【解析】由题意可得51501501806ππ=⨯=o,故选:A. 2.把85π-化为角度是( ) A.96-o B.144-oC.288-oD.576-o【答案】C【解析】由题意,根据角度制和弧度制的互化,可得8818028855π-=-⨯=-o o . 故选:C.3.下列角的终边与37o 角的终边在同一直线上的是( ) A.37-o B.143oC.379oD.143-o【答案】D【解析】与37o 角的终边在同一直线上的角可表示为37180k +⋅o o ,k Z ∈,当1k =-时,37180143-=-o o o ,所以,143-o 角的终边与37o 角的终边在同一直线上. 故选:D .4.与468-o 角的终边相同的角的集合是( )A.{}360456,k k Z αα=⋅+∈ooB.{}360252,k k Z αα=⋅+∈ooC.{}36096,k k Z αα=⋅+∈ooD.{}360252,k k Z αα=⋅-∈oo【答案】B【解析】因为4682360252-=-⨯+o o o ,所以252o 角与468-o 角的终边相同,所以与468-o 角的终边相同的角的集合为{}360252,k k Z αα=⋅+∈o o. 故选:B .5.如果角α的终边上有一点()0,3P -,那么α( )A.是第三象限角B.是第四象限角C.是第三或第四象限角D.不是象限角【答案】D【解析】因为点P 在y 轴的负半轴上,即角α的终边落在y 轴的非正半轴上,所以α不是象限角. 故选:D.6.已知角α的终边落在x 轴的非负半轴上,则角2α的终边落在( ) A.x 轴的非负半轴上 B.x 轴上 C.y 轴的非负半轴上 D.y 轴上【答案】B【解析】由题意,知()360k k Z α=⋅∈o,则()1802k k Z α=⋅∈o .当k 为偶数时,设()2k n n Z =∈,则3602n α=⋅o ,此时,角2α的终边在x 轴的非负半轴上; 当k 为奇函数时,设()21k n n Z =+∈,则()()211801803602n n n Z α=+⋅=+⋅∈o o o ,此时,角2α的终边在x 轴的非正半轴上. 综上所述,角2α的终边在x 轴上.故选:B .7.(2019·河南高一期末)已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A.53πB.23π C.52πD.2π 【答案】C【解析】由扇形弧长公式得:55362L r ππα==⨯= 本题正确选项:C8.(2019·山东高一期末)下列各角中,与角6π终边相同的角是( ) A.136π-B.116π-C.116πD.196π【答案】B 【解析】角6π终边相同的角可以表示为2,()6a k k Z ππ=+∈,当1k =-时,6a 11π=-,所以答案选择B 9.若角α的顶点与原点重合,始边与x 轴的非负半轴重合,则集合{}1804518090,k k k Z αα⋅+≤≤⋅+∈oooo中的角α的终边在图中的位置(阴影部分)是( )A. B. C. D.【答案】C【解析】当k 为偶数时,设()2k n n Z =∈,则有3604536090n n α⋅+≤≤⋅+o o o o ,角α的终边在介于4590o o :角终边所在的区域;当k 为奇数时,设()21k n n Z =+∈,则有360225360270n n α⋅+≤≤⋅+o o o o ,角α的终边在介于225270o o :角终边所在的区域.故选:C.10.若2弧度的圆心角所对的弧长为4,则这个圆心角所在的扇形的面积为( ) A .4 B .2C .4πD .2π【答案】A【解析】由已知得,=24l θ=,,又因为弧长l R θ=,所以扇形的半径=2R ,所以面积11=42=422S lR =⋅⋅.选A .11.(2019·安徽高三月考(文))已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是( )A.45B.5C.12D.45或5 【答案】D【解析】据题意,得27,1 2.5,2l r lr +=⎧⎪⎨=⎪⎩解得5,22r l ⎧=⎪⎨⎪=⎩或1,5,r l =⎧⎨=⎩所以45l r =或5.故选D . 12.(2019·湖北高三月考(文))《九章算术》是我国古代的数学巨著,其中《方田》章给出了计算弧田面积所用的经验公式为:弧田面积12=⨯(弦×矢+矢2),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为23π,矢为2的弧田,按照上述方法计算出其面积是( )A.2+43B.13+2C.2+83D.4+83【答案】A 【解析】如图,由题意可得23AOB π∠=, 在Rt AOD ∆中,,36AOD DAO ππ∠=∠=,所以2OB OD =,结合题意可知矢2OB OD OD =-==,半径4OB =, 弦2216443AB AD ==-= 所以弧田面积12=(弦⨯矢+矢2)21(4322)4322=+=, 故选A. 二、填空题13.(2019·上海交大附中高一开学考试)2018°是第________象限角. 【答案】三【解析】20185360218=⨯+o o o Q ,又218o 是第三象限角,所以2018o 也是第三象限角. 故答案为:三.14.(2019·上海市吴淞中学高一期末)圆心角为60︒的扇形,它的弧长为2π,则该扇形所在圆的半径为______. 【答案】6 【解析】263l r r r παπ===∴=故答案为:615.(2018·江西高一期末)扇形的半径为1cm ,圆心角为30°,则该扇形的弧长为________cm 【答案】6π【解析】圆弧所对的圆心角为30°即为6π弧度,半径为1cm 弧长为l =|α|•r 6π=⨯16π=(cm ).故答案为:6π. 16.(2019·上海市复兴高级中学高一月考)若角α与角3-2π终边相同(始边相同且为x 轴正半轴),且302πα≤<,则=α______. 【答案】2π 【解析】因为角α与角32π-终边相同(始边相同且为x 轴正半轴), 所以322k παπ=-,k ∈Z , 又因302πα≤<, 所以当1k =时,2πα=.故答案为:2π 三、解答题17.如图所示,用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分的角的集合.【答案】(1) {α|+2k π<α<+2k π,k ∈Z};(2) {α|-+2k π<α≤+2k π,k ∈Z};(3){α|k π≤α≤+k π,k ∈Z};(4) {α|+k π<α<+k π,k ∈Z}. 【解析】 (1)将阴影部分看成是由OA 逆时针转到OB 所形成, 故满足条件的角的集合为{α|+2kπ<α<+2kπ,k∈Z}.(2)若将终边为OA 的一个角改写为-,此时阴影部分可以看成是OA 逆时针旋转到OB 所形成,故满足条件的角的集合为{α|-+2kπ<α≤+2kπ,k∈Z}.(3)将图中x 轴下方的阴影部分看成是由x 轴上方的阴影部分旋转πrad 而得到,所以满足条件的角的集合为{α|kπ≤α≤+kπ,k∈Z}.(4)与第(3)小题的解法类似,将第二象限阴影部分旋转πrad 后可得到第四象限的阴影部分.所以满足条件的角的集合为{α|+kπ<α<+kπ,k∈Z}.18.已知1570α=-o ,2750α=o,135βπ=,23βπ=-. (1)将12,αα用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将12,ββ用角度制表示出来,并在720,180⎡⎤--⎣⎦o o内找出与它们终边相同的所有角.【答案】(1)1196πα=-终边位于第二象限,2256πα=终边位于第一象限; (2)12108,60ββ==-o o,与1β终边相同的角为252-o 和612-o ,与2β终边相同的角为420-o .【解析】(1)由题意,根据角度制与弧度制的互化公式,可得:1195705701806ππα=-=-⨯=-o oo, 2257507501806ππα==⨯=o o o, 又由1195466ππαπ=-=-+,所以1α与角56π的终边相同,所以1α终边位于第二象限;225466ππαπ==+,所以2α与角6π的终边相同,所以2α终边位于第第一象限.(2)根据角度制与弧度制的互化公式,可得131085βπ==o ,2603βπ=-=-o , 根据终边相同角的表示,可得与1β终边相同的角为1360108,k k Z θ=⨯+∈o o,当1k =-时,1360108252θ=-+=-o o o ;当2k =-时,12360108612θ=-⨯+=-o o o. 与2β终边相同的角为236060,k k Z θ=⨯-∈o o ,当1k =-时,136060420θ=--=-o o o.19.在角的集合{}|9045,k k αα︒︒=+∈Z g, (1)有几种终边不同的角?(2)写出区间(180,180)︒︒-内的角? (3)写出第二象限的角的一般表示法.【答案】(1) 4种.(2) 135,45,45,135︒︒︒︒--.(3) 360135,k k ︒︒+∈Z g .【解析】(1)由题知9045,k k α︒︒=+∈Z g ,令0,1,2,3k =,则45,135,225,315α︒︒︒︒=, ∴在给定的角的集各中,终边不同的角共有4种. (2)由1809045180,k k ︒︒︒︒-<+<∈Z g ,得53,22k k -<<∈Z ,∴2,1,0,1k =--, ∴在区间(180,180)︒︒-内的角有135,45,45,135︒︒︒︒--. (3)由(1)知,第二象限的角可表示为360135,k k ︒︒+∈Z g .20.已知扇形面积为225cm ,当扇形的圆心角为多大时,扇形的周长取得最小值? 【答案】当扇形的圆心角为2时,扇形的周长取得最小值.【解析】设扇形的半径为R ,弧长为l ,扇形的周长为y ,则2y l R =+. 由题意,得1252lR =,则50l R =,故502522(0)y R R R R R ⎛⎫=+=+> ⎪⎝⎭. 利用函数单调性的定义,可得当05R <…时,函数502y R R=+是减函数; 当5R >时,函数502y R R=+是增函数. 所以当5R =时,y 取得最小值20,此时10l =,2lRα==, 即当扇形的圆心角为2时,扇形的周长取得最小值.21.(2019·宁夏银川一中高一期中)已知在半径为的圆中,弦的长为.(1)求弦所对的圆心角的大小;(2)求圆心角所在的扇形弧长及弧所在的弓形的面积. 【答案】(1)(2)【解析】(1)由于圆的半径为,弦的长为,所以为等边三角形,所以.(2)因为,所以.,又,所以.22.已知一扇形的中心角为α,所在圆的半径为R .(1)若,6cm 3R απ== ,求该扇形的弧长l . (2)若扇形的周长为12cm ,问当α多大时,该扇形有最大面积?并求出这个最大面积.【答案】(1)2π; (2)2α=,扇形的最大面积为29cm . 【解析】(1)由扇形的弧长公式,可得该扇形的弧长为623l R παπ==⨯=;(2)由题意,扇形的周长为12cm ,所以212R l +=,可得122l R =-, 又由扇形的面积公式,可得2211(122)6(3)922S lR R R R R R ==-=-+=--+, 当3R =时,扇形的面积取得最大值,此时最大面积为29S cm =, 此时1226l R =-=,即36R αα=⨯=,解得2α=.。

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.3.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是()A.(,)B.(π,)C.(,)D.(,)∪(π,)【答案】D【解析】由已知得,解得α∈(,)∪(π,).4.已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.【答案】cosα=-1,tanα=0.【解析】r2=x2+y2=y2+3,由sinα===y,∴y=±或y=0.当y=即α是第二象限角时,cosα==-,tanα=-;当y=-即α是第三象限角时,cosα==-,tanα=;当y=0时,P(-,0),cosα=-1,tanα=0.5.设集合M=,N={α|-π<α<π},则M∩N=________.【答案】【解析】由-π<<π,得-<k<.∵k∈Z,∴k=-1,0,1,2,故M∩N=6.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为()A.B.C.D.【答案】C【解析】由题意可知,圆内接正三角形边长a与圆的半径之间关系为a=r,∴α===.7. tan(-1 410°)的值为()A.B.-C.D.-【答案】A【解析】tan(-1 410°)=tan(-4×360°+30°)=tan 30°=8.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1) ();(2)少.【解析】(1)本题比较简单,就是利用扇形面积公式来计算弧田面积,弧田面积等于扇形面积对应三角形面积.(2)由弧田面积的经验计算公式计算面积与实际面积相减即得.试题解析:(1) 扇形半径, 2分扇形面积等于 5分弧田面积=(m2) 7分(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=. 10分平方米 12分按照弧田面积经验公式计算结果比实际少1.52平米.【考点】(1)扇形面积公式;(2)弧田面积的经验计算公式.9.在平面直角坐标系中,若角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点(其中)则的值为( )A.B.C.D.【答案】D【解析】,根据任意角的三角函数的定义得,,所以.【考点】任意角三角函数的定义.10.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值11.在平面直角坐标系中,已知角的顶点在坐标原点,始边在轴的非负半轴上,终边经过点,则 .【答案】【解析】由任意角的三角函数的定义得:.【考点】任意角的三角函数的定义.12.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.13.已知为钝角,且,则与角终边相同的角的集合为.【答案】【解析】由为钝角,且,得,所以与角终边相同的角的集合为,当然也可写成,但注意制度要统一,不要丢掉.【考点】特殊角的三角函数、终边相同角的集合.14.已知,则满足的角所在的象限为.【答案】二或四【解析】根据指数函数的单调性和,得,即和异号,所以角是第二象限或第四象限的角.【考点】指数函数的单调性、各象限三角函数的符号.15.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cosα=.【答案】.【解析】由题意及图所示,易知A点的横坐标为,所以.【考点】三角函数的定义.16.已知函数的定义域为[a,b],值域为[-2,1],则的值不可能是()A.B.C.D.【答案】C【解析】因的值域[-2,1]含最小值不含最大值,根据图象可知定义域小于一个周期,故选D.【考点】三角函数的定义域和值域.17.若角的终边上有一点P(a,-2),则实数a的值为()A.B.C.D.【答案】D【解析】因为,所以.【考点】三角函数的定义.18.若,则角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第二或第四象限角【答案】D【解析】因为,则角是第二或第四象限角,选D19.点位于直角坐标面的A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为,位于直角坐标面的第四象限,选D20.已知圆与轴的正半轴相交于点,两点在圆上,在第一象限,在第二象限,的横坐标分别为,则=( )A.B.C.D.【答案】B【解析】设与轴正半轴的夹角分别为则,21.已知动点在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A(,则0≤t≤12时,动点A的横坐标x关于t(单位:秒)的函数单调递减区间是()A.[0, 4]B.[4,10]C.[10,12]D.[0,4]和[10,12]【答案】D【解析】解:设动点A与x轴正方向夹角为α,则t=0时α=π/ 3 ,每秒钟旋转π /6 ,在t∈[0,1]上α∈[π/ 3 ,π/ 2 ],在[7,12]上α∈[3π/ 2 ,7π /3 ],动点A的纵坐标y关于t都是单调递增的.故选D.22.曲线与坐标轴所围的面积是【答案】3【解析】据余弦函数的图象,23.已知,且在第二象限,那么在 ( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】解:∵sinθ="3" /4 ,且θ在第二象限,∴cosθ=-/4,所以sin2θ=2sinθcosθ=-3/16Cos2θ=1-2sin2θ=-1/8故2θ在第三象限。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.如果角的终边经过点,则()A.B.C.D.【答案】A【解析】直接利用三角函数的定义,求出.因为角θ的终边经过点,由三角函数的定义可知,,故选A.【考点】任意角的三角函数的定义.2.已知扇形半径为8, 弧长为12, 则中心角为弧度, 扇形面积是【答案】.【解析】圆心角;由扇形的面积公式得.【考点】扇形的面积公式及圆心角的计算.3.若点P位于第三象限,则角是第象限的角.【答案】二【解析】点P位于第三象限,则即,所以角是第二象限的角,答案为二.【考点】三角函数的符号4.半径为,中心角为所对的弧长是().A.B.C.D.【答案】D.【解析】弧长cm,故选D.【考点】弧长公式:(其中的单位是弧度).5.已知cosθ•tanθ<0,那么角θ是().A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】,,是第二象限角或第三象限角.【考点】象限角的符号.6.已知,则的集合为()A.B.C.D.【答案】D【解析】由知,在第一或第三象限,因为,所以.【考点】简单三角方程7.与角-终边相同的角是()A.B.C.D.【答案】C【解析】与−终边相同的角为2kπ−,k∈z,当 k=-1时,此角等于,故选:C.【考点】终边相同的角的定义和表示方法.8.如图,长为4米的直竹竿AB两端分别在水平地面和墙上(地面与墙面垂直),T为AB中点,,当竹竿滑动到A1B1位置时,,竹竿在滑动时中点T也沿着某种轨迹运动到T1点,则T运动的路程是_________米.【答案】.【解析】如图可知,点运动的轨迹为一段圆弧,由题意已知:,,∴,∴点运动的路程为.【考点】弧度制有关公式的运用.9.已知角的终边上有一点(1,2),则的值为( ).A.B.C.D.–2【答案】A【解析】角的终边过,,.【考点】任意角三角函数的定义.10.若角的终边上有一点,则的值是()A.B.C.D.【答案】B.【解析】先利用诱导公式化简,根据三角函数的定义知,即,故选B.【考点】运用诱导公式化简求值;任意角的三角函数的定义.11. 60°=_________.(化成弧度)【答案】【解析】根据,可得.【考点】角度与弧度的互化.12.与终边相同的最小正角是.【答案】【解析】因为与终边相同的角是所以当时,与终边相同的最小正角是【考点】与终边相同的角13.比较的大小 .【答案】【解析】,在上为增函数,可知,,可得.【考点】正弦函数的性质,特殊角的三角函数.14.已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.【答案】当扇形半径为,圆心角为2时,扇形有最大面积.【解析】根据条件扇形的周长为30可以得到l+2R=30,从而扇形的面积S=lR=(30-2R)R=,即把S表示为R的二次函数,根据二次函数求最值的方法,可以进一步变形为S=-(R-)2+,从而得到当扇形半径为,圆心角为2时,扇形有最大面积.∵扇形的周长为30,∴l+2R=30,l=30-2R,∴S=lR=(30-2R)R==-(R-)2+.....5分∴当R=时,扇形有最大面积,此时l=30-2R=15,==2........8分答:当扇形半径为,圆心角为2时,扇形有最大面积.....10分.【考点】1、弧度制下扇形相关公式;2、二次函数求最值.15.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.16.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.17.设,,,则( )A.B.C.D.【答案】D【解析】因为,所以<;因为,所以>,<,,所以b<a<c.故答案为:D.【考点】三角函数值.18.扇形的半径是,圆心角是60°,则该扇形的面积为 .【答案】π【解析】扇形的面积公式为.【考点】扇形的弧度制面积公式.19.的值()A.小于B.大于C.等于D.不存在【答案】A【解析】因为,所以,从而,选A.【考点】任意角的三角函数.20.计算:= ;【答案】1【解析】原式=【考点】三角函数值的计算21.已知扇形的圆心角为2rad,扇形的周长为8cm,则扇形的面积为___________cm2。

(完整版)任意角和弧度制测试题(含答案),推荐文档

(完整版)任意角和弧度制测试题(含答案),推荐文档

任意角和弧度制测试题一.选择题1.已知A={第一象限},B={锐角},C={小于90°的角},那么A,B,C 的关系是( )。

.;.;.;..A B A C B B C C C A C D A B C =⋃=⊆== 2.有下列说法:(1)终边相同的角一定相等;(2)不相等的角的终边不重合;(3)角α与角-α的终边关于Y 轴对称;(4)小于180°的角是锐角、钝角或直角。

其中错误的个数为 ( )。

A. 1 B.2 C.3D.43.若角α是第四象限角,则180°-α是( )。

A.第一象限角;B.第二象限角;C. 第三象限角;D.第四象限角.4.若α=-3,则角α的终边在( )。

A.第一象限;B.第二象限;C.第三象限;D.第四象限。

5.圆弧的长等于该圆内接正三角形的边长,则该弧所对的圆心角的弧度数是( )A .3B .1C .23D .3π6.设集合,,,22k M x x k Z N x x k k Z πππ⎧⎫⎧⎫==∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则M 与N 的关系是()A.M N =B.M N ⊆C.M N ⊇D.M N =∅7.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A.2 B.1sin 2C.2sin1D.sin28.若α是钝角,则,k k Z θπα=+∈是( )A. 第二象限角B. 第三象限角C. 第二象限角或第三象限角D. 第二象限角或第四象限角9.设k Z ∈,下列终边相同的角是( )A . ()21180k + 与()41180k ±B . 90k ⋅ 与18090k ⋅+C . 18030k ⋅+ 与36030k ⋅±D . 18060k ⋅+ 与60k ⋅10.若角α是第二象限的角,则2α是( )(A )第一象限或第二象限的角 (B )第一象限或第三象限的角(C )第二象限或第四象限的角 (D )第一象限或第四象限的角11.在单位圆中,面积为1的扇形所对的圆心角为( )弧度A . 1B . 2C .3D . 412.某扇形面积为,它的周长为4cm ,那么该扇形圆心角的大小为( 21cm )A 、B 、C 、D 、︒2rad 2︒4rad 4二.填空题1.时钟从6时50分走到10时50分,时针旋转了_____________弧度。

专题32 任意角和弧度制(解析版)

专题32 任意角和弧度制(解析版)

专题32 任意角和弧度制知识点一任意角1.中午12点15分时,钟表上的时针和分针所成的角是()A.90°B.75°C.82.5°D.60°【答案】C【解析】根据钟面的特征可知12点15分时,分针指向3,而时针在12和1之间,而15分等于四分之一小时,故时针走了四分之一大格,根据每大格30°即可得到结果.×30°=82.5°.中午12点15分时,钟表上的时针和分针所成的角是90°-142.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3∶00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有()A.1次B.2次C.3次D.4次【答案】D【解析】从3时整(3∶00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有:①当秒针转到大约45°的位置时,以及大约225°的位置时,秒针平分时针与分针.②当秒针转到大约180°的位置时,时针平分秒针与分针.③当秒针转到大约270°的位置时,分针平分秒针与时针.综上,共4次.3.如图,钟表中9点30分时,时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°【答案】B【解析】钟表12个数字,每相邻两个数字之间的夹角为30°,钟表上9点30分,时针指向9.5,分针指向6,两者之间相隔3.5个数字.3×30°+15°=105°,∴钟面上9点30分时,分针与时针所成的角的度数是105°.4.400°角终边所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】400°=360°+40°,∵40°是第一象限,∴400°角终边所在象限是第一象限.5.给出下列四个命题:①-75°角是第四象限角;②225°角是第三象限角;③475°角是第二象限角;④-315°角是第一象限角,其中真命题有()A.1个B.2个C.3个D.4个【答案】D【解析】对于①:如图1所示,-75°角是第四象限角;对于②:如图2所示,225°角是第三象限角;对于③:如图3所示,475°角是第二象限角;对于④:如图4所示,-315°角是第一象限角.6.如果α是第三象限的角,则下列结论中错误的是()A.-α为第二象限角B.180°-α为第二象限角C.180°+α为第一象限角D.90°+α为第四象限角【答案】B【解析】若α是第三象限角,则360°·k+180°<α<360°·k+270°;则360°·k+90°<-α<360°·k+180°,360°·k+270°<180°-α<360°·k+360°此时为第四象限角.7.终边与x轴重合的角α的集合是()A.{α|α=k·360°,k∈Z}B.{α|α=k·180°,k∈Z}C.{α|α=k·90°,k∈Z}D.{α|α=k·180°+90°,k∈Z}【答案】B【解析】设终边在x轴上的角为α,当α在x轴正半轴时,α=k·360°=2k·180°,其中k∈Z;当α在x轴负半轴时,α=2k·180°+180°=(2k+1)·180°,其中k∈Z,综上所述:α的集合是{α|α=k·180°,k∈Z}.8.若角α满足α=k·120°+30°(k∈Z),则α的终边一定在()A.第一象限或第二象限或第三象限B.第一象限或第二象限或第四象限C.第一象限或第二象限或x轴非负半轴上D.第一象限或第二象限或y轴非正半轴上【答案】D【解析】当k=3n,n∈Z时,α=n·360°+30°,为第一象限角;当k=3n+1,n∈Z时,α=n·360°+150°,为第二象限角;当k=3n+2,n∈Z时,α=n·360°+270°,为y轴非正半轴上的角.则α的终边一定在第一象限或第二象限或y轴非正半轴上.9.与-457°角的终边相同的角的集合是()A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k·360°,k∈Z}【答案】C【解析】由于-457°=-1×360°-97°=-2×360°+263°,故与-457°角终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k∈Z}.10.与405°角终边相同的角是()A.k·360°-45°,k∈ZB.k·180°-45°,k∈ZC.k·360°+45°,k∈ZD.k·180°+45°,k∈Z【答案】C【解析】405°=360°+45°,故选C.11.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角所表示的范围(阴影部分)是()A.B.C.D.【答案】C【解析】当k=2n时,{α|2n·180°+45°≤α≤2n·180°+90°,n∈Z},此时α的终边和45°≤α≤90°的终边一样.当k=2n+1时,{α|2n·180°+180°+45°≤α≤2n·180°+180°+90°,n∈Z},此时α的终边和225°≤α≤270°的终边一样.12.下列说法正确的是()A.小于90°的角是锐角B.钝角必是第二象限角,第二象限角必是钝角C.第三象限的角大于第二象限的角D.角α与角β的终边相同,角α与角β可能不相等【答案】D【解析】小于90°的角除了锐角还有零角与负角,故A错;钝角必是第二象限角,但第二象限角不一定为钝角,故B错;第三象限角不一定大于第二象限角,如224°,500°,故C错;D正确.13.判断下列各组角中,哪些是终边相同的角.(1)k·90°与k·180°+90°(k∈Z);(2)k·180°±60°与k·60°(k∈Z);(3)(2k+1)·180°与(4k±1)·180°(k∈Z);(4)k·180°+30°与k·180°±30°(k∈Z).【答案】(1)由于k·90°表示90°的整数倍,而k·180°+90°=(2k+1)·90°表示90°的奇数倍,故这两个角不是终边相同的角.(2)由于k·180°±60°=(3k±1)·60°表示60°的非3的整数倍.而k·60°表示60°的整数倍,故这两个角不是终边相同的角.(3)由于(2k+1)·180°表示180°的奇数倍,(4k±1)·180°也表示180°的奇数倍,故(2k+1)·180°与(4k±1)·180°(k∈Z)是终边相同的角.(4)由于k·180°+30°=(6k+1)·30°表示30°的(6k+1)倍,而k·180°±30°=(6k±1)·30°表示30°的(6k±1)倍,故这两个角不是终边相同的角.14.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).【答案】(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z};(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z};(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.15.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.【答案】(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.16.如图所示,阴影表示角α终边所在的位置,写出角α的集合.【答案】(1)终边落在x轴非负半轴上的角的集合为{α|α=k·360°,k∈Z},终边落在60°角终边上的角的集合为{α|α=k·360°+60°,k∈Z},终边落在130°角终边上的角的集合为{α|α=k·360°+130°,k∈Z},终边落在220°角终边上的角的集合为{α|α=k·360°+220°,k∈Z},∴终边落在阴影部分的角的集合可表示为{α|k·360°≤α≤k·360°+60°,k∈Z}∪{α|k·360°+130°≤α≤k·360°+220°,k∈Z},(2)终边落在75°角终边上的角的集合为{α|α=k·360°+75°,k∈Z},终边落在-45°角终边上的角的集合为{α|α=k·360°-45°,k∈Z},故终边落在阴影部分的角的集合为{α|k·360°-45°≤α<k·360°+75°,k∈Z}.17.写出如图所示阴影部分的角α的范围.【答案】(1)因为与45°角终边相同的角可写成45°+k·360°,k∈Z的形式,与-180°+30°=-150°角终边相同的角可写成-150°+k·360°,k∈Z的形式.所以图(1)阴影部分的角α的范围可表示为{α|-150°+k·360°<α≤45°+k·360°,k∈Z}.(2)同理可表示图(2)中角α的范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}.知识点二弧度制18.下列说法中,错误的是()A.半圆所对的圆心角是πradB.周角的大小等于2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度【答案】D【解析】根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误. 19.比值lr (l 是圆心角α所对的弧长,r 是该圆的半径)( )A .既与α的大小有关,又与r 的大小有关B .与α及r 的大小都无关C .与α的大小有关,而与r 的大小无关D .与α的大小无关,而与r 的大小有关 【答案】C【解析】由题意,比值lr =|α|,∴比值lr 与α的大小有关,而与r 的大小无关,故选C.20.下列转化结果错误的是( ) A .60°化成弧度是π3 B .-103π化成度是-600° C .-150°化成弧度是-7π6 D .π12化成度是15° 【答案】C【解析】对于A,60°=60×π180=π3;对于B ,-10π3=-103×180°=-600°;对于C ,-150°=-150×π180=-56π;对于D ,π12=112×180°=15°. 21.在△ABC 中,满足∠A =π6,∠B =π3,则∠C 等于( )A .120°B .90°C .75°D .135°【答案】B【解析】∵三角形的内角和为π,∴∠C =π-π3-π6=π2,∵π=180°,∴∠C =90°.22.圆的半径是6cm ,则15°的圆心角与圆弧围成的扇形面积是() A .π2cm 2B .3π2cm 2C .πcm 2D .3πcm 2【答案】B【解析】15°化为弧度为π180×15=π12.∴15°的圆心角与圆弧围成的扇形面积是12|α|r 2=12×π12×36=3π2(cm 2)23.扇形圆心角为π3,则扇形内切圆的圆面积与扇形面积之比为()A .1∶3B .2∶3C .4∶3D .4∶9【答案】B【解析】设扇形的半径为R ,扇形内切圆半径为r ,则R =r +rsin π6=r +2r =3r . ∴S 内切=πr 2.S 扇形=12|α|R 2=12×π3×R 2=12×π3×9r 2=32πr 2,∴S 内切∶S 扇形=2∶3.24.若2弧度的圆心角所对的弧长为2cm ,则这个圆心角所夹的扇形的面积是( ) A .4cm 2B .2cm 2C .4πcm 2D .1cm 2【答案】D【解析】弧度是2的圆心角所对的弧长为2,所以根据弧长公式,可得圆的半径为1,所以扇形的面积为:12×2×1=1(cm 2). 25.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为( )A .4cm 2B .6cm 2C .8cm 2D .16cm 2【答案】A【解析】设扇形的半径为R,所以2R+2R=8,所以R=2,扇形的弧长为4,半径为×4×2=4(cm2).2,扇形的面积为:1226.若角α,β的终边关于y轴对称,则α与β的关系一定是(其中k∈Z)()A.α+β=πB.α-β=π2C.α-β=π+2kπ2D.α+β=(2k+1)π【答案】D【解析】可以取几组特殊角代入检验.27.已知集合A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-4≤α≤4},则A∩B等于()A.∅B.{α|-4≤α≤π}C.{α|0≤α≤π}D.{α|-4≤α≤-π或0≤α≤π}【答案】D【解析】集合A限制了角α终边只能落在x轴上方或x轴上.28.给出下列命题,其中正确的是()(1)弧度角与实数之间建立了一一对应关系;(2)终边相同的角必相等;(3)锐角必是第一象限角;(4)小于90°的角是锐角;(5)第二象限的角必大于第一象限角.A.(1)B.(1)(2)(5)C.(3)(4)(5)D.(1)(3)【答案】D【解析】∵角的弧度制是与实数一一对应的,第一个命题正确,终边相同的角有无数个,它们的关系可能相等,也可能不等,锐角一定是第一象限角,但第一象限角不一定是锐角,小于90°的角可能是负角,象限角不能比较大小,∴(1)(3)的说法是正确的,故选D.29.圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,则点A第一次回到点P的位置时,点A走过的路径的长度为________.【答案】(【解析】由图可知:∵圆O 的半径r =1,正方形ABCD 的边长a =1,∴以正方形的边为弦时所对的圆心角为π3,正方形在圆上滚动时点的顺序依次为如图所示,∴当点A 首次回到点P 的位置时,正方形滚动了3圈共12次,设第i 次滚动,点A 的路程为Ai ,则A 1=π6×|AB |=π6, A 2=π6×|AC |=√2π6, A 3=π6×|DA |=π6,A 4=0,∴点A 所走过的路径的长度为3(A 1+A 2+A 3+A 4)=2+√22π. 30.一条弦的长度等于半径r ,求:(1)这条弦所对的劣弧长;(2)这条弦和劣弧所组成的弓形的面积.【答案】(1)在半径为r 的⊙O 中弦AB =r ,则△OAB 为等边三角形,所以∠AOB =π3,则弦AB 所对的劣弧长为π3r .(2)∵S △AOB =12·OA ·OB ·sin ∠AOB =√34r 2, S 扇形OAB =12|α|r 2=12×π3×r 2=π6r 2,∴S 弓形=S 扇形OAB -S △AOB =π6r 2-√34r 2=(π6−√34)r 2. 31.如图,一长为√3dm ,宽为1dm 的长方形木块在桌面上作无滑动翻滚,翻滚到第四次时被一小木块挡住,使木块底面与桌面所成角为π6,试求点A 走过的路程及走过的弧所在的扇形的总面积.(圆心角为正)【答案】在扇形ABA 1中,圆心角恰为π2,弧长l 1=π2·|AB |=π2·√3+1=π,面积S 1=12·π2·|AB |2=12·π2·4=π.在扇形A 1CA 2中,圆心角也为π2,弧长l 2=π2·|A 1C |=π2·1=π2,面积S 2=12·π2·|A 1C |2=12·π2·12=π4.在扇形A 2DA 3中,圆心角为π-π2-π6=π3,弧长l 3=π3·|A 2D |=π3·√3=√33π,面积S 3=12·π3·|A 2D |2=12·π3·(√3)2=π2,∴点A 走过的路程长l =l 1+l 2+l 3=π+π2+√3π3=(9+2√3π6),点A 走过的弧所在的扇形的总面积S =S 1+S 2+S 3=π+π4+π2=7π4.32.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在如图所示的阴影部分内的角的集合(不包括边界).【答案】(1)∵330°的终边也可看作-30°的终边,∴-30°=-π6,75°=5π12,∴{θ|−π6=2kπ<θ<5π12+2kπ,k∈Z?}(2)∵225°的终边也可看作-135°的终边,∴-135°=-3π4,135°=3π4,∴{θ|−3π4+2kπ<θ<3π4+2kπ,k∈Z?}。

高一数学弧度制与任意角试题

高一数学弧度制与任意角试题

高一数学弧度制与任意角试题1.(2分)圆的半径是6cm,则15°的圆心角与圆弧围成的扇形面积是()A.cm2B.cm2C.πcm2D.3πcm2【答案】B【解析】利用扇形面积公式,即可求得结论.解:15°化为弧度为=∴15°的圆心角与圆弧围成的扇形面积是==cm2故选B.点评:本题考查扇形的面积公式,考查学生的计算能力,属于基础题.2.(2分)﹣πrad化为角度应为.【答案】﹣345°【解析】利用角的弧度数与角的度数之间的换算关系:π rad=180°,求出结果即可.解:∵π rad=180°,∴两边同时乘以﹣,得﹣πrad=﹣345°故答案为:﹣345°点评:本题考查利用角的弧度数与角的度数之间的互化,利用角的弧度数与角的度数之间的换算关系:π rad=180°.3.(2分)设α,β满足﹣<α<β<,则α﹣β的范围是.【答案】﹣π<α﹣β<0【解析】先确定﹣β的范围,再利用不等式的性质,即可得到结论.解:∵﹣<β<,∴﹣<﹣β<,∵﹣<α<,∴﹣π<α﹣β<π∵α<β∴﹣π<α﹣β<0故答案为:﹣π<α﹣β<0点评:本题考查不等式的性质,考查学生的计算能力,属于基础题.4.(2分)若α角与角终边相同,则在[0,2π]内终边与角终边相同的角是.【答案】.【解析】利用角与α为终边相同的角可得,α=2kπ+,k∈z,从而可得与终边相同的角,继而可得答案.解:依题意,α=2kπ+,k∈z,∴=+,k∈z,又∈[0,2π],∴k=0,α=;k=1,α=;k=2,α=;k=3,α=.故答案为:.点评:本题考查终边相同的角,表示出与终边相同的角是关键,考查分析与转化及运算能力,属于中档题.5.(8分)1弧度的圆心角所对的弦长为2,求这个圆心角所对的弧长及圆心角所夹的扇形的面积.=.【答案】r=,∴l=r•α=,S扇【解析】利用弦长求出扇形的半径,从而可求圆心角所对的弧长及圆心角所夹的扇形的面积.解:由已知可得r=,∴l=r•α==l•r=•r2•α=•=.S扇点评:本题考查圆心角所对的弧长及圆心角所夹的扇形的面积,考查学生的计算能力,属于基础题.6.(5分)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为.【答案】【解析】解直角三角形AOC,求出半径AO,代入弧长公式求出弧长的值.解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1.Rt△AOC中,r=AO==,从而弧长为α•r=2×=,故答案为.点评:本题考查弧长公式的应用,解直角三角形求出扇形的半径AO的值,是解决问题的关键,属于基础题.7.(5分)已知sinα=m,(|m|<1),,那么tanα=【答案】【解析】先根据α的范围和sinα的值,利用同角三角函数的基本关系求得cosα的值,最后利用tanα=求得答案.解:∵∴cosα=﹣∴tanα==故答案为:点评:本题主要考查了同角三角函数的基本关系.要熟练记忆三角函数中平方关系,商数关系和倒数关系等.8.(5分)(2007•江苏)某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B两点的距离d(cm)表示成t(s)的函数,则d=,其中t∈[0,60].【答案】10sin.【解析】由题意知可以先写出秒针转过的角度,整个圆周对应的圆心角是360°,可以算出一秒转过的角度,再乘以时间,连接AB,过圆心向它做垂线,把要求的线段分成两部分,用直角三角形得到结果.解:∵∴根据直角三角形的边长求法得到d=2×5×sin=10sin,故答案为:10sin.点评:本题是一个实际应用问题,为了学生掌握这一部分的知识,必须使学生熟练的掌握所有公式,在此基础上并能灵活的运用公式,培养他们的观察能力和分析能力,提高他们的解题方法.9.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥;(2)cos α≤﹣.【答案】(1){α|2kπ+≤α≤2kπ+,k∈z,}.(2){α|2kπ+≤α≤2kπ+,k∈z,}.【解析】(1)作直线交单位圆于A、B两点,OA与OB围成的区域(阴影部分)即为角α的终边的范围,在[0,2π)内的角的范围为[,],可得足条件的角α的集合.(2)作直线交单位圆于C、D两点,OC与OD围成的区域(图中阴影部分)即为角α终边的范围,在[0,2π)内的角的范围为[,],得足条件的角α的集合.解:(1)作直线交单位圆于A、B两点,连接OA、OB,则OA与OB围成的区域(阴影部分)即为角α的终边的范围,故满足条件的角α的集合为{α|2kπ+≤α≤2kπ+,k∈z,}.(2)作直线交单位圆于C、D两点,连接OC、OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为{α|2kπ+≤α≤2kπ+,k∈z,}.点评:本题考查利用单位圆中的三角函数线来表示三角函数的值的方法,体现了数形结合的数学思想.10.(1)一个半径为r的扇形,若它的周长等于弧所在的半圆的长,那么扇形的圆心角是多少弧度?是多少度?扇形的面积是多少?(2)一扇形的周长为20 cm,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?【答案】(1)π﹣2,65°26′,(π﹣2)r2.(2)当α=2rad时,扇形的面积取最大值.【解析】(1)设扇形的圆心角,利用弧长公式得到弧长,代入题中条件,求出圆心角的弧度数,再化为度数,利用扇形的面积公式求扇形的面积.(2)设出弧长和半径,由周长得到弧长和半径的关系,再把弧长和半径的关系代入扇形的面积公式,转化为关于半径的二次函数,配方求出面积的最大值.解:(1)设扇形的圆心角是θrad,因为扇形的弧长是rθ,所以扇形的周长是2r+rθ.依题意,得2r+rθ=πr,∴θ=π﹣2=(π﹣2)×≈1.142×57.30°≈65.44°≈65°26′,∴扇形的面积为S=r2θ=(π﹣2)r2.(2)设扇形的半径为r,弧长为l,则l+2r=20,即l=20﹣2r(0<r<10)①扇形的面积S=lr,将①代入,得S=(20﹣2r)r=﹣r2+10r=﹣(r﹣5)2+25,所以当且仅当r=5时,S有最大值25.此时l=20﹣2×5=10,α==2.所以当α=2rad时,扇形的面积取最大值.点评:本题考查角的弧度数与度数间的转化,扇形的弧长公式和面积公式的应用,体现了转化的数学思想.。

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点的坐标为________.【答案】【解析】由三角函数定义可知Q点的坐标(x,y)满足x=cos=-,y=sin=.3.如图所示,在平面直角坐标系xOy中,角α的终边与单位圆交于点A,点A的纵坐标为,则cos α=________.【答案】-=,且A点在第二象限,又因为圆O为单位圆,所以A点横坐标【解析】因为A点纵坐标yAx=-,由三角函数的定义可得cos α=-.A4.已知角α终边经过点P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.【答案】sinα=-,tanα=【解析】解:∵P(x,-)(x≠0),∴P到原点的距离r=.又cosα=x,∴cosα==x,∵x≠0,∴x=±,∴r=2.当x=时,P点坐标为(,-),由三角函数定义,有sinα=-,tanα=-.当x=-时,P点坐标为(-,-),∴sinα=-,tanα=.5.如果点P(sinθ·cosθ,2cosθ)位于第三象限,试判断角θ所在的象限;【答案】第二象限角【解析】因为点P(sinθ·cosθ,2cosθ)位于第三象限,所以sinθ·cosθ<0,2cosθ<0,即所以θ为第二象限角.6.若θ是第二象限角,试判断sin(cosθ)的符号.【答案】负号【解析】∵2kπ+<θ<2kπ+π(k∈Z),∴-1<cosθ<0,∴sin(cosθ)<0.∴sin(cosθ)的符号是负号.7.已知2rad的圆心角所对的弦长为2,求这个圆心角所对的弧长.【答案】【解析】如图,∠AOB=2rad,过O点作OC⊥AB于C,并延长OC交于D.∠AOD=∠BOD=1rad,且AC =AB=1.在Rt△AOC中,AO=,从而弧AB的长为l=|α|·r=8.已知角α(0≤α≤2π)的终边过点P,则α=__________.【答案】【解析】将点P的坐标化简得,它是第四象限的点,r=|OP|=1,cosα==.又0≤α≤2π,所以α=.9.若角α的终边与直线y=3x重合且sinα<0,又P(m,n)是角α终边上一点,且|OP|=,则m-n=________.【答案】2【解析】依题意知解得m=1,n=3或m=-1,n=-3.又sinα<0,∴α的终边在第三象限,∴n<0,∴m=-1,n=-3,∴m-n=2.10.等于()A.sin2-cos2B.cos2-sin2C.±(sin2-cos2)D.sin2+cos2【答案】A【解析】原式===|sin2-cos2|,∵sin2>0,cos2<0,∴原式=sin2-cos2.11.已知点P(sinπ,cosπ)落在角θ的终边上,且θ∈[0,2π),则θ的值为()A.B.C.D.【答案】D【解析】点P(sinπ,cosπ),即为P(,-),它在第四象限的角平分线上,且θ∈[0,2π),故选D.12.在单位圆中,一条弦AB的长度为,则弦AB所对的圆心角α是rad.【答案】π【解析】由已知R=1,∴sin==,∴=,∴α=π.13.已知角x的终边上一点坐标为,则角x的最小正值为( )A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值14.若角的终边上有一点,则的值是()A.B.C.D.【答案】B【解析】角600°的终边与角-120°的终边相同,且角-120°的终边在第三象限,,所以.故选B.或解:因为角角600°的终边在第三象限,第三象限角终边上的点任一点,,由选项可知,只有B满足.故选B.【考点】1.终边相同的角的运用;2.三角函数的定义的运用.15.如图,在平面直角坐标系中,以x轴为始边作两个锐角、,它们的终边分别与单位圆交于A、B两点.已知点A的横坐标为;B点的纵坐标为.则 .【答案】【解析】单位圆的半径是1,根据勾股定理以及点A的横坐标为,B点的纵坐标为,可知点A的纵坐标为,点B的横坐标为,所以,,,,因为,是锐角,所以,所以.【考点】1.任意角的三角函数;2.三角函数的和角公式16.运用物理中矢量运算及向量坐标表示与运算,我们知道:两点等分单位圆时,有相应正确关系为,三等分单位圆时,有相应正确关系为,由此推出:四等分单位圆时的相应正确关系为 .【答案】【解析】用两点等分单位圆时,关系为,两个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差为:,用三点等分单位圆时,关系为,此时三个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差与第三个角与第二个角的差相等,均为有,依此类推,可得当四点等分单位圆时,为四个角正弦值之和为0,且第一个角为,第二个角为,第三个角,第四个角为,即其关系为.【考点】三角函数的定义与三角恒等式.17.(1)设扇形的周长是定值为,中心角.求证:当时该扇形面积最大;(2)设.求证:.【答案】(1)详见解析;(2)详见解析.【解析】(1)由扇形周长为定值可得半径与弧长关系(定值),而扇形面积,一般地求二元函数最值可消元化为一元函数(见下面详解),也可考虑利用基本不等式,求出最值,并判断等号成立条件,从而得解;(2)这是一个双变元(和)的函数求最值问题,由于这两个变元没有制约关系,所以可先将其中一个看成主元,另一个看成参数求出最值(含有另一变元),再求解这一变元下的最值,用配方法或二次函数图象法. 试题解析:(1)证明:设弧长为,半径为,则, 2分所以,当时, 5分此时,而所以当时该扇形面积最大 7分(2)证明:9分∵,∴, 11分∴当时, 14分又,所以,当时取等号,即. 16分法二:9分∵,, 11分∴当时,, 14分又∵,∴当时取等号即. 16分【考点】扇形的周长和面积、三角函数、二次函数.18.若,则A.B.C.D.【答案】A【解析】因为,所以==,=,故选A.【考点】本题主要考查特殊角的三角函数值,诱导公式、和差倍半公式的应用。

专题32 任意角和弧度制(解析版)

专题32 任意角和弧度制(解析版)

专题32 任意角和弧度制知识点一任意角1.中午12点15分时,钟表上的时针和分针所成的角是()A.90°B.75°C.82.5°D.60°【答案】C【解析】根据钟面的特征可知12点15分时,分针指向3,而时针在12和1之间,而15分等于四分之一小时,故时针走了四分之一大格,根据每大格30°即可得到结果.×30°=82.5°.中午12点15分时,钟表上的时针和分针所成的角是90°-142.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3∶00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有()A.1次B.2次C.3次D.4次【答案】D【解析】从3时整(3∶00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有:①当秒针转到大约45°的位置时,以及大约225°的位置时,秒针平分时针与分针.②当秒针转到大约180°的位置时,时针平分秒针与分针.③当秒针转到大约270°的位置时,分针平分秒针与时针.综上,共4次.3.如图,钟表中9点30分时,时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°【答案】B【解析】钟表12个数字,每相邻两个数字之间的夹角为30°,钟表上9点30分,时针指向9.5,分针指向6,两者之间相隔3.5个数字.3×30°+15°=105°,∴钟面上9点30分时,分针与时针所成的角的度数是105°.4.400°角终边所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】400°=360°+40°,∵40°是第一象限,∴400°角终边所在象限是第一象限.5.给出下列四个命题:①-75°角是第四象限角;②225°角是第三象限角;③475°角是第二象限角;④-315°角是第一象限角,其中真命题有()A.1个B.2个C.3个D.4个【答案】D【解析】对于①:如图1所示,-75°角是第四象限角;对于②:如图2所示,225°角是第三象限角;对于③:如图3所示,475°角是第二象限角;对于④:如图4所示,-315°角是第一象限角.6.如果α是第三象限的角,则下列结论中错误的是()A.-α为第二象限角B.180°-α为第二象限角C.180°+α为第一象限角D.90°+α为第四象限角【答案】B【解析】若α是第三象限角,则360°·k+180°<α<360°·k+270°;则360°·k+90°<-α<360°·k+180°,360°·k+270°<180°-α<360°·k+360°此时为第四象限角.7.终边与x轴重合的角α的集合是()A.{α|α=k·360°,k∈Z}B.{α|α=k·180°,k∈Z}C.{α|α=k·90°,k∈Z}D.{α|α=k·180°+90°,k∈Z}【答案】B【解析】设终边在x轴上的角为α,当α在x轴正半轴时,α=k·360°=2k·180°,其中k∈Z;当α在x轴负半轴时,α=2k·180°+180°=(2k+1)·180°,其中k∈Z,综上所述:α的集合是{α|α=k·180°,k∈Z}.8.若角α满足α=k·120°+30°(k∈Z),则α的终边一定在()A.第一象限或第二象限或第三象限B.第一象限或第二象限或第四象限C.第一象限或第二象限或x轴非负半轴上D.第一象限或第二象限或y轴非正半轴上【答案】D【解析】当k=3n,n∈Z时,α=n·360°+30°,为第一象限角;当k=3n+1,n∈Z时,α=n·360°+150°,为第二象限角;当k=3n+2,n∈Z时,α=n·360°+270°,为y轴非正半轴上的角.则α的终边一定在第一象限或第二象限或y轴非正半轴上.9.与-457°角的终边相同的角的集合是()A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k·360°,k∈Z}【答案】C【解析】由于-457°=-1×360°-97°=-2×360°+263°,故与-457°角终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k∈Z}.10.与405°角终边相同的角是()A.k·360°-45°,k∈ZB.k·180°-45°,k∈ZC.k·360°+45°,k∈ZD.k·180°+45°,k∈Z【答案】C【解析】405°=360°+45°,故选C.11.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角所表示的范围(阴影部分)是()A.B.C.D.【答案】C【解析】当k=2n时,{α|2n·180°+45°≤α≤2n·180°+90°,n∈Z},此时α的终边和45°≤α≤90°的终边一样.当k=2n+1时,{α|2n·180°+180°+45°≤α≤2n·180°+180°+90°,n∈Z},此时α的终边和225°≤α≤270°的终边一样.12.下列说法正确的是()A.小于90°的角是锐角B.钝角必是第二象限角,第二象限角必是钝角C.第三象限的角大于第二象限的角D.角α与角β的终边相同,角α与角β可能不相等【答案】D【解析】小于90°的角除了锐角还有零角与负角,故A错;钝角必是第二象限角,但第二象限角不一定为钝角,故B错;第三象限角不一定大于第二象限角,如224°,500°,故C错;D正确.13.判断下列各组角中,哪些是终边相同的角.(1)k·90°与k·180°+90°(k∈Z);(2)k·180°±60°与k·60°(k∈Z);(3)(2k+1)·180°与(4k±1)·180°(k∈Z);(4)k·180°+30°与k·180°±30°(k∈Z).【答案】(1)由于k·90°表示90°的整数倍,而k·180°+90°=(2k+1)·90°表示90°的奇数倍,故这两个角不是终边相同的角.(2)由于k·180°±60°=(3k±1)·60°表示60°的非3的整数倍.而k·60°表示60°的整数倍,故这两个角不是终边相同的角.(3)由于(2k+1)·180°表示180°的奇数倍,(4k±1)·180°也表示180°的奇数倍,故(2k+1)·180°与(4k±1)·180°(k∈Z)是终边相同的角.(4)由于k·180°+30°=(6k+1)·30°表示30°的(6k+1)倍,而k·180°±30°=(6k±1)·30°表示30°的(6k±1)倍,故这两个角不是终边相同的角.14.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).【答案】(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z};(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z};(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.15.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.【答案】(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.16.如图所示,阴影表示角α终边所在的位置,写出角α的集合.【答案】(1)终边落在x轴非负半轴上的角的集合为{α|α=k·360°,k∈Z},终边落在60°角终边上的角的集合为{α|α=k·360°+60°,k∈Z},终边落在130°角终边上的角的集合为{α|α=k·360°+130°,k∈Z},终边落在220°角终边上的角的集合为{α|α=k·360°+220°,k∈Z},∴终边落在阴影部分的角的集合可表示为{α|k·360°≤α≤k·360°+60°,k∈Z}∪{α|k·360°+130°≤α≤k·360°+220°,k∈Z},(2)终边落在75°角终边上的角的集合为{α|α=k·360°+75°,k∈Z},终边落在-45°角终边上的角的集合为{α|α=k·360°-45°,k∈Z},故终边落在阴影部分的角的集合为{α|k·360°-45°≤α<k·360°+75°,k∈Z}.17.写出如图所示阴影部分的角α的范围.【答案】(1)因为与45°角终边相同的角可写成45°+k·360°,k∈Z的形式,与-180°+30°=-150°角终边相同的角可写成-150°+k·360°,k∈Z的形式.所以图(1)阴影部分的角α的范围可表示为{α|-150°+k·360°<α≤45°+k·360°,k∈Z}.(2)同理可表示图(2)中角α的范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}.知识点二弧度制18.下列说法中,错误的是()A.半圆所对的圆心角是πradB.周角的大小等于2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度【答案】D【解析】根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误. 19.比值lr (l 是圆心角α所对的弧长,r 是该圆的半径)( )A .既与α的大小有关,又与r 的大小有关B .与α及r 的大小都无关C .与α的大小有关,而与r 的大小无关D .与α的大小无关,而与r 的大小有关 【答案】C【解析】由题意,比值lr =|α|,∴比值lr 与α的大小有关,而与r 的大小无关,故选C.20.下列转化结果错误的是( ) A .60°化成弧度是π3 B .-103π化成度是-600° C .-150°化成弧度是-7π6 D .π12化成度是15° 【答案】C【解析】对于A,60°=60×π180=π3;对于B ,-10π3=-103×180°=-600°;对于C ,-150°=-150×π180=-56π;对于D ,π12=112×180°=15°. 21.在△ABC 中,满足∠A =π6,∠B =π3,则∠C 等于( )A .120°B .90°C .75°D .135°【答案】B【解析】∵三角形的内角和为π,∴∠C =π-π3-π6=π2,∵π=180°,∴∠C =90°.22.圆的半径是6cm ,则15°的圆心角与圆弧围成的扇形面积是() A .π2cm 2B .3π2cm 2C .πcm 2D .3πcm 2【答案】B【解析】15°化为弧度为π180×15=π12.∴15°的圆心角与圆弧围成的扇形面积是12|α|r 2=12×π12×36=3π2(cm 2)23.扇形圆心角为π3,则扇形内切圆的圆面积与扇形面积之比为()A .1∶3B .2∶3C .4∶3D .4∶9【答案】B【解析】设扇形的半径为R ,扇形内切圆半径为r ,则R =r +rsin π6=r +2r =3r . ∴S 内切=πr 2.S 扇形=12|α|R 2=12×π3×R 2=12×π3×9r 2=32πr 2,∴S 内切∶S 扇形=2∶3.24.若2弧度的圆心角所对的弧长为2cm ,则这个圆心角所夹的扇形的面积是( ) A .4cm 2B .2cm 2C .4πcm 2D .1cm 2【答案】D【解析】弧度是2的圆心角所对的弧长为2,所以根据弧长公式,可得圆的半径为1,所以扇形的面积为:12×2×1=1(cm 2). 25.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为( )A .4cm 2B .6cm 2C .8cm 2D .16cm 2【答案】A【解析】设扇形的半径为R,所以2R+2R=8,所以R=2,扇形的弧长为4,半径为×4×2=4(cm2).2,扇形的面积为:1226.若角α,β的终边关于y轴对称,则α与β的关系一定是(其中k∈Z)()A.α+β=πB.α-β=π2C.α-β=π+2kπ2D.α+β=(2k+1)π【答案】D【解析】可以取几组特殊角代入检验.27.已知集合A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-4≤α≤4},则A∩B等于()A.∅B.{α|-4≤α≤π}C.{α|0≤α≤π}D.{α|-4≤α≤-π或0≤α≤π}【答案】D【解析】集合A限制了角α终边只能落在x轴上方或x轴上.28.给出下列命题,其中正确的是()(1)弧度角与实数之间建立了一一对应关系;(2)终边相同的角必相等;(3)锐角必是第一象限角;(4)小于90°的角是锐角;(5)第二象限的角必大于第一象限角.A.(1)B.(1)(2)(5)C.(3)(4)(5)D.(1)(3)【答案】D【解析】∵角的弧度制是与实数一一对应的,第一个命题正确,终边相同的角有无数个,它们的关系可能相等,也可能不等,锐角一定是第一象限角,但第一象限角不一定是锐角,小于90°的角可能是负角,象限角不能比较大小,∴(1)(3)的说法是正确的,故选D.29.圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,则点A第一次回到点P的位置时,点A走过的路径的长度为________.【答案】(【解析】由图可知:∵圆O 的半径r =1,正方形ABCD 的边长a =1,∴以正方形的边为弦时所对的圆心角为π3,正方形在圆上滚动时点的顺序依次为如图所示,∴当点A 首次回到点P 的位置时,正方形滚动了3圈共12次,设第i 次滚动,点A 的路程为Ai ,则A 1=π6×|AB |=π6, A 2=π6×|AC |=√2π6, A 3=π6×|DA |=π6,A 4=0,∴点A 所走过的路径的长度为3(A 1+A 2+A 3+A 4)=2+√22π. 30.一条弦的长度等于半径r ,求:(1)这条弦所对的劣弧长;(2)这条弦和劣弧所组成的弓形的面积.【答案】(1)在半径为r 的⊙O 中弦AB =r ,则△OAB 为等边三角形,所以∠AOB =π3,则弦AB 所对的劣弧长为π3r .(2)∵S △AOB =12·OA ·OB ·sin ∠AOB =√34r 2, S 扇形OAB =12|α|r 2=12×π3×r 2=π6r 2,∴S 弓形=S 扇形OAB -S △AOB =π6r 2-√34r 2=(π6−√34)r 2. 31.如图,一长为√3dm ,宽为1dm 的长方形木块在桌面上作无滑动翻滚,翻滚到第四次时被一小木块挡住,使木块底面与桌面所成角为π6,试求点A 走过的路程及走过的弧所在的扇形的总面积.(圆心角为正)【答案】在扇形ABA 1中,圆心角恰为π2,弧长l 1=π2·|AB |=π2·√3+1=π,面积S 1=12·π2·|AB |2=12·π2·4=π.在扇形A 1CA 2中,圆心角也为π2,弧长l 2=π2·|A 1C |=π2·1=π2,面积S 2=12·π2·|A 1C |2=12·π2·12=π4.在扇形A 2DA 3中,圆心角为π-π2-π6=π3,弧长l 3=π3·|A 2D |=π3·√3=√33π,面积S 3=12·π3·|A 2D |2=12·π3·(√3)2=π2,∴点A 走过的路程长l =l 1+l 2+l 3=π+π2+√3π3=(9+2√3π6),点A 走过的弧所在的扇形的总面积S =S 1+S 2+S 3=π+π4+π2=7π4.32.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在如图所示的阴影部分内的角的集合(不包括边界).【答案】(1)∵330°的终边也可看作-30°的终边,∴-30°=-π6,75°=5π12,∴{θ|−π6=2kπ<θ<5π12+2kπ,k∈Z?}(2)∵225°的终边也可看作-135°的终边,∴-135°=-3π4,135°=3π4,∴{θ|−3π4+2kπ<θ<3π4+2kπ,k∈Z?}。

高中试卷-专题5.1 任意角与弧度制(含答案)

高中试卷-专题5.1   任意角与弧度制(含答案)

专题5.1 任意角与弧度制一、角的相关概念1.角可以看成平面内一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形.2.角的表示:如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.3.按照角的旋转方向可将角分为如下三类:4.相反角如图,我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为-α.二、象限角1.若角的顶点在原点,角的始边与x轴的非负半轴重合,则角的终边在第几象限,就称这个角是第几象限角.2.若角的终边在坐标轴上,则认为这个角不属于任何一个象限.3.象限角的判定方法(1)根据图象判定.依据是终边相同的角的概念,因为0°~360°之间的角的终边与坐标系中过原点的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°范围内没有两个角终边是相同的.(3)n α所在象限的判断方法确定n α终边所在的象限,先求出n α的范围,再直接转化为终边相同的角即可.(4)αn所在象限的判断方法4.已知角α所在象限,要确定角αn所在象限,有两种方法:①用不等式表示出角αn 的范围,然后对k 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;…;被n 除余n -1.从而得出结论.②作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域.从x 轴非负半轴起,按逆时针方向把这4n 个区域依次循环标上1,2,3,4.α的终边在第几象限,则标号为几的区域,就是αn 的终边所落在的区域.如此,αn 所在的象限就可以由标号区域所在的象限直观地看出.三、终边相同的角1.设α表示任意角,所有与角α终边相同的角,包括α本身构成一个集合,这个集合可记为{β|β=□01α+k ·360°,k ∈Z }.2.对终边相同的角的理解(1)终边相同的角不一定相等,但相等的角终边一定相同;(2)k ∈Z ,即k 为整数,这一条件不可少;(3)终边相同的角的表示不唯一.四、角的单位制1.用度作为单位来度量角的单位制叫做角度制,规定1度的角等于周角的1360.2.长度等于半径长的圆弧所对的□03圆心角叫做1弧度的角,弧度单位用符号rad 表示,读作弧度,通常略去不写.以弧度作为单位来度量角的单位制叫做弧度制.3.弧度数的计算4.角度制和弧度制的比较(1)弧度制是以“弧度”为单位来度量角的单位制,而角度制是以“度”为单位来度量角的单位制.(2)1弧度的角是指等于半径长的弧所对的圆心角,而1度的角是指圆周角的1360的角,大小显然不同.(3)无论是以“弧度”还是以“度”为单位来度量角,角的大小都是一个与“半径”大小无关的值.(4)用“度”作为单位度量角时,“度”(即“°”)不能省略,而用“弧度”作为单位度量角时,“弧度”二字或“rad”通常省略不写.但两者不能混用,即在同一表达式中不能出现两种度量方法.五、角度与弧度的换算1.角度制与弧度制的换算2.一些特殊角的度数与弧度数的对应表度0°30°45°60°90°120°135°150°180°弧度π6π4π3π22π33π45π6π六、扇形的弧长及面积公式1.设扇形的半径为r ,弧长为l ,α(0<α<2π)为其圆心角的弧度数,n 为圆心角的角度数,则扇形的弧长:l =n πr180=αr ,扇形的面积:S =n πr 2360=12lr =12α·r 2.一、单选题1.与525-o 角的终边相同的角可表示为( )A .525360k k Z -×Îo o()B .185360k k Z +×Îo o()C .195360k k Z +×Îo o ()D .195360k k Z -+×Îo o ()【来源】河南省南阳市第一中学2021-2022学年高一下学期第一次月考数学试题【答案】C【解析】解:525=1952360--´o o o ,所以525-o 角的终边与195o 角的终边相同,所以与525-o 角的终边相同的角可表示为195360k k Z +×Îo o().故选:C 2.下列与角23p的终边一定相同的角是( )A .53πB .()43k k Z pp -ÎC .()223k k Z pp +ÎD .()()2213k k Z pp ++Î【来源】吉林省松原市重点高中2021-2022学年高一3月联考数学试卷【答案】C 【解析】对于选项C :与角23p的终边相同的角为()223k k Z p p +Î,C 满足.对于选项B :当()2k n n Z =Î时, ()442,33k n k Z n Z p pp p -=-ÎÎ成立;当()21k n n Z =+Î时,()()44212,333k n n k Z n Z p p pp p p -=+-=-ÎÎ不成立.对于选项D :()()2521233k k k Z p p p p ++=+Î不成立.故选: C 3.在0°到360o 范围内,与405o 终边相同的角为( )A .45-o B .45o C .135o D .225o【答案】B【解析】:因为40536045=+o o o ,所以在0°到360o 范围内与405o 终边相同的角为45o ;故选:B 4.角76p所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【来源】广西桂林市奎光学校2021-2022学年高一下学期热身考试数学试题【答案】C 7362p pp <<Q ,\角76p 位于第三象限.故选:C.5.已知角2022a =o ,则角a 的终边落在( )A .第一象限B .第二象限C .第三象限D .第四象限【来源】河南省南阳市2021-2022学年高一下学期期末数学试题【答案】C【解析】因为20222225360a ==+´o o o ,而222o 是第三象限角,故角a 的终边落在第三象限.故选:C.6.下列说法正确的是( )A .终边相同的角相等B .相等的角终边相同C .小于90°的角是锐角D .第一象限的角是正角【答案】B【解析】终边相同的角相差周角的整数倍,A 不正确;相等的角终边一定相同;所以B 正确;小于90°的角是锐角可以是负角,C 错;第一象限的角是正角,也可以是负角,D 错误.故选:B.7.135-o 的角化为弧度制的结果为( )A .32p -B .35p -C .34p -D .34p 【来源】西藏林芝市第二高级中学2021-2022学年高一下学期第二学段考试(期末)数学试题【答案】C【解析】π3135π rad 1418035-´-==-o.故选:C.8.中国传统折扇有着极其深厚的文化底蕴.《乐府诗集》中《夏歌二十首》的第五首曰:“叠扇放床上,企想远风来轻袖佛华妆,窈窕登高台.”如图所示,折扇可看作是从一个圆面中剪下的扇形制作而成若一把折扇完全打开时圆心角为67p ,扇面所在大圆的半径为20cm ,所在小圆的半径为8cm ,那么这把折扇的扇面面积为( )A .288pB .144pC .487p D .以上都不对【来源】陕西省西安市蓝田县2021-2022学年高一下学期期末数学试题【答案】B【解析】由题意得,大扇形的面积为11612002020277S p p=´´´=,小扇形的面积为21619288277S p p=´´´=,所以扇面的面积为12120019214477S S p pp -=-=.故选:B9.把375-°表示成2πk q +,k Z Î的形式,则q 的值可以是( )A .π12B .π12-C .5π12D .5π12-【来源】河南省安阳市滑县2021-2022学年高一上学期期末数学试题【答案】B【解析】∵37515360-=-°-°°,∴π3752πrad 12æö-°=--ç÷èø故选:B10.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”现有一类似问题,不确定大小的圆柱形木材,部分埋在墙壁中,其截面如图所示.用锯去锯这木材,若锯口深2CD =2AB =,则图中¼ACB与弦AB 围成的弓形的面积为( )A .2pB .23pC .3pD .3p-【来源】海南省琼海市嘉积中学2021-2022学年高一下学期期末数学试题【答案】B【解析】解:设圆的半径为r ,则(2OD r CD r =-=-,112AD AB ==,由勾股定理可得222OD AD OA +=,即(2221r r éù-+=ëû,解得2r =,所以2OA OB ==,2AB =,所以3AOB pÐ=,因此221222233MBB AOB S S S p p=-=´´=V 弓形扇形.故选:B11.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4p米,肩宽约为8p米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为( )A .1.012米B .1.768米C .2.043米D .2.945米【来源】江苏省南通市如东县2021-2022学年高一上学期期末数学试题【答案】B【解析】解:由题得:弓所在的弧长为:54488l pppp =++=;所以其所对的圆心角58524p p a ==;\两手之间的距离2sin1.25 1.7684d R p=».故选:B .12.“a 是第四象限角”是“2a是第二或第四象限角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【来源】河南省新乡市2021-2022学年高一上学期期末考试数学试题【答案】A【解析】当a 是第四象限角时,3222,2k k k Z pp a p p +<<+Î,则3,42k k k Z p ap p p +<<+Î,即2a 是第二或第四象限角.当324a p =为第二象限角,但32pa =不是第四象限角,故“a 是第四象限角”是“2a 是第二或第四象限角”的充分不必要条件.故选:A13.在Rt POB V 中,90PBO Ð=°,以O 为圆心,OB 为半径作圆弧交OP 于点A ,若弧AB 等分POB V 的面积,且AOB a Ð=弧度,则( )A .tan a a =B .tan 2a a =C .sin 2cos a a =D .2sin cos a a=【来源】上海市川沙中学2021-2022学年高一下学期3月月考数学试题【答案】B【解析】设扇形的半径为r ,则扇形的面积为212r a .直角三角形POB 中,tan PB r a =,△POB 的面积为21tan 2r a ××.由题意得22112tan 22r r a a ´=××,所以tan 2a a =.故选:B14.砀山被誉为“酥梨之乡”,每逢四月,万树梨花开,游客八方来.如图1,梨花广场的标志性建筑就是根据梨花的形状进行设计的,建筑的五个“花瓣”中的每一个都可以近似看作由两个对称的弓形组成,图2为其中的一个“花瓣”平面图,设弓形的圆弧所在圆的半径为R ,则一个“花瓣”的面积为( )A .2π12R -B .2π22R -C .2π14R -D .()2π1R-【来源】辽宁省沈阳市第八十三中学2021-2022学年高一下学期6月月考数学试题【答案】B【解析】因为弓形的圆弧所在圆的半径为R ,所以弓形的圆弧所对的圆心角的大小为2p,所以弓形的面积221142S R R p =´-,所以一个“花瓣”的面积为2π22R -,故选:B.15.设圆O 的半径为2,点P 为圆周上给定一点,如图,放置边长为2的正方形ABCD (实线所示,正方形的顶点A 与点P 重合,点B 在圆周上).现将正方形ABCD 沿圆周按顺时针方向连续滚动,当点A 首次回到点P 的位置时,点A 所走过的路径的长度为( )A .(1p-B .(2pC .4pD .3p æççè【来源】上海市嘉定区第二中学2021-2022学年高一下学期第一次质量检测数学试题【答案】B【解析】由图可知,圆O 的半径为2r =,正方形ABCD 的边长为2a =,以正方形的边为弦所对的圆心角为3p,正方形在圆上滚动时点的顺序依次为如图所示,当点A 首次回到点P 的位置时,正方形滚动了3圈,共12次,设第i 次滚动时,点A 的路程为i m ,则163m AB pp=´=,2m =,363m AD pp=´=,40m =,因此,点A 所走过的路程为()(123432m m m m p +++=+.故选:B.16.用半径为2,弧长为2p 的扇形纸片卷成一个圆锥,则这个圆锥的体积等于( )A B C D .4p【来源】第8章 立体几何初步(典型30题专练)-2021-2022学年高一数学考试满分全攻略(人教A 版2019必修第二册)【答案】B【解析】令圆锥底面半径为r ,则22p p =r ,因此1r =\圆锥的高为:h ==\圆锥的体积2113p =´´=V 故选:B17.中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3p -B .1)p -C .1)pD .2)p【来源】陕西省西安市临潼区2021-2022学年高一下学期期末数学试题【答案】A【解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,a b ,则a b = ,又2a b p +=,解得(3a p =故选:A 18.《九章算木》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面釈所用的经验公式为:弧田面积=12(弦×矢+矢²).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为3p,弦长等于2米的弧田.按照《九章算木》中弧田面积的经验公式竍算所得弧田面积(单位,平方米)为A .3pB .3pC .92D .112-【来源】辽宁省沈阳市第二中学2021-2022学年高一下学期4月月考数学试题【答案】D【解析】在圆心角为3p ,弦长等于2米的弧田中,半径为2是,矢=12(弦×矢+矢²)=((211122222éù´+=-⎢⎥ëû,故选D.19.将分针拨慢5分钟,则分钟转过的弧度数是( )A .3pB .3p-C .6pD .6p-【来源】江西省景德镇市第一中学2021-2022学年高一(重点班)上学期期末数学试题【答案】C【解析】:分针转一周为60分钟,转过的角度为2p将分针拨慢是逆时针旋转∴钟表拨慢分钟,则分针所转过的弧度数为12.126p p ´= 故选C .20.一个圆锥的侧面展开图是圆心角为23p ,弧长为2p 的扇形,则该圆锥的体积为( )A B .C D 【来源】河南省杞县高中2021-2022学年高一下学期6月月考数学试卷【答案】A【解析】设圆锥的母线长为l ,底面半径为r ,则223l p p =,解得3l =,又22p p =r ,解得1r =,所以圆锥的高为h ==所以圆锥的体积为213V r h p ==.故选:A .二、填空题21圆锥的体积为______【来源】河北省沧衡八校联盟2021-2022学年高一下学期期中数学试题【答案】2π3【解析】设该圆锥的母线长为l ,底面圆的半径为r ,由212=,得l =因为2πr =1r =,所以该圆锥的体积为212ππ133´´=.故答案为:2π322.《九章算术》是我国古代数学成就的杰出代表作,其中"方田"章给出了计算弧田面积时所用的经验公式,即弧田面积21(2弦矢矢)=´´+,弧田(如图)由圆弧和其所对弦围成,公式中“弦"指圆弧所对弦长,“矢"指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为23p ,半径为6米的弧田,按照上述经验公式计算所得弧田面积是_________平方米.(结果保留根号)【答案】92+【解析】设弧田的圆心为O ,弦为AB ,C 为AB 中点,连OC 交弧为D ,则OC AB ^,所以矢长为CD ,在Rt AOC △中,6AO =,3AOC p Ð=,所以13,2OC OA AC ===,所以3,2CD OD OC AB AC =-===所以弧田的面积为()()2211933222AB CD CD ×+=+=+.故答案为:92.23.中国折叠扇有着深厚的文化底蕴.如图(2),在半圆O (半径为20cm )中作出两个扇形OAB 和OCD ,用扇环形ABDC (图中阴影部分)制作折叠扇的扇面.记扇环形ABDC 的面积为1S ,扇形OAB 的面积为2S,当12S S =时,扇形的现状较为美观,则此时扇形OCD 的半径为__________cm【答案】1)【解析】设,AOB q Ð=,半圆O 的半径为r ,扇形OCD 的半径为1r,12S S =Q,即2212r r r -=,所以2212r r ==,所以1r r =20,r cm =,所以11)r cm =,故答案为:1).24.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.【答案】(40p+【解析】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ^,由条件可知QT =,60PQ = 所以sin QPO Ð=,所以3QPO pÐ=,23QPT p Ð=,所以月牙泉的周长(260403l p p p =´+´=+.故答案为:(40p +25.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.已知等边三角形的边长为1,则勒洛三角形的面积是_______.【来源】陕西省西安市莲湖区2021-2022学年高一下学期期末数学试题【解析】由题意得,勒洛三角形的面积为:三个圆心角和半径均分别为π3和1的扇形面积之和减去两个边长为1的等边三角形的面积,即221π1π3121sin 2323´´´-´´´=26.若扇形的周长为定值l ,则当该扇形的圆心角()02a a p <<=______时,扇形的面积取得最大值,最大值为______.【来源】江苏省无锡市天一中学2021-2022学年高一强化班上学期期末数学试题【答案】 2 2116l 【解析】设扇形的半径为r ,则扇形的弧长为ra 故2r r la +=扇形的面积22111(2)222S r r l r lr r a ==-=-由二次函数的性质,当4l r =时,面积取得最大值为2116l 此时12r l a =,2a =故答案为:2,2116l。

弧度制及任意角的三角函数(习题)解析版

弧度制及任意角的三角函数(习题)解析版

专题15 弧度制及任意角的三角函数1.若α为第四象限角,则( ) A .cos2α>0 B .cos2α<0 C .sin2α>0 D .sin2α<0【答案】D 【分析】由题意结合二倍角公式确定所给的选项是否正确即可. 【详解】方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α< 故选:D. 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D. 【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.2.已知圆锥的侧面积(单位:2cm ) 为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______. 【答案】1 【分析】利用题目所给圆锥侧面展开图的条件列方程组,由此求得底面半径. 【详解】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 故答案为:1 【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.3.在平面直角坐标系中,角α的顶点在原点,始边在x 轴的正半轴上,角α的终边经过点M ⎝ ⎛⎭⎪⎫-cos π8,sin π8,且0<α<2π,则α=( )A.π8B.3π8C.5π8D.7π8【答案】D【解析】(1)因为角α的终边经过点M ⎝ ⎛⎭⎪⎫-cos π8,sin π8,且0<α<2π,所以根据三角函数的定义,可知cos α=-cos π8=cos ⎝ ⎛⎭⎪⎫π-π8=cos 7π8,则α=7π8.故选D.4.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A.-12 B.-32C.12D.32【答案】C【解析】由题意得点P (-8m ,-3),r =64m 2+9, 所以cos α=-8m 64m 2+9=-45, 所以m >0,解得m =12. 5.若tan 0α>,则A. sin 20α> B . cos 0α> C . sin 0α> D . cos20α> 【答案】A【解析】由tan 0α>知,α在第一、第三象限,即2k k ππαπ<<+(k Z ∈),∴222k k παππ<<+,即2α在第一、第二象限,故只有sin 20α>,故选A .6.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45- (B)35- (C) 35 (D) 45【答案】B【解析】在直线2y x =取一点P (1,2),则r 5sin θ=y r 25 ∴cos2θ=212sin θ-=35-,故选B .7.(2018•新课标Ⅰ,文11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||(a b -= ) A .15B 5C 25D .1【答案】B【解析】角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,22cos22cos 13αα∴=-=,解得25cos 6α=,30|cos |α∴=306|sin |136α∴-,6|sin |56|tan |||||21|cos |30b a a b ααα-==-===-,故选B . 8.若两个圆心角相同的扇形的面积之比为1∶4,则这两个扇形的周长之比为________. 【答案】1∶2【解析】设两个扇形的圆心角的弧度数为α,半径分别为r ,R (其中r <R ),则12αr 212αR 2=14,所以r ∶R =1∶2,两个扇形的周长之比为2r +αr2R +αR =1∶2.9.(2022浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --.(1)求sin()απ+的值;(2)若角β满足5sin()13αβ+=,求cos β的值. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin()sin 5απα+=-=. (2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 10.下列各式:①sin(-100°);①cos(-220°);①tan(-10);①cos π. 其中符号为负的有( )A .1个B .2个C .3个D .4个【解析】-100°在第三象限,故sin(-100°)<0;-220°在第二象限,故cos(-220°)<0; -10①⎝ ⎛⎭⎪⎫-72π,-3π,在第二象限,故tan(-10)<0,cos π=-1<0.11.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6. 【解析】(1)因为103°、220°分别是第二、第三象限的角, 所以sin 103°>0,cos 220°<0,所以sin 103°·cos 220°<0; (2)因为3622π<<π,所以6是第四象限的角,所以cos 6>0,tan 6<0,所以cos 6°·tan 6<0. 12.已知sin 0θ>且cos 0θ<,则角θ的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解析】依据题设及三角函数的定义,可知角θ终边上的点的横坐标小于零,纵坐标大于零,所以终边在第二象限,故选B .13.已知sin 0,tan 0αα<>,则角α可以为第( )象限角 A .1B .2C .3D .4【解析】sin 0α<,则α的终边在x 边下方,tan 0α>,α是第一象限或第三象限角, 综上,α是第三象限角.故选:C .14.若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角【解析】 由sin αtan α<0可知sin α,tan α异号,从而α是第二或第三象限角. 由cos αtan α<0可知cos α,tan α异号,从而α是第三或第四象限角. 综上可知,α是第三象限角.15.已知点P (tan α,cos α)在第四象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解析】因为点P 在第四象限,所以有⎩⎨⎧tan α>0,cos α<0,由此可判断角α的终边在第三象限.16.角α的终边属于第一象限,那么3α的终边不可能属于的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限【解析】因为角α的终边在第一象限, 所以222k k ππαπ<<+,k Z ∈,所以223363k k παππ<<+,k Z ∈, 当3()k n n Z =∈时,此时角α的终边落在第一象限, 当31()k n n Z =+∈时,此时角α的终边落在第二象限, 当32()k n n Z =+∈时,此时角α的终边落在第三象限, 综上所述,角α的终边不可能落在第四象限, 故选:D .17.时间经过4小时,分针转的弧度数为( ) A .π-B .2πC .4π-D .8π-【解析】时间经过4小时,分针是按顺时针方向转了4圈, 所以分针转过的弧度数为248ππ-⨯=-. 故选:D .18.已知α为第二象限角,则32πα-为( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【解析】α是第二象限角,∴222k k ππαππ+<<+,k Z ∈,32222k k ππππαπ∴-+<-<-+,k Z ∈. ∴32πα-为第三象限角. 故选:C .19.“α是锐角”是“α是第一象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件【解析】因为α是锐角,故090α︒<<︒,则α一定是第一象限角, 若α是第一象限角,不妨取330-︒,则α不是锐角,所以“α是锐角”是“α是第一象限角”的充分不必要条件. 故选:A .20.若α,β满足22ππαβ-<<<,则αβ-的取值范围是( )A .παβπ-<-<B .0παβ-<-<C .22ππαβ-<-<D .02παβ-<-<【解析】从题中22ππαβ-<<<可分离出三个不等式:22ππα-<<①,22ππβ-<<②,αβ<③.根据不等式的性质, ②式同乘以1-得22ππβ-<-<④,根据同向不等式的可加性,可得παβπ-<-<.由③式得0αβ-<, 所以0παβ-<-<. 故选:B .21.已知α是第三象限角,则2α是( ) A .第一象限角 B .第二象限角C .第一或第四象限角D .第二或第四象限角【解析】解:α是第三象限角,即322,2k k k Z ππαππ+<<+∈.当k 为偶数时,2α为第二象限角; 当k 为奇数时,2α为第四象限角. 故选:D .22.若角θ为第四象限角,则2πθ+是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【解析】θ是第四象限的角,由2πθ+是将θ的终边逆时针旋转2π,得到角2πθ+,∴2πθ+是第一象限的角故选:A .23.我们学过用角度制与弧度制度量角,最近,有学者提出用“面度制”度量角,因为在半径不同的同心圆中,同样的圆心角所对扇形的面积与半径平方之比是常数,从而称这个常数为该角的面度数,这种用面度作为单位来度量角的单位制,叫做面度制.在面度制下,角θ的面度数为3π,则角θ的余弦值为( ) A .3B .12-C .12D 3 【解析】设角θ所在的扇形的半径为r ,则由题意,可得22123r r θπ=,解得23πθ=, 可得21cos cos 32πθ==-. 故选:B . 24.29π化成角度是( ) A .20︒ B .40︒C .50︒D .80︒【解析】π180rad =︒,即1 180rad π︒=,∴221804099rad πππ︒=⨯=︒. 故选:B .25.圆的半径为r ,该圆上长为32r 的弧所对的圆心角是( )A .23radB .32radC .23πD .32π【解析】圆的半径为r ,弧长为32r ,∴圆心角是3322rrad r =. 故选:B .26.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A .1B .4C .1或4D .2或4【解析】设扇形的半径为r ,弧长为l , 则212l r +=,182S lr ==,∴解得2r =,8l =或4r =,4l =1l rα==或4.故选:C .27.点P 为圆224x y +=与x 轴正半轴的交点,将点P 沿圆周顺时针旋转至点P ',当转过的弧长为23π时,点P '的坐标为( ) A .(13) B .(1,3)- C .(1,3)--D .1(2,3 【解析】由题意,||2OP '=,转过的弧长为23π,则旋转角为3π-,∴点P '的横坐标2cos()13x π=-=,纵坐标为2sin()33y π=-=∴点P '的坐标为(1,3)-.故选:B .28.一个扇形的弧长为6,半径为4,则该扇形的圆心角的弧度数为( ) A .1B .32C .2D .23【解析】根据扇形的弧长为6,半径为4,计算该扇形的圆心角弧度数为6342l rα===. 故选:B .29.(2020·河北唐山第二次模拟)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( ) A .12 B .-12 C .32D .-32解析:选A .由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A .30.(2018·高考北京卷)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A .AB ︵ B .CD ︵C .EF ︵D .GH ︵解析:选C .设点P 的坐标为(x ,y ),利用三角函数的定义可得yx <x <y ,所以x <0,y >0,所以P 所在的圆弧是EF ︵,故选C .31.(创新型)已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P 沿着直线l 向右运动,Q 沿着圆周按逆时针以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积S 1,S 2的大小关系是________.解析:设运动速度为m ,运动时间为t ,圆O 的半径为r , 则AQ ︵=AP =tm ,根据切线的性质知OA ①AP , 所以S 1=12tm ·r -S 扇形AOB ,S 2=12tm ·r -S 扇形AOB ,所以S 1=S 2恒成立. 答案:S 1=S 232.(创新型)(2020·四川乐山、峨眉山二模)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田由圆弧和其所对弦所围成,公式中“弦”指圆弧对弦长,“矢”指半径长与圆心到弦的距离之差.现有圆心角为2π3,半径长为4的弧田(如图所示),按照上述公式计算出弧田的面积为________.解析:由题意可得①AOB =2π3,OA =4.在Rt △AOD 中,易得①AOD =π3,∠DAO =π6,OD =12OA =12×4=2,可得矢=4-2=2.由AD =AO sin π3=4×32=23,可得弦AB =2AD =4 3.所以弧田面积=12(弦×矢+矢2)=12×(43×2+22)=43+2. 答案:43+233.若角θ的终边过点P (-4a ,3a )(a ≠0). (1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a ,3a )(a ≠0), 所以x =-4a ,y =3a ,r =5|a |, 当a >0时,r =5a ,sin θ+cos θ=-15. 当a <0时,r =-5a ,sin θ+cos θ=15. (2)当a >0时,sin θ=35①⎝ ⎛⎭⎪⎫0,π2,cos θ=-45①⎝ ⎛⎭⎪⎫-π2,0,则cos(sin θ)·sin(cos θ) =cos 35·sin ⎝ ⎛⎭⎪⎫-45<0;当a <0时,sin θ=-35①⎝ ⎛⎭⎪⎫-π2,0,cos θ=45①⎝ ⎛⎭⎪⎫0,π2,则cos(sin θ)·sin(cos θ) =cos ⎝ ⎛⎭⎪⎫-35·sin 45>0.综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin (cos θ)的符号为正.34.(创新型)在一块顶角为120°、腰长为2的等腰三角形厚钢板废料OAB 中,用电焊切割成扇形,现有如图所示两种方案,既要充分利用废料,又要切割时间最短,问哪一种方案最优?解:因为①AOB 是顶角为120°、腰长为2的等腰三角形, 所以A =B =30°=π6,AM =BN =1,AD =2,所以方案一中扇形的弧长=2×π6=π3;方案二中扇形的弧长=1×2π3=2π3; 方案一中扇形的面积=12×2×2×π6=π3,方案二中扇形的面积=12×1×1×2π3=π3.由此可见:两种方案中利用废料面积相等,方案一中切割时间短.因此方案一最优. 35.(2021·河北衡水中学高三三模)已知4cos sin 3θθ-=,则θ的终边在( ) A .第一象限 B .第二象限 C .三象限 D .第四象限【答案】D 【分析】两边平方得7sin 209θ=-<,进而得324k k ππθππ+<<+或34k k ππθππ+<<+,k Z ∈,,再分k 为偶数和k 为奇数两种情况讨论求解即可. 【详解】解:由4cos 3sin θθ-=,平方得:2216sin cos 2sin cos 9θθθθ+-=,则161sin 29θ-=,即7sin 209θ=-<,则32222k k ππθππ+<<+或322222k k ππθππ+<<+,k Z ∈,即有324k k ππθππ+<<+或34k k ππθππ+<<+,k Z ∈, 当k 为偶数时,θ位于第二象限,sin 0θ>,cos 0θ<,cos sin 0θθ-<,不成立, 当k 为奇数时,θ位于第四象限,sin 0θ<,cos 0θ>,成立. ①角θ的终边在第四象限. 故选:D. 【点睛】本题考查正弦的二倍角公式,根据三角函数的符号求角的范围,考查运算求解能力,分类讨论思想,是中档题.本题解题的关键在于根据题意得7sin 209θ=-<,进而根据函数符号得θ的范围,再分类讨论求解.36.(2021·珠海市第二中学高三其他模拟)已知A 为锐角ABC 的内角,满足sin 2cos tan 1A A A -+=,则A ∈( )A .(0,)6πB .(6π,)4πC .(4π,)3πD .(3π,)2π【答案】C 【分析】设()sin 2cos tan 1f x x x x =-+-,则()0f A =,根据零点存在性定理判断零点所在区间; 【详解】解:A 为锐角ABC 的内角,满足sin 2cos tan 1A A A -+=,设()sin 2cos tan 1f x x x x =-+-,即()sin 2cos tan 10f A A A A =-+-=,0,2x π⎛⎫∈ ⎪⎝⎭,则函数在0,2π⎛⎫ ⎪⎝⎭上为连续函数,又sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增,tan y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增,cos y x =在0,2π⎛⎫ ⎪⎝⎭上单调递减,所以()sin 2cos tan 1f x x x x =-+-在0,2π⎛⎫⎪⎝⎭上单调递增; 在(0,)2π中取4x π=,得2()sin 2cos tan 144442f ππππ=-+-=-,在(0,)4π中取6π,得1()sin 2cos tan 166662f ππππ=-+-=-,(0)sin 02cos0tan 013f =-+-=-,334()sin 2cos tan 103333f ππππ-=-+-=>,()()043f f ππ<,(,)43A ππ∴∈. 故选:C .37.(2021·辽宁高三其他模拟)“数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出人怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,其中OA =20cm ,①AOB =120°,M 为OA 的中点,则扇面(图中扇环)部分的面积是( )A .50πcm 2B .100πcm 2C .150πcm 2D .200πcm 2【答案】B 【分析】根据扇形面积公式计算可得; 【详解】解:扇环的面积为22211332400100222883r S r r παααπ⎛⎫=-==⨯⨯= ⎪⎝⎭.故选:B38.(2021·合肥市第六中学高三其他模拟(理))如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它每过相同的间隔振幅就变化一次,且过点,24P π⎛⎫⎪⎝⎭,其对应的方程为122sin 2x y x ωπ⎛⎫⎡⎤=- ⎪⎢⎥⎣⎦⎝⎭(0x ≥,其中[]x 为不超过x 的最大整数,05ω<<).若该葫芦曲线上一点M 到y 轴的距离为53π,则点M 到x 轴的距离为( )A .14B 3C .12D .32【答案】B 【分析】根据,24P π⎛⎫ ⎪⎝⎭的坐标,求得2ω=,若该葫芦曲线上一点M 到y 轴的距离为53π,即53x π=,代入即可求得结果. 【详解】由曲线过,24P π⎛⎫ ⎪⎝⎭知,21422sin 24ππωπ⎛⎫⎡⎤⨯ ⎪⎢⎥⎛⎫=-⨯ ⎪⎢⎥ ⎪⎝⎭ ⎪⎢⎥ ⎪⎣⎦⎝⎭, 即sin 14πω⎛⎫⨯= ⎪⎝⎭,又05ω<<,求得2ω=,若该葫芦曲线上一点M 到y 轴的距离为53π,即53x π= 代入得到5215332sin 2234y πππ⎛⎫⎡⎤⨯ ⎪⎢⎥⎛⎫=-⨯= ⎪⎢⎥ ⎪⎝⎭ ⎪⎢⎥⎪⎣⎦⎝⎭故选:B39.(2021·辽宁高三三模)(多选题)如图,圆心在坐标原点O 、半径为1的半圆上有一动点P ,A 、B 是半圆与x 轴的两个交点,过P 作直线l 垂直于直线AB ,M为垂足.设AOP α∠=,则下列结论正确的有( )A .若0,2πα⎛⎫∈ ⎪⎝⎭,则sin cos 1αα+>B .若0,2πα⎡⎫∈⎪⎢⎣⎭,则sin αα>C .若()0,απ∈,则2BM AM PM +≥D .若[]0,απ∈,则PA PB +的最大值为2 【答案】AC 【分析】利用三角形三边关系可判断A 选项的正误;取0α=可判断B 选项的正误;利用基本不等式可判断C 选项正误;利用辅助角公式结合正弦型函数的有界性可判断D 选项的正误. 【详解】对于A 选项,sin PM α=,cos OM α=,由三角形三边关系可得OM PM OP +>, 即sin cos 1αα+>,A 选项正确;对于B 选项,当0α=时,sin αα=,B 选项错误; 对于C 选项,2PBA α∠=,cos2cos22PB AB αα==,2cos2cos 22BM PB αα==,则222sin2AM BM α=-=,sin2sincos222PM PB ααα==,由基本不等式可得222cos2sin 4sincos22222BM AM PM αααα+=+≥=,当且仅当sincos22αα=时,因为0απ<<,即当2πα=时,等号成立,C 选项正确;对于D 选项,2sin2PA α=,2cos2PB α=,所以,2sin2cos222224PA PB αααπ⎛⎫+=+=+ ⎪⎝⎭, 0απ<<,可得34244παππ<+<,所以当242αππ+=时,即当2πα=时,PA PB +取最大值为2D 选项错误. 故选:AC. 【点睛】方法点睛:三角函数最值的不同求法: ①利用sin x 和cos x 的最值直接求;①把形如sin cos y a x b x =+的三角函数化为()sin y A ωx φ=+的形式求最值; ①利用sin cos x x ±和sin cos x x 的关系转换成二次函数求最值.40.(2021·宁夏银川一中高三其他模拟(文))若33sin 22πθ⎛⎫+=- ⎪⎝⎭,[0,2)θπ∈,则θ=___________. 【答案】116π【分析】根据三角函数的诱导公式,求得3cos θ=,结合[0,2)θπ∈,进而求得θ的值. 【详解】由三角函数的诱导公式,可得33sin cos 22πθθ⎛⎫+=-=- ⎪⎝⎭,即3cos 2θ=,又因为[0,2)θπ∈,所以116πθ=. 故答案为:116π. 41.(2021·浙江高三其他模拟)已知E 为平面内一定点且1OE =,平面内的动点P 满足:存在实数1λ≥,使()112OP OE λλ+-=,若点P 的轨迹为平面图形S ,则S 的面积为___________. 【答案】36π+【分析】 以O 为圆心,以12为半径作圆,过E 作圆O 的切线EA ,EB 分别与圆O 切于点A ,B ,连结OA ,OB ,延长EO 与圆O 交于点F ,设点Q ,满足()1OQ OP OE λλ=+-,由1λ≥,则点Q 在EP 的延长线上,若要存在1λ≥使得12OQ =,所以EP 的延长线与圆O 有交点,从而得出点点P 的轨迹图形,从而可求解. 【详解】 以O 为圆心,以12为半径作圆, 过E 作圆O 的切线EA ,EB 分别与圆O 切于点A ,B , 连结OA ,OB ,延长EO 与圆O 交于点F ,存在点P 以及实数1λ≥,设点Q ,满足()1OQ OP OE λλ=+-,OQ OE OP OE λλ-=-,即EQ EP λ=由1λ≥,可知点Q 在EP 的延长线上, 若要存在1λ≥使得12OQ =,相当于EP 的延长线与圆O 有交点, 故P 只能在图中阴影部分,所以点P 的轨迹面积AOEBOEAOF BOF S S SS S =+++扇形扇形,因为EA 与圆O 相切于点A ,所以OA AE ⊥, 由勾股定理可知,3AE =所以3AOE S =△3BOE S =△ 因为12AO OE =,所以120AOF ∠=︒, 所以13412AOF BOF S S ππ==⨯=扇形扇形,综上所述,S 的面积为36π+. 故答案为:364π+.【点睛】关键点睛:本题考查轨迹问题,圆的几何性质和平面向量的共线的结论的应用,解答本题的关键是设点Q ,满足()1OQ OP OE λλ=+-,由1λ≥,可知点Q 在EP 的延长线上,由条件得出相当于EP 的延长线与圆O 有交点,从而得出点点P 的轨迹图形,属于中档题.。

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析

高一数学任意角和弧度制和任意角的三角函数试题答案及解析1.化为弧度是( )A.B.C.D.【答案】B【解析】本题角度化为弧度,变换规则是度数乘以,,故选B.【考点】弧度与角度的互化.2.若是第三象限角,则是第象限角.【答案】一【解析】是第三象限角,则.所以,故在第一象限.【考点】角的象限.3.化简sin600°的值是( ).A.0.5B.-C.D.-0.5【答案】B【解析】.【考点】诱导公式.4.已知cosθ•tanθ<0,那么角θ是().A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】,,是第二象限角或第三象限角.【考点】象限角的符号.5.若角的终边经过点,则的值为.【答案】【解析】由三角函数定义知,==.考点:三角函数定义6.函数的定义域为A.B.为第Ⅰ、Ⅱ象限的角C.D.【答案】C【解析】由题知,解得,故选C【考点】三角函数在各象限的符号7.已知角的终边经过点,则=___________.【答案】【解析】由题知,所以==.【考点】三角函数定义8.某扇形的半径为1cm,它的弧长为2cm,那么该扇形的圆心角为()A.2°B.4rad C.4°D.2rad【答案】D【解析】因为扇形的弧长公式为l=r|α|,由已知,l=2,r=1,所以=2弧度故选D.【考点】扇形的弧长公式.9.与13030终边相同的角是()A.B.C.D.【答案】C【解析】终边与1303°相同的角是k•360°+1303°,k∈Z∴k=-4时,k•360°+1303°=-137°.故选C.【考点】终边相同的角.10.已知P(-8,6)是角终边上一点,则的值等于( ) A.B.C.D.【答案】D【解析】P(-8,6)是角终边上一点,所以,;则=【考点】三角函数的定义.11. 60°="_________" .(化成弧度)【答案】【解析】根据角的弧度数的定义,弧度.【考点】角度制与弧度制的转化.12.若点P(Cos,Sin)在直线y=-2x上,则=( )A.B.C.D.【答案】B【解析】因为点在直线上,所以,则.【考点】任意角的三角函数的定义;同角三角函数间的基本关系.13.已知是第一象限的角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【答案】D【解析】∵α的取值范围(k∈Z)∴的取值范围是(k∈Z),分类讨论①当k="2n+1" (其中n∈Z)时的取值范围是即属于第三象限角.②当k=2n(其中n∈Z)时的取值范围是即属于第一象限角.故答案为:D.【考点】象限角、轴线角.14. sin2100 = ( )A.B.-C.D.-【答案】D【解析】sin210°=sin(180°+30°)=-sin30°=-.【考点】运用诱导公式化简求值.15.将120o化为弧度为()A.B.C.D.【答案】B【解析】,故.【考点】弧度制与角度的相互转化.16.化为弧度角等于;【答案】【解析】,.【考点】角度制与弧度制的互化17.已知角α的终边经过点(3a,-4a)(a<0),则sin α+cos α等于( )A.B.C.D.-【答案】A【解析】,,.故选A.【考点】三角函数的定义18.圆心角为弧度,半径为6的扇形的面积为 .【答案】【解析】扇形面积公式,即(必须为弧度制).【考点】扇形面积公式.19.已知角的终边上有一点,则的值是()A.B.C.D.【答案】D【解析】由三角函数的定义可知,故选D.【考点】三角函数的定义.20.点A(x,y)是300°角终边上异于原点的一点,则值为 ( )A.B.-C.D.-【答案】B【解析】由题意知,故正确答案为B.【考点】三角函数的定义21.已知,,则=________.【答案】-【解析】法一:因为,,则可取角的终边上一点P,,则;法二:,因为,所以=-【考点】任意角三角函数定义,同角三角函数基本关系式22. sin(-)= .【答案】【解析】.【考点】本题主要考查了利用三角函数的诱导公式求三角函数值得方法,属基础题.23.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不伦用角度制还是用弧度制度量一个角,它们与扇形所在圆的半径的大小无关;④若,则与的终边相同;⑤若,则是第二或第三象限角.其中正确命题的个数是()A.B.C.D.【答案】A【解析】由终边相同的角的定义易知①是错误的;②的描述中没有考虑直角,直角属于的正半轴上的角,故②是错误的;④中与的终边不一定相同,比如;⑤中没有考虑轴的负半轴上的角.只有③是正确的.【考点】角的推广与象限角.24. .【答案】-【解析】由三角函数的诱导公式,=-。

(完整版)任意角和弧度制练习题有答案

(完整版)任意角和弧度制练习题有答案

任意角和弧度制练习题一、选择题1、下列角中终边与330°相同的角是()A.30° B.-30° C.630° D.-630°2、-1120°角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、把-1485°转化为α+k·360°(0°≤α<360°,k∈Z)的形式是()A.45°-4×360° B.-45°-4×360°C.-45°-5×360° D.315°-5×360°4.在“①160°②480°③-960°④—1600°”这四个角中,属于第二象限的角是()A.①B.①②C.①②③ D。

①②③④5、终边在第二象限的角的集合可以表示为: ()A.{α∣90°〈α<180°}B.{α∣90°+k·180°<α〈180°+k·180°,k∈Z}C.{α∣-270°+k·180°〈α<-180°+k·180°,k∈Z}D。

{α∣-270°+k·360°〈α<-180°+k·360°,k∈Z}6。

终边落在X轴上的角的集合是( )Α。

{α|α=k·360°,K∈Z } B.{α|α=(2k+1)·180°,K∈Z }C。

{ α|α=k·180°,K∈Z } D.{ α|α=k·180°+90°,K∈Z }7。

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案

高考数学《任意角和弧度制及任意角的三角函数》真题练习含答案一、选择题1.若一个扇形的面积是2π,半径是23 ,则这个扇形的圆心角为( )A .π6B .π4C .π2D .π3答案:D解析:设扇形的圆心角为θ,因为扇形的面积S =12 θr 2,所以θ=2S r 2 =4π(23)2 =π3 ,故选D.2.三角函数值sin 1,sin 2,sin 3的大小关系是( ) 参考值:1弧度≈57°,2弧度≈115°,3弧度≈172° A .sin 1>sin 2>sin 3 B .sin 2>sin 1>sin 3 C .sin 1>sin 3>sin 2 D .sin 3>sin 2>sin 1 答案:B解析:因为1弧度≈57°,2弧度≈115°,3弧度≈172°,所以sin 1≈sin 57°,sin 2≈sin 115°=sin 65°,sin 3≈sin 172°=sin 8°,因为y =sin x 在0°<x <90°时是增函数,所以sin 8°<sin 57°<sin 65°,即sin 2>sin 1>sin 3,故选B.3.若角θ满足sin θ>0,tan θ<0,则θ2是( )A .第二象限角B .第一象限角C .第一或第三象限角D .第一或第二象限角 答案:C解析:由sin θ>0,tan θ<0,知θ为第二象限角,∴2k π+π2 <θ<2k π+π(k ∈Z ),∴k π+π4<θ2 <k π+π2 (k ∈Z ),∴θ2为第一或第三象限角. 4.若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3 x 上,则角α的取值集合是( )A .⎩⎨⎧⎭⎬⎫α|α=2k π-π3,k ∈ZB .⎩⎨⎧⎭⎬⎫α|α=2k π+2π3,k ∈ZC .⎩⎨⎧⎭⎬⎫α|α=k π-2π3,k ∈ZD .⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z答案:D解析:∵y =-3 x 的倾斜角为23π,∴终边在直线y =-3 x 上的角的集合为⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z .5.一个扇形的弧长与面积都是6,则这个扇形的圆心角的弧度数是( ) A .1 B .2 C .3 D .4 答案:C解析:设扇形的圆心角为θ,半径为R ,由题意得⎩⎪⎨⎪⎧θR =6,12θR 2=6,得θ=3.6.已知角α的顶点为坐标原点,始边为x 轴的正半轴.若角α的终边过点P ⎝⎛⎭⎫35,-45 ,则cos α·tan α的值是( )A.-45 B .45C .-35D .35答案:A解析:由三角函数的定义知cos α=35 ,tan α=-4535=-43 ,∴cos αtan α=35 ×⎝⎛⎭⎫-43 =-45. 7.给出下列各函数值:①sin (-1 000°);②cos (-2 200°);③tan (-10);④sin 710πcos πtan 179π;其中符号为负的有( )A .①B .②C .③D .④ 答案:C解析:∵-1 000°=-3×360°+80°,为第一象限角, ∴sin (-1 000°)>0;又-2 200°=-7×360°+320°,为第四象限角, ∴cos (-2 200°)>0;∵-10=-4π+(4π-10),为第二象限角, ∴tan (-10)<0;∵sin 710 π>0,cos π=-1,179 π=2π-π9,为第四象限角, ∴tan 179 π<0,∴sin 710πcos πtan 179π>0.8.已知角θ的终边经过点P (x ,3)(x <0)且cos θ=1010x ,则x =( ) A .-1 B .-13C .-3D .-223答案:A 解析:∵r =x 2+9 ,cos θ=xx 2+9 =1010 x ,又x <0,∴x =-1.9.(多选)下列结论中正确的是( )A .若0<α<π2,则sin α<tan αB .若α是第二象限角,则α2为第一象限角或第三象限角C .若角α的终边过点P (3k ,4k )(k ≠0),则sin α=45D .若扇形的周长为6,半径为2,则其圆心角的大小为1弧度 答案:ABD解析:若0<α<π2 ,则sin α<tan α=sin αcos α,故A 正确;若α是第二象限角,即α∈⎝⎛⎭⎫2k π+π2,2k π+π ,k ∈Z ,则α2 ∈⎝⎛⎭⎫k π+π4,k π+π2 ,k ∈Z ,所以α2为第一象限或第三象限角,故B 正确;若角α的终边过点P (3k ,4k )(k ≠0),则sin α=4k 9k 2+16k 2=4k|5k |,不一定等于45 ,故C 错误;若扇形的周长为6,半径为2,则弧长为6-2×2=2,圆心角的大小为22=1弧度,故D 正确.故选ABD.二、填空题10.已知扇形的圆心角为π6 ,面积为π3,则扇形的弧长等于________.答案:π3解析:设扇形所在圆的半径为r ,则弧长l =π6 r ,又S 扇=12 rl =π12 r 2=π3,得r =2,∴弧长l =π6 ×2=π3.11.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝⎛⎭⎫π2,π ,则sin α=________.答案:-45解析:∵θ∈⎝⎛⎭⎫π2,π ,∴-1<cos θ<0,∴r =9cos 2θ+16cos 2θ =-5cos θ,故sin α=-45.12.已知角α的终边经过点P (-8m ,-6sin 30°),且cos α=-45,则m =________.答案:12解析:由题可知P (-8m ,-3),∴cos α=-8m64m 2+9 =-45 ,得m =±12,又cos α=-45 <0,∴-8m <0,∴m =12 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角和弧度制测试题
一、单选题
1.在单位圆中,200∘的圆心角所对的弧长为( )
A. 7π
10B. 10π
9
C. 9π
D. 10π
二、多选题
2.给出下列说法正确的有()
A. 终边相同的角同一三角函数值相等;
B. 不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;
C. 若sinα=sin⁡β,则α与β的终边相同;
D. 若cosθ<0,则θ是第二或第三象限的角
3.下列说法错误
..的是.( )
A. 若角α=2rad,则角α为第二象限角
B. 将表的分针拨快5分钟,则分针转过的角度是30°
C. 若角α为第一象限角,则角α
2
也是第一象限角
D. 若一扇形的圆心角为30°,半径为3cm,则扇形面积为3π
2
cm2
4.下列结论正确的是( )
A. 是第三象限角
B. 若圆心角为的扇形的弧长为,则该扇形面积为
C. 若角的终边过点,则
D. 若角为锐角,则角为钝角
三、填空题
5.(1)第三象限角的集合表示为(以弧度为单位).(2)弧度数为3的角的终边落在
第象限.(3)−2π
3
弧度化为角度应为.(4)与880∘终边相同的最小正角是.
(5)若角α的终边经过点A(−2,3),则tanα值为.(6)已知扇形的圆心角α=2π
3
,半径r=3,则扇形的弧长l为.
6.下列说法中,正确的是.(填序号)
①第一象限的角必为锐角;②锐角是第一象限的角;
③终边相同的角必相等;④小于900的角一定为锐角;
⑤角α与−α的终边关于x轴对称;⑥第二象限的角必大于第一象限的角.
7.集合{α|k⋅180∘+45∘⩽α⩽k⋅180∘+90∘,k∈Z}中,角所表示的取值范围(阴影部分)正
确的是(填序号).
8.−600°是第象限角,与−600°终边相同的最小正角为弧度.
9.线段OA的长度为3,将OA绕点O顺时针旋转120∘,得到扇形的圆心角的弧度数为,
扇形的面积为.
四、解答题
10.已知角β的终边在直线y=−x上.
(1)写出角β的集合S;(2)写出S中适合不等式−360°<β<360°的元素.
答案和解析
1.⁡B 根据弧长公式,l =nπR 180,代入计算即可.
2.⁡AB 解:对于A ,由任意角的三角函数的定义知,终边相同的角的三角函数值相等,故A 正确;
对于B ,不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,故B 正确; 对于C ,若sinα=sinβ,则α与β的终边相同或终边关于y 轴对称,故C 错误;
对于D ,若cos θ<0,则θ是第二或第三象限角或θ的终边落在x 轴的非正半轴上,故D 错误. 3.⁡BCD 解:对于选项A .若角α=2rad ,2∈(π2,π),则角α为第二象限角,正确;
对于选项B .将表的分针拨快5分钟,则分针转过的角度是−30°,故错误;
对于选项C .若角α为第一象限角,2kπ<α<π2+2kπ,k ∈Z ,则kπ<α2<π4+kπ,k ∈Z , 当k =2n ,n ∈Z 时,2nπ<α2<π4+2nπ,k ∈Z ,即角α2是第一象限角;
当k =2n +1,n ∈Z 时,2nπ+π<
α2<5π4+2nπ,k ∈Z ,即角α2是第三象限角; 则角α2是第一或第三象限角,故错误;对于选项D .扇形面积为30°π·32
360°=3π4
cm 2,故错误. 4.⁡BC 解:A 、−
7π6=−2π+5π6,所以−7π6与5π6终边相同,是第二象限角,所以不正确; B 、若圆心角为π3的扇形半径为r ,由弧长为π3⋅r =π,则半径r =3,所以该扇形面积为12×π×3=
3π2,正确;C 、若角α的终边过点P(−3,4),则r =√(−3)2+42=5,cos α=−35
,正确; D 、若角α为锐角,设α=30∘,则角2α=60∘为锐角,所以不正确. 5.解:(1)第三象限角的集合表示为{α|π+2kπ<α<
3π2+2kπ,k ∈Z}. 故答案为{α|π+2kπ<α<
3π2+2kπ,k ∈Z}. (2)∵π2<3<π,∴弧度数为3的角为第二象限角,故其终边落在第二象限,
故答案为二.
(3)−2π3=−23×180°=−120°,故答案为−120∘.
(4)与880∘终边相同的角α=880°+360°×k (k ∈Z ),
当k =−2时,α=160∘即为最小正角,故答案为160∘.
(5)根据任意角三角函数的定义,可知tanα=y x =−32,故答案为−32
. (6)l =|α|·r =2π,故答案为2π. 6.解:命题①,390°角的终边在第一象限内,但不是锐角,故说法错误;
命题②,锐角是第一象限角,故说法正确;
命题③,390°角与30°角的终边相同,但两个角不相等,故说法错误;
命题④,−30°小于90°,但不是锐角,故说法错误;
命题⑤,角α与角−α的终边关于x 轴对称,故说法正确;
命题⑥,120°角是第二象限角,390°角是第一象限角,120°小于390°,故说法错误. 故答案为②⑤.
7.解:集合{α|k ⋅180∘+45∘⩽α⩽k ⋅180∘+90∘,k ∈Z}中,
当k 为偶数时,集合为 {α|n ⋅360∘+45∘⩽α⩽n ⋅360∘+90∘,n ∈Z},
当k 为奇数时,集合为 {α|n ⋅360∘+225∘⩽α⩽n ⋅360∘+270∘,n ∈Z},
符合题意的只有③
8.解:由−600°=(−2)×360°+120°,∴−600°在第二象限,
∴与−600°终边相同的最小正角为120°,而120°=
2π3,故答案为二;2π3. 9.解:由题意得扇形的圆心角α=−120∘ =−2π3,故扇形的面积S =12|α|⋅|OA|2= 12×2π3×9=3π.
10.解:(1)直线y =−x 过原点,它是第二、四象限的角平分线所在的直线,
故在0°~360°范围内,终边在直线y =−x 上的角有两个:135°,315°.
因此,终边在直线y =−x 上的角的集合S ={β|β=135°+k ·360°,k ∈Z}∪{β|β=315°+k ·360°,k ∈Z}={β|β=135°+2k ·180°,k ∈Z}∪{β|β=135°+(2k +1)·180°,k ∈Z} ={β|β=135°+n ·180°,n ∈Z}.
(2)由于−360°<β<360°,即−360°<135°+n ·180°<360°,n ∈Z .
解得−114<n <54
,n ∈Z.所以n =−2,−1,0,1.所以集合S 中适合不等式−360°<β<360°的元素为:135°−2×180°=−225°;135°−1×180°=−45°;135°+0×180°=135°; 135°+1×180°=315°;
⁡(2)在集合S 内,分别取k =−2,−1,0,1,可得适合不等式−360°<β<360°的元素.。

相关文档
最新文档