等比等差数列公式大全
高中数学数列公式大全(很齐全哟~!)
一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n—k)d (其中a1为首项、a k为已知的第k项)当d≠0时,a n是关于n 的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n= S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式.4、等比数列的通项公式: a n= a1 q n-1a n= a k q n—k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式);当q≠1时,S n= S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m—S m、S3m-S2m、S4m— S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m—S m、S3m—S2m、S4m— S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列.7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列.9、三个数成等差数列的设法:a—d,a,a+d;四个数成等差的设法:a-3d,a—d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则(c>0)是等比数列。
等差等比数列公式大全
等差等比数列公式大全《起点家教班》1、 a n ={()2)1(11≥-=-n s s n s n n 注意:1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥22、 等差数列通项公式:n a =1a +(n-1)d = m a +(n-m)d ⇒ d=mn a a mn --(重要)3、 若{n a }是等差数列,m+n=p+q 则m a +n a =p a +q a4、 若{n a }是等比数列,m+n=p+q 则m a .n a =p a .q a5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则mn a a mn --=q p a a q p --=d6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211dn n na -+(已知首项和公差) =n d a dn ⎪⎭⎫⎝⎛-+212112(可以求最值问题)7、 等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列其公差是原来公差的m 28、 n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ① 首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ② 首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 9、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =n.a 21+n , 奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a , 奇s -偶s =d n 2偶奇s s =122+nna a10、若{n a }是等比数列,a,G ,b 成等比数列则G 2=ab(等比中项) 11、若{n a },{}n b (项数相同)是等比数列则{}{}{}⎭⎬⎫⎩⎨⎧∙⎭⎬⎫⎩⎨⎧n n n n n n n b a b a a a a ,,,1,2λ仍是等比数列 12、等比数列单调性的问题①当1a ≥0时,若0<q <1则{n a }是递减数列; q >1则{n a }是递增数列 ②当1a <0时,若0<q <1则{n a }是递增数列; q >1则{n a }是递减数列 13、在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若.,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 14、在等比数列中抽取新数列:,......,,,321kn k k k a a a a 组成新数列{}nk a ,如果序号...,321k k k 组成数列为{}n k ,且n k 成公差为m 的等差数列,那么数列{}nk a 是以q m 为公比的等比数列15、等比数列的前n 项和n s =()q q a n --111=qqa a n --11。
等差数列和等比数列公式
1.等差数列和等比数列的概念、有关公式和性质
等差数列
等比数列
定义
通项公式
= +(n-1)d= +(n-m)d= + -d
求和公式
中项公式
A= 推广:2 =
。推广:
性质
1
若m+n=p+q则
若m+n=p+q,则 。
2
若 成等差(其中 )则 也为等差。
若 成等比数列(其中 ),则 成等比数列。3. 成 Nhomakorabea差数列。
成等比数列。
4
,
2.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证 为同一常数。(2)通项公式法。(3)中项公式法:验证 都成立。
3.在等差数列{ }中,有关Sn的最值问题:(1)当 >0,d<0时,满足 的项数m使得 取最大值. (2)当 <0,d>0时,满足 的项数m使得 取最小值。在解含绝对值的数列最值问题时,注意转化思想的应用。
数列所有公式大全
数列所有公式大全数列是数学中一个重要的概念,它是有一定规律的一组数的序列。
数列可以用来解决各种实际问题,也是许多数学领域的基础。
本文将介绍常见的数列及其公式,帮助读者更好地理解和应用数列。
1. 等差数列等差数列是指数列中的每一项与它的前一项之差都相等的数列。
它的通项公式为An = A1 + (n - 1) * d,其中An表示第n 项,A1表示第一项,d表示公差。
2. 等比数列等比数列是指数列中的每一项与它的前一项之比都相等的数列。
它的通项公式为An = A1 * r^(n - 1),其中An表示第n项,A1表示第一项,r表示公比。
3. 斐波那契数列斐波那契数列是一个特殊的数列,它的前两项都是1,从第三项起,每一项都是前两项的和。
它的通项公式为Fn = F(n - 1) + F(n - 2),其中Fn表示第n项。
4. 平方数列平方数列是指数列中的每一项都是一个平方数的数列。
它的通项公式为An = n^2,其中An表示第n项。
5. 立方数列立方数列是指数列中的每一项都是一个立方数的数列。
它的通项公式为An = n^3,其中An表示第n项。
6. 级数数列级数数列是由一组正整数构成的数列,它的每一项都是前面所有项的和。
它的通项公式为An = 1 + 2 + ... + n,其中An表示第n项。
7. 素数数列素数数列是指数列中的每一项都是素数的数列。
素数是只能被1和本身整除的整数。
素数数列没有通项公式,判断一个数是否为素数需要使用素数测试算法。
8. 偶数数列偶数数列是指数列中的每一项都是偶数的数列。
它的通项公式为An = 2n,其中An表示第n项。
9. 奇数数列奇数数列是指数列中的每一项都是奇数的数列。
它的通项公式为An = 2n - 1,其中An表示第n项。
10. 所有正整数数列所有正整数数列是由所有正整数构成的数列。
它的通项公式为An = n,其中An表示第n项。
11. 等差几何数列等差几何数列是指数列中的每一项与它的前一项之比都相等的数列。
高中数列求和公式总结大全
高中数列求和公式总结大全
1. 等差数列求和公式:Sn = n/2 [2a + (n-1)d]其中,Sn表示前n 项和,a表示首项,d表示公差。
2. 等比数列求和公式:Sn = a(1-
q^n)/(1-q)其中,Sn表示前n项和,a表示首项,q表示公比。
3. 等差
数列前n项和公式:Sn = n/2 [a1 + an]其中,a1表示首项,an表示第
n项。
4. 等比数列前n项和公式:Sn = a(1-q^n)/(1-q)其中,a表示首项,q表示公比。
5. 等差数列通项公式:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
6. 等比数列通项公式:an = a1 * q^(n-1)其中,an表示第n项,a1表示首项,q表示公比。
7. 等差数列
求第n项公式:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
8. 等比数列求第n项公式:an = a1 * q^(n-1)其中,an表示第n项,a1表示首项,q表示公比。
9. 等差数列求公差公式:d = (an - a1)/(n-1)其中,d表示公差,an表示第n项,a1表示首项。
10. 等比数列求公比公式:q = (an/a1)^(1/(n-1))其中,q表示公比,an表示第n项,a1表示首项。
以上是高中数列求和公式的总结大全。
高中数学数列公式大全(很齐全哟)
一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n= S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式);当q≠1时,S n= S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则 (c>0)是等比数列。
高中数学公式大全等差数列与等比数列公式推导
高中数学公式大全等差数列与等比数列公式推导高中数学公式大全:等差数列与等比数列公式推导一、等差数列(Arithmetic Progression)等差数列是指数列中相邻两项之差都相等的数列。
等差数列常用的公式有通项公式、前n项和公式以及公差计算公式。
1. 通项公式设等差数列的首项为a1,公差为d,第n项为an,则等差数列的通项公式为:an = a1 + (n - 1)d2. 前n项和公式设等差数列的首项为a1,公差为d,前n项和为Sn,则等差数列的前n项和公式为:Sn = (n/2)(a1 + an) = (n/2)(2a1 + (n - 1)d)3. 公差计算公式设等差数列的首项为a1,第m项为am,第n项为an,则等差数列的公差d可通过以下公式计算得出:d = (an - a1)/(n - 1) = (am - a1)/(m - 1)二、等比数列(Geometric Progression)等比数列是指数列中相邻两项之比都相等的数列。
等比数列常用的公式有通项公式、前n项和公式以及公比计算公式。
1. 通项公式设等比数列的首项为a1,公比为r,第n项为an,则等比数列的通项公式为:an = a1 * r^(n - 1)2. 前n项和公式设等比数列的首项为a1,公比为r,前n项和为Sn,则等比数列的前n项和公式为:Sn = a1 * (1 - r^n)/(1 - r)3. 公比计算公式设等比数列的第m项为am,第n项为an,则等比数列的公比r可通过以下公式计算得出:r = (an/a1)^(1/(n - 1)) = (am/a1)^(1/(m - 1))综上所述,等差数列和等比数列在数学中有着重要的应用。
对于高中数学学习来说,掌握这些公式的推导和运用能够帮助我们更好地理解和解决数学问题。
熟练运用等差数列和等比数列的公式,可以提高解题效率,并为后续数学学习打下坚实的基础。
希望本文对你的数学学习有所帮助!。
高考必读:数学等差和等比数列通项公式
普通说来,〝教员〞概念之构成阅历了十分漫长的历史。杨士勋〔唐初学者,四门博士〕«春秋谷梁传疏»曰:〝师者教人以不及,故谓师为师资也〞。这儿的〝师资〞,其实就是先秦然后历代对教员的别称之一。«韩非子»也有云:〝今有不才之子……师长教之弗为变〞其〝师长〞当然也指教员。这儿的〝师资〞和〝师长〞可称为〝教员〞概念的雏形,但仍说不上是名副其实的〝教员〞,由于〝教员〞必需要有明白的教授知识的对象和自身明白的职责。
高考必读:数学等差和等比数列通项公式
1,a(1)=a,a(n)为公差为r的等差数列。
1-1,通项公式,
a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.
可用归结法证明。
n=1时,a(1)=a+(1-1)r=a。成立。
假定n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r
那么,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.
通项公式也成立。
因此,由归结法知,等差数列的通项公式是正确的。
1-2,求和公式,
S(n)=a(1)+a(2)+...+a(n)
=a+(a+r)+...+[a+(n-1)r]
=na+r[1+2+...+(n-1)]
=na+n(n-1)r/2
异样,可用归结法证明求和公式。〔略〕
2,a(1)=a,a(n)为公比为r〔r不等于0〕的等比数列。
第六讲:等差、等比数列的运用公式大全
第六讲:等差、等比数列的运用1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和()()11122n n a a n n n S nad +-==+性质:{}n a 是等差数列m n p q +=+,则m n p q a a a a +=+;{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n nn n S S S S S --,,……仍为等差数列,公差为d n 2;a d a a d -+,,n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S bT --= }n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由10n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n aa n a a n Snd S S =-奇偶,1+=n na a S S 偶奇. 12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!)性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =·· (2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?1n =时,11a S =; 2n ≥时,1n n n a S S -=-. 3.求数列通项公式的常用方法如:数列{}n a ,12211125222n n a a a n +++=+……,求n a解 1n =时,112152a =⨯+,∴114a = ①2n ≥时,12121111215222n n a a a n --+++=-+…… ②①—②得:122nn a =,∴12n n a +=,∴114(1)2(2)n n n a n +=⎧=⎨≥⎩ [练习]数列{}n a 满足111543n n n S S a a +++==,,求n a注意到11n n n a S S ++=-,代入得14n nS S +=;又14S =,∴{}n S 是等比数列,4n n S = 2n ≥时,1134n n n n a S S --=-==……·如:数列{}n a 中,1131n n a na a n +==+,,求n a解3212112123n n a a a n a a a n --=·……·……,∴11n a a n=又13a =,∴3n a n =.由110()n n a a f n a a --==,,求n a ,用迭加法2n ≥时,21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………两边相加得1(2)(3)()n a a f f f n -=+++……∴0(2)(3)()n a a f f f n =++++……1n n a ca d -=+(c d 、为常数,010c c d ≠≠≠,,)可转化为等比数列,设()()111n n n n a x c a x a ca c x --+=+⇒=+- 令(1)c x d -=,∴1d x c =-,∴1n d a c ⎧⎫+⎨⎬-⎩⎭是首项为11d a c c +-,为公比的等比数列 ∴1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·,∴1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭11212nn n a a a +==+,,求n a 由已知得:1211122n n n na a a a ++==+,∴11112n n a a +-= ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列,111a =,公差为12,∴()()11111122n n n a =+-=+·, ∴21n a n =+(附:公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q+=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法) 4. 求数列前n 项和的常用方法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:{}n a 是公差为d 的等差数列,求111nk k k a a =+∑解:由()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·∴11111223111*********nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑…… 11111n d a a +⎛⎫=- ⎪⎝⎭ [练习]求和:111112123123n+++++++++++ (121)n n a S n ===-+…………,若{}n a 为等差数列,{}n b 为等比数列,求数列{}n n a b (差比数列)前n 项和,可由n n S qS -,求n S ,其中q 为{}n b 的公比.如:2311234n n S x x x nx -=+++++……①()23412341n n n x S x x x x n x nx -=+++++-+·……②①—②()2111n n n x S x x x nx --=++++-……1x ≠时,()()2111nnnx nx S x x -=---,1x =时,()11232n n n S n +=++++=……把数列的各项顺序倒写,再与原来顺序的数列相加.121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭…………相加()()()12112n n n n S a a a a a a -=++++++……[练习]已知22()1x f x x =+,则 111(1)(2)(3)(4)234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2222222111()111111x x x f x f x x x x x ⎛⎫ ⎪⎛⎫⎝⎭+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭∴原式11111(1)(2)(3)(4)111323422f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++++++=+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦求数列的前n 项和1. 倒序相加法:如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
等差、等比数列常用公式对照表
8、证明等差数列的方法: 1、定义法:
an q ,q 为常数 an 1
2、通项法: an c q n 1 ,c、q 为常数 3 前 n 项和法: S n k q n k ,k,q 常数
2 4、等差中项法: an 1 an an 2
Sn 是等差数列 n
是等比数列、 或
bn 是等差数列,
cn
用裂项相
11、若 an
bn 是等差数
cn
消法
1 Tn c1 c2 anbn ,求
列, cn anbn
cn
bn an ,求
Tn c1 c2
cn
用错位相减法
一、求 an 二、求 S n
的方法:1、公式法;2、观察归纳法;3、累加法、累乘法;4、特征方程法 的方法:1、裂项相消法;2、错位相减法;3、倒序相加法;4、分组求和法
m
8、证明等差数列的方法: 1、定义法: an an 1 d ,d 为常数 2、通项法: an kn b ,k、b 为常数 3、前 n 项和法: S n An 2 Bn ,A,B 常数 4、等差中项法: 2an 1 an an 2 9、 bn 是等差数列, an bn 、
10、若 an an 1 f (n) ,则用累加法求
b 是等比数列, 9、 n
bn 、 an2 、 an bn 、是等比数列
10、若
an 1 bn 、 an
an
11、若 an 、
an f (n) ,则用累乘法求 an an 1
an am nm
an am
aq 特殊情况:若 m+n=2p,则 an am 2a p
等差数列、等比数列相关性质和公式以及数列的求和方法
等差、等比的公式性质以及数列的求和方法第一节:等差数列的公式和相关性质1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d aa n n=--1(d为公差)(2³n ,*n N Î)注:下面所有涉及n ,*n N Î省略,你懂的。
2、等差数列通项公式:1(1)n a a n d =+-,1a 为首项,d 为公差 推广公式:()nma a n m d =+-变形推广:变形推广:mn a a d mn --= 3、等差中项、等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列是等差数列)2(211-³+=Û+n a a a n n n 212+++=Ûn n n a a a 4、等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中(其中A A 、B 是常数,所以当是常数,所以当d d ≠0时,时,S S n 是关于是关于n n 的二次式且常数项为项为00)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)和等于项数乘以中间项)5、等差数列的判定方法、等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*ÎN n )Û {}n a 是等差数列.等差数列.(2)等差中项:数列{}n a 是等差数列是等差数列)2(211-³+=Û+n aa a n n n212+++=Ûn n n aa a((3)数列{}n a 是等差数列Ûbkn a n +=(其中b k ,是常数)。
高三数学知识点数列公式大全
高三数学知识点数列公式大全
1、等差数列{an}的任意连续m项的和构成的数列Sm、
S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则am+an=ap+aq
3、等比数列{an}中,若m+n=p+q,则aman=apaq
4、等比数列{an}的任意连续m项的和构成的数列Sm、
S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an
bn}、
{an/bn}、
{1/bn}仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 11、{an}为等差数列,则
(c0)是等比数列。
12、{bn}(bn0)是等比数列,则{logcbn} (c0且c 1) 是等差数列。
13. 在等差数列
中:
(1)若项数为
,则
(2)若数为
则,
14. 在等比数列
中:
(1) 若项数为
,则
(2)若数为
则,。
高中数学数列公式大全很齐全哟~!
高中数学数列公式大全很齐全哟~!数列是数学中一个重要的概念,它由一组按照一定规律排列的数所组成,是数学分析、离散数学、组合数学等学科的基础和核心,涉及到高中数学的各个知识点。
数列公式是描述数列规律的基本方法和工具,它们常用于解决数列的基本问题,如求首项、公差、项数、和等。
下面我们来一起盘点高中数学数列公式大全。
一、等差数列的公式等差数列是指一个数列中每一项与它前面的一项之差都相等的数列。
根据等差数列的规律,我们可以得到一系列的公式:1.通项公式:an = a1 + (n-1) * d在等差数列中,第n项为an,首项为a1,公差为d。
这个公式是求等差数列中的任意一项。
在这个公式的基础上,也可以推得首项和公差的通用公式:2.首项公式:a1 = an - (n-1) * d3.公差公式:d = (an - a1) / (n-1)4.前n项和公式:Sn = (a1 + an) * n / 2二、等比数列的公式等比数列是指一个数列中每一项与它前面的一项之比都相等的数列。
根据等比数列的规律,我们可以得到一系列的公式:1.通项公式:an = a1 * q^(n-1)在等比数列中,首项为a1,公比为q。
这个公式是求等比数列中的任意一项。
在这个公式的基础上,也可以推得首项和公比的通用公式:2.首项公式:a1 = an / q^(n-1)3.公比公式:q = (an / a1)^(1/(n-1))4.前n项和公式:Sn = a1 * (1 - q^n) / (1 - q)三、斐波那契数列的公式斐波那契数列是指一个数列中每一项都等于它前面两项的和的数列,其前几项依次为:1, 1, 2, 3, 5, 8, 13, 21, 34……根据斐波那契数列的规律,我们可以得到一系列的公式:1.通项公式:fn = (1 / sqrt(5)) * ((1 + sqrt(5)) /2)^n - (1 / sqrt(5)) * ((1 - sqrt(5)) / 2)^n2.近似公式:fn ≈ (1 / sqrt(5)) * ((1 + sqrt(5))/ 2)^n根据斐波那契数列的通项公式,我们可以解决诸如求第n 项、求前n项和等问题;根据斐波那契数列的近似公式,我们可以快速地求出一个斐波那契数列中任意一项的近似值。
等比数列等差数列求和公式
等比数列等差数列求和公式在数学中,等比数列和等差数列是两个非常重要的概念,经常被使用于各种数学问题中。
在本文中,我们将详细介绍等比数列和等差数列,并给出它们的求和公式,帮助读者更好地理解它们的特点和应用。
一、等差数列等差数列是指一个数列中每一项与其后一项之间的差值都相等的数列。
例如:1,3,5,7,9就是一个公差为2的等差数列。
等差数列的求和公式可以用以下公式表示:Sn=n×[2a1+(n–1)d]/2其中,Sn表示等差数列的前n项和,a1表示等差数列的首项,d 表示等差数列的公差,n表示等差数列的项数。
二、等比数列等比数列是指一个数列中每一项与其前一项之间的比值都相等的数列。
例如:1,2,4,8,16就是一个公比为2的等比数列。
等比数列的求和公式可以用以下公式表示:S=a1×(1–qn)/(1–q)其中,S表示等比数列的前n项和,a1表示等比数列的首项,q表示等比数列的公比,n表示等比数列的项数。
三、应用举例1、等差数列在数列求和、算数平均数、时间、距离等领域都有广泛的应用。
例如,假设小明从6:00开始在操场边上跑步,他每分钟的跑步速度增加了2米,而他最后一次记录进入7:00时跑了3200米,并且在训练期间从未停止,求他在训练期间跑了多少米?解:随着时间的推移,小明每分钟的速度都增加了2米,这意味着他的距离满足等差数列的形式,即3200,a2,a3,…,an。
我们可以根据等差数列的和公式计算小明跑了多少米。
首先,我们需要知道小明共训练了多少分钟。
假设小明训练了n 分钟,则a1=0,q=2,d=2,因此根据等差数列的求和公式,有:3200=n×[2×0+(n–1)×2]/23200=n×(2n–2)/23200=n×(n–1)n^2–n–3200=0n≈64.8故小明共跑了64.8分钟,跑了64个完整的1分钟和最后一次跑步不到1分钟,因此跑了64×120+80=77120米。
等比等差数列求和公式是什么
1、等比数列求和公式:Sn=a1(1-q^n)/(1-q)(q≠1)。
通项公式:an=a1×q^(n-1)2、等差数列求和公式:Sn=na1+n(n-1)d/2。
3、文字公式:末项=首项+(项数-1)×公差;项数=(末项-首项)÷公差+1;首项=末项-(项数-1)×公差;和=(首项+末项)×项数÷2;末项:最后一位数;首项:第一位数等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。
这个常数叫做等差数列的公差。
前n项和公式为: Sn=a1*n+ [n* (n-1)*d]/2或Sn= [n* (al+an)]/2。
等差数列:an=a1+(n-1)d;知道首尾==> Sn = (a1+an)n/2;知道首项==> Sn = [2na1+n(n-1)d]/2;等比数列:an = a1*q^(n-1)Sn = a1(1-q^n)/1-q当-1<q<1时,Sn非零当n趋于无穷,Sn = a1/1-q等差数列求和公式有①等差数列公式an=a1+(n-1)d、②前n项和公式为:Sn=na1 +n(n-1③若公差d= 1时:Sn=(a1+an④若m+n=p+q则:存在am+an=a⑤若m+n=2p则:am+an=2ap,以上n均等差数列是常见数列的一种可以用AP表示,如果一个数列从第二项起,每-项与它的前一项的差等于同一个常数这个数列就叫做等差数列,而这个常数叫做等差数列的公差公差常用字母d表示。
①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;②在等比数列中,依次每k项之和仍成等比数列;③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;④ 若G是a、b的等比中项,则G^2=ab(G ≠ 0);⑤在等比数列中,首项a1与公比q都不为零;注意:上述公式中an表示等比数列的第n 项。
高中数学数列公式大全(很齐全哟~!)
一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n—1)d a n=a k+(n—k)d (其中a1为首项、a k为已知的第k项)当d≠0时,a n是关于n 的一次式;当d=0时,a n是一个常数.3、等差数列的前n项和公式:S n= S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式: a n= a1 q n-1a n= a k q n—k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式);当q≠1时,S n= S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m—S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m—S m、S3m—S2m、S4m— S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n—b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列.7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列.8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a—d,a,a+d;四个数成等差的设法:a—3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则 (c〉0)是等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比等差数列公式大全
1. 等比数列公式:
若 a1, a2, a3 ... an 是一等比数列,且公比为 r,则有:an = a1 * r^n-1
Sn = a1(1 - r^n) / (1 - r) (n ≠ 1)
Sn = a1(n - 1) * r / (1 - r) (n ≠ 1)
其中,an 表示数列中第 n 项,Sn 表示数列前 n 项和。
2. 等差数列公式:
若 a1, a2, a3 ... an 是一等差数列,且公差为 d,则有:an = a1 + (n-1)*d
Sn = (a1 + an) * n / 2
Sn = (2 * a1 + (n-1)*d) * n / 2
其中,an 表示数列中第 n 项,Sn 表示数列前 n 项和。
3. 通项公式:
对于等比数列和等差数列,还有通项公式:
- 等比数列的通项公式:
an = a1 * r^n-1
其中,a1 表示数列中第一项,r 表示公比。
- 等差数列的通项公式:
an = a1 + (n-1)*d
其中,a1 表示数列中第一项,d 表示公差。
4. 逆序求和公式:
对于等差数列,还有逆序求和公式:
Sn = (a1 + an) * n / 2
Sn = (2 * a1 + (n-1)*d) * n / 2
Sn = [(a1 + an) * (n/2)] + [d * (n/2) * [n/2-1]]
其中,an 表示数列中第 n 项,Sn 表示数列前 n 项和。
注意,这个公式要求 n 为偶数。