高三物理动量专题复习
动量守恒定律复习
— 返回 —
— 8—
(新教材)高三总复习•物理
— 返回 —
1.如图所示,光滑水平面上静止放置着一辆平板车 A.车上有两个小滑块 B 和 C.A、 B、C 三者的质量分别是 3m、2m、m.B 与平板车之间的动摩擦因数为μ,而 C 与平板车 之间的动摩擦因数为 2μ.开始时 B、C 分别从平板车的左、右两端同三总复习•物理
— 返回 —
(2)小球与物块碰撞后先沿斜面向上做匀减速运动后沿斜面向下做匀加速运动,设加 速度为 a1,经时间 t 运动到斜面底端,取沿斜面向下为正方向,根据牛顿运动定律有 mgsinθ=ma
根据运动学公式有Hsi-nθh=v1t+12at2 设碰撞后物块的加速度为 a2,根据牛顿运动定律有 5mgsinθ-5μmgcosθ=5ma2 将 μ=tanθ 代入上式得 a2=0 即物块碰撞后沿斜面向下做匀速运动,于是有Hsi-nθh=v2t 联立解得 H=4.2 m.
(2)分类
①弹性碰撞:碰撞后系统的机械能□03 ___没__有____损失.
②非弹性碰撞:碰撞后系统的机械能□04 ___有______损失.
③完全非弹性碰撞:碰撞后合为一体,机械能损失□05 __最__大_____.
— 4—
(新教材)高三总复习•物理
— 返回 —
回归探究:(人教版选择性必修第一册) 2.P23 阅读整页,会写弹性碰撞中一动碰一静的方程以及碰后速度的结论,及 m1 =m2,m1≫m2,m1≪m2 时三种情况的讨论结果.
— 11 —
(新教材)高三总复习•物理
— 返回 —
[解析] (1)设刚要碰撞时小球的速度为 v0,根据机械能守恒定律有 mgh=12mv20 在小球与物块的碰撞过程中,取沿斜面向下为正方向,根据动量守恒定律有 mv0 =mv1+5mv2 根据动能守恒定律有12mv20=12mv21+12×5mv22 联立解得 v1=-23 2gh=-4 m/s, v2=13 2gh=2 m/s 小球速度方向沿斜面向上,物块速度方向沿斜面向下.
高中物理专题复习13动量定理
高中物理专题复习13——动量一.动量和冲量1.动量按定义,物体的质量和速度的乘积叫做动量:p =mv⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。
⑵动量是矢量,它的方向和速度的方向相同。
2.冲量按定义,力和力的作用时间的乘积叫做冲量:I =Ft⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
⑶高中阶段只要求会用I=Ft 计算恒力的冲量。
对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。
⑷要注意的是:冲量和功不同。
恒力在一段时间内可能不作功,但一定有冲量。
例1. 质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大? 解:力的作用时间都是gH g H t 2sin 1sin 22αα==,力的大小依次是mg 、 mg cos α和mg sin α,所以它们的冲量依次是: gH m I gH m I gH m I N G 2,tan 2,sin 2===合αα 特别要注意,该过程中弹力虽然不做功,但对物体有冲量。
二、动量定理1.动量定理物体所受合外力的冲量等于物体的动量变化。
既I =Δp⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。
⑶现代物理学把力定义为物体动量的变化率:tP F ∆∆=(牛顿第二定律的动量形式)。
⑷动量定理的表达式是矢量式。
在一维的情况下,各个矢量必须以同一个规定的方向为正。
例2. 以初速度v 0平抛出一个质量为m 的物体,抛出后t 秒内物体的动量变化是多少? 解:因为合外力就是重力,所以Δp =F t =m g t有了动量定理,不论是求合力的冲量还是求物体动量的变化,都有了两种可供选择的等价的方法。
(完整版)动量专题总汇
高考物理复习专题:动量、动量守恒一、动量 P=mv1、动量和动能的区别和联系①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。
②动量是矢量,而动能是标量。
因此,物体的动量变化时,其动能不一定变化;而物体的动能变化时,其动量一定变化。
③引起动量变化的原因是物体受到外力的冲量;引起动能变化的原因是外力对物体做功。
④动量和动能2、动量的变化及其计算方法:动量的变化是指物体末态的动量减去初态的动量,是矢量,其计算方法:(1P0、Pt在一条直线上的情况。
(2)利用动量定理P0、Pt不在一条直线上或F为恒力的情况。
二、冲量:冲量由力和力的作用时间共同决定。
而力和时间都跟参照物的选择无关,所以力的冲量也与参照物的选择无关。
单位是N•s;其计算方法:(1(2但要注意上式中F 为合外力(或某一方向上的合外力)。
三、动量定理1、动量定理:物体受到合外力的冲量等于物体动量的变化.该定理由牛顿第二定律推导出来。
Ft=ΔP.2.理解:(1)上式中F为研究对象所受的所有外力的合力。
(2)定理的表达式为一矢量式,等号的两边不但大小相同,而且方向相同,动量定理的应用只限于一维的情况。
这时可规定一个正方向,注意力和速度的正负,这样就把大量运算转化为代数运算。
(3)动量定理的研究对象一般是单个质点。
求变力的冲量时,可借助动量定理求,不可直接用冲量定义式.3.应用动量定理的思路:(1)明确研究对象和受力的时间(明确质量m和时间t);(2)分析对象受力和对象初、末速度(明确冲量I合,和初、未动量P0,Pt);(3)规定正方向,目的是将矢量运算转化为代数运算;(4)根据动量定理列方程(5)解方程。
4、动量定理应用的注意事项(1)动量定理的研究对象是单个物体或可看作单个物体的系统,当研究对象为物体系时,物体系的总动量的增量等于相应时间内物体系所受外力合力的冲量,(2)动量定理公式中的F是研究对象所受的所有外力的合力。
它可以是恒力,也可以是变力。
2025届高三物理一轮复习动量守恒定律及其应用(40张PPT)
1.碰撞:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。2.碰撞的特点:在碰撞现象中,一般都满足内力_______外力,可认为相互碰撞的物体组成的系统动量守恒。
考点2 碰撞问题
远大于
动量是否守恒
机械能是否守恒
弹性碰撞
守恒
_______
非完全弹性碰撞
守恒
有损失
完全非弹性碰撞
答案 D
考向3 用数学归纳法解决多次碰撞问题【典例6】 (多选)(2022·全国卷Ⅱ)水平冰面上有一固定的竖直挡板,一滑冰运动员面对挡板静止在冰面上,他把一质量为4.0 kg的静止物块以大小为5.0 m/s的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使其再一次以大小为5.0 m/s的速度与挡板弹性碰撞。总共经过8次这样推物块后,运动员退行速度的大小大于5.0 m/s,反弹的物块不能再追上运动员。不计冰面的摩擦力,该运动员的质量可能为( )A.48 kg B.53 kg C.58 kg D.63 kg
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
考向1 碰撞的可能性【典例4】 (多选)A、B两球在光滑水平面上沿同一直线、同一方向运动,A球的动量是6 kg·m/s,B球的动量是4 kg·m/s,已知mA=1 kg,mB=2 kg,当A追上B并发生碰撞后,A、B两球速度的可能值是( )A.vA'=3 m/s vB'=3.5 m/s B.vA'=2 m/s vB'=4 m/sC.vA'=5 m/s vB'=2.5 m/s D.vA'=-3 m/s vB'=6.5 m/s
高三物理动量专题复习
高三物理动量专题复习(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高三物理上学期(3-5)知识点(魔方格)一.“动量”知识点复习1.力和力的作用时间的乘积叫做该力的冲量,即I=Ft(单位:N·s)。
冲量也是矢量,它的方向由力的方向决定。
2.动量:⑴、运动物体的质量和速度的乘积叫做动量,即p=mv(单位:kg·m/s)。
是矢量,方向与v的方向相同。
两个动量相同必须是大小相等,方向一致。
⑵动能和动量的区别和联系:①动能是标量,动量是矢量,动量改变,动能不一定改变,动能改变,动量一定改变;②两者的物理意义不同:动能和功相联系,动能的变化用功来量度;动量和冲量相联系,动量的变化用冲量来量度;③两者之间的大小关系为。
3.动量定理:⑴内容:物体所受合外力的冲量等于它的动量的变化。
⑵表达式:Ft=p'-p或Ft=mv'-mv。
⑶注意:①动量定理公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向;②公式中的F是研究对象所受的包括重力在内的所有外力的合力;③动量定理的研究对象可以是单个物体,也可以是物体系统。
对物体系统,只需分析系统受的外力,不必考虑系统内力;系统内力的作用不改变整个系统的总动量;④动量定理不仅适用于恒定的力,也适用于随时间变化的力。
对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值。
4.“动量守恒定律”:⑴、内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
⑵、表达式:m1v1+m2v2=m1v1'+m2v2'。
⑶、动量守恒定律成立的条件:①系统不受外力或系统所受外力的合力为零;②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计;③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变。
高考物理最新力学知识点之动量知识点总复习含答案
高考物理最新力学知识点之动量知识点总复习含答案一、选择题1.一个不稳定的原子核质量为M ,处于静止状态.放出一个质量为m 的粒子后反冲,已知放出的粒子的动能为E 0,则原子核反冲的动能为A .E 0B .mME 0 C .m M m-E 0 D .MmM m -E 0 2.如图所示,在光滑水平面上,有质量分别为2m 和m 的A B 、两滑块,它们中间夹着一根处于压缩状态的轻质弹簧(弹簧与A B 、不拴连),由于被一根细绳拉着而处于静止状态.当剪断细绳,在两滑块脱离弹簧之后,下述说法正确的是( )A .两滑块的动量大小之比:2:1AB p p = B .两滑块的速度大小之比A B v v :2:1=C .两滑块的动能之比12::kA kB E E =D .弹簧对两滑块做功之比:1:1A B W W =3.如图所示,静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,则下列说法不正确的是( )A .α粒子与反冲粒子的动量大小相等,方向相反B .原来放射性元素的原子核电荷数为90C .反冲核的核电荷数为88D .α粒子和反冲粒子的速度之比为1:884.半径相等的两个小球甲和乙,在光滑的水平面上沿同一直线相向运动,若甲球质量大于乙球质量,发生碰撞前,两球的动能相等,则碰撞后两球的状态可能是( )A .两球的速度方向均与原方向相反,但它们动能仍相等B .两球的速度方向相同,而且它们动能仍相等C .甲、乙两球的动量相同D .甲球的动量不为零,乙球的动量为零5.质量为m 的质点作匀变速直线运动,取开始运动的方向为正方向,经时间t 速度由v 变为-v ,则在时间t 内A.质点的加速度为2v tB.质点所受合力为2mvtC.合力对质点做的功为2mvD.合力对质点的冲量为06.“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变7.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则()A.小木块和木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动8.如图所示,质量m1=10kg的木箱,放在光滑水平面上,木箱中有一个质量为m2=10kg 的铁块,木箱与铁块用一水平轻质弹簧固定连接,木箱与铁块一起以v0=6m/s的速度向左运动,与静止在水平面上质量M=40kg的铁箱发生正碰,碰后铁箱的速度为v=2m/s,忽略一切摩擦阻力,碰撞时间极短,弹簧始终在弹性限度内,则A.木箱与铁箱碰撞后瞬间木箱的速度大小为4m/sB.当弹簧被压缩到最短时木箱的速度大小为4m/sC.从碰后瞬间到弹簧被压缩至最短的过程中,弹簧弹力对木箱的冲量大小为20N·sD.从碰后瞬间到弹簧被压缩至最短的过程中,弹簧弹性势能的最大值为160J9.如图所示,一质量为2kg的物块B,静止在光滑水平面上,左侧固定一水平轻质弹簧,另一质量为3kg的物块A向右以5m/s的速度撞击弹簧,整个撞击过程中,两物块的速度始终在一条直线上,弹簧始终在弹性限度内,下列说法正确的是()A.物块A的最终速度大小为3m/sB.物块B的最终速度大小为5m/sC.弹簧的最大弹性势能为15JD.若其他条件不变而仅增大物块A的质量,则物块B的最终速度可能为12m/s10.如图,半径为R、质量为m的半圆轨道小车静止在光滑的水平地面上,将质量也为m 的小球从距A点正上方h高处由静止释放,小球自由落体后由A点经过半圆轨道后从B冲出,在空中能上升的最大高度为34h,则A.小球和小车组成的系统动量守恒B.小车向左运动的最大距离为1 2 RC.小球离开小车后做斜上抛运动D.小球第二次能上升的最大高度12h<h<34h11.一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打入木块A及弹簧被压缩的过程中,子弹、两木块和弹簧组成的系统()A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能也不守恒12.忽然“唵——”的一声,一辆运沙车按着大喇叭轰隆隆的从旁边开过,小明就想,装沙时运沙车都是停在沙场传送带下,等装满沙后再开走,为了提高效率,他觉得应该让运沙车边走边装沙。
2024届高考物理一轮复习热点题型归类训练:动量能量在各类模型中的应用(学生版)
动量能量在各类模型中的应用目录题型一碰撞模型类型1 一动一静的弹性碰撞类型2 弹性碰撞中的“子母球”模型题型二非弹性碰撞中的“动能损失”问题类型1 非弹性小球碰撞中的动能损失类型2 滑块木板模型中的动能损失类型3 滑块-曲面模型中的动能损失问题类型4 小球-弹簧模型中的动能损失问题类型5 带电系统中动能的损失问题类型6 导体棒“追及”过程中的动能损失问题题型三碰撞遵循的规律类型1 碰撞的可能性类型2 碰撞类型的识别题型四 “滑块-弹簧”碰撞模型中的多过程问题题型五 “滑块-斜(曲)面”碰撞模型题型六滑块模型中的多过程题型七子弹打木块模型中的能量动量问题题型八两体爆炸(类爆炸)模型中的能量分配题型九人船模型及其拓展模型的应用题型十悬绳模型题型一:碰撞模型1.类型1一动一静的弹性碰撞.以质量为m1、速度为v1的小球与质量为m2的静止小球发生弹性碰撞为例,则有m1v1=m1v1′+m2v2′1 2m1v21=12m1v1′2+12m2v2′2联立解得:v1′=m1-m2m1+m2v1,v2′=2m1m1+m2v1讨论:①若m1=m2,则v1′=0,v2′=v1(速度交换);②若m1>m2,则v1′>0,v2′>0(碰后两小球沿同一方向运动);当m1≫m2时,v1′≈v1,v2′≈2v1;③若m1<m2,则v1′<0,v2′>0(碰后两小球沿相反方向运动);当m1≪m2时,v1′≈-v1,v2′≈0.1(2023春·江西赣州·高三校联考阶段练习)弹玻璃球是小孩子最爱玩的游戏之一,一次游戏中,有大小相同、但质量不同的A、B两玻璃球,质量分别为m A、m B,且m A<m B,小朋友在水平面上将玻璃球A以一定的速度沿直线弹出,与玻璃球B发生正碰,玻璃球B冲上斜面后返回水平面时与玻璃球A速度相等,不计一切摩擦和能量损失,则m A、m B之比为()A.1:2B.1:3C.1:4D.1:52(2023·四川达州·统考二模)如图所示,用不可伸长的轻绳将质量为m1的小球悬挂在O点,绳长L= 0.8m,轻绳处于水平拉直状态。
高三复习高中物理重点知识习题 动量守恒定律 - (含答案)
第七章动量守恒定律考点一:动量、动量变化量与冲量、动量定理1. (多选)如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止开始自由下滑,不计空气阻力,在它们到达斜面底端的过程中()A.重力的冲量相同B.斜面弹力的冲量不同C.斜面弹力的冲量均为零D.合力的冲量不同答案BD2.(多选)质量为m的物块以初速度v0从光滑斜面底端向上滑行,到达最高位置后再沿斜面下滑到底端,则物块在此运动过程中()A.上滑过程与下滑过程中物块所受重力的冲量相同B.整个过程中物块所受弹力的冲量为零C.整个过程中物块合外力的冲量为零D.若规定沿斜面向下为正方向,则整个过程中物块合外力的冲量大小为2mv0 答案AD3.如图所示,质量为m的物体,在大小确定的水平外力F作用下,以速度v沿水平面匀速运动,当物体运动到A点时撤去外力F,物体由A点继续向前滑行的过程中经过B点,则物体由A点到B点的过程中,下列说法正确的是()A.v越大,摩擦力对物体的冲量越大,摩擦力做功越多B.v越大,摩擦力对物体的冲量越大,摩擦力做功与v的大小无关C.v越大,摩擦力对物体的冲量越小,摩擦力做功越少D.v越大,摩擦力对物体的冲量越小,摩擦力做功与v的大小无关答案D4. (多选)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是()A.子弹在每个水球中的速度变化相同B.子弹在每个水球中运动的时间不同C.每个水球对子弹的冲量不同D.子弹在每个水球中的动能变化相同答案BCD5. (多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。
F随时间t变化的图线如图所示,则() 答案ABA.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零6. (多选)一质点静止在光滑水平面上,现对其施加水平外力F,力F随时间按正弦规律变化,如图5所示,下列说法正确的是()A.第2 s 末,质点的动量为0B.第4 s 末,质点回到出发点C.在0~2 s 时间内,力F 的功率先增大后减小D.在1~3 s 时间内,力F 的冲量为0 答案 CD7.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示。
动量定理及动量守恒定律专题复习(附参考答案)
动量定理及动量守恒定律专题复习一、知识梳理1、深刻理解动量的概念(1)定义:物体的质量和速度的乘积叫做动量:p =mv(2)动量是描述物体运动状态的一个状态量,它与时刻相对应。
(3)动量是矢量,它的方向和速度的方向相同。
(4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。
题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。
(5)动量的变化:0p p p t -=∆.由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。
A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。
B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。
(6)动量与动能的关系:k mE P 2=,注意动量是矢量,动能是标量,动量改变,动能不一定改变,但动能改变动量是一定要变的。
2、深刻理解冲量的概念(1)定义:力和力的作用时间的乘积叫做冲量:I =Ft(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
(3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
(4)高中阶段只要求会用I=Ft 计算恒力的冲量。
对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。
(5)要注意的是:冲量和功不同。
恒力在一段时间内可能不作功,但一定有冲量。
特别是力作用在静止的物体上也有冲量。
3、深刻理解动量定理(1).动量定理:物体所受合外力的冲量等于物体的动量变化。
既I =Δp(2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
高三物理第一轮复习 动量 冲量和动量定理
判断2:质量为50kg 的工人,身上系着长为5m的弹性安全带在高空作业,不慎掉下,若从弹性绳开始伸直到工人落到最低点弹性绳伸长了2m,求弹性绳对工人的平均作用力。(g = 10m/s2)
能力·思维·方法
缓拉纸带时,摩擦力虽小些,但作用时间可以很长,故重物获得的冲量,即动量的改变量可以很大,所以能把重物带动;快拉时,摩擦力虽大些,但作用时间很短,故冲量小,所以重物动量的改变量小.因此答案C、D正确.
【例10】某消防队员质量60Kg从一平台上跳下,下落2m后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5s.在着地过程中,对他双脚的平均作用力估计为
例4如图所示,质量为2kg的物体沿倾角为30°高为h=5m的光滑斜面由静止从顶端下滑到底端的过程中,求: (1)重力的冲量; (2)支持力的冲量; (3)合外力的冲量.(g=10m/s2)
【解析】求某个力的冲量时,只有恒力才能用公式I=F·t,而对于变力一般用动量定理求解,此题物体下滑过程中各力均为恒力,所以只要求出力作用时间便可用I=Ft求解. 由牛顿第二定律F=ma得 下滑的加速度a=g·sin=5m/s2.
能力·思维·方法
【解析】本题问题情景清晰,是一道应用动量定量解释物理现象的好题.为了使得从高处跳下时减少地面对双腿的冲击力,应减少h—跳下前的高度;增大△h—双脚弯曲时重心下移的距离.即不宜笔直跳下,应先蹲下后再跳,着地时应尽可能向下弯曲身体,增大重心下降的距离.实际操作中,还有很多方法可以缓冲地面的作用力.如先使前脚掌触地等.也可同样运用动量定理解释.对本题分析如下:下落2m双脚刚着地时的速度为v= .触地后,速度从v减为0的时间可以认为等于双腿弯曲又使重心下移 △h=0.5m所需时间.在估算过程中,可把地面对他双脚的力简化为一个恒力,故重心下降过程可视为匀减速过程.从而有:
高考物理2025年动量定理知识点与难点解析
高考物理2025年动量定理知识点与难点解析在高考物理中,动量定理一直是一个重要且具有一定难度的知识点。
对于备战 2025 年高考的同学们来说,深入理解和掌握动量定理及其相关难点,对于提高物理成绩至关重要。
一、动量定理的基本概念动量定理描述了物体所受合外力的冲量等于物体动量的变化量。
动量(p)的定义是物体的质量(m)与速度(v)的乘积,即 p = mv。
而冲量(I)则是力(F)在时间(t)上的积累,用公式表示为I =Ft。
简单来说,当一个物体受到外力作用时,经过一段时间,其动量会发生改变,改变的量就等于外力在这段时间内的冲量。
二、动量定理的表达式动量定理的表达式为:Ft =Δp,其中 F 是合外力,t 是作用时间,Δp 是动量的变化量。
这个表达式的含义是:合外力在一段时间内的作用效果,等于这段时间内物体动量的变化。
例如,一个质量为 2kg 的物体,原来速度为 3m/s,受到一个恒力作用 2s 后,速度变为 5m/s。
则物体所受合外力的冲量为:F × 2 = 2 × 5 2 × 3F = 2N三、动量定理的适用条件动量定理适用于任何情况,无论是恒力还是变力,也不管物体的运动轨迹是直线还是曲线。
对于恒力作用的情况,我们可以直接使用上述表达式进行计算。
但对于变力作用的情况,需要通过积分的方法来计算冲量。
四、动量定理与牛顿第二定律的关系牛顿第二定律 F = ma 可以通过运动学公式 a =(v u) / t 进行变形,得到 F = m(v u) / t ,进一步整理可得 Ft = mv mu ,这正是动量定理的表达式。
可以说,动量定理是牛顿第二定律在时间上的积累效果的体现。
五、动量定理的难点解析1、变力作用下的冲量计算在很多实际问题中,物体所受的力是随时间变化的,这时候计算冲量就比较复杂。
例如,一个小球与地面碰撞时,地面对小球的支持力是随时间变化的。
对于这种情况,我们通常需要利用图像(如 F t 图像)来计算冲量,图像与时间轴所围的面积就等于冲量。
高考物理一轮复习专题之《动量守恒》核心知识点汇总
高考物理一轮复习专题之《动量守恒》核心知识点汇总【基本概念、规律】一、动量动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=mv.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的增量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.4.动量、动能、动量的变化量的关系(1)动量的变化量:Δp=p′-p.二、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.三、碰撞1.碰撞物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类【重要考点归纳】考点一动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值.2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力.(3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二动量守恒定律与碰撞1.动量守恒定律的不同表达形式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(3)速度要合理.①碰前两物体同向,则v后>v前;碰后,原来在前的物体速度一定增大,且v′前≥v′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三爆炸和反冲人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m11=-m22得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.考点五实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P 就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.。
高三物理一轮复习 动量专题(含真题)
峙对市爱惜阳光实验学校专题14 动量专题1. [2021·卷Ⅰ] (2)一枚搭载着卫星以速率v 0进入太空预位置,由控制系统使箭体与卫星别离.前的卫星质量为m 1,后的箭体质量为m 2,别离后箭体以速率v 2沿原方向飞行,假设忽略空气阻力及别离前后系统质量的变化,那么别离后卫星的速率v 1为________.(填选项前的字母) A .v 0-v 2 B .v 0+v 2C .v 0-m 2m 1v 2D .v 0+m 2m 1(v 0-v 2)答案:D解析: 忽略空气阻力和别离前后系统质量的变化,卫星和箭体整体别离前后动量守恒,那么有(m 1+m 2)v 0=m 1v 1+m 2v 2,整理可得v 1=v 0+m 2m 1(v 0-v 2),故D项正确.2.[2021·卷] (1)如图1所示,甲木块的质量为m 1,以速度v 沿光滑水平地面向前运动,正前方有一静止的、质量为m 2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( ) A. 甲木块的动量守恒 B. 乙木块的动量守恒C. 甲、乙两木块所组成的系统的动量守恒D. 甲、乙两木块所组成系统的动能守恒 答案: C解析: (1)此题考查碰撞、动量守恒律知识点.甲木块与弹簧接触后,由于弹簧弹力的作用,甲、乙的动量要发生变化,但对于甲、乙所组成的系统因所受合力的冲量为零,故动量守恒,选项A 、B 错误,选项C 正确;甲、乙两木块所组成系统的动能,一转化为弹簧的势能,故不守恒.3. [2021·] 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,那么以下图中两块弹片飞行的轨迹可能正确的选项是 A B C D 答案:B解析: 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34mv 甲+14mv 乙,解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =12gt 2,水平方向对甲、乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确.4.[物理——3-5][2021·课标卷Ⅰ] (2)如下图,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方,先将B 球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零,m B =3m A ,重力加速度大小g 取10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到过地面时的速度; (2)P 点距离地面的高度.解:(1)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v 1=4 m/s.②(2)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规向下的方向为正,有m A v 1+m B v 2=m B v ′2④12m A v 21+12m B v 22=12mv ′22⑤ 设B 球与地面相碰后速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入条件可得h ′=0.75 m .⑧5.[2021·课标Ⅱ卷] [物理——3-5] (2)现利用图(a )所示的装置验证动量守恒律.在图(a )中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 图(a )测得滑块A 的质量m 1=0.310 kg ,滑块B 的质量m 2=0.108 kg ,遮光片的宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz .将光电门固在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时显示的时间为Δt B =00 ms ,碰撞前后打出的纸带如图(b )所示. 图(b )假设允许的相对误差绝对值(⎪⎪⎪⎪⎪⎪碰撞前后总动量之差碰前总动量×100%)最大为5%,本是否在误差范围内验证了动量守恒律?写出运算过程.解: (2)按义,物块运动的瞬间时速度大小v 为v =ΔsΔt①式中Δs 为物块在短时间Δt 内走过的路程.设纸带上打出相邻两点的时间间隔为Δt A ,那么Δt A =1f=0.02 s ②Δt A 可视为很短设A 在碰撞前、后时速度大小分别为v 0,v 1.将②式和图给数据代入①式得v 0=2.00 m /s ③v 2=0.970 m /s ④设B 在碰撞后的速度大小为v 2,由①式得v 2=dΔt B⑤代入题给数据得v 2=6 m /s ⑥设两滑块在碰撞前、后的总动量分别为p 和p ′那么 p =m 1v 0⑦p ′=m 1v 1+m 2v 2⑧两滑块在碰撞前后总动量相对误差的绝对值为δp =⎪⎪⎪⎪⎪⎪p -p ′p ×100%⑨ 联立③④⑥⑦⑧⑨式并代入有关数据,得 δp =%<5%⑩因此,本在允许的误差范围内验证了动量守恒律.6.[2021·卷] (20分)在光滑水平地面上有一凹槽A ,放一小物块B .物块与左右两边槽壁的距离如下图,L 为1.0 m ,凹槽与物块的质量均为m ,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v 0=5 m/s 初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g 取10 m/s 2.求: (1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者刚相对静止所经历的时间及该时间内凹槽运动的位移大小.解: (1)设两者间相对静止时速度为v ,由动量守恒律得mv 0=2mv ,解得v = m/s(2)设物块与凹槽间的滑动摩擦力F f =μN =μmg 设两者相对静止前相对运动的路程为s 1,由动能理得-F f ·s 1=12(m +m )v 2-12mv 20,得s 3=1 mL =1 m ,可推知物块与右侧槽壁共发生6次碰撞.(3)设凹槽与物块碰前的速度分别为v 1、v 2,碰后的速度分别为v ′1、v ′2.有mv 1+mv 2=mv ′1+mv ′212mv 21+12mv 22=12mv ′21+12mv ′22 得v ′1=v 2,v ′2=v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如下图,根据碰撞次数可分为13段凹槽,物块的vt 图像在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.那么v =v 0+at ,a =-μg ,解得t =5 s凹槽的vt 图像所包围的阴影面积即为凹槽的位移大小s 2.(腰三角形面积共分13份,第一份面积为0.5 L ,其余每份面积均为L )s 2=12⎝ ⎛⎭⎪⎫v 02t + L =15 m .7.[2021·卷]如下图,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g取10 m/s 2.求:(1) 碰撞前瞬间A 的速率v ;(2) 碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .解: 设滑块的质量为m . (1)根据机械能守恒律有 mgR =12mv 2解得碰撞前瞬间A 的速率有v =2gR =2 m/s.(2)根据动量守恒律有mv =2mv ′解得碰撞后瞬间A 和B 整体的速率 v ′=12v =1 m/s.(3)根据动能理有 12(2m )v ′2=μ(2m )gl 解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m.8. [2021·卷] 冰球运发动甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运发动乙相撞.碰后甲恰好静止.假设碰撞时间极短,求: (1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失.解: (1)设运发动甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V ′.由动量守恒律有mv -MV =MV ′①代入数据得V ′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,有 12mv 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得 ΔE =1400 J ④9.[2021·卷] (18分)图24 的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s至t 2=4 s 内工作.P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)假设v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ; (2)假设P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .解: (1)P 1、P 2碰撞过程动量守恒,有mv 1=2mv解得v =v 12=3 m/s碰撞过程中损失的动能为ΔE =12mv 21-12(2m )v 2解得ΔE =9 J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间效为匀减速运动,设P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2 ,由牛顿第二律和运动学规律,得μ(2m )g =2ma3L =v t -12at 2v 2=v -at解得v 1=2v =6L +μgt 2t v 2=6L -μgt22t由于2 s ≤t ≤4 s 所以解得v 1的取值范围 10 m/s ≤v 1≤14 m/sv 2的取值范围1 m/s ≤v 2≤5 m/s所以当v 2=5 m/s 时,P 向左经过A 点时有最大速度v 3=v 22-2μgL那么P 向左经过A 点时有最大动能E =12(2m )v 23=17 J.10.[2021·卷] (3)牛顿的<自然哲学的数学原理>中记载,A 、B 两个玻璃球相碰,碰撞后的别离速度和它们碰撞前的接近速度之比总是约为15∶16.别离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.假设上述过程是质量为2m 的玻璃球A 以速度v 0碰撞质量为m 的静止玻璃球B ,且为对心碰撞,求碰撞后A 、B 的速度大小.解: 设A 、B 球碰撞后速度分别为v 1和v 2,由动量守恒律得2mv 0=2mv 1+mv 2,且由题意知v 2-v 1v 0=1516,解得v 1=1748v 0,v 2=3124v 0.11. [2021·卷] 【物理35】 (2)如下图,光滑水平直轨道上两滑块A 、B 用橡皮筋连接,A 的质量为m .开始时橡皮筋松弛,B 静止,给A 向左的初速度v 0.一段时间后,B 与A 同向运动发生碰撞并粘在一起.碰撞后的共同速度是碰撞前瞬间A 的速度的两倍,也是碰撞前瞬间B 的速度的一半.求: (ⅰ)B 的质量;(ⅱ)碰撞过程中A 、B 系统机械能的损失.解: (ⅰ)以初速度v 0的方向为正方向,设B 的质量为m B ,A 、B 碰撞后的共同速度为v ,由题意知:碰撞前瞬间A 的速度为v2,碰撞前瞬间B 的速度为2v ,由动量守恒律得m v2+2m B v =(m +m B )v ①由①式得m B =m2②(ⅱ)从开始到碰后的全过程,由动量守恒律得mv 0=(m +m B )v ③设碰撞过程A 、B 系统机械能的损失为ΔE ,那么 ΔE =12m ⎝ ⎛⎭⎪⎫v 22+12m B (2v )2-12(m +m B )v 2④联立②③④式得 ΔE =16mv 20⑤12. [2021·卷] 如下图,水平地面上静止放置一辆小车A ,质量m A =4 kg ,上外表光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B 置于A 的最右端,B 的质量m B =2 kg.现对A 施加一个水平向右的恒力F =10N ,A 运动一段时间后,小车左端固的挡板与B 发生碰撞,碰撞时间极短,碰后A 、B 粘合在一起,共同在F 的作用下继续运动,碰撞后经时间t =0.6 s ,二者的速度到达v t =2 m/s.求: (1)A 开始运动时加速度a 的大小;(2)A 、B 碰撞后瞬间的共同速度v 的大小; (3)A 的上外表长度l .解: (1)以A 为研究对象,由牛顿第二律有F =m A a ①代入数据解得a = m/s 2②(2)对A 、B 碰撞后共同运动t =0.6 s 的过程,由动量理得Ft =(m A +m B )v t -(m A +m B )v ③代入数据解得v =1 m/s ④(3)设A 、B 发生碰撞前,A 的速度为v A ,对A 、B 发生碰撞的过程,由动量守恒律有m A v A =(m A +m B )v ⑤A 从开始运动到与B 发生碰撞前,由动能理有Fl =12m A v 2A ⑥由④⑤⑥式,代入数据解得l =0.45 m ⑦。
专题36 动量 冲量和动量定理-2025版高三物理一轮复习多维度导学与分层专练
2025届高三物理一轮复习多维度导学与分层专练专题36动量冲量和动量定理导练目标导练内容目标1动量、动量变化量和冲量目标2动量定理目标3用动量定理解决流体类和微粒类“柱状模型”问题【知识导学与典例导练】一、动量、动量变化量和冲量1.动能、动量、动量变化量的比较动能动量动量变化量定义物体由于运动而具有的能量物体的质量和速度的乘积物体末动量与初动量的矢量差定义式E k =12mv 2p =mv Δp =p ′-p 标矢性标量矢量矢量特点状态量状态量过程量关联方程E k =p 22m ,E k =12pv ,p =2mE k ,p =2E kv联系(1)都是相对量,与参考系的选取有关,通常选取地面为参考系(2)若物体的动能发生变化,则动量一定也发生变化;但动量发生变化时动能不一定发生变化2.冲量的计算(1)恒力的冲量:直接用定义式I =Ft 计算。
(2)变力的冲量①方向不变的变力的冲量,若力的大小随时间均匀变化,即力为时间的一次函数,则力F 在某段时间t 内的冲量I =F 1+F 22t ,其中F 1、F 2为该段时间内初、末两时刻力的大小。
②作出F t 变化图线,图线与t 轴所夹的面积即为变力的冲量。
如图所示。
③对于易确定始、末时刻动量的情况,可用动量定理求解,即通过求Δp 间接求出冲量。
【例1】两个质量不同的物体在同一水平面上滑行,物体与水平面间的动摩擦因数相同,比较它们滑行的最大距离,下列判断中正确的是()A .若两物体的初速度相等,则它们的最大滑行距离相等B .若两物体的初动量相等,则它们的最大滑行距离相等C .若两物体的初动能相等,则质量小的最大滑行距离大D .若两物体停止前的滑行时间相等,则两物体的最大滑行距离相等【答案】ACD【详解】A .由动能定理可知20102k m m E v gs μ=--=-可得22v s gμ=则可知,若初速度相等,则最大滑行距离相等,A 正确;B .根据p mv =;22122k p E mv m==由动能定理可知0k mgs E μ-=-可得2222K E p s mg m g μμ==若初动量相等,质量大小不清楚,滑行距离没法比较,B 错误;C .由动能定理可知0k mgs E μ-=-可得2kE s mgμ=若初动能相等,质量小的,滑行距离大,C 正确;D .因两物体的加速度mga g mμμ==由v at =可知,滑行时间相等说明初速度一定相等,故滑行距离一定相等,D 正确。
动量定理-高考物理复习考点微专题
考向12 动量定理-高考一轮复习考点微专题解决目标及考点:1、理解动量、冲量基本概念及简单计算 4、动量守恒定律的判断2、利用动量定理求动量、瞬间冲击力 5、动量守恒的简单计算3、流体冲击中的作用力【例题1】(2015·重庆理综·3)高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动).此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A.m2ght+mg B.m2ght-mgC.m ght+mg D.m ght-mg【例题2】(2018·甘肃西峰调研)如图2所示,竖直面内有一个固定圆环,MN是它在竖直方向上的直径.两根光滑滑轨MP、QN的端点都在圆周上,MP>QN.将两个完全相同的小滑块a、b分别从M、Q点无初速度释放,在它们各自沿MP、QN运动到圆周上的过程中,下列说法中正确的是( )A.合力对两滑块的冲量大小相同B.重力对a滑块的冲量较大C.弹力对a滑块的冲量较小D.两滑块的动量变化大小相同一、动量定理1、动量与动能动量动能公式P=mv E K=mv2/2物理意义描述物体的瞬时运动状态描述物体瞬时所具有的能量区别点矢量,状态量标量,状态量联系E K=P2/2m变化量若速度变化,则ΔEk可能为零;Δp一定不为零2、冲量与功冲量功公式I=Ft W=FSsosα物理意义力作用在物体上并持续一段时间产生的效果。
过程量力作用在物体上并使得物体在力方向移动一段距离。
过程量区别点与位移无关与位移有关产生效果力持续了时间即有冲量,但不一定有明显的运动效果力使得物体移动了位移才有功的效果3、动量定理①物体所受合外力的冲量等于物体的动量变化。
Ft=mv’-mv。
②动量定理是牛顿第二定律的另一种表达式,都反映物体运动状态改变的原因——合外力不为零。
2024届高考物理一轮复习学案:动量+动量定理
励志格言:拼着一切代价,奔你的前程吧。
一、比较动量与动能动量 动能 定义式p =mv E k =12mv 2 单位Kg.m/s J 标矢性矢量 标量 换算关系p 用E k 表示,p = ;E k 用p 表示,E k =二、比较冲量与功冲量 功 定义式I =F t W =FScos θ 单位N·S J 标矢性矢量 标量 对物体的作用效果三、动量定理 1. 推导:运用牛顿第二定律、运动学公式推导动量定理,体会动量定理与牛顿第二定律、运动学公式的内在联系。
2.内容:物体在一个过程所受合外力的冲量,等于这个过程始末的动量变化量。
F ·t =mv ´-mv动量定理表达式变型:F =Δp/Δt ,其物理意义表示物体所受合外力等于 。
3.适用范围:(1)动量定理是在物体受恒力作用做匀变速直线运动情况下推导出来的。
当物体所受的外力是变力,动量定理适用吗? ;物体的运动轨迹是曲线,动量定理适用吗? 。
贺阳唐山23-24学年一轮复习 物理学案 动量守恒定律1 总第( )期 学生姓名 班级 学号 课题:动量 动量定理 使用日期: 组编人: 校对人:励志格言:拼着一切代价,奔你的前程吧。
(2)动量定理不仅适用于宏观物体的低速运动,也适用于微观物体的高速运动,如原子核、质子、电子等。
动量定理适用于光子吗? 。
【例1】交通管理法规定:骑摩托车必须戴好头盔,目的是保护交通安全事故中的车手,理由是( )A .减小头部的冲量,起到安全作用B .延长头部与硬物接触时间,减小冲力,起到保护作用C .减小头部的速度变化使人安全D .减小头部的动量变化量,起到安全作用【练习】一个笔帽竖立在桌面上平放的纸条上,要求把纸条从笔帽下抽出,如果缓慢拉动纸条,笔帽必倒;若快速拉纸条,笔帽可能不倒。
快速拉动纸条与慢拉动纸条相比,纸条对笔帽的水平作用力较 ,作用时间较 ,笔帽受到的冲量较 。
【导思】同学们动手试一试。
*【拓展训练1】 如图所示,相同细线1、2与钢球连接,细线1的上端固定,用力向下拉线2.则( )A. 缓慢增加拉力时,线1中张力的增量比线2的大B. 缓慢增加拉力时,线1与线2中张力的增量相等C. 猛拉时线2断,线断前瞬间球的加速度大于重力加速度D. 猛拉时线2断,线断前瞬间球的加速度小于重力加速度 【例2】高空作业须系安全带.如果质量为的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为(可视为自由落体运动)。
高中物理动量相关必考知识点
高中物理动量相关必考知识点高中物理动量相关必考知识点1、冲量:定义:力和力的作用时间的乘积。
即I=F.t方向:与力的方向相同。
单位:牛顿.秒,符号:N.s2、动量定义:运动物体的.质量与速度的乘积。
即P=m.v方向:与速度方向相同。
单位:千克.米每秒,符号,kg.m/s3、动量的变化量:末动量与初动量之差。
即方向:与速度变化量方向相同。
4、动量定理:物体所受合力的冲量等于物体动量的变化量。
即,其中F为合力。
动量变化量一定时,延长作用时间可减小作用力。
5、动量定理不仅适用于恒力,也适用于变力,力不恒定时,F取平均作用力的大小。
6、系统:两个或多个物体组成的整体。
7、动量守恒定律:一个系统不受外力或所受外力之和为0,这个系统的总动量保持不变。
即原来的动量等于后来的动量P0=Pt8、动量定律适用条件:系统不受外力或所受外力之和为0,适用范围:低速、高速、宏观、微观,只要满足动量守恒条件的系统都适用。
9、动量守恒定律的应用(1)处理碰撞问题:物体碰撞过程中,相互作用时间很短,平均作用力很大,把碰撞的物体作为一个系统来看待,外力远小于内力,可以忽略不计,认为碰撞过程动量守恒。
(2)处理爆炸问题:爆炸过程,内力远大于外力,忽略外力,系统动量守恒。
(3)应用动量守恒定律,只需要考虑过程的初末状态,不需要考虑过程的细节。
10、反冲运动:当系统向外抛出一个物体时,剩余部分将向被抛出部分的运动的反方向运动的现象。
11、火箭飞行最大速度的决定因素:(1)质量比(火箭开始飞行时的质量与燃料燃尽时的质量之比);(2)喷气速度。
高中物理专题复习 动量及动量守恒定律
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。
在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。
⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。
在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理动量专题复习
1. 动量的概念
动量是一个物体在运动过程中所拥有的属性,它是由其
质量与速度所相乘而得到的,用公式表示为p=mv。
其中p为
动量,m为物体的质量,v为物体的速度。
2. 动量守恒定律
动量守恒定律指的是,在一个系统内,如果没有外力作用,那么系统内各个物体的动量总和将保持不变。
即
p1+p2=p1'+p2',其中p1和p2为发生碰撞前两个物体的动量,p1'和p2'为碰撞后两个物体的动量。
3. 碰撞类型
碰撞分为弹性碰撞和非弹性碰撞两种。
弹性碰撞指的是,在碰撞过程中物体之间不存在能量损失,动量守恒定律和能量守恒定律同时成立。
非弹性碰撞则是指,碰撞过程中物体之间会有能量损失,因此动量和能量都无法完全守恒。
4. 动量定理
动量定理指的是,在某个质点上施加一个力F,就会使其产生一个加速度a,从而其动量按照F=ma的关系改变。
即
FΔt=Δmv,其中F为力,Δt为作用时间,Δm为物体动量的改变量。
5. 爆炸问题
爆炸问题指的是,在一个物体内部的某些部分突然分离
出来,瞬间受到了较大的力,从而产生具有很大动量的碎片。
在处理这类问题时,需要根据爆炸前和爆炸后物体的总动量相等来得到相关的求解公式。
6. 常见题型
常见的动量题型包括两个物体碰撞后速度的求解、某个
物体碰撞后斜抛的问题、两个物体的碰撞角度问题、爆炸后碎片的运动状态等。
在解决这些问题时,需要熟练掌握动量守恒定律、动量
定理、碰撞问题的处理方法,以及对物体速度、角度等相关概念的理解。
7. 解题技巧
解决动量题目时需要注意以下几点:
(1)画图示意,对物理量和坐标系进行标注,明确各个
量的方向和大小关系。
(2)精心挑选参考系,选择恰当的参考系可以简化问题
的计算。
(3)选择适当的公式,尤其是在复杂的情况下需要灵活
运用多种公式进行计算。
(4)注意各个物体的动量守恒和各个向量的分解,特别
是在要计算速度和角度时需要特别谨慎。
8. 总结
动量是一个很重要的概念,它能够帮助我们在处理各种
物理问题时更好地把握物体的运动状态,为我们提供更多有关物体性质的信息。
在学习动量专题时,我们需要认真理解动量的概念、动量定理和动量守恒定律等基本理论,熟练掌握各类问题的解题方法和技巧,这样才能够更好地应对考试中的挑战。