整式的乘法与因式分解和分式测试题

合集下载

八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)精选全文完整版

八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)一、单选题1.下列多项式:①244x x +;②2224x xy y -+;③2214a ab b -+;④224a b -+中,能用公式法分解因式的有( ).A .1个B .2个C .3个D .4个 2.计算()()9910022-+-的结果为( ) A .992- B .992 C .2- D .23.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b 的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ).A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++4.若a+b=1,则22a b 2b -+的值为( )A .4B .3C .2D .1 5.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++ D .()()2222a b a b a ab b +-=+- 6.如果(x -2)(x+3)=x 2+px+q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=6C .p=5,q=-6D .p=1,q=-67.下列各式子的运算,正确的是( )A .(3a +2b )(3a ﹣2b )=3a 2﹣2b 2B .222(2)44x y x xy y -+=-+C .221136222x y xy xy xy x y ⎛⎫⎛⎫-+÷-=-+ ⎪ ⎪⎝⎭⎝⎭ D .(a +2)(a ﹣3)=a 2﹣68.已知(x ﹣2)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =2,n =4B .m =3,n =6C .m =﹣2,n =﹣4D .m =﹣3,n =﹣69.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .aB .2()a b +C . 2()a b -D .22a b -10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( )A .3-,4-B .3-,4C .3,4-D .3,411.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0二、填空题12.分解因式:24xy x -=__________.13.边长为m 、n 的长方形的周长为14,面积为10,则33m n mn +的值为_________.14.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为___.15.若多项式225a ka ++是完全平方式,则k 的值是______.16.已知2310a a -+=,求441a a +的值为____.17.若2260x x --=,则()()()22321212x x x x -++--的值为__________.三、解答题18.因式分解(1)229(3)4(32)a b a b +--(2)()()22252732x x x x +++-+ 19.计算:(1)(﹣2a 2b )2•ab 2÷(﹣a 3b );(2)(x ﹣1)(x +1)(x 2+1);(3)20202﹣2022×2018(用乘法公式计算);(4)(a ﹣b ﹣3)(a ﹣b +3).20.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.21.(1)先化简,再求值:x 2﹣3x ﹣5=0,求代数式(x ﹣3)2+(x +y )(x ﹣y )+y 2的值;(2)已知x +y =4,xy =3,求x 2+y 2,(2x ﹣2y )2的值.22.我们知道几个非负数的和等于0,只有这几个数同时等于0才成立,如|x -2|+(y +3)2=0,因为|x -2|,(y +3)2都是非负数,则x -2=0,y +3=0,即可求x =2,y =-3,应用知识解决下列各题:(1)若(x +4)2+(y -3)2=0,求x ,y 的值.(2)若x 2+y 2-2x+4y=-5,求y x .(2)若2x 2+3y 2+8x -6y =-11,求(x +y )2020的值.23.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。

整式的乘法与因式分解测试题

整式的乘法与因式分解测试题

整式的乘法与因式分解测试题一、选择题(每题2分,共10分)1. 计算下列表达式的值:\( (3x - 2)^2 \)。

A. \( 9x^2 - 12x + 4 \)B. \( 9x^2 - 6x + 4 \)C. \( 9x^2 - 6x + 1 \)D. \( 9x^2 + 6x + 4 \)2. 哪个表达式不能通过因式分解简化?A. \( x^2 - 9 \)B. \( x^2 + 4x + 4 \)C. \( x^2 - 4x + 4 \)D. \( x^2 - 4 \)3. 以下哪个表达式是完全平方公式?A. \( a^2 - 2ab + b^2 \)B. \( a^2 + 2ab + b^2 \)C. \( a^2 - 2ab - b^2 \)D. \( a^2 + 3ab + b^2 \)4. 计算 \( (2x + 3)(2x - 3) \) 的结果。

A. \( 4x^2 - 9 \)B. \( 4x^2 + 9 \)C. \( 4x^2 + 6x - 9 \)D. \( 4x^2 - 6x + 9 \)5. 以下哪个表达式是多项式的乘法?A. \( (x - 1)(x + 1) \)B. \( x^2 - 1 \)C. \( x^2 + 2x + 1 \)D. \( x^2 - 2x + 1 \)二、填空题(每题2分,共10分)6. 将 \( (x + a)(x + b) \) 展开,结果为 \( ______ \)。

7. 计算 \( (x - 2)(x + 3) \) 的结果,并进行因式分解,结果为\( ______ \)。

8. 将 \( (x - 1)^2 \) 展开,结果为 \( ______ \)。

9. 利用平方差公式,将 \( x^2 - 49 \) 因式分解,结果为\( ______ \)。

10. 将 \( (3x - 1)^2 \) 展开,结果为 \( ______ \)。

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。

整式的乘法与因式分解习题带答案精选全文完整版

整式的乘法与因式分解习题带答案精选全文完整版

可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。

整式的乘法与因式分解分式的练习带答案

整式的乘法与因式分解分式的练习带答案

精品文档整式乘法与因式分解,分式的练习一.解答题(共20小题)2m3m2m2的值.),求(2x﹣(3)1.已知xx=2mm212332)的值.?3÷(,求(﹣mm2.已知3×9)×27m=3.计算下列各题:2﹣(2a+b)(b﹣2a)﹣a﹣2b)4a(a﹣b)((1)22.)﹣2y)+(3xy﹣(4x﹣9y)(4xx(2)(2+3y)+9 4.分解因式(1)4n(m﹣2)﹣6(2﹣m)22﹣1y.﹣2xy+(2)x5.分解因式:3223b;ba+75(1)3ab ﹣30a22.n6)4(m(3m+2n)﹣﹣(2)22)﹣x(7x+y﹣2y)+xy.(3)8(x2233.?x)﹣0.5xy)xy﹣(﹣62.计算:xy?(7.化简:3639+1)(x+x;+1)(1)(xx﹣1)(222222);+(xyy﹣)(xxy+xy+y)(2(x)﹣2222.y)﹣2x)(+2y)xy(x+4(32﹣(a﹣2b)(a+2b)a+2b)8.(9.把下列各式分解因式:33xyy)x﹣(1222x)162)(x﹣+4((3)x(y﹣z)﹣y(z﹣y)523)a+()(1)计算:(﹣a(﹣a)10.1011.8×0.125(2)计算:(﹣)11.因式分解:22﹣28mnmn1()4mn﹣2(m+1)﹣(m)(2m+1)精品文档.精品文档2y+12xy+9y(3)4x222﹣6)﹣15+2(x(4)(x.﹣6)÷的值.=2×,求代数式12.(1)已知a﹣b.(2=)解分式方程:+1.0.解方程:﹣1813=.()=xxx,其中满足(+13x)14+1.先化简,再求值:.﹣=15.解分式方程:.x,其中.先化简,再求值:16(﹣)÷3=.17.解方程﹣2.18.解方程:1+=.=19.解分式方程:+3.解分式方程.201().)2(精品文档.精品文档整式乘法与因式分解,分式的练习参考答案与试题解析一.解答题(共20小题)2m3m2m2的值.32xx)1.已知x)﹣(=2,求(6m2m x﹣【解答】解:原式=4x92m32m x4(x﹣9)=3﹣92×2=4×=14.mm212332)的值.mm?×9)×27÷(=3m,求(﹣2.已知3 mm2m3m1+5m21,3==3×33=×3【解答】解:3×927×∴1+5m=21,∴m=4,233265=﹣m=﹣÷m÷(m4?m.∴(﹣m)=﹣)m3.计算下列各题:2﹣(2a+b)(b﹣2a)﹣4aa(1)(﹣2b)(a﹣b)22.)﹣2y)+9y+(3y)x﹣(4x﹣9y)(4x+3(2)(2x 22222+4ab﹣b4+4)原式=(1aa﹣4ab+4ba﹣【解答】解:22;b+3=a222222﹣12xxy+4+12xy﹣16xy+81)原式=(24xy+9y+9 22.+94=﹣3xy4.分解因式(1)4n(m﹣2)﹣6(2﹣m)22﹣1+yx.﹣2xy2()【解答】解:(1)4n(m﹣2)﹣6(2﹣m)=4n(m﹣2)+6(m﹣2)=(4n+6)(m﹣2)=2(m﹣2)(2n+3).22﹣1yxyx2()﹣2+精品文档.精品文档2﹣)1=(x﹣y=(x﹣y+1)(x﹣y﹣1).5.分解因式:3223b;ab(1)3 ﹣30a b +75a22.n)m﹣+2n)6﹣4((2)(3m22)﹣x(7x+yy)+xy(3)8(x.﹣23223bbaba﹣30a+75【解答】解:(1)322)a10ab3ab(b+25﹣=2;)a﹣b=3ab(522)n﹣6)m﹣4((2)(3m+2n=[(3m+2n)+2(m﹣6n)][(3m+2n)﹣2(m﹣6n)]=(3m+2n+2m﹣12n)(3m+2n﹣2m+12n)=(5m﹣10n)(m+14n)=5(m﹣2n)(m+14n);22)﹣x(7x+﹣2yy)+xy(3)8(x222﹣xy+7x﹣16yxy﹣=8x22yx16﹣==(x+4y)(x﹣4y).2233.xy?﹣(﹣2x6).计算:xxyy?(﹣0.5)2233xy)?﹣(﹣2x解:xy?(﹣0.5xy【解答】)4343yyx+8=0.1x43.y=8.1x7.化简:3639+1)(x+x;+1)(1)(x﹣1)(x222222)y;﹣xyxy++y+)(x)(2(x﹣y()x2222.)y﹣2xy+4x(3)(+2y)(x3639+1)x)x)x)(【解答】解:1(﹣1(+x+1(精品文档.精品文档99+1))(=(xx﹣118﹣1=x;222222)y﹣xy)(﹣yx)(x++xy+(2)(xy 2222)yxy)(x++xy+y﹣)×(x+y﹣=(xy)(x 3333)yy+)(=(xx﹣66;y﹣=x2222)yxy﹣2(x+2y)+4(x(3)222])2xy+4x+2y)(xy﹣=[(332)=(xy+86336yx+64=xy+162﹣(a﹣2b))(a+2b)8.(a+2b2﹣(a﹣2b)(a+2b)【解答】解:(a+2b)2222)b﹣+4b﹣(a=a4+4ab2222baab+4b+4=a﹣+42+4abb.=89.把下列各式分解因式:33xyy1)x﹣(222x﹣+4)((2)x16(3)x(y﹣z)﹣y(z﹣y)33,xyyx解:(1)﹣【解答】22),﹣xy(xy==xy(x+y)(x﹣y);222,x﹣(x+4)16)(222+4﹣4x)x=(x+4+4x)(,22;2)﹣)x=(+2(x精品文档.精品文档(3)x(y﹣z)﹣y(z﹣y),=x(y﹣z)+y(y﹣z),=(x+y)(y﹣z).523)(a)a+10.(1)计算:(﹣a)(﹣1011.×(﹣0.125)8(2)计算:523))a+((1)(﹣a)(﹣a【解答】解:66a+=(﹣a)66a+=a6a=210118×(﹣0.125)(2)101018×80.125=×10×8×8)=(0.125=1×8=811.因式分解:22﹣2mnmmnn﹣84(1)2(m+1)﹣()mm+1)(22y+12xy+9)4xy(3222﹣6)﹣x15x.﹣6)(+2((4)22﹣2mn=2mn(2m﹣4)4mn﹣8mnn﹣1);1【解答】解:(2(m+1)﹣(mm+1)(2)2﹣1)+1)(m=(m2(m﹣1)=(m+1);2y+12xy4)x+9y(32+12x+9)4=y(x2;+3)x(=y2精品文档.精品文档222﹣6)﹣15+2((4)(xx﹣6)22﹣6+5x)﹣3)=(x(﹣622﹣1)9)(=(xx﹣=(x+3)(x﹣3)(x+1)(x﹣1).÷的值.,求代数式×1)已知a﹣b=212.(=)解分式方程:+1(2.)原式=1【解答】解:(×(=a+b)(a﹣b))a=2(﹣b;当a﹣4×2=b=2时,原式=2(2)方程两边都乘x(x﹣1),得22,xx3+x=﹣解得x=3,检验:当x=3时,x(x﹣1)=6≠0,∴原分式方程的解为x=3..解方程:﹣18=0.13=t,则原方程可化为:【解答】解:设2,t18﹣3t﹣=0,即(t﹣0t+3)=6)(,3=﹣t=6,t解得21,3或6即==﹣=.或解得xx=﹣=都是原方程的解.x=﹣或x经检验,.先化简,再求值:,其中x满足x(x+1)=143(x+1).精品文档.精品文档÷解:原式=【解答】×=,=∵x(x+1)=3(x+1),(x+1)(x﹣3)=0,∴x=﹣1或x=3,2﹣1≠0,即又∵xx≠±1,∴x=3,∴原式==4..解分式方程:﹣.=15解:原方程即﹣=,【解答】两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.)÷,其中x﹣(=3.16.先化简,再求值:,÷﹣]【解答】解:原式=[,=×,×=,=时,原式=1=.3x=当172﹣..解方程【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,精品文档.精品文档检验:当x=3时,(x﹣3)=0,∴x=3是原分式方程的增根,原分式方程无解.=.解方程:.1+18【解答】解:方程两边同乘以(x﹣2)得,(x﹣2)+3x=6,解得;x=2,检验:当x=2时,x﹣2=0,∴x=2是原分式方程的增根,∴原分式方程无解.+=193.解分式方程:.【解答】解:去分母得:x﹣2=3x﹣3,=x,解得:=x是分式方程的解.经检验20.解分式方程.)(1.)(2,(1)【解答】解:分式方程的最简公分母为x(x+1),方程两边都乘以x(x+1)得:22=6x(x+1x(+1)+5x),化简得:4x=1,=,解得:x精品文档.精品文档=是原分式方程的解;x 经检验,),(2分式方程的最简公分母为(x+2)(x﹣2),方程两边都乘以(x+2)(x﹣2)得:22,)=(﹣16x)(x﹣2+2化简得:8x=﹣16,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解.精品文档.。

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)一、选择题(每小题3分,共30分)1.下列计算正确的是( )A.x+x²=x³B.x²・x³=x6C.(x³)²=x6D.x9÷x³=x³2.若12x m y2与13x3y n是同类项,则m,n的值为( )A.m=3,n=2B.m=2,n =3C.m=-3.n=2D.m=-2,n=33.下列因式分解不完全的是( )A.a²-2ab+b²=(a-b)²B.a³-a =a (a²-1)C.a²b-ab²=ab(a-b)D.a²-b²=(a+b)(a-b)4.已知(a +b)²=(a-b)²+M,则M为( )A.abB.2abC.-2abD.4ab5.下列多项式乘法中,能运用平方差公式的是()A.(a-b)(a-b)B.(a-b)(-a+b)C.(a+b)(-a+b)D.(a-b)(b-a)6.如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图的图形面积由以下哪个公式表示( )A.a²-b²=a(a-b)+b(a-b)B.(a-b)²=a²-2ab+b²C.(a+b)²=a²+2ab+b²D.a²-b²=(a+b)(a-b)8.若△ABC的三边a,b,c满足a²+b²+c²-ab-bc-ca=0,则△ABC是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形9.下列计算:①3a+2b=5ab;②3x³×(-2x²)=-6x5;③4a³b÷(-2a²b)=-2a;④(-a²)³=a6;⑤(-a)³÷(-a)=-a².其中正确的有( )A.1个B.2个C.3个D.4 个10.已知x+y=6,xy=8,下列结论:①(x+y)²=36;②x²+y²=20;③x-y=2;④x²y²=12.其中正确的是( )A.①②③④B.①②④C.①②D.①③④二、填空题(每小题3分,共18分)11.x平方x²+y²+2x-6y+10=0,则x・y=_________12.当x______时,(x-3)0=1.13.若x²+2(m-3)x+16是一个完全平方式,那么m应为_________.14.若x-1x =1,则x²+1x2的值是__________.15.观察下列关于自然数的等式:①3²-4X1²=5;②5²-4X2²=9;③7²-4X3²=13.根据上述规律解决下列问题:(1)完成第四个等式:____________________;(2)写出你猜想的第n个等式_____________________(用含n的式子表示).16.已知a,b满足等式x=a²+b²+5,y=2(2b-a),则x,y的大小关系为______________.三、解答题(72分)17.(10分)计算下列各题.(1)-2a²bx(−12ab2)x(-abc);(2)(5x-3)(-5x-3)-(5x+3)²+(5x-3)².18.(12分)分解因式。

整式的乘除与因式分解测试题及答案

整式的乘除与因式分解测试题及答案

整式的乘除与因式分解测试题及答案整式的乘除与因式分解测试题及答案题目:1.(4分)下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6 2.(4分)(x﹣a)(x2+ax+a2)的计算结果是()A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a33.(4分)下面是某同学在一次检测中的计算摘录:①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2其中正确的个数有()A.1个B.2个C.3个D.4个4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是()A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+15.(4分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为()A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab答案:1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

1923992分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;B、应为a4÷a=a3,故本选项错误;C、应为a3a2=a5,故本选项错误;D、(﹣a2)3=﹣a6,正确.故选D.点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.2.考点:多项式乘多项式。

《整式的乘法与因式分解》单元测试卷(含答案)

《整式的乘法与因式分解》单元测试卷(含答案)

《整式的乘法与因式分解》单元测试卷(时间:120分钟满分:150分)一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×10174.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±15.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 06. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 667.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=38.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3二、填空题9.若x+=3,分式(x-)2=________.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.11.已知8×2m×16m=211,则m的值为____.12.若27m÷9÷3=321,则m=_____.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.16.计算(﹣A 2B )3=__.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.18.计算:(x+3)(x-5)-x(x-2).19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?参考答案一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B[答案]B[解析]大正方形的面积=(A -B )2,还可以表示为A 2-2A B +B 2,∴(A -B )2=A 2-2A B +B 2.故选B .2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B[答案]A[解析][分析]先将式子展开,再根据展开后的式子求m和n.[详解](x-A )(x+B )=x2+mx+n故选A[点睛]此题重点考察学生对整式乘法的理解,整式乘法的法则是解题的关键.3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×1017[答案]D[解析]试题分析:根据题意得:第⑧个式子为5555555552-4444444452=(555555555+444444445)×(555555555-444444445)=1.1111111×1017.故选D .考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±1[答案]B[解析]试题分析:根据同底数幂相乘除和幂的乘方,直接计算可得x m+1x m-1÷(x m) 2=1.故选:B点睛:此题主要考查了幂的运算性质,解题时直接应用幂的运算性质,再根据幂的混合运算的顺序计算即可.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.5.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 0[答案]B[解析][分析]先把27x×9y 进行转换再求值.[详解]故选B[点睛]此题重点考察学生对整式乘法的应用,根据规律化简是解题的关键.6. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 66[答案]B[解析]试题分析:归纳总结得到展开式中第三项系数即可.解:解:(A +B )2=A 2+2A B +B 2;(A +B )3=A 3+3A 2B +3A B 2+B 3;(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4;(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5;(A +B )6=A 6+6A 5B +15A 4B 2+20A 3B 3+15A 2B 4+6A B 5+B 6;(A +B )7=A 7+7A 6B +21A 5B 2+35A 4B 3+35A 3B 4+21A 2B 5+7A B 6+B 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(A +B )10的展开式第三项的系数为45.故选B .考点:完全平方公式.[此处有视频,请去附件查看]7.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=3 [答案]C[解析]试题解析:∵(x-5)(2x-n)=2x2+mx-15,∴2x2+(-n-10)x-5n=2x2+mx-15∴5n=-15,-n-10=m,解得:n=-3,m=7,故选C .[点睛]此题主要考查了因式分解法的应用,正确得出各项对应相等是解题关键.8.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3[答案]C[解析][分析]先用整式乘法将式子展开,再根据展开式中不含的要求求出k的值.[详解](y2-ky+2y)(-y)=要使展开式中不含的项,则故选C[点睛]此题重点考察学生对整式乘法的理解,因式分解是解题的关键.二、填空题9.若x+=3,分式(x-)2=________.[答案]5[解析]因为x+=3,(x-)2=x2-2+()2= x2-2+()2+4-4= x2+2+()2-4=(x-)2-4=9-4=5.故答案是:5.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.[答案]-32[解析][分析]先化简再把A =-2带入求值.[详解]:解:(B -A )(A +B )(A 2+B 2)-(A 4+B 4)= (B 2-A 2)(A 2+B 2)-(A 4+B 4)=(B 4-A 4) -(A 4+B 4)=-2A 4∵A =-2,∴原式=-2×(-2)4=-32.故答案为:-32.[点睛]此题重点考察学生对整式乘法的理解,会正确使用平方差公式是解题的关键.11.已知8×2m×16m=211,则m的值为____.[答案][解析][分析]先把式子左边化简成2n的形式,即可求得m的值.[详解]8×2m×16m=211故答案为[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.12.若27m÷9÷3=321,则m=_____.[答案]8[解析][分析]先把式子左边化简成3n的形式,即可求得m的值.[详解]27m÷9÷3=321故答案为8[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).[答案](A +B )2-4A B[解析][分析]根据图形先求出大正方形的面积,然后再减去四个长方形的面积.[详解]小正方形的边长为:(A -B ),∴面积为(A -B )2,小正方形的面积=大正方形的面积-4×长方形的面积=(A +B )2-4A B故答案为(A +B )2-4A B[点睛]此题重点考察学生对整式乘法中完全平方公式的理解,关键公式计算小正方形面积是解题的关键. 14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.[答案](B -2n)(A -m)[解析][分析]利用平移的方法先找出空地的长和宽,再计算面积即可.[详解]利用平移的方法可知:空地长为A -m,宽为B -2n,图中空地面积用含有A 、B 、m、n的代数式表示是(B -2n)(A -m)[点睛]解题的关键在于找到空地的长和宽,再利用长方形面积计算公式列出式子.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.[答案] (1). (1)-(x2-x);(2). (2)-(2xy2-3x2-2y2);(3). (3)-(A 3-2A 2+A -1);(4). (4)-(3x2y2+2x3-y3).[解析][分析]要使(1)(2)(3)(4)的最高次项系数变为正数,仔细观察每个最高次项系数都是负数,则直接在整个式子前加负号即可.[详解](1)-x2+x=-(x2-x);(2)3x2-2xy2+2y2=-(2xy2-3x2-2y2);(3)-A 3+2A 2-A +1=-(A 3-2A 2+A -1);(4)-3x2y2-2x3+y3=-(3x2y2+2x3-y3);故答案为(1)-(x2-x);(2)-(2xy2-3x2-2y2);(3)-(A 3-2A 2+A -1);(4)-(3x2y2+2x3-y3).[点睛]此题重点考察学生对多项式最高次数项的认识,抓住最高次项系数为正数是解题的关键.16.计算(﹣A 2B )3=__.[答案]−A 6B 3[解析][分析]根据积的乘方的运算方法:(A B )n=A n B n,求出(-A 2B )3的值是多少即可.[详解](-A 2B )3=(−)3⋅(A 2)3⋅B 3=−A 6B 3.故答案为:−A 6B 3.[点睛]本题考查了幂的乘方与积的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方的运算法则.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.[答案]224.[解析][分析]先把A =2,n=3带入x=3A n,y=-A 2n-1求出x和y,再带入A n x-A y计算即可.[详解]A n x-A y=A n×3A n-A ×(-A 2n−1)=3A 2n+A 2n=A 2n∵A =2,n=3,∴A 2n =×26=224.[点睛]此题重点考察学生对整式乘法的应用能力,熟练整式乘法法则是解题的关键.18.计算:(x+3)(x-5)-x(x-2).[答案]-15.[解析][分析]先利用整式乘法进行展开,再合并同类项进行计算.[详解]原式=x2-5x+3x-15-x2+2x=-15.[点睛]此题重点考察学生对整式乘法的应用,熟悉整式乘法是解题的关键.19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.[答案](1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)216.[解析]试题分析:(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(A +B )(A -B )=A 2-B 2;(3)从左到右依次利用平方差公式即可求解.试题解析:(1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.[点睛]运用了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?[答案]天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.[解析][分析]根据题意直接列式解答即可,注意整式乘法的运算法则.[详解]依题意得(3.4×102)×22÷(5×102)=3.4×22÷5=14.96.答:天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?[答案]至少要1.35×107mm2的铁皮.[解析][分析]求出正方体表面积即可知道需要多少铁皮.[详解]正方体的表面积为6×(1.5×103)2=6×2.25×106=1.35×107mm2.答:至少要1.35×107mm2的铁皮.[点睛]此题重点考察学生对整式乘法的实际应用能力,会计算正方体表面积是解题的关键.。

八年级数学整式的乘法与因式分解检测题(WORD版含答案)

八年级数学整式的乘法与因式分解检测题(WORD版含答案)

八年级数学整式的乘法与因式分解检测题(WORD 版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.2.下列能用平方差公式分解因式的是( )A .21x -B .()21x x +C .21x +D .2x x - 【答案】A【解析】根据平方差公式:()()22a b a b a b -=+-,A 选项:()()2111x x x -=+-,可知能用平方差公式进行因式分解.故选:A.3.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( )A .3-B .5-C .7D .17-【答案】A【解析】【分析】首先根据3x =-时,多项式33ax bx x ++=,找到a 、b 之间的关系,再代入3x =求值即可.【详解】当3x =-时,33ax bx x ++=327333ax bx x a b ++=---= 2736a b ∴+=-当3x =时,原式=2733633a b ++=-+=-故选A.【点睛】本题考查代数式求值问题,难度较大,解题关键是找到a 、b 之间的关系.4.把多项式(3a-4b )(7a-8b )+(11a-12b )(8b-7a )分解因式的结果( )A .8(7a-8b )(a-b )B .2(7a-8b )2C .8(7a-8b )(b-a )D .-2(7a-8b )【答案】C【解析】把(3a-4b)(7a-8b)+(11a-12b)(8b-7a)运用提取公因式法因式分解即可得(3a-4b)(7a-8b)+(11a-12b)(8b-7a)=(7a-8b)(3a-4b-11a+12b)=(7a-8b)(-8a+8b)=8(7a-8b)(b-a).故选C.5.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.6.把228a -分解因式,结果正确的是( )A .22(4)a -B .22(2)a -C .2(2)(2)a a +-D .22(2)a +【答案】C【解析】【分析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】 228a -=22(4)a -=2(2)(2)a a +-,故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.7.边长为a ,b 的长方形周长为12,面积为10,则a 2b +ab 2的值为( )A .120B .60C .80D .40【答案】B【解析】【分析】直接利用提取公因式法分解因式,进而求出答案.【详解】解:∵边长为a ,b 的长方形周长为12,面积为10,∴a +b =6,ab =10,则a 2b +ab 2=ab (a +b )=10×6=60.故选:B .【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.8.下面计算正确的是( )A .33645x x x +=B .236a a a ⋅=C .()4312216x x -=D .()()22222x y x y x y +-=- 【答案】C【解析】【分析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=35x ,错误;B.原式=5a ,错误;C.原式=1216x ,正确;D.原式=224x y -,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.9.下列因式分解正确的是( )A .()()2444x x x -=+- B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()22212x x x x -+=-+ 【答案】C【解析】【分析】根据因式分解的定义及方法逐项分析即可.【详解】A. ()()2422x x x -=+-,故不正确; B. 221x x +-在实数范围内不能因式分解,故不正确;C. ()()()222x 2x 2=12x 1x 1--=+-,正确; D. ()22212x x x x -+=-+的右边不是积的形式,故不正确; 故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.10.已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a【答案】C【解析】【分析】根据幂的乘方可得:a =69=312,c =527=315,易得答案. 【详解】因为a =69=312,b =143,c =527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【答案】20【解析】【分析】【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.12.若m+1m =3,则m 2+21m =_____. 【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.13.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.14.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.16.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.【答案】70.【解析】【分析】由周长和面积可分别求得a+b 和ab 的值,再利用因式分解把所求代数式可化为ab (a+b ),代入可求得答案【详解】∵长、宽分别为a 、b 的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10, ∴a 2b+ab 2=ab (a+b )=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab (a+b )是解题的关键.17.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+19.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x 2+2x =3代入即可得答案.【详解】原式=x 2+2x+1-(x 2-4)+x 2=x 2+2x+1-x 2+4+x 2=x 2+2x+5.∵x 2+2x =3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.分解因式:32231827m m n mn -+=____________________【答案】23(3)m m n -【解析】【分析】先提公因式3m ,然后再利用完全平方公式进行分解即可得.【详解】3322m 18m n 27mn -+=3m(m 2-6mn+9n 2)=3m(m-3n)2,故答案为:3m(m-3n)2.【点睛】本题考查了提公因式法与公式法的综合运用,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。

整式的乘法与因式分解及分式乘除dxq

整式的乘法与因式分解及分式乘除dxq

《整式的乘法与因式分解及分式乘除》测试(校本作业周末11)董秀钦班级 姓名 座号 分数一、选择题(每题2分,共20分)1.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ).①3x 3·(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ;③(a 3)2=a 5;④(-a )3÷(-a )=-a2.A .1个B .2个C .3个D .4个 2.在2a b -,(3)x x x +,5πx +,a b a b+-中,是分式的有( ). A .1个 B .2个 C .3个 D .4个3.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( ).A .()1+xB .()1+-xC .xD .()2+-x4.分式22x y x y -+有意义的条件是( ). A .x ≠0 B .y ≠0 C .x ≠0或y ≠0 D .x ≠0且y ≠05.下列分式中,计算正确的是( ).A .2()23()3b c a b c a +=+++B .222a b a b a b +=++C .22()1()a b a b -=-+ D .2212x y xy x y y x -=--- 6.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ).A .-3B .3C .0D .1 7. 44221625)(______)45(b a b a -=+-括号内应填( )A.2245b a -B.2245b a +C.2245b a +-D.2245b a --8.下列各式是完全平方式的是() A .214x + B. 214x x -+ C.22a ab b ++ D.221x x +- 9若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为( )(A )5 (B )25 (C )25 (D )10 10..对于任何整数..n ,多项式22)3()7(--+n n 的值都能( ). A .被24n +整除 B .被2n +整除 C .被20整除 D .被10整除和被24n +整除二、填空题(每题2分,共12分)11.(1)201()3π+= (2)()201720182 1.53⎛⎫-⨯= ⎪⎝⎭12.分式12x ,212y ,15xy-的最简公分母为 13.已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .14.已知x =2 015,y =2 016,则(x +y )·2244x y x y+-=__________. 15.能使分式122--x x x 的值为零的所有x 的值是__________ 16.若a 2+b 2+c 2=ab +bc +ca .则a 、b 、c 大小关系是________17、计算(每题5分,共30分)(1)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2) (2)[(x +y )2-(x -y )(-x -y )]÷(2x ).(3) (2a-b-c)2 (4) (2a-3b-4c)(2a+3b+4c)(5)42222a b a a ab ab a b a --÷+- (6)(-y x )2·(-32yx )3÷(-y x )418.因式分解(每题5分,共20分)(1)4a 2-64a 4 (2) 212()4()a b x y ab y x ---(3) -2a 3+12a 2-18a ; (4) (x +y )2+2(x +y )+1.19、(6分)已知x -3y =0,求2222x y x xy y +-+·(x -y )的值.20、(6分)已知2410a a --=,求(1)1a a -;(2)21()a a+.21、(6分)观察下列等式:12×231 =132×21;13×341 =143×31;23×352 =253×32;34×473 =374×43;……以上每个等式中: 两边的数字是分别对称的,且每个等式中的两位数与三位数具有相同的组成规律,我们称这类等式为“数字对称等式”.根据上述各式反映的规律填空,使式子成为“数字 对称等式”:(1)52×______=______×25;(2)_______×396 =693×_______.设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a+b ≤9,写出表示“数字对称等式”一般规律的式子(含a 、b ),并证明.22. (10 分)如图,已知等腰直角△ABC 中,∠A=90°,AB=AC,以BC 为边在点A 的另一侧作等边△BCD,点F,G分别在线段BC,BD 上,∠CDF=15°,且CF=BG,CG 与DF 相交于点H,延长DF 交AC 于E (1)求证:△EHC 是等边三角形(2)①求证:BE=D H; ②试判断线段AE 和DH 的数量关系,并说明理由(3)若点M 是AC 边上的动点,AB=a,AE=b,BC=c,求△BMD 周长的最小值(结果用含a,b,c 的整式表示)。

人教八年级上整式的乘法、因式分解、分式

人教八年级上整式的乘法、因式分解、分式

八年级第四、五单元检测姓名: 班级:一、选择题(共6题,每题3分)1、在x 1、21、212+x 、πxy 3、y x +3、ma 1+中,分式的个数有( ) A 1个 B 3个 C 4个 D 5个2、下列计算正确的是( )A .x 2·x 2=2x 4B .(-2a)3= -8a 3C .(a 3)2=a 5D . m 3÷m 3=m3、已知(x+m )(x+n )=x 2-3x-4,则m+n 的值为( )A .1B .-1C .-2D .-34、可以用平方差公式进行计算的是( )A .(3a+2b )(-3a+3b )B .(3a-2b )(-3a+2b )C .(3a+2b )(-3a+2b )D .(-3a-2b )(3a+2b ) 5、化简93m 22--m m的结果是 A.3m +m B. 3m +m C. 3m m D.m 3m 6、甲乙两工程队完成一项过程,甲队独做m 天完成,乙队独做n 天完成。

若两 队合做则所需天数是( )A 、 12n m +B 、 n m 11+C 、mn n m +D 、nm mn + 二、填空(共8题,每题3分)6、1纳米=0.000000001米,则2.5纳米用科学记数法表示为7、计算()()=-+⎪⎭⎫ ⎝⎛+--01214.3211π . 8、当x 时,分式131-+x x 有意义,当x 时,分式112--x x 的值等于0。

9、已知a 、b 均为实数且,7,5==+ab b a 则a 2+b 2= .10、分解因式:=+-2232ab b a a . 11、计算:(-4x )2÷8x= .12、计算:−2x (x 2−21x +3)= 13、多项式291x +加上一个单项式后,能成为一个完全平方式,那么加上的单项式可能是 .三、解答题14计算 (本题10分)(1)(3x-2)(x+4) (2) (x+2)2-(x+2)(x-2).15、(本题5分)先化简,再求值,x x y x y y x 2]8)2()[(2÷-+-+,其中x =-2 .16、解方程(本题10分)(1)223-x +x -11 =3. (2)482222-=-+-+x x x x x17、(本题5分)先化简,再求值,22211a a a --+-÷22221a a a a --+(其中a=5)18、(本题6分)乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,如果将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).19、(本题8分)A 、B 两地相距100公里,甲骑电瓶车由A 往B 出发,1小时30分钟后,乙开着小汽车也由A 往B .已知乙的车速为甲的车速的2.5倍,且乙比甲提前1小时到达,求两人的速度各是多少?20、(本题8分)如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.21、(本题6分)利用网格线用三角尺画图,(1)在图中找一点O,使得OA=OB=OC;(2)在AC上找一点P,使得P到AB、BC的距离相等;(3)在射线BP上找一点Q,使得QA=QC.。

人教版八年级数学上册 第十四章 整式的乘法与因式分解 单元测试卷(2024年秋)

人教版八年级数学上册 第十四章 整式的乘法与因式分解 单元测试卷(2024年秋)

人教版八年级数学上册第十四章整式的乘法与因式分解单元测试卷(2024年秋)一、选择题(每小题3分,共30分)1.计算:8xy3·-1432=()A.2x4y5B.-2x4y5C.2x3yh6D.-2x3y5 2.[母题教材P118例5]多项式x2-4x+4因式分解的结果是() A.x(x-4)+4B.(x+2)(x-2)C.(x-2)2D.(x+2)2 3.[2024西安灞桥区模拟]计算(12x3-18x2-6x)÷(-6x)的结果为()A.-2x2+3x B.-2x2-3xC.-2x2-3x-1D.-2x2+3x+14.要使多项式(x+p)(x-q)不含x的一次项,则p与q的关系是() A.相等B.互为相反数C.互为倒数D.乘积为-15.[母题教材P104习题T1]下列各式计算正确的是() A.a2·a3=a6B.a6÷a3=a2C.(-2ab2)3=-8a3b6D.2a2+3a3=5a5 6.[2024泰安期末]当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为()A.16B.8C.-8D.-16 7.若10a×100b=10000,则a+2b=()A.1B.2C.3D.48.若式子(x+2)(x-1)-(x+2)能因式分解成(x+m)(x+n),则mn的值是()A.2B.-2C.-4D.49.某同学在计算-3x加上一个多项式时错将加法做成了乘法,得到的答案是3x3-3x2+3x,由此可以推断出正确的计算结果是() A.x2+2x-1B.-x2-2x-1C.-x2+4x-1D.x2-4x+110.224-1可以被60和70之间某两个数整除,这两个数是() A.63,64B.63,65C.61,67B.61,65二、填空题(每小题3分,共15分)11.计算:(-1)2=.12.若x2-3mx+36是一个完全平方式,则m的值是.13.一个正方体的棱长是2×103cm,则这个正方体的体积为.14.[2024温州期中]已知(a+3)2=82,则(a+11)(a-5)的值为.15.3(22+1)(24+1)(28+1)…(232+1)+1计算结果的个位数字是.三、解答题(本大题共8个小题,满分75分)16.(8分)[2024盐城期中]因式分解:(1)m2-16n2;(2)xy4-6xy3+9xy2.17.(9分)[母题教材P112习题T4]先化简,再求值:[(2x-y)2-(3x +y)(3x-y)+5x2]÷(-2y),其中x=-12,y=1.18.(9分)若x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,试确定m,n的值.19.(9分)[2024扬州邗江区期中](1)已知a m=2,a n=5,求a2m+n的值;(2)如果2x+2+2x+1=24,求x的值.20.(9分)[情境题生活应用]某种植基地有一块长方形实验田和一块正方形实验田,长方形实验田每排种植(3a-b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a +b)排,其中a>b>0.(1)长方形实验田比正方形实验田多种植多少株豌豆幼苗?(2)当a=4,b=3时,长方形实验田比正方形实验田多种植多少株豌豆幼苗?21.(9分)[新视角新定义题]如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)试说明“神秘数”能被4整除;(2)两个连续奇数的平方差是“神秘数”吗?试说明理由.22.(11分)[新考法阅读类比题]先阅读下面的内容,再解决问题.例题:若m2+2mn+2n2-6n+9=0,求m和n的值.解:∵m2+2mn+2n2-6n+9=0,∴m2+2mn+n2+n2-6n+9=0.∴(m+n)2+(n-3)2=0.∴m+n=0,n-3=0,解得m=-3,n=3.(1)若x2+2y2-2xy-4y+4=0,求x y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c的取值范围.23.(11分)知识生成:我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如:由图①可以得到(a+b)2=a2+2ab +b2,基于此,请解答下列问题:直接应用:(1)若xy=5,x+y=7,直接写出x2+y2的值为;类比应用:(2)填空:①若x(4-x)=2,则x2+(x-4)2=;②若(x-3)(x-5)=2,则(x-3)2+(x-5)2=;知识迁移:(3)如图②,一农家乐准备在原有长方形用地(即长方形ABCD)上进行装修和扩建,先用长为120m的装饰性篱笆围起该长方形用地,再以AD,CD为边分别向外扩建正方形ADGH、正方形DCEF两块空地,并在这两块正方形空地上建造功能性花园,该功能性花园面积和为2000m2,求原有长方形用地ABCD的面积.答案1.B2.C3.D4.A5.C6.D7.D8.C9.B 10.B【点拨】224-1=(212-1)(212+1)=(26-1)(26+1)(212+1)=63×65×(212+1),则这两个数是63与65.二、11.212.±413.8×109cm314.1815.6三、16.【解】(1)m2-16n2=m2-(4n)2=(m+4n)(m-4n).(2)xy4-6xy3+9xy2=xy2(y2-6y+9)=xy2(y-3)2.17.【解】原式=(4x2-4xy+y2-9x2+y2+5x2)÷(-2y)=(2y2-4xy)÷(-2y)=-y+2x.当x=-12,y=1时,原式=-1+2×1-1=-2.18.【解】(x-1)(x2+mx+n)=x3+mx2+nx-x2-mx-n=x3+(m-1)x2+(n-m)x-n.∵x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,即x3-5x2+10x -6=x3+(m-1)x2+(n-m)x-n恒成立,∴n=6,m-1=-5,解得m=-4.∴m=-4,n=6.19.【解】(1)∵a m=2,a n=5,∴a2m+n=a2m·a n=(a m)2·a n=22×5=20.(2)∵2x+2+2x+1=2x·22+2x·2=4×2x+2×2x=6×2x,∴6×2x=24.∴2x=4=22.∴x=2.20.【解】(1)由题意,得(3a-b)(3a+b)-(a+b)2=9a2-b2-a2-2ab-b2=(8a2-2ab-2b2)(株).答:长方形实验田比正方形实验田多种植(8a2-2ab-2b2)株豌豆幼苗.(2)当a=4,b=3时,8a2-2ab-2b2=8×42-2×4×3-2×32=128-24-18=86.答:长方形实验田比正方形实验田多种植86株豌豆幼苗.21.【解】(1)设两个连续的偶数分别为2k,2k+2(k为整数),则由题意得(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=2(4k+2)=4(2k+1),∴“神秘数”能被4整除.(2)两个连续奇数的平方差不是“神秘数”.理由如下:设两个连续的奇数分别为2k-1,2k+1(k为整数),则(2k+1)2-(2k-1)2=8k,而由(1)知“神秘数”是4的奇数倍,不是偶数倍,但8k是4的偶数倍,∴两个连续奇数的平方差不是“神秘数”.22.【解】(1)∵x2+2y2-2xy-4y+4=x2-2xy+y2+y2-4y+4=(x-y)2+(y-2)2=0,∴x-y=0,y-2=0,解得x=2,y=2.∴x y =22=4.(2)∵a2+b2=10a+8b-41,∴a2-10a+25+b2-8b+16=0.∴(a-5)2+(b-4)2=0.∴a-5=0,b-4=0,解得a=5,b=4.∵c 是△ABC中最长的边,∴5≤c<9.23.【解】(1)39(2)①12②8(3)设AB=x m,BC=y m,则2(x+y)=120,∴x+y=60.由题意,得x2+y2=2000,∴xy=(+)2−(2+2)2=3600-20002=800.∴原有长方形用地ABCD的面积为800m2.。

分式、因式分解整式乘除综合知识点及练习

分式、因式分解整式乘除综合知识点及练习

基础知识1.同底数幂的乘法:,(m,n 都是正整数),即同底数幂相乘,底数不变,指mnm na a a +=g 数相加。

2.幂的乘方:,(m,n 都是正整数),即幂的乘方,底数不变,指数相乘。

()m nmn a a=3.积的乘方:,(n 为正整数),即积的乘方,等于把积的每一个因式分别乘()n n nab a b =方,再把所得的幂相乘。

4.整式的乘法:(1)单项式的乘法法则:一般地,单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式乘多项式法则:单项式与多项式相乘,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加.可用下式表示:m (a +b +c )=ma +mb +mc (a 、b 、c 都表示单项式)(3)多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.5.乘法公式:(1)平方差公式:平方差公式可以用语言叙述为“两个数的和与这两个的差积等于这两个数的平方差”,即用字母表示为:(a +b )(a -b )=a 2-b 2;其结构特征是:公式的左边是两个一次二项式的乘积,并且这两个二项式中有一项是完全相同的,另一项则是互为相反数,右边是乘式中两项的平方差.(2)完全平方公式:完全平方公式可以用语言叙述为“两个数和(或差)的平方,等于第一数的平方加上(或减去)第一数与第二数乘积的2倍,加上第二数的平方”,即用字母表示为:(a +b )2=a 2+2ab +b 2;(a -b )2=a 2-2ab +b 2;其结构特征是:左边是“两个数的和或差”的平方,右边是三项,首末两项是平方项,且符号相同,中间项是2ab ,且符号由左边的“和”或“差”来确定. 在完全平方公式中,字母a 、 b 都具有广泛意义,它们既可以分别取具体的数,也可以取一个单项式、一个多项式或代数式(3)添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都变号。

人教版八年级上册第十四章 整式的乘法与因式分解 单元检测(含答案解析)

人教版八年级上册第十四章 整式的乘法与因式分解 单元检测(含答案解析)

人教版八年级上册第十四章整式的乘法与因式分解一、单选题1.(2020八下·丹东期末)下列各式中从左到右的变形中,是因式分解的是()A. m(a+b+c)=ma+mb+mcB. x2+6x+36=(x+6)2C. a2−b2+1=(a+b)(a−b)+1D. 10x2−5x=5x(2x−1)2.(2020七下·汉中月考)计算(-2a)2-3a2的结果是()A. -a2B. a2C. -5a2D. 5a23.(2020·河北)对于① x−3xy=x(1−3y),② (x+3)(x−1)=x2+2x−3,从左到右的变形,表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解4.(2020七下·株洲开学考)下面式子从左边到右边的变形中是因式分解的是()A. (x+1)2=x2+2x+1B. x2+3x−16=x(x+3)−16C. (x+1)(x−1)=x2−1D. x2−16=(x+4)(x−4)5.(2021七下·阜南期末)计算a•a5−(2a3)2的结果为()A. a6−2a5B. −a6C. a6−4a5D. −3a66.(2020七下·汉中月考)下列计算正确的是()A. x2+3x2=4x4B. x2y⋅2x3=2x4yC. (6x2y2)÷(3x)=2x2D. (−3x)2=9x27.(2020七下·越城期中)已知2a=3,8b=6,22a﹣3b+1的值为()A. 3B. 32C. 2D. 58.(2019八下·鼓楼期末)计算3×((2018−√20182−12×20192×3)2﹣2018×(2018−√20182−12×20192×3)+1的结果等于()A. ﹣2017B. ﹣2018C. ﹣2019D. 20199.(2020七下·滨湖期中)任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s⩽t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=p q.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)=3 6=12,给出下列关于F(n)的说法:① F(2)=12;② F(48)=13;③ F(n2+n)=nn+1;④若n是一个完全平方数,则F(n)=1,其中正确说法的个数是()A. 4B. 3C. 2D. 110.(2019七下·丹阳期中)已知实数x、y满足等式:3x2+4xy+4y2﹣4x+2=0,则x+y的值为()A. 2B. −12C. ﹣2 D. 12二、填空题11.(2020七下·泰兴期中)已知32×9m×27=321,求m=________.12.(2020七下·溧阳期末)(-2020)0=________.13.(2020·上虞模拟)因式分解:a²-9b²=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

胜利中学八年级数学(上)
整式的乘法与因式分解和分式测试题
时间:120分钟 满分:120分
一、选择题(3x10=30)
1.下列计算中正确的是( ).
A .a 2+b 3=2a 5
B .a 4÷a =a 4
C .a 2·a 4=a 8
D .(-a 2)3=-a 6 2.(x -a )(x 2+ax +a 2)的计算结果是( ).
A .x 3+2ax 2-a 3
B .x 3-a 3
C .x 3+2a 2x -a 3
D .x 3+2ax 2+2a 2-a 3 3.下面是某同学在一次测验中的计算摘录:①3x 3·(-2x 2)=-6x 5;②4a 3b÷(-2a 2b)=-2a ;③
(a 3)2=a 5;④(-a)3÷(-a)=-a 2.其中正确的个数有( ).
A .1个
B .2个
C .3个
D .4个
4.已知被除式是x 3+2x 2-1,商式是x ,余式是-1,则除式是( ). A .x 2+3x -1 B .x 2+2x C .x 2-1
D .x 2-3x +1 5.下列各式是完全平方式的是( ).
A .x 2-x +14
B .1+x 2
C .x +xy +1
D .x 2+2x -1 6.把多项式ax 2-ax -2a 分解因式,下列结果正确的是( ).
A .a (x -2)(x +1)
B .a (x +2)(x -1)
C .a (x -1)2
D .(ax -2)(ax +1)
7.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A .-3
B .3
C .0
D .1 8.若3x =15,3y =5,则3x -y 等于( ). A .5 B .3 C .15 D .10
9.下列计算正确的是( )
A. ()()3242ab 4ab 2a b ⋅-=
B. 534215a b c 15a b=3b c -÷
C. ()()3233xy x y x y ⋅-=-
D. ()()2323ab 3a b 9a b -⋅-=
10.一个长方体的长、宽、高分别为3x -4,2x 和x ,则它的体积等于( )
A. ()313x 42x=3x 4x 2-⋅-
B. 21x 2x=x 2
⋅ C. ()323x-42x x=6x 8x ⋅⋅- D. ()23x-42x=6x 8x ⋅-
二、填空题(7x3=21)
11.计算(-3x 2y )·(21
3xy )=__________;22()()33
m n m n -+--=__________。

12.计算:223()32
x y -
-=__________; (-a 2)3+(-a 3)2-a 2·a 4+2a 9÷a 3=__________。

13.若多项式x 2+ax +b 分解因式的结果为(x +1)(x -2),则a +b 的值为_____;若|a -2|+b 2-2b +1=0,则a =___,b =____。

14.已知a +1a =3,则a 2+21a
的值是______;当x _______时,(x -4)0=1。

15.若x x a 2,b 3==,则()3x ab = ;若()35m 11a a a ⋅=,则m 的值为 ;若a -b =1,a
b =-2,则()()a 1b-1+= 。

16.()2242a a 9a 39⎛
⎫--⋅- ⎪⎝⎭
= ;()()2222x y 1,x y 17,y =+=-=+则x ,x y = ; 17.在实数范围内分解因式:x 4-4= ;若9x 2+m x y +16y 2是一个完全平方式,则m 的值是 ;
三、解答题(本大题共69分)
18.计算:(17分) (1)xy x xy y x y ab
b b a a y x x y xy x y x b a b a ab b a ++++--÷---⋅-2222222222333)4(15253)3(4545)2(15522
(5) x 2-(x +2)(x -2)-(x +1x
)2 (6) [(x +y)2-(x -y)2]÷(2xy) (7) ()()5x 7y-35x+3-7y +
19.化简求值:(每小题3分,共6分)
(1)()()()2a b a b a b +-++,其中a =3,b =-1
3.(2)若2x -y =10,求()()()2
22x y x y 2y x y 4y ⎡⎤+--+-÷⎣⎦
的值.
20.将下列各式因式分解:(每小题3分,共12分)
(1)a 4-16 (2)()()2216a b 9a b --+ (3)x 2-1+y 2-2xy (4)()()()22
22m n 2m n m n +--+-.
21.解不等式组(方程):(13分)
(1) ()()()()()2x 2x-52x 3x -4x 1x 38x x 5x 52⎧>-⎪⎨+++>+--⎪⎩(2)1052112x x +--=2 (3)2233111x x x x +-=-+-
23.课堂上,李老师给大家出了这样一道题:当x=5-

时,求代数式22212211
x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?请写出具体的解题过程(4分).
24.已知分式2
42--x x ,求:当x 为何值时分式有意义?当x 为何值时,分式值为0?(6分)
25.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒
数比第一次买的盒数多2
5
,问他第一次在购物中心买了几盒饼干?(6分)
26.若a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.(5分)
附加题:在日常生活中,如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)·(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,请你写出用上述方法产生的密码.。

相关文档
最新文档