概率统计 第3章随机变量的数字特征1节

合集下载

概率论及数理统计随机变量的数字特征

概率论及数理统计随机变量的数字特征

X0 1 2 3 P 0.3 0.3 0.2 0.2
下面我们用计算机 进行模拟试验.
1 101 32 0 23 0
输入试验次数(即天数)n,计算机对小张的生产 情况进行模拟,统计他不出废品,出一件、二 件、三件废品的天数n0,n1,n2,n3 , 并计算
M (n )0n 01n 12n 23n 3 nn n n
k阶绝对中E(心 |X矩 E(X)|k)
其中 k 是正整数.
例1.设X的分布列为 X
0
1
1
1
P
24
求E1 1 X
解:
23
11 88
E( 1 )1 1 1 1 1 1 1 1 1X 210 411 812 813 67 96
例2. 设公共汽车起点站在每小时的10分,30分, 50分发车,一位不知发车时间的乘客,每 小时内到达车站的时间是随机的,求该乘客 在车站等车的数学期望。
30
60 50
60
10
设(X, Y)是二维随机变量, Z=g( X, Y ),则
EZE[g(X,Y)]
i1
g(xi, yj)pij,
j1
(X,Y)离散型
g(x, y)f(x, y)dxd,y(X,Y)连续型
当( X, Y )是离散型时:分布列为 P ( X x i Y y j) p ij i , j 1 , 2 ,
X~B(n,p),则X表示n重贝努里试验中的“成功” 次数.
若设
Xi
1 0
如第i次试验成功i=1,2,…,n
如第i次试验失败
则 X= X1+X2+…+Xn 因为 P(Xi =1)= p, P(Xi =0)= 1-p
E(Xi)= 1p0(1p)= p n

概率论随机变量的特征

概率论随机变量的特征
另: 随机变量函数 Y X 2的概率分布为:
Y X2 0
149
P(Y yi ) 0.25 0.40 0.25 0.10
EY 00.25 10.40 40.25 90.10 2.30
10
2020年10月21日3时50分
山东建筑大学理学院信息与计算科学教研室
概率论与数理统计
随机变量的数字特 征
EX Y
x
y
f
x,
y dxdy
xf x, ydxdy yf x, ydxdy =EX+ EY
推论: E n Xi n EXi .
i1 i1
16
2020年10月21日3时50分
山东建筑大学理学院信息与计算科学教研室
概率论与数理统计
随机变量的数字特

定理 若X、Y 独立,则有: EXY EX EY
频率
12 5 40 40 40
66 40 40
该班的平均成绩为:
85
85 40 40
421
421 40 40 40
351 50 2 68 5 72 6 75 6 80 8 85 5 90 4 96 2 1001
35
1
50
2
68
5
72
6
75
6
40
80
8
85
5
90
4
96
X1
1234
pX1 xi 0.4 0.3 0.2 0.1
EX1 1 0.4 2 0.3 3 0.2 4 0.1 2
5
2020年10月21日3时50分
山东建筑大学理学院信息与计算科学教研室
概率论与数理统计
(2)设随机变量 X 2 是取球次数,则

概率统计各章节总结

概率统计各章节总结

1
(
1
)
x 1 1e
x
0
x0 x0
a0
1
ba
b
1
x
第六章
常用统计量及抽样分布
2 ~ 2(n)
f
(x)
2n
1 2 (n
2)
n 1
x2 e
x 2
0
x0 x0
t ~ t(n)
t (x)
[(n 1)
2]
(1
x2
)
n1 2
(n 2) n n
F ~ F (n , n ) 1
2
(x)

布 F(x)
函 数
P(X x)
二维( X,Y )
边缘 X
关系
F(x, y)
FX (x) P(X x)
FX
(
x)
lim
y
F
(
x,
y
)
P(X x,Y y) P(X x,Y )


意 义
x
(x, y) ( X ,Y )
(X,Y) x
第三章


F(x)
pk F(x, y)
pij

pq npq
(b a)2 12
2 2
第五章
大数定律及中心极限定理
定理1
定理2
(贝努利)
定理3
(辛钦)
定理1
(林德)
定理2
(德莫弗)
X1, X 2 ,, X n ,相互独立
E( X k ) D( X k ) 2
1
n
n k 1
Xk
P
X1 , X 2 ,, X n ,相互独立

随机变量的数字特征

随机变量的数字特征

例 若随机变量X的概率密度为
f(x)(1 1x2), x
则称X服从柯西(Cauchy)分布。

|x|
f(x)d x (1| x|x2)dx 发散
所以柯西分布的数学期望不存在。
《医药数理统计方法》
§3.1
三、数学期望的性质
1、E(C)=C 2、E(CX)=C×E(X) 3、E(X±Y)=E(X)±E(Y)
n
n
3)设X1,X2,…,Xn相互独立,则 V(Xi)V(Xi)
i1
i1
V (1 n i n 1X i) n 1 2i n 1 V (X i) 1 n [1 n i n 1 V (X i)]
解:红细胞的变异系数为 C V(X1)4 0..1 27 98 16.965%
血红蛋白的变异系数为
10.2 C V(X2)117.68.673%
所以,血红蛋白的变异较大。
《医药数理统计方法》
§3.2
二、方差的性质
1、V(C)=0 证明:V(C)=E{[CE(C)]2} =E[(CC)2]=0
2、V(CX)=C2V(X) 证明:V(CX)=E{[CXE(CX)]2}
而 E (X 2 ) E (X X ) E (X )E (X ) 1 1 1
339
计算是错误的!!
《医药数理统计方法》
§3.2
§3.2 方差、协方差和相关系数
一、方差 二、方差的性质 三、其他数字特征
《医药数理统计方法》
§3.2
一、方差
例3.15 为了比较甲、乙两个专业射击运动 员的技术水平,令每人各射击5次,分别以 X1,X2表示他们射击的环数,结果如下:

E(X) xf(x)dx

概率论与数理统计第3章

概率论与数理统计第3章

试求常数a和b。
π F xlim F x a b 2 0 解: F lim F x a b π 1 x 2
1 1 a , b 2 π
P ( 2 4) P ( 2) P ( 2 4) 0.3 0.6 0.5 0.4
P ( 3) 1 P ( 3) 1 0.5 0.5
6
例3:设r.v. 的分布函数
F x a b arctan x
b a
因此求概率可从分布函数与密度函数两条途径入手。
5、密度的图像称分布曲线,相应有两个特征: ⑴ 曲线在x轴上方;
概率面积
y
f(x)分布曲线
⑵ 曲线于x轴之间的 面积是1。
x c o d
10
例4:设 的密度在[a,b]以外为0,在[a,b]内为
一常数 ,
, a x b f ( x) 0, 其它
x2 2
16
⑶ f(x)符合密度函数的两性质: ① f(x) > 0;②



f x d x 1。
x2 2
以标准正态分布为例, e
e d t e
t2 2 2 x2 2
d x 称为高斯积分。
dy
r2 2 0
从F(x)求f(x): f x F x 从f(x)求F(x): F x f t d t
x
9
4、对于连续型随机变量 ,
⑴ P a 0 ,即某指定点的概率为0; ⑵ Pa b Pa b
Pa b Pa b f x d x

概率论与数理统计课件:随机变量的数字特征

概率论与数理统计课件:随机变量的数字特征
随机变量的数字特征
首页 返回 退出
例7 (正态分布的数学期望)设 X ~ N( μ, σ 2 ), 求E(X).
解:
E(X) =
+
-
xf ( x )dx =
+
-
1
x
e
2πσ
( x - μ )2
2σ 2
dx
x-μ
, 则
令 t=
σ
E(X) =
+
-
t2
2
t2
+ 2
-
1
μ
( μ + t σ)
+
若级数 | g( xk ) | pk < + , 则 Y = g( X ) 的数学期望为
k =1
+
E(Y ) = E(g( X )) = g( xk ) pk
k =1
随机变量的数字特征
首页 返回 退出
定理4.2 (连续型随机变量函数的数学期望) 设连续型随
机变量X的概率密度函数为f(x),若
随机变量的数字特征
第一节 随机变量的数学期望
第二节 方差
第三节 协方差和相关系数
第四节 R实验
随机变量的数字特征
首页 返回 退出
第一节 随机变量的数学期望
一、离散型随机变量数学期望
二、连续型随机变量数学期望
二、随机变量函数的数学期望
三、数学期望的性质
随机变量的数字特征
首页 返回 退出2
§4.1随机变量的数学期望
P{X = xi } = pi , i = 1,2,
如果
+
| x
i
.
| pi < +

概率论与数理统计(叶慈南 刘锡平 科学出版社)第三章 随机变量(rv)的数字特征教程

概率论与数理统计(叶慈南 刘锡平 科学出版社)第三章 随机变量(rv)的数字特征教程

例:
10
x
X
~
f
(
x
)
=

6 2−

x 2

0
0< x<3 3 ≤ x < 4 ,求E(X)
其它
数学期望名称的由来
(分赌本问题)17世纪中叶,一位赌徒向法国数学家帕斯 卡(1623-1662)提出一个使他苦恼长久的分赌本问题: 甲、乙两赌徒赌技相同,各出赌注50法郎,每局中无平 局。他们约定,谁先赢三局,则得全部赌本100法郎。 当甲赢了二局、乙赢了一局时,因故要中止赌博。现问 这100法郎如何分才算公平?

E(
X
),
E( 1
1 +X
),
E(
X
2
)

例:设风速V ~ U (0, a ) ,又设飞机机翼受到的正压力 W = kV 2 (k > 0) , 求W 的数学期望。
21
例:设 X 的分布函数为
0
F
(
x)
=
1

a3 x3
x≤a x>a
(a > 0)
试求 E(2X + X 解:由题意得
2
)
2. 二项分布 X~B(n, p) E(X)=np
P{X
=
k} =
C
k n
pk (1 −
p)n−k
k = 0,1,...n
∑n
E(X) = k
n!
pk (1 − p)n−k
k=1 k!(n− k)!
14
5.指数分布 X~Exp(λ)
f
(
x)
=
λe
−λ

概率论与数理统计随机变量的数字特征课件

概率论与数理统计随机变量的数字特征课件

03
通过数值模拟方法可以直观地 展示随机变量的分布情况,帮 助理解概率论与数理统计中的 概念和理论。
06
总结与展望
主要内容回顾
随机变量的概念与分类
常见随机变量的性质与 分布
01
02
03
随机变量的数字特征: 均值、方差、协方差等
04
大数定律和中心极限定 理的应用
存在的问题与不足之处
学生对概念的理解不够深入 ,容易混淆不同概念之间的
掷骰子
假设掷一个六面体的骰子,每个数字出现的概率为1/6。通过数值模拟方法计算在掷n次骰子时,每个 数字出现的次数。
结果解释与讨论
01
对于投掷硬币的实例,当n逐 渐增大时,正面和反面出现的 次数逐渐接近,符合理论上的 期望值。
02
对于掷骰子的实例,当n逐渐 增大时,每个数字出现的次数 也逐渐接近理论上的期望值。
相关系数
相关系数是协方差与两个随机变量方差的比值, 用于衡量两个随机变量的线性相关程度。
意义
协方差和相关系数可以反映两个随机变量之间的 线性相关程度,正值表示正相关,负值表示负相 关,值为0表示无关。
03
随机变量的矩与特征
矩的定义
01
矩:对于实随机变量X,其k阶原点矩定义为E[X^k]
,k为非负整数。
概率论与数理统计随机变量 的数字特征课件
目 录
• 随机变量的基本概念 • 随机变量的期望值与方差 • 随机变量的矩与特征 • 随机变量的函数与变换 • 随机变量的数值模拟与实例分析 • 总结与展望
01
随机变量的基本概念
随机变量的定义
定义
设E是随机试验,S是样本空 间,对于E的每一个样本点e ,都有唯一的实数X(e)与之对 应,则称X(e)为随机变量。

概率论与数理统计教案-随机变量的数字特征

概率论与数理统计教案-随机变量的数字特征

概率论与数理统计教案-随机变量的数字特征教案章节一:随机变量的期望值教学目标:1. 理解期望值的定义及其性质。

2. 学会计算离散随机变量的期望值。

3. 学会计算连续随机变量的期望值。

教学内容:1. 期望值的定义及性质。

2. 离散随机变量的期望值的计算方法。

3. 连续随机变量的期望值的计算方法。

教学方法:1. 采用讲授法,讲解期望值的定义及其性质。

2. 采用案例分析法,分析离散随机变量和连续随机变量的期望值的计算方法。

3. 采用练习法,让学生通过练习巩固期望值的计算方法。

教学评估:1. 课堂练习:计算给定离散随机变量和连续随机变量的期望值。

2. 课后作业:布置相关习题,巩固学生对期望值的理解和计算能力。

教案章节二:随机变量的方差教学目标:1. 理解方差的定义及其性质。

2. 学会计算离散随机变量的方差。

3. 学会计算连续随机变量的方差。

教学内容:1. 方差的定义及其性质。

2. 离散随机变量的方差的计算方法。

3. 连续随机变量的方差的计算方法。

教学方法:1. 采用讲授法,讲解方差的定义及其性质。

2. 采用案例分析法,分析离散随机变量和连续随机变量的方差的计算方法。

3. 采用练习法,让学生通过练习巩固方差的计算方法。

教学评估:1. 课堂练习:计算给定离散随机变量和连续随机变量的方差。

2. 课后作业:布置相关习题,巩固学生对方差的理解和计算能力。

教案章节三:随机变量的标准差教学目标:1. 理解标准差的定义及其性质。

2. 学会计算离散随机变量的标准差。

3. 学会计算连续随机变量的标准差。

教学内容:1. 标准差的定义及其性质。

2. 离散随机变量的标准差的计算方法。

3. 连续随机变量的标准差的计算方法。

教学方法:1. 采用讲授法,讲解标准差的定义及其性质。

2. 采用案例分析法,分析离散随机变量和连续随机变量的标准差的计算方法。

3. 采用练习法,让学生通过练习巩固标准差的计算方法。

教学评估:1. 课堂练习:计算给定离散随机变量和连续随机变量的标准差。

随机变量的数字特征

随机变量的数字特征

求 X 的数学期望 EX 。
解 由连续型随机变量数学期望的定义,有
EX xf (x)dx
0
1
2
x 0dx+ x xdx+ x (2 x)dx x 0dx
0
1
2
1 x2dx+ 2 (2x x2 )dx 1.
0
1
三、随机变量函数的数学期望
定理 设 X 为随机变量,y g(x)为实函数,
EX 2 2EX 2 EX 2 EX 2 EX 2.
方差的性质: (1)D(C) 0;
(2)DX C D(X );
(3)DCX C2DX ;
x,
例3.6 设随机变量 X 的密度函数为 f (x) 2 x,
0,
0 x 1 1 x 2 . otherwise
求 X 的方差D(X ).
(1)设
X 为离散型随机变量,概率分布为
PX
xi
pi ,i
1, 2,
,
若 g(xi ) pi 绝对收敛,则 Eg(X ) 存在,且
i 1
E g( X )= g(xi ) pi.
i 1
(2)设 X为连续型随机变量,密度函数为 f (x) ,若
g(x)
f
(x)dx
绝对收敛,则
Eg(X )
存在,且
机变量 X 的方差,记为 D(X ) ,或 Var(X ) ,并称 D(X )
为 X 的标准差。
方差的计算:
考虑到方差实际上为随机变量函数的数学期望:g( X ) X EX 2,因此
若 X 为离散型随机变量,概率分布为 pi PX xi , i 1,2, ,则
D( X ) EX EX 2 xi EX 2 pi. i 1

大学文科数学-概率论-随机变量的数字特征

大学文科数学-概率论-随机变量的数字特征

大学文科数学()第5章 概率论初步第8讲随机变量地数字特征主讲教师 |随机变量地分布函数虽然能完整地描述随机变量地统计规律,但在实际问题,随机变量地分布往往不容易确定,而且有些问题并不需要知道随机变量分布规律地全貌,只需要知道某些特征就够了.例如:(1)考察LED灯管地质量时,随机变量表示灯管地寿命,但我们常常关注地是灯管地平均寿命,这说明随机变量地"平均值" 是一个重要地数量特征;(2)比较两台机床生产质量地高低,不仅要看它们生产地零件地尺寸是否合格(误差范围内),还需要考察每个零件尺寸与平均尺寸地偏离程度,只有偏离程度较小地才是精度高地,这说明随机变量与其"平均值"地偏离程度也是一个重要地数量特征.这些刻画随机变量某种特征地数量指标称为随机变量地数字特征,它们在理论与实践上都具有重要地意义.￿01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差Ὅ 定义5.18即￿简称(常数项)级数,记作如果给定一个数列则表达式叫作(常数项)无穷级数,其￿叫作级数地项叫作级数地首项,级数地第项叫作级数地通项或一般项.Ὅ 定义5.19级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿地前项与叫作级数地部分与,记作,即Ὅ 定义5.20若级数￿￿￿￿￿￿￿￿￿￿￿￿地部分与数列收敛于即￿则称级数￿￿￿￿￿￿￿￿￿￿￿￿￿收敛,其与为￿也称级数￿￿￿￿￿￿￿￿￿￿￿￿收敛于,记为￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿若级数地部分与数列发散,则称级数￿￿￿￿￿￿￿￿￿￿￿￿￿发散.利用极限地有关性质,可以得到收敛级数地基本性质:性质5.8(级数收敛地必要条件):如果级数 收敛,则.性质5.9:若级数 收敛于与,则级数 也收敛,其与为(为常数).性质5.10:如果级数 发散,当时,级数 也发散.性质5.11:如果级数 与 分别收敛于与与,则级数 也收敛,且其与为.性质5.12:如果级数 收敛, 发散,级数 发散.性质5.13:在级数去掉,加上或改变有限项,不会改变级数地敛散性.性质5.14:如果级数 收敛,则在不改变其各项次序地情况下,对该级数地项任意添加括号后所形成地级数仍收敛,且其与不变.性质5.15:如果加括号后所形成地级数发散,则原级数也发散.Ὅ 定义5.21若级数￿￿￿￿￿￿￿￿￿￿￿地每一项都是非负地,即,则称级数￿￿￿￿￿￿￿￿￿￿￿￿￿为正项级数.Ὅ 定义5.22数项级数或其,称为交错级数.相应地,正负项可以任意出现地级数称为任意项级数.Ὅ 定义5.23如果级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿各项地绝对值所构成地正项级数￿￿￿￿￿￿￿￿￿￿￿￿￿收敛,则称级数￿￿￿￿￿￿￿￿￿￿￿￿￿绝对收敛;如果级数￿￿￿￿￿￿￿￿￿￿￿￿￿收敛,而级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿发散,则称级数￿￿￿￿￿￿￿￿￿￿￿￿￿条件收敛.Ὅ 定理5.8若级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿绝对收敛,则级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿一定收敛.01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差Ὅ 例1解甲:乙:问:甲,乙两谁地技术好些?￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿甲,乙两工用相同地设备生产同一种产品,设两各生产10组产品,每组出现地废品件数分别记为废品件数与相应地组数记录如下:思路￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿从上面地统计记录很难立即看出结果,我们可以从两地每组平均废品数来评定其技术优劣.解甲地每组平均废品数为:乙地每组平均废品数为故从每组地平均废品数看,乙地技术优于甲.(件),(件),὎ 注题给出地是事件在10次试验发生地频率,当试验次数很大时,￿这个频率接近于发生地概率此时平均废品数可表示为:由此引入随机变量平均值地一般概念—数学期望.Ὅ 定义5.24设离散型随机变量地分布律为若级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿绝对收敛,则称其与为随机变量地数学期望,简称期望或均值,记为,即:὎ 注因此要求级数￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿绝对收敛,保证数学期望地唯一性.上述概念可推广至连续性随机变量地情形,有:￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿随机变量地数学期望完全由地分布律确定,不应受地可能取值地排列次序地影响,Ὅ 定义5.25设连续型随机变量地概率密度为,若积分绝对收敛,则称该积分值为随机变量地数学期望,简称期望或均值,记为,即Ὅ 例2解求下列离散型随机变量地数学期望:(1)￿(0-1)分布;￿￿￿￿￿￿￿￿￿￿(2)￿泊松分布.￿于是(1)￿设随机变量X 服从(0-1)分布,分布律如下:.￿于是(2)￿设随机变量服从参数为地泊松分布,即,则.Ὅ 例3解￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿求下列离散型随机变量地数学期望.￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿(1)￿￿指数分布;￿￿￿￿￿￿￿￿￿￿￿(2)￿￿正态分布￿.￿于是￿￿￿￿￿￿￿￿￿￿(1)￿￿设随机变量￿X￿服从参数为地指数分布,其概率密度为(2)￿￿设随机变量￿X￿服从正态分布,其概率密度为￿于是:Ὅ 例4解￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿一工厂生产地某种设备地寿命X (以年计)服从参数为1/4地指数分布,工厂规定:出售地设备若在售出一年之内损坏可予以调换.若工厂售出一台设备盈利100元,调换一台设备厂方需花费300元.求厂方出售一台设备净盈利地数学期望.因为服从参数为地指数分布,故分布函数为使用一年不损坏地概率为则一台设备在一年内损坏地概率为设￿表示出售一台设备地净盈利,则其分布律为:故￿(元)01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差在实际问题,常常需要求出随机变量函数地数学期望。

第三章 随机变量的数字特征

第三章 随机变量的数字特征
概率论
第三章 随机变量(向量)的数字特征
§3.1 随机变量的数学期望 §3.2 随机变量的方差 §3.3 协方差与相关系数
为了完整的描述随机变量的统计特性,自然应该知道 其分布函数,因为随机变量的分布函数可以反映随机变量 取值的规律。但是在实际问题中,一方面随机变量的分布 或分布函数并不都是容易求得的,另一方面,往往也不需 要知道随机变量的详尽的概率分布,而仅需要知道其某些
四、随机变量函数的数学期望 1. 一元随机变量函数的情况 设Y g( X )是随机变量 X的函数, (1)离散型
如果随机变量X 的概率函数为 P{ X xk } pk k 1, 2, 则有E (Y ) E[ g ( X )] g ( xk ) pk
k 1
(2)连续型
x2
1 n
Pk
n
… xi … 1 n
… xn … 1 n
E ( X ) x1 1 x2 1 ... xn 1 1 xi n n n n
i 1
2.两点分布 由数学期望的定义
E( X ) p
X pi
0
1
q
p
3. 二项分布 若随机变量 X ~ B(n, p) ,其概率函数为
xR
( x )2 2 2
1 E ( X ) xf ( x)dx xe 2 t2 (x ) 1 令t ( t )e 2 dt 2 t2 1 e 2 dt 2
dx
解:由上面的公式
1 1 2 E (W ) kv f (v)dv kv dv ka a 3 0
2 2 a
例3.6 设X与Y相互独立,它们的概率密度函数分别为

《概率论与数理统计答案》第三章

《概率论与数理统计答案》第三章
第三章
习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为


D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—

若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网

ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α

概率论与数理统计第3章随机变量的数字特征2-5节精品文档

概率论与数理统计第3章随机变量的数字特征2-5节精品文档


1
D(X ) 21002

1
7002 21002
1 (1)2 3

8. 9
即P(5200X9400)8. 9
2019/10/16
n
n
D( CiXi) Ci2D(Xi).
i1
i1
(4) 对于任意实数C∈R,有 (书P93. 8题)
E ( X-C )2≥D( X )
当且仅当C = E(X)时, E ( X-C )2取得最小值D(X).
2019/10/16
19
求证
E ( X-C )2≥D( X )
证: E(XC)2 E {X [E]X [E X C )]2}
证: D(C)E{C [E(X)2 ]}E{C [ C]2} 0.
(2 )若 D (X )存则 在 D (C) , X C 2D (X )C ,为; 常
证: D(CX) E{C [ X E(C)X2]}
E{C [ X C(E X)2]} E{C2[XE(X)2 ]}
C2E{X [E(X)2]}C2D(X).
复习: 数学期望
它反映随机变量取值的平均水平,是随机变量的 一个重要的数字特征.

EX xk pk, k1
X离散型

E X xf(x )d x,
X 连 续 型


EYE[g(X)]

g(xk)pk,
k1
X离散型
g(x)f(x)dx, X连续型
2019/10/16
0
E(X 2)
函数有下列结论:
(1 ) (1 ) ();
(2Γ()n1 )n!;
tx

1
2
t2etdt

概率统计2-3 随机变量的数字特征

概率统计2-3 随机变量的数字特征

E连Y=续令型:Xyayf~Yf(X(yzx))d,Yy=aaX,则yzfa,1YX ~f(X|z(a1)day| zf)=Xday(EayX)a,不(3妨)ay自设f 证Xa>( 0ay,
)d(
y a
)
20
一元随机变量X的函数g(X)的期望
可以证明:随机变量X的密度为f (X),则随机变量X 的函数g(X)的数学期望为
18 n18 19 n19 20 n20
n
n
n
18 p18 19 p19 20 p20 5
离散型随机变量的数学期望
统计平均值X与准确计算的平均值EX还可能 有差距, 但是当试验次数趋向于无穷时(频率 趋近概率), 统计平均值X就趋近于EX了。
定义2.6:设离散型随机变量X有概率 分布为:
假设连续型的随机变量X的概率密度为f(x), 现
在我们将整个实数轴划分成同样的宽度为x
的无穷多个小区间, 当试验的结果是落在第k 个小区间里时, 我们近似认为是x等于此小区 间中的点xk的事件发生了, 这样就将x转化成 为离散型的随机变量, 它等于xk的概率近似为
f(x)x, 如果x的值越小, 这样的近似越准确.
课堂练习课堂练习记住结论记住结论课堂练习课堂练习课堂练习课堂练习41课堂练习解答课堂练习解答课堂练习解答课堂练习解答exxfdtdxtdt切比绍夫不等式切比绍夫不等式切比绍夫不等式切比绍夫不等式设随机变量设随机变量xx的方差存在的方差存在这时均值也存在这时均值也存在对任意正数对任意正数有下面不等式成立有下面不等式成立对任意正数对任意正数有下面不等式成立有下面不等式成立切比绍夫不等式反映了随机变量离差与方差切比绍夫不等式反映了随机变量离差与方差切比绍夫不等式反映了随机变量离差与方差切比绍夫不等式反映了随机变量离差X

考研数学一-概率论与数理统计随机变量的数字特征(一)

考研数学一-概率论与数理统计随机变量的数字特征(一)

考研数学一-概率论与数理统计随机变量的数字特征(一)(总分:88.01,做题时间:90分钟)一、选择题(总题数:28,分数:28.00)1.设随机变量X的二阶矩存在,则(A) EX2<EX. (B) EX2≥EX.(C) EX2<(EX)2. (D) EX2≥(EX)2.(分数:1.00)A.B.C.D. √解析:[解析] 由DX=EX2-(EX)2≥0,即知正确选项为(D).选项(A)、(B)对某些随机变量可能成立,对某些随机变量可能不成立.例如X服从参数为λ的泊松分布,则EX=DX=λ,EX2=DX+(EX)2=λ+λ2>λ=EX,选项(B)成立;如果X在(0,1)上服从均匀分布,则,,选项(A)成立.2.设X是随机变量,EX=μ,DX=σ2(σ>0),则对任意常数C,有(A) E(X-C)2=EX2-C2. (B) E(X-C)2=E(X-μ)2.(C) E(X-C)2<E(X-μ)2. (D) E(X-C)2≥E(X-μ)2.(分数:1.00)A.B.C.D. √解析:[解析]E(X-C)2≥E(X-μ)2,故选(D).当然我们也可以通过计算来证明:E(X-X)2=E[(X-μ)+(μ-C)]2=E[(X-μ)2+2(μ-C)(X-μ)+(μ-C)2]=E(X-μ)2+2(μ-C)(EX-μ)+(μ-C)2=E(X-μ)2+(μ-C)2≥E(X-μ)2.3.设随机变量X的期望、方差都存在,则对任意常数C,有(A) E(X-C)2<DX+E2(X-C). (B) E(X-C2)2>DX+E2(X-C).(C) E(X-C)2=DX+E2(X-C). (D) E(X-C)2=DX-E2(X-C).(分数:1.00)A.B.C. √D.解析:[解析] 由于DX=D(X-X)=E(X-C)2-E2(X-C),所以E(X-C)2=DX+E2(X-C),故选(C).4.设X为离散型随机变量,且p i=PX=a i(i=1,2,…),则X的期望EX存在的充分条件是(A) . (B)(C) (D)(分数:1.00)A.B.C.D. √解析:[解析] 由级数收敛的必要条件知,选项(A)或(B)不能选,否则(C)或(D)也成立.又收敛不能保证收敛(即EX存在),因此选项(C)不能选.所以应该选(D).下面我们证明:如果收敛,则收敛.事实上,由于,故已知,所以收敛,EX存在.5.假设X是连续型随机变量,其分布函数为F(x),如果X的期望EX存在,则当x→+∞时,1-F(x)的(A) 低阶无穷小. (B) 高阶无穷小.(C) 同阶但不等价无穷小. (D) 等价无穷小.(分数:1.00)A.B. √C.D.解析:[解析] 由题设,我们只能通过计算来确定正确选项.设X的密度函数为f(x),则EX存在,所以即1-F(x)的高阶无穷小(当x→+∞),故应选(B).6.假设X服从二项分布B(n,p),已知EX=2.4,DX=1.44,则n,p值分别为(A) 4;0.6. (B) 6;0.4. (C) 8;0.3. (D) 12;0.2.(分数:1.00)A.B. √C.D.解析:[解析] 由于X~B(n,p),所以p=0.4.故应选(B).求得n,p,从而确定正确选项.7.已知随机变量X的分布中含有若干个未知参数,如果仅对唯一的参数值才有EX=DX,则X必服从(A) 参数为(μ,σ2)的正态分布. (B) 参数为λ的指数分布.(C) 参数为λ的泊松分布. (D) 参数为a,b的[a,b]区间上的均匀分布.(分数:1.00)A.B. √C.D.解析:[解析] 直接由EX=DX来确定正确选项.如果X~N(μ,σ2),则EX=DXμ=σ2.参数(μ,σ2)不唯一.X~E(λ),则.参数λ唯一.X~P(λ),则EX=DXλ=λ.参数λ不唯一.X~U[a,b].参数a、b不唯一.因此正确选项是(B).8.将一枚硬币重复掷n次,以X和Y分别表示正面向上和反而向上的次数,则X和Y的相关系数等于(A) -1.(B) 0.(D) 1.(分数:1.00)A. √B.C.D.解析:[解析] 由题设知X+Y=n,Y=-X+n,故选择(A).事实上,X与Y的相关系数,cov(X,Y)=cov(X,-X+n)=-cov(X,X)=-DX,DY=D(-X+n)=DX,.所以选(A).9.设随机事件A与B互不相容,0<P(A) <1,0<P(B) <1,记X与Y的相关系数为ρ,则(A) ρ=0. (B) ρ=1. (C) ρ<0. (D) ρ>0.(分数:1.00)A.B.C. √D.解析:[解析] 选项(B)不能选,否则(D)必成立.因此我们的问题转化为确定X、Y相关系数ρ的符号,而它仅取决于cov(X,Y)=EXY-EXEY,由题设知AB=,因此所以 cov(X,Y)=-P(A)P(B)<0,ρ<0,故应选(C).10.设随机变量X与Y不相关且DX=DY≠0,则随机变量X与X+Y的相关系数ρ等于(A) -1. (B) 0.. (D) 1.(分数:1.00)A.B.C. √D.解析:[解析] 由题设cov(X,Y)=0,DX=DY,所以故应选(C).11.已知随机变量X与Y的相关系数为ρ,随机变量ξ=aX+b,η=cY+d(abcd≠0),则ξ与η的相关系数为(A) 0. (B) -p.(C) 当ac>0时为ρ. (D) 当bd>0时为ρ.(分数:1.00)A.B.C. √D.解析:[解析] 已知,所以ξ与η的相关系数为故应选(C).12.设随机变量X与Y的方差相等且不为零,则ξ=X+Y与η=X-Y相关系数为(A) -1. (B) 0.. (D) 1.(分数:1.00)A.B. √C.D.解析:[解析] 已知DX=DY≠0,所以cov(ξ,η)=cov(X+Y,X-Y)=cov(X,Y)-cov(X,Y)+cov(Y,X)-cov(Y,Y)=DX-DY=0,即X与Y相关系数为0,故应选(B).13.假设随机变量X,Y,Z两两不相关,方差相等且不为零,则X+Y与Y+Z的相关系数为(A) -1. (B) 0.. (D) 1.(分数:1.00)A.B.C. √D.解析:[解析] 已知cov(X,Y)=cov(X,Z)=cov(Y,Z)=0,DX=DY=DZ≠0,所以X+Y与Y+Z的相关系数为故应选(C).14.已知二维随机变量(X,Y)的联合密度为f(x,y)且满足条件f(x,y)=f(-x,y) 或 f(x,y)=-f(x,-y),则X与Y相关系数为(A) -1. (B) 0.. (D) 1.(分数:1.00)A.B. √C.D.解析:[解析] 依题意f(x,y)对每个变元都是偶函数,因此x(x,y)或yf(x,y)为奇函数,所以EXY=EXEY=0X与Y XY=0,故应选(B).15.设X,Y为随机变量,现有6个等式①E(X+Y)=EX+EY;②D(X+Y)=DX+DY;③D(X-Y)=DX+DY;④EXY=EX·EY;⑤D(XY)=DX·DY;⑥)cov(X,Y)=0.则上面与“X和Y不相关”等价的等式共有(A) 0个. (B) 2个. (C) 4个. (D) 6个.(分数:1.00)A.B.C. √D.解析:[解析] ①对任意随机变量都成立,②、③、④、⑥是X与Y不相关的充要条件,因此选(X).而⑤式DXY=E(XY)2-(EXY)2=DXDY并不能断言X与Y的相关性.16.假设随机变量X与Y的二阶矩都存在,则随机变量ξ=X+Y与η=X-Y不相关的充分必要条件是(A) EX=EY. (B) EX2=EY2.(C) EX2-E2X=EY2-E2Y. (D) EX2+E2X=EY2+E2Y.(分数:1.00)A.B.C. √D.解析:[解析] ξ与η不相关cov(ξ,η)=0cov(X+Y,X-Y)=DX-DY=0DX=DYEX2-E2X=EY2-E2Y,选择(C).17.已知(X,Y)服从二维正态分布,且EX=μ1,X与Y相关系数为ρ,则X+bY与X-bY,相互独立的充分必要条件是参数b(A) 可以取任意实数. (B) 等于p.(C) 等于σ1/σ2. (D) 等于μ1/μ2.(分数:1.00)__________________________________________________________________________________________ 解析:18.已知(X,Y)服从二维正态分布,且EX=μ1,EY=μ2,DX=DY=σ2,ξ=aX+bY,η=aX-bY(ab≠0),则ξ与η独立的充要条件是(A) a、b为任意实数. (B) a=b-1.(C) a2=62. (D) a=b+1.(分数:1.00)A.B.C. √D.解析:[解析] 由于对任意常数c,d(c、d不全为0),有cξ+dη=c(aX+bY)+d(aX-bY)=a(c+d)X+b(c-d)Y服从一维正态分布,所以(ξ,η)服从二维正态分布.因此ξ与η独立ξ与η不相关cov(ξ,η)=0cov(aX+bY,aX-bY)=a2cov(X,X)+abcov(Y,X)-abcov(X,Y)-b2cov(Y,Y)=a2DX-b2DY=σ2(a2-b2)=0a2=b2.故应选(C).19.设X与Y都是服从正态分布的随机变量,则X与Y不相关是X与Y独立的(A) 充分必要条件. (B) 充分非必要条件.(C) 必要非充分条件. (D) 非必要非充分条件.(分数:1.00)A.B.C. √D.解析:[解析] X与Y都服从正态分布并不意味着(X,Y)服从二维正态分布,因此X与Y不相关仅仅是独立的必要条件而不充分,所以选(C).20.假设(X,Y)服从二维正态分布,且EX=μ1,EY=μ2,DX=DY=σ2,X与Y不相关,则下列四对随机变量中相互独立的是(A) X与X+Y. (B) X与X-Y.(C) X+Y与X-Y. (D) 2X+Y与X-Y.(分数:1.00)A.B.C. √D.解析:[解析] 由题设知各选项中的二个随机变量其联合分布都是二维正态分布,因此它们相互独立等价于不相关.又cov(X,Y)=0,DX=DY=σ2,所以 cov(X,X±Y)=DX=σ2≠0,cov(X+Y,X-Y)=DX-DY=0,cov(2X+Y,X-Y)=2DX-DY=σ≠0.故应选(C).21.已知随机变量X在[-1,1]上服从均匀分布,Y=X3,则X与Y(A) 不相关且相互独立. (B) 不相关且相互不独立.(C) 相关且相互独立. (D) 相关且相互不独立.(分数:1.00)A.B.C.D. √解析:[解析] 由于Y=X3,因此Y与X不独立,但又有某种线性相依的关系,即Y与X相关,所以选择(D).事实上,已知EXY≠EX·EY,因此X与Y相关.下面证明Y=X3与X不独立.X与Y=X3相互独立,y∈R有P{X≤x,Y≤y}=P{X≤x}P{Y≤y},即P{X≤x,X3≤y}=P{X≤x}P{X3≤y}.取,则,故而所以故X与Y=X3不独立.22.假设随机变量X与Y相互独立且有非零的方差,则(A) 3X+1与4Y-2相关. (B) X+Y与X-Y不相关.(C) X+Y与2Y+1相互独立. (D) e X与2Y+1相互独立.(分数:1.00)A.B.C.D. √解析:[解析] 由于X与Y相互独立,由独立性质知e X与2Y+1相互独立,所以选(D).下面我们对各选项逐一加以验证.由于X与Y相互独立,所以cov(X,Y)=0.(A):cov(3X+1,4Y-2)=12cov(X,Y)=0,3X+1与4Y-2不相关,选项(A)不成立.(B):cov(X+Y,X-Y)=cov(X,X)-cov(X,Y)+cov(Y,X)-cov(Y,Y)选项(B)不成立.(C):cov(X+Y,2Y+1)=2cov(X,Y)+2cov(Y,Y)=2DY≠0,X+Y与2Y+1相关,因而不独立,选项(C)不成立.(D):x,y∈R,如果x>0,则=P{e X≤x}P{2Y+1≤y}.如果x≤0,则P{e X≤x}=0.P{e X≤x,2Y+1≤y}=0=P{e X≤x}P{2Y+1≤y},所以e X与2Y+1相互独立,选项(D)成立.23.设X,Y为随机变量,其期望与方差都存在,则下列与PX=Y=1不等价的是,有P|X-Y|≥ε=0.(B) EX=EY,DX=DY.(C) EX=EY,D(Y-X)=0.(D) EX=EY,EX2=EY2,X与Y的相关系数为1.(分数:1.00)A.B. √C.D.解析:[解析] 从四个选项中我们可以看到选项(B)是EX=EY,DX=DY,而这并不意味着X与Y以概率1相等即P{x=Y}=1,所以选(B).下面我们证明其他三个选项都与P{X=Y}=1等价.(A):P{X=Y}=1P{X≠Y}=0.,有{|X-Y|≥ε}{X≠Y}P{|X-Y|≥ε}=0.反之,如果,P{|X-Y|≥ε}=0,则由.选项(A)成立.(C):EX=EY,D(Y-X)=0E(Y-X)=0,D(Y-X)=0P{Y-X=E(Y-X)}=1即P{Y-X=0}=P{Y=X}=1.选项(C)成立.(D):EX=EY,EX2=EY2,X与Y相关系数ρXY=1,EX=EY,EX2=EY2,P{y=aX+b}=1,其中,b=EY-aEX=0.从而{Y=X}=1.反之若ρXY=1,且,EX2=EY2,ρXY=1,所以(D)成立.24.设随机变量X1和X2不相关,且DX1=DX2=σ2≠0,令X=X1+aX2,Y=X1+bX2(ab≠0),如果X与Y不相关,则(A) a与b可以是任意实数. (B) a=b.(C) ab=-1. (D) ab=1.(分数:1.00)A.B.C. √D.解析:[解析] 已知cov(X1,X2)=0且DX1=DX2=σ2≠0,所以X与Y不相关cov(X,Y)=0cov(X1+aX2,Xl+bX2)=DX1+abDX2=σ2(1+ab)=0ab=-1,选(C).25.设X是连续型随机变量且方差存在,则对任意常数C和ε>0,必有(A)(B)(C)(分数:1.00)A.B.C. √D.解析:[解析] 各个选项左式全为P{|X-C|≥ε},因此希望通过计算选出正确选项.设X的密度函数为f(x),则故应选(C).26.设随机变量X的方差DX存在,并且有则一定有(A) DX=2.(B) DX≠2.(C) (D)(分数:1.00)A.B.C.D. √解析:[解析] 由题设P{|X-EX|≥3}≤,可得故应选(D).27.设事件A在每次试验中发生的概率都是p,将此试验独立重复进行n次.X表示n次试验中A发生的次数,Y表示n次试验中A发生的次数,则下面结论不成立的是(A) D(X+Y)=0.(B) D(X-Y)=0.(C) PX=k=PY=n-k(k=0,1,…,n).(D) X~B(n,p),Y~B(n,1-p).(分数:1.00)A.B. √C.D.解析:[解析] 依题意X~B(n,p),Y~B(n,1-p),X+Y=n,所以选项(A)、(C)、(D)都成立,不成立的是(B).事实上,Y=-X+n,又DX=np(1-p),DY=n(1-p)p,所以 D(X-Y)=DX+DY-2cov(X,Y)=2np(1-p)+2np(1-p)=4np(1-p).28.已知试验E1为:每次试验事件A发生的概率都是p(0<p<1),将此试验独立重复进行n次,以X1表示在这n次试验中A发生的次数;试验E2为:第i次试验事件A发生的概率为p i(0<p i<1,i=1,2,…),将此试验独立进行n次,以X2表示在这n次试验中A,则(A) EX1<EX2. (B) EX1=EX2.(C) EX1>EX2. (D) 以上结论都不对.(分数:1.00)A.B. √C.D.解析:[解析] 依题意X1~B(n,p),.对试验E2而言,如果记故应选(B).二、填空题(总题数:17,分数:20.00)29.设随机变量X1,X2,X3相互独立,其中X1服从区间[0,6]上的均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,则D(X1-2X2+3X3)=______.(分数:1.00)填空项1:__________________ (正确答案:46)解析:[解析]D(X1-2X2+3X3)=DX1+4DX2+9DX3=3+4×4+9×3=46.30.设随机变量X和Y独立同服从正态分 N(0,1/2),则D|X-Y|=______.(分数:1.00)填空项1:__________________解析:[解析] 易见,E(X-Y)=0,D(X-Y)=1,故U=X-Y~N(0,1).因此E|U|2=EU2=DU+(EU)2=1.31.设X服从参数为2的指数分布,则E(X+e-X)=______.(分数:1.00)填空项1:__________________解析:[解析] 由指数分布的数学期望知EX=1/2,又于是32.设随机变量X和Y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=______.(分数:1.00)填空项1:__________________ (正确答案:-0.02)解析:[解析] 由题设可知,EX2=0.60,EY2=0.50,EX2EY2=0.30,又EX2Y2=P{X=1,Y=-1}+P{X=1,Y=1}=0.28,于是 cov(X2,Y2)=EX2Y2-EX2EY2=-0.02.33.以X表示接连10次独立重复射击命中目标的次数,已知每次射击命中目标的概率为0.4,则EX2= 1.(分数:1.00)填空项1:__________________ (正确答案:18.4)解析:[解析] 由题设知,10次独立重复射击命中目标的次数X服从参数为(10,0.4)的二项分布.因此,EX=4,DX=2.4.于是EX2=DX+(EX)2=18.4.34.设对某一种商品的需求量X(件)是一随机变量,其概率分布为则期望需求量为______.(分数:1.00)填空项1:__________________解析:[解析] 由数学期望的定义,可知期望需求量为35.假设无线电测距仪无系统误差,其测量的随机误差服从正态分布.已知随机测量的绝对误差以概率0.95不大于20米,则随机测量误差的标准差σ=______.(分数:1.00)填空项1:__________________ (正确答案:10.20)解析:[解析] 由题设条件“无系统误差”知,测量误差X服从正态分布N(0,σ2),所以由可知36.100次独立重复试验成功次数的标准差的最大值等于 1.(分数:1.00)填空项1:__________________ (正确答案:5)解析:[解析] 设每次试验成功的概率为p,则100次独立重复试验成功的次数X服从参数为(100,p)的二项分布,故DX=100p(1-p).易见,当p=0.5时,p(1-p)取最大值.这时DX=100pq=100×0.25=25,因此,标准差的最大值等于5。

概率论与数理统计01第一节随机变量的数学期望

概率论与数理统计01第一节随机变量的数学期望

第三章 随机变量的数字特征前面讨论了随机变量的分布函数, 从中知道随机变量的分布函数能完整地描述随机变量的统计规律性。

但在许多实际问题中, 人们并不需要去全面考察随机变量的变化情况, 而只要知道它的某些数字特征即可.例如, 在评价某地区粮食产量的水平时, 通常只要知道该地区粮食的平均产量;又如, 在评价一批棉花的质量时, 既要注意纤维的平均长度, 又要注意纤维长度与平均长度之间的偏离程度, 平均长度较大, 偏离程度小, 则质量就较好. 等等实际上, 描述随机变量的平均值和偏离程度的某些数字特征在理论和实践上都具有重要的意义, 它们能更直接、更简洁更清晰和更实用地反映出随机变量的本质.本章将要讨论的随机变量的常用数字特征包括: 数学期望、方差、相关系数、矩。

第一节 随机变量的数学期望内容要点:一、离散型随机变量的数学期望平均值是日常生活中最常用的一个数字特征, 它对评判事物、作出决策等具有重要作用。

定义 设X 是离散型随机变量的概率分布为,2,1,}{===i p x X P i i如果∑∞=1i i i p x 绝对收敛, 则定义X 的数学期望(又称均值)为 .)(1∑∞==i i i p x X E二、连续型随机变量的数学期望定义 设X 是连续型随机变量, 其密度函数为)(x f ,如果⎰∞∞-dx x xf )(绝对收敛, 定义X 的数学期望为 .)()(⎰∞∞-=dx x xf X E三、 随机变量函数的数学期望设X 是一随机变量, )(x g 为一实函数,则)(X g Y =也是一随机变量, 理论上, 虽然可通过X 的分布求出)(X g 的分布, 再按定义求出)(X g 的数学期望)]([X g E . 但这种求法一般比较复杂。

下面不加证明地引入有关计算随机变量函数的数学期望的定理.定理1 设X 是一个随机变量, )(X g Y =,且)(Y E 存在, 则 (1) 若X 为离散型随机变量, 其概率分布为,2,1,}{===i p x X P i i则Y 的数学期望为.)()]([)(1∑∞===i i i p x g X g E Y E(2) 若X 为连续型随机变量, 其概率密度为)(x f , 则Y 的数学期望为.)()()]([)(⎰∞∞-==dx x f x g X g E Y E注: (i)定理的重要性在于:求)]([X g E 时, 不必知道)(X g 的分布, 只需知道X 的分布即可。

3-1-随机变量及分布函数

3-1-随机变量及分布函数

P ( a b ) F ( b ) F ( a 0)
概率论-第三章
0 x0 2010年考研题 1 设随机变量X的分布函数为F ( x ) 2 0 x 1 x 求P ( X 1) 1 e x1

P ( X 1) P ? ( X 1) P ( X 1)
( ) 称为是样本空间 上的(实值)随机变量,称
F ( x ) P ( ( ) x ) , x (, )
是随机变量 ( )的分布函数
注意: F(x)
是一个普通 概率论-第三章 的函数!
作业 186页 1,7
分布函数的性质
(1) 单调性 若x1 x2 , 则F ( x1 ) F ( x2 )
注意: 离散
型用分布列简 单
概率论-第三章
F ( x 0) F ( x ) P ( x )
事件的概率均可以用分 布函数F ( x )表示
必须记住, P ( b) F (b 0) 考研常考! P ( b) 1 F (b 0) P ( b) P( b) P( b) F ( b ) F ( b 0) P (a b) F ( b ) F ( a )
1 1 1 1 e e 2 2
1
注意:随机变量为混合型
概率论-第三章
设F1 ( x )与F2 ( x ) 分别为任意两个随机变量分布函数,
B 中”这一事件为 B , 则上述等可能 无关”.如果记”落入
l d c B •104页意味着 P ( B ) 几何概 ba ba 率 如果投在 [a , b]中的点的坐标为 (a b) ,令 ( ) (a b) ( )为随机变量 显然它的可能取值充满整个区间 [a , b .] •不是离 如何描述 ( )的统计规律性? 散型随
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/9/21
3
1. 随机变量的数学期望
(1)设有n个数x1,x2,,xn ,那么这n个数的算术平均
x
x1
x2
n
xn
i
n 1
xi
1 n
(2)这n 个数有相同,,不妨设其中有 ni个取值为 xi,i 1,, k,
其均值应为 1
n
k
ni xi
i 1
k i 1
ni n
xi
以数值xi出现的频率为权重做加 权平均
2020/9/21
12
(2)随机变量函数数学期望的计算 方法1 (定义法): g(X)是随机变量, 按照数学期望 的定义计算Eg(X). 关键: 由X的分布求出g(X)的分布. 难点: 一般g(X)形式比较复杂的, 很难求出其分布.
2020/9/21
13
方法2 (公式法):
定理 设X是一个随机变量, Y g(X), 则
k1 k1
2020/9/21
17
(4) 若X与Y相互独立,E( X )与E(Y )存在, 则E(XY ) E(X )E(Y ).
证:仅就连续随机变量情形
EXY xyf x, ydxdy
xy f X x f Y y dxdy
xf
X
x
dx
y fY y dy
2020/9/21
15
补充: 函数
( ) x 1exdx 0
函数有下列结论:
(1) ( 1) ();
(2) Γ(n 1) n !; (3) (1) (2) 1, (1) .
2
0
y12e y1 dy1
(3) 2! 2
2020/9/21
16
二、数学期望的性质
(1) E(C) C, C为常量;
E[g( X )] g(xi ) pi ;
i
② 连续随机变量函数g(X)的数学期望
E[g( X )] g(x) f (x)dx.
二、熟悉数学期望的性质 (1) E(C) C, C为常量;
(2) 若E( X )存在, 则E(CX ) CE( X ), C为常量;
(3) 若E( X )与E(Y )存在,则E(X Y ) E(X ) E(Y );
第三章 随机变量的数字特征
基本内容:
一、数学期望、方差 二、原点矩与中心矩 三、协方差与相关系数 四、切比雪夫不等式与大数定律
2020/9/21
1
第一节 数学期望
引例1 加权平均成绩
设某学生四年大学各门功课 成绩分别为 x1, x2,, xn ,
其学分分别为 ω1,ω2,,ωn , 则称
x
x1
x2
所以X的数学期望
k
k
e
k k
e
k0 k!
k 1 k!
e
k 1
e k
k1 (k 1)!
k0 k!
ee
2020/9/21
6
例2. 据统计, 一位 60 岁的健康者在 5 年内健在的概率为 p (0 p 1). 保险公司开办 5 年人寿保险, 投保费 a 元, 若投保者在 5 年内死亡(非自杀死亡), 保险公司负责 赔偿 b 元(b a). 应如何确定 b 值可使保险公司获益?
E( X ) xf ( x)dx
2020/9/21
9
例3. 某种化学物的PH(记为X)是一个随机变量,它的概率
密度是
25(x 3.8), 3.8 x 4 f (x) 25(x 4.2), 4 x 4.2
0, 其他
求此化合物的PH的数学期望E(X).
解:
xf (x)dx
4
EY
EgX
gxk pk , X为离散型;
k
gx
f
xdx,
X为连续型.
当X为离散型时, P(Xxk) pk , (k 1,2,…); 当X为连续型时, X的密度函数为f (x).
求E[g(X)]时, 只需 知道X的分布即可.
2020/9/21
14
例5.某种商品每周的需求量 X~U(10,30),而商场 每销售一单位商品可获利500元,若供大于求,则削价处理,
2020/9/21
21
n
n
则 E( Ci X i ) Ci E( X i );
i 1
i 1
(4) 若X与Y相互独立,E( X )与E(Y )存在,
则E(XY ) E(X )E(Y ).
2020/9/21
22
三、熟悉一些常见分布的期望 (1) 若X~B(1,p), E(X)=p . (2) 若X~B(n,p), E(X)=np . (3) 若 (4) 若X~U(a,b), E(X)
2020/9/21
4
1. 离散随机变量的数学期望
定义: 设离散随机变量X的分布律为 P( X xk ) pk , k 1,2,,
若级数 xk pk 绝对收敛 ( 即 | xk | pk ),
k
k
注1º EX是一个常数, 它是一种加权平均.与一般的平均
值不同, 它从本质上体现了X 取可能值的真正的平均值.
分析:设想如果比赛再继续下去,会出现什么结果?
甲最终所得可能为10元,可能0元,这是随机变量X
且再比赛2局必能分出胜负,其结果不外乎4种情况:
甲甲,甲乙,乙甲,乙乙
X
0
10 甲期望所得:
P
1/4 3/4 0*1/4+10*3/4=7.5
此分法不仅考虑已经比赛结果,而且还包括了再
比赛下去的一种“期望”——数学期望(均值).
)
分部积分
(x)dex/ 0
(xex/
0
ex / dx)
0
2020/9/21
11
3.随机变量函数的数学期望
(一) 一维随机变量函数的数学期望
(1)问题的导入
数学期望
E( X ) xk pk .
X
E(X)=
k
EX
xf
xdx
g(X) 数学期望EgX
g是连续函数, g(X) 是随机变量, 如: 2X+1, X2等等.
n
xn
n i1
xi
1 n
为该生各门课程的算术平均成绩. 而
n

xi
ωi
n
n
xivi , 其中 vi ωi
i1
ωj
i 1
j1
则称 xω为该生的加权平均成绩.
n
ωj ,
j1
2020/9/21
2
引例2. 甲乙两名乒乓球爱好者球技相同,他们约定各出5元 作为奖金进行比赛,每局中无平局,谁先赢四局则得奖金10 元,当甲赢了3局,乙赢了2局时,因故要终止比赛。问这10 元奖金如何分配才算合理公平。
2020/9/21
25
备用题
1.选择题
(1) 设随机变量X和Y相互独立,且 X~B(10, 0.3), 且Y~P(2), 则Z=2X-3Y+1的数学期望为( )
A. 1 ; B. 0; C. 3; D. 11/2
(2) 随机变量X服从参数为1的指数分布, 则
E( X + e-2X )为( )
A. 2;
一只. 试求在取到正品之前, 已取出的废品只数的
分布和数学期望. 解:设X表示在取到正品前已取出的废品数, 则
X=0,1,2. (1)X的概率分布
设Ak={第k次取得的是正品}
k=1, 2, 3
2020/9/21
28
由乘法公式,有
8
P( X
0)
P( A1)
10
0.8
P( X 1) P( A1A2 ) P( A1)P( A2 | A1) 2 8 8 10 9 45
EX EY .
2020/9/21
18
例7.设盒中有25张形式各异的礼券,有人在盒中取10次, 每次取一张,做放回抽样。设抽出的10张礼券中包含X种 不同式样,求X的数学期望E(X).
解:设
Xi
1,第i种式样的礼券至少被抽到一次, 0,第i种式样的礼券从未被抽到,i 1,2,,25
则有 X X1 X 2 X 25
注2º 级数绝对收敛性保证了级数的和不随级数各项次序的 改变而改变.
因为数学期望是反映随机变量X 取可能值的平均值, 它不 因可能值的排列次序而改变.
2020/9/21
5
例1. 设X服从Poisson分布 (), 求数学期望E(X).
解:X的概率函数为 P( X k) k e , k 0,1,2,; k!
如: EE(X ) E(X )
(2) 若E( X )存在, 则E(CX ) CE( X ), C为常量;
证: ECX Cxk pk C xk pk CEX .
k
k
(3) 若E( X )与E(Y )存在,则E( X Y ) E( X ) E(Y );
推广
E n
X k
n
EXk .
在区间 [a , b] 中任意插入 n –1 个分点
a x0 x1 x2 xn1 xn b
把 [a , b]分成n个小区间,各小区间长度 xi xi xi1

max{
1 i n
x
i
},当n
时,
0,则
P(xi1 X xi )
xi f (x)dx
xi1
f (xi )xi
n
4.2
x 25(x 38)dx x (25)( x 4.2)dx
3.8
4
4
2020/9/21
10
例4. 设X ~ exp( ),求数学期望E( X ).
解:X的概率密度为 f (x) 1 ex/ , x 0; 0, x 0.
相关文档
最新文档