0第一章《集合与简易逻辑》教材分析

合集下载

第05课时:第一章集合与简易逻辑——简易逻辑

第05课时:第一章集合与简易逻辑——简易逻辑

一.课题:简易逻辑二.教学目标:了解命题的概念和命题的构成;理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其互相关系;反证法在证明过程中的应用.三.教学重点:复合命题的构成及其真假的判断,四种命题的关系.四.教学过程:(一)主要知识:1.理解由“或”“且”“非”将简单命题构成的复合命题;2.由真值表判断复合命题的真假;3.四种命题间的关系.(二)主要方法:1.逻辑联结词“或”“且”“非”与集合中的并集、交集、补集有着密切的关系,解题时注意类比;2.通常复合命题“或”的否定为“且”、“p且q”的否定为“p⌝”、“全为”的否定是“不全为”、“都是”的否定为“不都⌝或q是”等等;3.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若p,则q”的形式;4.反证法中出现怎样的矛盾,要在解题的过程中随时审视推出的结论是否与题设、定义、定理、公理、公式、法则等矛盾,甚至自相矛盾.(三)例题分析:例1.指出下列命题的构成形式及构成它的简单命题,并判断复合命题的真假:(1)菱形对角线相互垂直平分.(2)“”解:(1)这个命题是“p且q”形式,菱形的对角线相互垂直;菱形的对角线相互平分,∵p为真命题,q也是真命题∴p且q为真命题.(2)这个命题是“p或q”形式,:p;:q,∵p为真命题,q是假命题∴p或q为真命题.注:判断复合命题的真假首先应看清该复合命题的构成形式,然后判断构成它的简单命题的真假,再由真值表判断复合命题的真假.例2.分别写出命题“若,则全为零”的逆命题、否命题和逆否命题.解:否命题为:若,则,x y 不全为零逆命题:若,x y 全为零,则220x y += 逆否命题:若,x y 不全为零,则220x y +≠ 注:写四种命题时应先分清题设和结论.例3.命题“若,则有实根”的逆否命题是真命题吗?证明你的结论.解:方法一:原命题是真命题, ∵0m >,∴,因而方程20x x m +-=有实根,故原命题“若0m >,则20x x m +-=有实根”是真命题;又因原命题与它的逆否命题是等价的,故命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题.方法二:原命题“若0m >,则20x x m +-=有实根”的逆否命题是“若20x x m +-=无实根,则”.∵20x x m +-=无实根 ∴即,故原命题的逆否命题是真命题.例4.(考点6智能训练14题)已知命题p :方程有两个不相等的实负根,命题q :方程无实根;若p 或q 为真,p 且q 为假,求实数的取值范围.分析:先分别求满足条件p 和q 的m 的取值范围,再利用复合命题的真假进行转化与讨论.解:由命题p 可以得到: ∴ 由命题q 可以得到:∴∵p 或q 为真,p 且q 为假 有且仅有一个为真当p 为真,q 为假时,当p 为假,q 为真时, 所以,m 的取值范围为或.例5.(《高考A 计划》考点5智能训练第14题)已知函数对其定义域内的任意两个数,当时,都有,证明:至多有一个实根.解:假设()0f x =至少有两个不同的实数根,不妨假设,由方程的定义可知:即由已知12x x <时,有这与式①矛盾因此假设不能成立 故原命题成立.注:反证法时对结论进行的否定要正确,注意区别命题的否定与否命题.例6.(《高考A 计划》考点5智能训练第5题)用反证法证明命题:若整数系数一元二次方程:有有理根,那么中至少有一个是偶数,下列假设中正确的是( )A.假设,,a b c 都是偶数B.假设,,a b c 都不是偶数C.假设,,a b c 至多有一个是偶数D.假设,,a b c 至多有两个是偶数(四)巩固练习:1.命题“若p 不正确,则q 不正确”的逆命题的等价命题是 ( ) A.若q 不正确,则p 不正确 B. 若q 不正确,则p 正确 C 若p 正确,则q 不正确 D. 若p 正确,则q 正确 2.“若,则没有实根”,其否命题是 ( ) A 若,则20ax bx c ++=没有实根B 若240b ac ->,则20ax bx c ++=有实根C 若,则20++=有实根ax bx cD 若240++=没有实根ax bx c-≥,则20b ac五.课后作业:《高考计划》考点5,智能训练3,4,8,13,15,16.内容总结(1)一.课题: TC "§简易逻辑" 简易逻辑二.教学目标:了解命题的概念和命题的构成(2)2.由真值表判断复合命题的真假。

《第一章-集合与常用逻辑用语》大单元整体教学设计

《第一章-集合与常用逻辑用语》大单元整体教学设计

《第一章集合与常用逻辑用语》大单元整体教学设计一、内容分析与整合(一)教学内容分析《第一章集合与常用逻辑用语》是高中数学学习的起点,为学生后续学习函数、数列、不等式等数学内容提供了重要的逻辑基础。

本章内容主要分为五个部分:集合的概念、集合间的基本关系、集合的基本运算、充分条件与必要条件、以及全称量词与存在量词。

这些内容不仅在数学内部逻辑上紧密相连,而且在实际问题解决中也具有广泛的应用价值。

集合是现代数学的基本概念之一,它是描述事物群体及其相互关系的重要工具。

通过学习集合的概念,学生能够理解集合的确定性、互异性、无序性,并掌握集合的表示方法(如列举法、描述法等)。

集合的学习有助于学生形成分类讨论的数学思想,为后续学习打下坚实基础。

集合间的基本关系主要包括子集、真子集、相等关系等。

这些关系揭示了集合之间的层次结构和相互联系,是学习集合运算和逻辑推理的基础。

学生需要掌握判断集合间关系的方法,并能根据具体问题灵活应用。

集合的基本运算包括并集、交集、补集等。

这些运算是集合论中的重要内容,也是解决实际问题中常用的数学工具。

学生需要掌握集合运算的定义、性质及运算法则,并能够进行复杂的集合运算。

充分条件与必要条件是逻辑推理中的基本概念,它们描述了条件与结论之间的逻辑关系。

通过学习充分条件与必要条件,学生能够理解命题之间的逻辑关系,掌握推理的基本方法,提高逻辑思维能力。

全称量词与存在量词是数学语言中的重要组成部分,它们用于描述具有普遍性或特殊性的数学命题。

学生需要理解全称命题与特称命题的区别,掌握全称量词与存在量词的含义及用法,并能够运用量词进行逻辑推理和命题证明。

(二)单元内容分析本单元内容不仅涵盖了集合论和逻辑推理的基础知识,更在数学学科中占据着举足轻重的地位。

集合论,作为现代数学大厦的基石之一,为我们提供了一个描述和研究数学对象及其相互关系的强大框架。

它使我们能够更清晰地理解和表达数学中的基本概念,为深入学习更复杂的数学知识打下坚实的基础。

第一章 集合与简易逻辑教学设计

第一章 集合与简易逻辑教学设计

第一章集合与简易逻辑教学设计Chapter one set and simple logic teaching desi gn第一章集合与简易逻辑教学设计前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。

本教案根据数学课程标准的要求和针对教学对象是高中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。

便于学习和使用,本文下载后内容可随意修改调整及打印。

第一章集合与简易逻辑第一教时教材:集合的概念目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

过程:一、引言:(实例)用到过的“正数的集合”、“负数的集合”如:2x-1>3 2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

如:自然数的集合 0,1,2,3,……如:高一(5)全体同学组成的集合。

结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

指出:“集合”如点、直线、平面一样是不定义概念。

二、集合的表示:{…} 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集 Z有理数集 Q实数集 R集合的三要素: 1。

元素的确定性; 2。

元素的互异性; 3。

元素的无序性(例子略)三、关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作aÎA ,相反,a不属于集A 记作aÏA (或aÎA)例:见P4—5中例四、练习 P5 略五、集合的表示方法:列举法与描述法列举法:把集合中的元素一一列举出来。

高一数学《集合与简易逻辑》教案

高一数学《集合与简易逻辑》教案

高一数学《集合与简易逻辑》教案教材:逻辑联结词(1)目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

过程:一、提出课题:简单逻辑、逻辑联结词二、命题的概念:例:12 ① 3是12的约数② 0.5是整数③定义:可以判断真假的语句叫命题。

正确的叫真命题,错误的叫假命题。

如:①②是真命题,③是假命题反例:3是12的约数吗?5 都不是命题不涉及真假(问题) 无法判断真假上述①②③是简单命题。

这种含有变量的语句叫开语句(条件命题)。

三、复合命题:1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除(2)菱形的对角线互相菱形的对角线互相垂直且菱形的垂直且平分⑤ 对角线互相平分(3)0.5非整数⑥ 非“0.5是整数”观察:形成概念:简单命题在加上“或”“且”“非”这些逻辑联结词成复合命题。

3.其实,有些概念前面已遇到过如:或:不等式 x2x60的解集 { x | x2或x3 }且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }四、复合命题的构成形式如果用p, q, r, s……表示命题,则复合命题的形式接触过的有以下三种:即: p或q (如④) 记作 pqp且q (如⑤) 记作 pq非p (命题的否定) (如⑥) 记作 p其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案第一章:集合的概念与表示方法1.1 集合的定义与表示方式集合的定义集合的表示方法:列举法、描述法1.2 集合之间的关系子集、真子集、非子集集合的包含关系1.3 集合的基本运算并集、交集、补集集合的运算规律第二章:逻辑推理与命题2.1 逻辑推理的基本概念推理、归纳推理、演绎推理2.2 命题与命题联结词命题的定义与分类命题联结词:且、或、非2.3 命题的真假判断命题的真假性质真值表与逻辑等价式第三章:简易逻辑3.1 简易逻辑的基本概念逻辑常数、逻辑运算符逻辑等价式与蕴含式3.2 简易逻辑的推理规则蕴含式与等价式的转换推理规则:德摩根定律、分配律、结合律3.3 简易逻辑的应用逻辑判断与推理的应用实例简易逻辑在数学证明中的应用第四章:不等式与不等式组4.1 不等式的定义与性质不等式的概念与表示方法不等式的基本性质:传递性、同向可加性4.2 不等式组的解法不等式组的表示方法解一元一次不等式组、二元一次不等式组4.3 不等式的应用不等式在实际问题中的应用不等式在几何问题中的应用第五章:函数的概念与性质5.1 函数的定义与表示方法函数的概念与要素函数的表示方法:解析法、表格法、图象法5.2 函数的性质函数的单调性、奇偶性、周期性函数的图像特点5.3 函数的应用函数在实际问题中的应用函数在几何问题中的应用第六章:集合的幂集与排列组合6.1 幂集的概念与性质幂集的定义幂集的性质与运算6.2 排列组合的基本概念排列、组合的定义排列数、组合数的计算公式6.3 排列组合的应用排列组合在实际问题中的应用排列组合在排列组合问题中的应用第七章:事件的概率与随机变量7.1 概率的基本概念概率的定义与性质古典概率、条件概率、独立事件的概率7.2 随机变量的概念与性质随机变量的定义与分类随机变量的分布函数与期望值7.3 概率分布的应用概率分布解决实际问题概率分布在不确定性决策中的应用第八章:数列的概念与性质8.1 数列的定义与表示方法数列的概念与要素数列的表示方法:通项公式、列表法、图象法8.2 数列的性质数列的单调性、周期性、收敛性数列的极限概念8.3 数列的应用数列在实际问题中的应用数列在数学分析中的应用第九章:函数的极限与连续性9.1 函数极限的概念与性质函数极限的定义与性质无穷小、无穷大的概念9.2 函数的连续性函数连续性的定义与性质连续函数的运算性质9.3 函数极限与连续性的应用函数极限与连续性在实际问题中的应用函数极限与连续性在数学分析中的应用第十章:集合与简易逻辑的综合应用10.1 集合与逻辑在数学问题中的应用集合与逻辑在数学证明中的应用集合与逻辑在数学分析中的应用10.2 集合与逻辑在其他学科中的应用集合与逻辑在物理学中的应用集合与逻辑在计算机科学中的应用10.3 集合与逻辑在生活中的应用集合与逻辑在日常生活中的应用集合与逻辑在思维训练中的应用重点和难点解析重点环节1:集合的表示方法与之间的关系集合的表示方法:列举法、描述法集合之间的关系:子集、真子集、非子集;集合的包含关系重点环节2:逻辑推理的基本概念与命题联结词推理、归纳推理、演绎推理命题联结词:且、或、非重点环节3:命题的真假判断与真值表命题的真假性质真值表与逻辑等价式重点环节4:简易逻辑的基本概念与推理规则逻辑常数、逻辑运算符推理规则:德摩根定律、分配律、结合律重点环节5:不等式与不等式组的解法与应用不等式的性质:传递性、同向可加性不等式组的解法:一元一次不等式组、二元一次不等式组重点环节6:幂集的概念与性质幂集的定义幂集的性质与运算重点环节7:事件的概率与随机变量的概念概率的定义与性质随机变量的定义与分类重点环节8:数列的性质与应用数列的单调性、周期性、收敛性数列的极限概念重点环节9:函数的极限与连续性函数极限的定义与性质函数的连续性重点环节10:集合与逻辑的综合应用集合与逻辑在数学问题中的应用集合与逻辑在其他学科中的应用全文总结和概括:本文主要分析了《集合与简易逻辑》数学教学教案中的重点环节,包括集合的表示方法与之间的关系、逻辑推理的基本概念与命题联结词、命题的真假判断与真值表、简易逻辑的基本概念与推理规则、不等式与不等式组的解法与应用等方面。

第一章《集合与简易逻辑》教材分析

第一章《集合与简易逻辑》教材分析

第一章“集合与简易逻辑”教材分析本章安排的是“集合与简易逻辑”,这个章主要讲述集合的初步知识与简易逻辑知识两局部内容.集合的初步知识是现行高中数学教科书中原来就有的内容,这局部主要包括集合的相关概念、集合的表示及集合同集合之间的关系.简易逻辑知识则是新增加的内容,这局部主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等相关知识集合概念及其基本理论,称为集合论,是近代数学的一个重要的基础.一方面,很多重要的学科,如数学中的数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,准确地实行表述、推理和判断,这就离不开对逻辑知识的掌握和使用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是理解问题、研究问题不可缺少的工具,是人们文化素质的组成局部.在高中数学中,集合的初步知识与简易逻辑知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,这就是把它们安排在高中数学起始章的出发点.说明:本章是高中数学的起始章,课时安排得相对宽松一些,像小结与复习局部安排4课时,其中考虑到了对初中内容实行适当复习、巩固的因素.一、内容与要求大体上按照集合与逻辑这两个基本内容,第一章编排成两大节.第一大节是“集合”.学生在小学和初中数学中,已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(圆)等,都有了一定的感性理解.在此基础上,这个大节首先结合实例引出集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出子集的概念,此外,还给出了与子集相联系的全集与补集的概念.接着,又讲述了属于集合运算的交集、并集的初步知识.鉴于不等式的内容当前初中数学只讲述一元一次不等式与一元一次不等式组,考虑到集合知识的使用与巩固,又考虑到下一章讨论函数的定义域与值域的需要,第一大节最后安排的是绝对值不等式与一元二次不等式的解法.此外,在这个大节之后,还附了一篇关于有限集合元素个数的阅读材料.这个大节的重点是相关集合的基本概念.学习集合的初步知识,能够使学生更好地理解数学中出现的集合语言,能够使学生更好地使用集合语言表述数学问题,并且能够使学生使用集合的观点研究、处理数学问题,这里,起重要作用的就是相关集合的基本概念.这个大节的难点是相关集合的各个概念的含义以及这些概念相互之间的区别与联系.学生是从本章才正式开始学习集合知识的,这局部包含了比较多的新概念,还有相对应的新符号,有些概念、符号还容易混淆,这些因素都可能造成学生学习的障碍.第二大节是“简易逻辑”.学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的理解).由此,这个大节首先给出含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的高中数学(上册)教案第一章《集合与简易逻辑》教材分析保康县职业高级中学:洪培福真假的方法.接下来,讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的相关知识.这个大节的重点是逻辑联结词“或”、“且”、“非”与充要条件.学习简易逻辑知识,主要是为了培养学生实行简单推理的技能,发展学生的思维水平,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的相关内容是十分必要的.这个大节的难点是对一些代数命题真假的判断.初中阶段,学生仅仅对简单的推理方法有一定水准的熟悉,并且,相关的技能和水平,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和水平,所以,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.根据《全日制职业高级中学数学教学大纲(试验修订版)》的规定,本章的教学要求是:⒈理解集合、子集、补集、交集、并集的概念;理解空集和全集的意义;理解属于、包含、相等关系的意义;掌握相关的术语和符号,并会用它们准确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步理解反证法,会用反证法证明简单的问题;掌握充要条件的意义.二、本章的特点⒈注意初中与高中的衔接近年来,在与本章相关的内容上,按照教学大纲,初中的教学要求有哪些变化呢?先看相关集合的局部.初中适当渗透一些集合思想,这个点基本没有变化.此外,初中去掉了一元二次不等式与绝对值不等式的内容.再看相关逻辑的局部.1996年以前的初中毕业生,应该达到以下要求:⑴理解命题的概念;⑵初步掌握逆命题和逆定理的概念,能准确表达题设与结论都是简单命题的命题的逆命题,理解准确命题的逆命题的逆命题不一定准确;⑶理解四种命题及其相互关系;⑷理解用反证法证明命题的思路,能用反证法证明一些比较简单的几何题.从1996年起,对于高一新生,初中的要求又有进一步调整.上述⑵改为:理解逆命题和逆定理的概念,原命题成立它的逆命题不一定成立,会识别两个互逆命题.⑶删去.⑷改为:理解反证法.基于以上情况,考虑到学习高中数学的需要,新教材一方面补充了一些必要的知识点,例如关于一元二次不等式与绝对值不等式的解法;另一方面对一些初中相对薄弱的内容,适当予以增强,例如关于反证法等.例如,关于交集、并集的概念,教科书先从图形表示入手,让学生有一个直观的理解,然后给出定义,再用实例加以说明,并且,引出概念的图形也仅仅采用了一种简明的形式,而没有画出全部可能出现的情况.又如,本章是比照初中学过的一元一次不等式,并且借助二次函数的图象,讲述一元二次不等式解法的.⒉重视集合与逻辑在中学数学学习中的应用本章是高中数学的基础,学习本章,主要目的是为了理解后续章节出现的集合与逻辑语言,会用集合与逻辑语言描绘学习中遇到的数学问题,进而解决这些问题.像对一些性质、定理的理解,对函数的定义域、值域的描绘,对推理方法的掌握,等等.本章在集合与逻辑内容的编排上,既考虑到知识的系统性,又照顾到学生的可接受性,并且始终围绕着集合与逻辑在中学数学学习中的应用这个基本出发点.在集合这局部,相关集合运算的内容,就注意在解方程和不等式方面的应用,在数学概念的分类方面的应用.在逻辑这局部,相关命题的内容,突出的是对逻辑联结词“或”、“且”、“非”的理解和对复合命题真值的理解,而不过多地涉及对一个语句是不是命题的判断.此外,像关于复合命题的否认,对近期学习影响不大,学生学习又比较困难,本章基本未涉及.第2页为了协助学生理解逻辑联结词“或”、“且”、“非”,教科书中介绍了“或门电路”、“与门电路”,这是两个应用的实例.实际上,计算机的“智能”装置就是以数学逻辑为基础实行设计的三、教学中应注意的问题⒈教学要求的把握要适时、适度本章是高中数学的起始章,适当地把握本章的教学要求是教学中应该重视的问题.集合与逻辑的初步知识是高中数学的基础知识,学习这些内容,主要是为今后进一步学习其他知识作基本语言、基本方法的准备,相对应地,对知识系统性、严谨性的要求一定要适度.学习相关集合的初步知识,其目的主要在于应用.具体说,就是在学习其他知识时,能读懂其中的简单的集合概念和符号;在处理简单的实际问题时,能根据需要,使用集合语言实行表述.在安排训练时,要把握一定的分寸,不要搞偏题、怪题.集合相关性质的证明,一般不要求学生掌握.有些可能混淆但在实际问题中并不多见的关系,就不必故意编排在一起,让学生去一一实行辨析.本章安排的是集合与逻辑的初步知识,这些知识的讲述,是以初中数学的内容为基础的.从引出相关知识的实例,到具体应用的问题,基本都属于初中数学的范围,这种局限自然会对相关知识的理解和掌握造成一定影响.随着后续章节的学习,对集合与逻辑知识的应用将越来越广泛和深入,相对应地,对集合与逻辑知识理解和掌握的水平也就越来越高了.所以,本章的教学要求,应该避免一步到位.关于含有“或”、“且”、“非”的复合命题的真值表,在开始时,教学重点还是借助三个真值表,加深对含有“或”、“且”、“非”的复合命题的理解,而不必急于让学生掌握对一般复合命题的真假的判断.关于充分条件、必要条件与充要条件,本章对教学要求的尺度,还是控制在对初中代数、几何的相关问题的理解上为宜.⒉提升集合与逻辑的教学效益当前高中数学教学的一个突出问题是教学效益不高.具体表现在:一方面,学生用在数学上的时间比较多,像与美国比,是美国学生的好几倍;另一方面,学生在考试中表现良好,但创造性水平和应用水平有一定欠缺,个性发展也存有着缺乏之处.为了后续章节的学习,在本章必须给学生打下适当的集合与逻辑基础,限于学生的预备知识与接受水平,在本章又不能过多地追求理论的完整,只有处理好这个关系,才能提升教学效益.所以,在实际教学时,一定要抓住重点.怎样把握本章的教学重点呢?一是要有助于对初中数学的理解,二是要能为高中数学的学习扫除障碍.换句话说,学习集合与逻辑,要着眼于用集合与逻辑的知识解决数学学习中的问题,而不要在概念的严谨性、知识的系统性上花过多的时间与精力.像逻辑中有很多问题,在学术界内部都有争论,在高一数学课上,就完全没有必要去涉及了.⒊使用数学符号要规范本章教材有很多集合与逻辑的数学符号,这些符号的采用,依据的是新的国家标准,其中有些符号与原教科书不同,在教学时应该注意.。

第一章集合与简易逻辑(教案)

第一章集合与简易逻辑(教案)

高中数学第一册(上)第一章集合与简易逻辑◇教材分析【知识结构】本章知识主要分为集合、简单不等式的解法(可看做集合的化简)、简易逻辑三部分:【知识点与学习目标】【高考评析】集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法.◇学习指导【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.【数学思想】1.等价转化的数学思想;2.求补集的思想;3.分类思想; 4.数形结合思想.【解题规律】1.如何解决与集合的运算有关的问题?1)对所给的集合进行尽可能的化简;2)有意识应用维恩图来寻找各集合之间的关系;3)有意识运用数轴或其它方法来直观显示各集合的元素.2.如何解决与简易逻辑有关的问题?1)力求寻找构成此复合命题的简单命题;2)利用子集与推出关系的联系将问题转化为集合问题.引言通过一个实际问题,目的是为了引出本章的内容。

1、分析这个问题,要用数学语言描述它,就是把它数学化,这就需要集合与逻辑的知识;2、要解决问题,也需要集合与逻辑的知识.在教学时,主要是把这个问题本身讲清楚,点出为什么“回答有20名同学参赛”不一定对.而要进一步认识、讨论这个问题,就需要运用本章所学的有关集合与逻辑的知识了.§集合〖教学目的〗通过本小节的学习,使学生达到以下要求:(1)初步理解集合的概念,知道常用数集及其记法; (2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义.〖教学重点与难点〗本小节的重点是集合的基本概念与表示方法;难点是运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合.〖教学过程〗☆本小节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子.1、集合的概念:在初中代数里学习数的分类时,就用到“正数的集合”,“负数的集合”等此外,对于一元一次不等式2x一1>3,所有大于2的实数都是它的解.我们也可以说,这些数组成这个不等式的解的集合,简称为这个不等式的解集.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.一般地,某些指定的对象集在一起就成为一个集合,也简称集.这句话,只是对集合概念的描述性说明.集合则是集合论中原始的、不定义的概念.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.例如,“我校篮球队的队员”组成一个集合;“太平洋、大西洋、印度洋、北冰洋”也组成一个集合.我们一般用大括号表示集合,上面的两个集合就可以分别表示成4我校篮球队的队员)与4太平洋。

第一章“集合与简易逻辑”教材分析

第一章“集合与简易逻辑”教材分析

第一章“集合与简易逻辑” 教材分析1. 引言本文将对教材中的第一章内容进行详细分析。

第一章的主题是“集合与简易逻辑”,主要介绍了集合的概念、集合的运算与关系,以及简单的逻辑推理方法。

通过本章的学习,读者将建立起对集合和逻辑的基本理解,并为后续章节的学习打下坚实的基础。

2. 集合的概念在第一章的开头部分,教材详细介绍了集合的概念。

集合是指由一些确定的元素构成的整体。

教材通过具体的例子,引导读者理解什么是集合,如何用集合来描述事物。

3. 集合的运算在理解了集合的基本概念后,教材继续介绍了集合的运算,包括并集、交集、差集和补集等。

并集指的是将两个集合中的元素合并在一起,交集指的是两个集合中共有的元素,差集指的是一个集合中有而另一个集合中没有的元素,而补集则是指相对于某个全集而言,一个集合中没有而全集中有的元素。

教材结合具体的例子和图表,帮助读者理解这些运算的概念,并通过练习题提供实际操作的机会,加深对运算的理解。

4. 集合的关系除了运算,集合之间还有各种关系。

教材介绍了包含关系、相等关系、互不相交关系等。

这些关系描述了集合之间的特定联系和属性,有助于读者更加深入地理解集合。

此外,教材还着重强调了集合之间关系的传递性、对称性和反对称性等性质。

5. 简易逻辑在集合的基础上,教材引入了简易逻辑的概念和方法。

简易逻辑是一种基于集合和关系的推理方法。

通过引入命题和命题之间的关系,教材讲解了如何进行逻辑上的推理和判断。

教材通过举例和练习题,引导读者尝试使用简易逻辑进行一系列的推理和判断。

这样的练习有助于提高读者的逻辑思维能力,培养他们分析问题和解决问题的能力。

6. 总结第一章的内容主要介绍了集合与简易逻辑的基本概念和方法。

通过对集合的介绍,读者能够理解集合的构成和运算,通过对集合关系的介绍,读者能够理解集合之间的联系和特性。

最后,通过简易逻辑的介绍,读者能够学会使用逻辑推理来解决问题。

通过学习第一章的内容,读者将获得对集合和简易逻辑的基本理解,为后续章节的学习打下坚实基础。

高一数学第一章集合与逻辑教材分析

高一数学第一章集合与逻辑教材分析

第一章“集合与简易逻辑”教材分析本章安排的是“集合与简易逻辑”,这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合的初步知识是现行高中数学教科书中原来就有的内容,这部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识则是新增加的内容,这部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识集合概念及其基本理论,称为集合论,是近代数学的一个重要的基础.一方面,许多重要的学科,如数学中的数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分.在高中数学中,集合的初步知识与简易逻辑知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,这就是把它们安排在高中数学起始章的出发点.本章共编排了8小节,教学时间约需22课时:1.1 集合约2课时1.2 子集、全集、补集约2课时1.3 交集、并集约2课时1.4 绝对值不等式的解法约2课时1.5 一元二次不等式的解法约4课时1.6 逻辑联结词约2课时1.7 四种命题约2课时1.8 充分条件与必要条件约2课时小结与复习约4课时说明:本章是高中数学的起始章,课时安排得相对宽松一些,像小结与复习部分安排4课时,其中考虑到了对初中内容进行适当复习、巩固的因素.一内容与要求大体上按照集合与逻辑这两个基本内容,第一章编排成两大节.第一大节是“集合”.学生在小学和初中数学中,已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(圆)等,都有了一定的感性认识.在此基础上,这一大节首先结合实例引出集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出子集的概念,此外,还给出了与子集相联系的全集与补集的概念.接着,又讲述了属于集合运算的交集、并集的初步知识.鉴于不等式的内容目前初中数学只讲述一元一次不等式与一元一次不等式组,考虑到集合知识的运用与巩固,又考虑到下一章讨论函数的定义域与值域的需要,第一大节最后安排的是绝对值不等式与一元二次不等式的解法.此外,在这一大节之后,还附了一篇关于有限集合元素个数的阅读材料.这一大节的重点是有关集合的基本概念.学习集合的初步知识,可以使学生更好地理解数学中出现的集合语言,可以使学生更好地使用集合语言表述数学问题,并且可以使学生运用集合的观点研究、处理数学问题,这里,起重要作用的就是有关集合的基本概念.这一大节的难点是有关集合的各个概念的含义以及这些概念相互之间的区别与联系.学生是从本章才正式开始学习集合知识的,这部分包含了比较多的新概念,还有相应的新符号,有些概念、符号还容易混淆,这些因素都可能造成学生学习的障碍.第二大节是“简易逻辑”.学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先给出含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的真假的方法.接下来,讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.这一大节的重点是逻辑联结词“或”、“且”、“非”与充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.根据《全日制普通高级中学数学教学大纲(试验修订版)》的规定,本章的教学要求是:⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.二本章的特点⒈注意初中与高中的衔接近年来,在与本章有关的内容上,按照教学大纲,初中的教学要求有哪些变化呢?先看有关集合的部分.初中适当渗透一些集合思想,这一点基本没有变化.此外,初中去掉了一元二次不等式与绝对值不等式的内容.再看有关逻辑的部分.1996年以前的初中毕业生,应该达到以下要求:⑴了解命题的概念;⑵初步掌握逆命题和逆定理的概念,能正确叙述题设与结论都是简单命题的命题的逆命题,了解正确命题的逆命题的逆命题不一定正确;⑶了解四种命题及其相互关系;⑷理解用反证法证明命题的思路,能用反证法证明一些比较简单的几何题.从1996年起,对于高一新生,初中的要求又有进一步调整.上述⑵改为:了解逆命题和逆定理的概念,原命题成立它的逆命题不一定成立,会识别两个互逆命题.⑶删去.⑷改为:了解反证法.基于以上情况,考虑到学习高中数学的需要,新教材一方面补充了一些必要的知识点,例如关于一元二次不等式与绝对值不等式的解法;另一方面对一些初中相对薄弱的内容,适当予以加强,例如关于反证法等.例如,关于交集、并集的概念,教科书先从图形表示入手,让学生有一个直观的认识,然后给出定义,再用实例加以说明,并且,引出概念的图形也只是采用了一种简明的形式,而没有画出全部可能出现的情况.又如,本章是对比初中学过的一元一次不等式,并且借助二次函数的图象,讲述一元二次不等式解法的.⒉重视集合与逻辑在中学数学学习中的应用本章是高中数学的基础,学习本章,主要目的是为了理解后续章节出现的集合与逻辑语言,会用集合与逻辑语言描述学习中遇到的数学问题,进而解决这些问题.像对一些性质、定理的理解,对函数的定义域、值域的描述,对推理方法的掌握,等等.本章在集合与逻辑内容的编排上,既考虑到知识的系统性,又照顾到学生的可接受性,并且始终围绕着集合与逻辑在中学数学学习中的应用这一基本出发点.在集合这部分,有关集合运算的内容,就注意在解方程和不等式方面的应用,在数学概念的分类方面的应用.在逻辑这部分,有关命题的内容,突出的是对逻辑联结词“或”、“且”、“非”的理解和对复合命题真值的认识,而不过多地涉及对一个语句是不是命题的判断.此外,像关于复合命题的否定,对近期学习影响不大,学生学习又比较困难,本章基本未涉及.为了帮助学生理解逻辑联结词“或”、“且”、“非”,教科书中介绍了“或门电路”、“与门电路”,这是两个应用的实例.实际上,计算机的“智能”装置就是以数学逻辑为基础进行设计的.三教学中应注意的问题⒈教学要求的把握要适时、适度本章是高中数学的起始章,适当地把握本章的教学要求是教学中应该重视的问题.集合与逻辑的初步知识是高中数学的基础知识,学习这些内容,主要是为今后进一步学习其他知识作基本语言、基本方法的准备,相应地,对知识系统性、严谨性的要求一定要适度.学习有关集合的初步知识,其目的主要在于应用.具体说,就是在学习其他知识时,能读懂其中的简单的集合概念和符号;在处理简单的实际问题时,能根据需要,运用集合语言进行表述.在安排训练时,要把握一定的分寸,不要搞偏题、怪题.集合有关性质的证明,一般不要求学生掌握.有些可能混淆但在实际问题中并不多见的关系,就不必故意编排在一起,让学生去一一进行辨析.本章安排的是集合与逻辑的初步知识,这些知识的讲述,是以初中数学的内容为基础的.从引出有关知识的实例,到具体应用的问题,基本都属于初中数学的范围,这种局限自然会对有关知识的理解和掌握造成一定影响.随着后续章节的学习,对集合与逻辑知识的应用将越来越广泛和深入,相应地,对集合与逻辑知识理解和掌握的水平也就越来越高了.因此,本章的教学要求,应该避免一步到位.关于含有“或”、“且”、“非”的复合命题的真值表,在开始时,教学重点还是借助三个真值表,加深对含有“或”、“且”、“非”的复合命题的了解,而不必急于让学生掌握对一般复合命题的真假的判断.关于充分条件、必要条件与充要条件,本章对教学要求的尺度,还是控制在对初中代数、几何的有关问题的理解上为宜.⒉提高集合与逻辑的教学效益目前高中数学教学的一个突出问题是教学效益不高.具体表现在:一方面,学生用在数学上的时间比较多,像与美国比,是美国学生的好几倍;另一方面,学生在考试中表现良好,但创造性能力和应用能力有一定欠缺,个性发展也存在着不足之处.为了后续章节的学习,在本章必须给学生打下适当的集合与逻辑基础,限于学生的预备知识与接受能力,在本章又不能过多地追求理论的完整,只有处理好这个关系,才能提高教学效益.因此,在实际教学时,一定要抓住重点.怎样把握本章的教学重点呢?一是要有助于对初中数学的理解,二是要能为高中数学的学习扫除障碍.换句话说,学习集合与逻辑,要着眼于用集合与逻辑的知识解决数学学习中的问题,而不要在概念的严谨性、知识的系统性上花过多的时间与精力.像逻辑中有不少问题,在学术界内部都有争论,在高一数学课上,就完全没有必要去涉及了.⒊使用数学符号要规范本章教材有不少集合与逻辑的数学符号,这些符号的采用,依据的是新的国家标准,其中有些符号与原教科书不同,在教学时应该注意.。

第一章集合与简易逻辑(教案)-精选.pdf

第一章集合与简易逻辑(教案)-精选.pdf

1高中数学第一册(上)第一章集合与简易逻辑◇教材分析【知识结构】本章知识主要分为集合、简单不等式的解法(可看做集合的化简)、简易逻辑三部分:【知识点与学习目标】【高考评析】集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法.◇学习指导【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.【数学思想】1.等价转化的数学思想;2.求补集的思想;3.分类思想;4.数形结合思想.2【解题规律】1.如何解决与集合的运算有关的问题?1)对所给的集合进行尽可能的化简;2)有意识应用维恩图来寻找各集合之间的关系;3)有意识运用数轴或其它方法来直观显示各集合的元素.2.如何解决与简易逻辑有关的问题?1)力求寻找构成此复合命题的简单命题;2)利用子集与推出关系的联系将问题转化为集合问题.引言通过一个实际问题,目的是为了引出本章的内容。

1、分析这个问题,要用数学语言描述它,就是把它数学化,这就需要集合与逻辑的知识;2、要解决问题,也需要集合与逻辑的知识.在教学时,主要是把这个问题本身讲清楚,点出为什么“回答有20名同学参赛”不一定对.而要进一步认识、讨论这个问题,就需要运用本章所学的有关集合与逻辑的知识了.§1.1集合〖教学目的〗通过本小节的学习,使学生达到以下要求:(1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义.〖教学重点与难点〗本小节的重点是集合的基本概念与表示方法;难点是运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合.〖教学过程〗☆本小节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子.1、集合的概念:在初中代数里学习数的分类时,就用到“正数的集合”,“负数的集合”等此外,对于一元一次不等式2x一1>3,所有大于2的实数都是它的解.我们也可以说,这些数组成这个不等式的解的集合,简称为这个不等式的解集.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.一般地,某些指定的对象集在一起就成为一个集合,也简称集.这句话,只是对集合概念的描述性说明.集合则是集合论中原始的、不定义的概念.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.例如,“我校篮球队的队员”组成一个集合;“太平洋、大西洋、印度3洋、北冰洋”也组成一个集合.我们一般用大括号表示集合,上面的两个集合就可以分别表示成4我校篮球队的队员)与4太平洋。

集合与简易逻辑教案jiaoan

集合与简易逻辑教案jiaoan

集合与简易逻辑教案第一章:集合的概念与性质教学目标:1. 理解集合的概念,掌握集合的表示方法。

2. 掌握集合的性质,包括确定性、互异性和无序性。

3. 能够运用集合的基本运算进行计算和解决问题。

教学内容:1. 集合的概念:集合是由确定的元素组成的整体。

2. 集合的表示方法:列举法、描述法和图示法。

3. 集合的性质:确定性、互异性和无序性。

4. 集合的基本运算:并集、交集、补集和相对补集。

教学活动:1. 引入集合的概念,通过实例讲解集合的表示方法。

2. 讲解集合的性质,进行相关性质的证明和举例。

3. 练习集合的基本运算,解决实际问题。

作业与评估:1. 完成课后练习题,巩固集合的概念和性质。

2. 运用集合的基本运算解决实际问题,提高解决问题的能力。

第二章:逻辑运算与命题教学目标:1. 理解逻辑运算的概念,掌握逻辑运算的规则。

2. 理解命题的概念,掌握命题的逻辑结构。

3. 能够运用逻辑运算和命题进行推理和判断。

教学内容:1. 逻辑运算的概念:包括且、或、非等运算。

2. 逻辑运算的规则:包括分配律、结合律和德摩根定律。

3. 命题的概念:命题是能够判断真假的陈述句。

4. 命题的逻辑结构:包括简单命题和复合命题。

教学活动:1. 讲解逻辑运算的概念和规则,通过实例进行演示和解释。

2. 引入命题的概念,讲解命题的逻辑结构。

3. 练习逻辑运算和命题推理,解决实际问题。

作业与评估:1. 完成课后练习题,巩固逻辑运算和命题的概念和规则。

2. 运用逻辑运算和命题进行推理和判断,提高推理能力。

第三章:全称命题与存在命题教学目标:1. 理解全称命题的概念,掌握全称命题的逻辑结构。

2. 理解存在命题的概念,掌握存在命题的逻辑结构。

3. 能够区分全称命题和存在命题,并进行推理和判断。

教学内容:1. 全称命题的概念:全称命题是涉及到所有元素的一般性命题。

2. 全称命题的逻辑结构:包括全称量词和命题陈述。

3. 存在命题的概念:存在命题是涉及到至少一个元素的存在性命题。

第一章 集合与简易逻辑教案 新课标 人教版 教案

第一章 集合与简易逻辑教案 新课标 人教版 教案

第一章 集合与简易逻辑教案一.集合的有关概念 1.集合①定义:某些指定的对象集在一起就成为一个集合,每个对象叫做集合的元素。

②表示方法列举法:将集合中的元素一一列举出来,用大括号括起来,如{a,b,c} 描述法:将集合中的元素的共同属性表示出来,形式为:P={x ∣P(x)}.如:}1),({},1{},1{-=-=-=x y y x x y y x y x图示法:用文氏图表示题中不同的集合。

③分类:有限集、无限集、空集。

④性质 确定性:A a A a ∉∈或必居其一,互异性:不写{1,1,2,3}而是{1,2,3},集合中元素互不相同, 无序性:{1,2,3}={3,2,1}2.常用数集复数集C 实数集R 整数集Z 自然数集N 正整数集*N (或N +) 有理数集Q 3.元素与集合的关系:A a A a ∈∉或 4.集合与集合的关系:①子集:若对任意A x ∈都有B x ∈[或对任意B x ∉都有A x ∉] 则A 是B 的子集。

记作:A B B A ⊇⊆或 C A C B B A ⊆⇒⊆⊆,②真子集:若B A ⊆,且存在A x B x ∉∈00,但,则A 是B 的真子集。

记作:AB[或“B A B A ≠⊆且”] A B ,B CA C③B A A B B A =⇔⊆⊆且④空集:不含任何元素的集合,用φ表示,对任何集合A 有A ⊆φ,若φ≠A 则φ A注:}{}0{}{φφφ≠≠≠a a 5.子集的个数若},,{21n a a a A =,则A 的子集个数、真子集的个数、非空真子集的个数分别为2n个,2n-1个和2n-2个。

二.集合的运算 1.有关概念①交集:}{B x A x x B A ∈∈=且 ②并集:}{B x A x x B A ∈∈=⋃或③全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,通常用U 表示。

④补集:}{A x U x x A C U ∉∈=且A BA BA BA B ABA BAU C U A2.常用运算性质及一些重要结论 ①A B B A A A A A ===φφ ②A B B A AA AA A ===φ③C B A C B A C B A ==)()( C B A C B A C B A ==)()( ④)()()(C A B A C B A = )()()(C A B A C B A = ⑤U A C A A C A U U == φ⑥B A B B A BA AB A ⊆⇔=⊆⇔=⑦)()()()()()(B C A C B A C B C A C B A C U U U U U U ==⑧)()()()(B A Card B Card A Card B A Card -+=三.含有绝对值不等式1、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =)()()()⎪⎩⎪⎨⎧<-=>=0,0,00,a a a a a a2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法;(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法;(如讨论a x x =--122的解有个数) (5)不等式同解变形原理:即()a x a a a x <<-⇔><0 ()a x a x a a x -<>⇔>>或0()c b ax c c c b ax <+<-⇔><+0 ()c b ax c b ax c c b ax -<+>+⇔>>+或0()()()()()x g x f x g x g x f <<-⇔< ()()()()()()x g x f x g x f x g x f <>⇔>或 ()()()()a x f b b x f a a b b x f a -<<-<<⇔>><<或03、不等式的解集都要用集合形式表示,不要使用不等式的形式。

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案第一章:集合的概念与表示方法1.1 集合的定义与性质引导学生理解集合的基本概念,如集合、元素、子集等。

介绍集合的性质,如确定性、互异性、无序性等。

1.2 集合的表示方法介绍集合的表示方法,如列举法、描述法等。

练习如何用不同的方法表示给定的集合。

第二章:集合的关系与运算2.1 集合的关系介绍集合之间的关系,如子集、真子集、并集、交集等。

练习判断给定的集合之间的关系。

2.2 集合的运算介绍集合的运算规则,如并集、交集、补集等。

练习运用集合的运算解决实际问题。

第三章:逻辑推理与命题3.1 逻辑推理的基本概念引导学生理解逻辑推理的基本概念,如前提、结论、推理等。

介绍演绎推理和归纳推理的定义和特点。

3.2 命题与命题公式介绍命题的概念,如简单命题、复合命题等。

练习判断给定的语句是否为命题,并分析命题之间的关系。

第四章:简易逻辑4.1 简易逻辑的基本规则介绍简易逻辑的基本规则,如蕴含式、逆否式、充要式等。

练习运用简易逻辑的规则进行推理。

4.2 逻辑推理的应用练习运用逻辑推理解决实际问题,如判断真假命题、解决逻辑谜题等。

巩固集合与逻辑的基本概念和运算规则。

5.2 提高解题能力提供一些提高解题能力的练习题,让学生进一步巩固所学知识。

分析解题思路,培养学生的逻辑思维和解题技巧。

第六章:不等式与不等式组6.1 不等式的概念与性质引导学生理解不等式的基本概念,如不等号、不等式等。

介绍不等式的性质,如同向相加、反向相减等。

6.2 不等式组的解法介绍不等式组的解法,如图形法、代数法等。

练习运用不同的方法解给定的不等式组。

第七章:函数的概念与性质7.1 函数的定义与表示方法引导学生理解函数的基本概念,如函数、自变量、因变量等。

介绍函数的表示方法,如解析式、图像等。

7.2 函数的性质介绍函数的性质,如单调性、奇偶性、周期性等。

练习判断给定的函数具有哪些性质。

第八章:指数函数与对数函数8.1 指数函数的概念与性质引导学生理解指数函数的基本概念,如指数函数、底数、指数等。

第一章集合与简易逻辑(集合)教案

第一章集合与简易逻辑(集合)教案

第一章 集合与简易逻辑第1课时 集合的概念知识导图123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问题,掌握集合问题的常规处理方法.教学重点:集合中元素的3个性质,集合的3种表示方法. 教学难点:集合语言、集合思想的综合应用. 教学过程:(一)主要知识:1.集合、子集、空集的概念;2.集合中元素的3个性质,集合的3种表示方法;3.若有限集A 有n 个元素,则A 的子集有2n个,真子集有21n-,非空子集有21n-个,非空真子集有22n-个. (二)主要方法:1.解决集合问题,首先要弄清楚集合中的元素是什么; 2.弄清集合中元素的本质属性,能化简的要化简; 3.抓住集合中元素的3个性质,对互异性要注意检验;4.正确进行“集合语言”和普通“数学语言”的相互转化.(三)例题分析: 例1.选择题:(1)不能形成集合的是( )(A)大于2的全体实数 (B)不等式3x -5<6的所有解 (C)方程y =3x +1所对应的直线上的所有点 (D)x 轴附近的所有点 (2)设集合62},23|{=≥=x x x A ,则下列关系中正确的是( ) (A)x A(B)x ∉A(C){x }∈A(D){x }A(3)设集合},214|{},,412|{Z Z ∈+==∈+==k k x x N k k x x M ,则( ) (A)M =N (B)M N(C)M N (D)M ∩N = 解:(1)选D .“附近”不具有确定性.(2)选D . (3)选B .方法一:N M ∉∉21,21故排除(A)、(C),又N ∉∉43,43M ,故排除(D).方法二:集合M 的元素.),12(41412Z ∈+=+=k k k x 集合N 的元素=+=214k xZ ∈+k k ),2(41.而2k +1为奇数,k +2为全体整数,因此M N . 小结:解答集合问题,集合有关概念要准确,如集合中元素的三性;使用符号要正确;表示方法会灵活转化.例2.设集合{},,P x y x y xy =-+,{}2222,,0Q x y x y =+-,若P Q =,求,x y 的值及集合P 、Q .解:∵P Q =且0Q ∈,∴0P ∈.(1)若0x y +=或0x y -=,则220x y -=,从而{}22,0,0Q x y =+,与集合中元素的互异性矛盾,∴0x y +≠且0x y -≠; (2)若0xy =,则0x =或0y =.当0y =时,{},,0P x x =,与集合中元素的互异性矛盾,∴0y ≠;当0x =时,{,,0}P y y =-,22{,,0}Q y y =-, 由P Q =得220y y y y y -=⎧⎪=-⎨≠⎪⎩ ① 或220y y y y y -=-⎧⎪=⎨≠⎪⎩ ②由①得1y =-,由②得1y =,∴{01x y ==-或{01x y ==,此时{1,1,0}P Q ==-.例3.若集合{}2|10,A x x ax x R =++=∈,集合{}1,2B =,且A B ⊆,求实数a 的取值范围.解:(1)若A φ=,则240a ∆=-<,解得22a -<<;(2)若1A ∈,则2110a ++=,解得2a =-,此时{1}A =,适合题意; (3)若2A ∈,则22210a ++=,解得52a =-,此时5{2,}2A =,不合题意; 综上所述,实数m 的取值范围为[2,2)-.巩固练习:1.下列各组对象①接近于0的数的全体; ②比较小的正整数全体; ③平面上到点O 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数有( ) A .2组 B .3组 C .4组 D .5组 2.下列命题中正确的是( )A .{x |x 2+2=0}在实数范围内无意义B .{(1,2)}与{(2,1)}表示同一个集合C .{4,5}与{5,4}表示相同的集合D .{4,5}与{5,4}表示不同的集合3.已知M ={m |m =2k ,k ∈Z },X ={x |x =2k +1,k ∈Z },Y ={y |y =4k +1,k ∈Z },则( )A .x +y ∈MB .x +y ∈XC .x +y ∈YD .x +y ∉M4 已知2{|2530}M x x x =--=,{|1}N x mx ==,若N M ⊆,则适合条件的实数m 的集合P 为1{0,2,}3-;P 的子集有 8 个;P 的非空真子集有 6 个.5 已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举法表示集合Q =______.6 设A 表示集合{2,3,a 2+2a -3},B 表示集合{a +3,2},若已知5∈A ,且5∉B ,求实数a 的值.第2课时 集合的运算教学目标:理解交集、并集、全集、补集的概念,掌握集合的运算性质,能利用数轴 或文氏图进行集合的运算,进一步掌握集合问题的常规处理方法. 教学重点:交集、并集、补集的求法,集合语言、集合思想的运用. 教学过程:(一)主要知识:1.交集、并集、全集、补集的概念;2.A B A A B =⇔⊆,A B A A B =⇔⊇; 3.()U U U C AC B C A B =,()U U U C A C B C A B =.(二)主要方法:1.求交集、并集、补集,要充分发挥数轴或文氏图的作用;2.含参数的问题,要有讨论的意识,分类讨论时要防止在空集上出问题; 3.集合的化简是实施运算的前提,等价转化常是顺利解题的关键. 例题分析:例1.设全集{}|010,U x x x N *=<<∈,若{}3AB =,{}1,5,7U AC B =,{}9U U C A C B =,则A ={}1,3,5,7,B ={}2,3,4,6,8.解法要点:利用文氏图.例2.已知集合{}32|320A x x x x =++>,{}2|0B x x ax b =++≤,若{}|02AB x x =<≤,{}|2A B x x =>-,求实数a 、b 的值. 解:由32320x x x ++>得(1)(2)0x x x ++>,∴21x -<<-或0x >,∴(2,1)(0,)A =--+∞,又∵{}|02A B x x =<≤,且{}|2A B x x =>-,∴[1,2]B =-,∴1-和2是方程20x ax b ++=的根, 由韦达定理得:{1212a b -+=--⨯=,∴{12a b =-=-. 说明:区间的交、并、补问题,要重视数轴的运用.例3.已知集合{}2(,)|20,A x y x mx y x R =+-+=∈,{}(,)|10,02B x y x y x =-+=≤≤,若A B φ≠,求实数m 的取值范围.分析:本题的几何背景是:抛物线22y x mx =++与线段1(02)y x x =+≤≤有公共点,求实数m 的取值范围.解法一:由{22010x mx y x y +-+=-+=得2(1)10x m x +-+= ①∵A B φ≠,∴方程①在区间[0,2]上至少有一个实数解,首先,由2(1)40m ∆=--≥,解得:3m ≥或1m ≤-. 设方程①的两个根为1x 、2x ,(1)当3m ≥时,由12(1)0x x m +=--<及121x x ⋅=知1x 、2x 都是负数,不合题意;(2)当1m ≤-时,由12(1)0x x m +=-->及1210x x ⋅=>知1x 、2x 是互为倒数的两个正数,故1x 、2x 必有一个在区间[0,1]内,从而知方程①在区间[0,2]上至少有一个实数解, 综上所述,实数m 的取值范围为(,1]-∞-.解法二:问题等价于方程组{221y x mx y x =++=+在[0,2]上有解,即2(1)10x m x +-+=在[0,2]上有解,令2()(1)1f x x m x =+-+,则由(0)1f =知抛物线()y f x =过点(0,1),∴抛物线()y f x =在[0,2]上与x 轴有交点等价于2(2)22(1)10f m =+-+≤ ①或22(1)401022(2)22(1)10m mf m ∆=--≥⎧-⎪<<⎨⎪=+-+>⎩ ② 由①得32m ≤-,由②得312m -<≤,∴实数m 的取值范围为(,1]-∞-.巩固练习:1设全集U ={a ,b ,c ,d ,e }.集合M ={a ,b ,c },集合N ={b ,d ,e },那么(U M )∩(U N )是( )(A) (B){d } (C){a ,c } (D){b ,e }2 全集U ={a ,b ,c ,d ,e },集合M ={c ,d ,e },N ={a ,b ,e },则集合{a ,b }可表示为( )(A)M ∩N (B)(U M )∩N (C)M ∩(U N ) (D)(U M )∩(U N )3 如图,U 是全集,M 、P 、S 为U 的3个子集,则下图中阴影部分所表示的集合为( )(A)(M ∩P )∩S (B)(M ∩P )∪S (C)(M ∩P )∩(U S ) (D)(M ∩P )∪(U S)4 已知集合},,1|),{(2R y x x y y x M ∈-==,},1|),{(R y x y x N ∈==,则N M ⋂=____________5设数集3{|}4M x m x m =≤≤+,1{|}3N x n x n =-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,那么集合M N的长度的最小值是112.6 已知集合}0)3)((|{>--=a x a x x A (0>a ),}086|{2<+-=x x x B ,1)若A ⊃≠B ,求实数a 的取值范围;2)若φ=⋂B A ,求实数a 的取值范围;3)若}43|{<<=⋂x x B A ,求实数a 的取值范围。

集合与简易逻辑教案

集合与简易逻辑教案

集合与简易逻辑教案第一章:集合的概念与性质1.1 集合的定义与表示方法学习集合的基本概念,如元素、集合、子集等。

掌握集合的表示方法,如列举法、描述法等。

1.2 集合的运算学习集合的交集、并集、补集等基本运算。

理解集合运算的性质与规律。

1.3 集合的特殊性质学习集合的无限性、序性、布尔性等特殊性质。

探讨集合的分类与构造。

第二章:逻辑与命题2.1 逻辑的基本概念学习逻辑的基本元素,如命题、联结词、推理等。

理解逻辑与数学的关系。

2.2 命题逻辑学习命题逻辑的基本规则,如蕴含、矛盾、等价等。

掌握命题逻辑的推理方法,如演绎推理、归纳推理等。

2.3 谓词逻辑学习谓词逻辑的基本概念,如个体、谓词、量词等。

掌握谓词逻辑的推理方法,如演绎推理、归纳推理等。

第三章:集合的列举与描述3.1 集合的列举法学习如何用列举法表示集合,如自然数集、整数集等。

掌握列举法的特点与局限性。

3.2 集合的描述法学习如何用描述法表示集合,如素数集、偶数集等。

掌握描述法的特点与优势。

3.3 集合的分类与构造学习集合的分类方法,如代数集合、拓扑集合等。

探讨集合的构造技术与应用。

第四章:集合的运算与性质4.1 集合的交集与并集学习集合的交集与并集的定义与性质。

掌握交集与并集的运算规律。

4.2 集合的补集与子集学习集合的补集与子集的定义与性质。

掌握补集与子集的运算规律。

4.3 集合的特殊性质学习集合的无限性、序性、布尔性等特殊性质。

探讨集合的分类与构造。

第五章:简易逻辑与推理5.1 逻辑的基本概念学习逻辑的基本元素,如命题、联结词、推理等。

理解逻辑与数学的关系。

5.2 命题逻辑的推理方法学习命题逻辑的基本规则,如蕴含、矛盾、等价等。

掌握命题逻辑的推理方法,如演绎推理、归纳推理等。

5.3 谓词逻辑的推理方法学习谓词逻辑的基本概念,如个体、谓词、量词等。

掌握谓词逻辑的推理方法,如演绎推理、归纳推理等。

第六章:元素与集合的关系6.1 元素与集合的包含关系学习元素与集合之间的包含关系,包括属于、不属于等。

集合与简易逻辑教案

集合与简易逻辑教案

集合与简易逻辑教案教学目标:1. 理解集合的概念,掌握集合的表示方法。

2. 学会运用集合的基本运算。

3. 理解简易逻辑的定义和性质。

4. 学会运用简易逻辑解决问题。

教学内容:第一章:集合的概念与表示方法1.1 集合的概念1.2 集合的表示方法1.3 集合的性质第二章:集合的基本运算2.1 集合的并集2.2 集合的交集2.3 集合的补集2.4 集合的幂集第三章:简易逻辑的基本概念3.1 简易逻辑的定义3.2 简易逻辑的性质3.3 简易逻辑的判定方法第四章:简易逻辑的应用4.1 简易逻辑在几何中的应用4.2 简易逻辑在代数中的应用4.3 简易逻辑在概率中的应用第五章:集合与简易逻辑的综合应用5.1 集合与简易逻辑的结合5.2 集合与简易逻辑在实际问题中的应用教学方法:1. 采用讲授法,讲解集合与简易逻辑的基本概念、性质和应用。

2. 利用案例分析,让学生通过具体例子理解集合的基本运算和简易逻辑的判定方法。

3. 引导学生运用集合与简易逻辑解决实际问题,培养学生的逻辑思维能力。

教学评估:1. 课堂练习:每章结束后,安排课堂练习,巩固所学知识。

2. 小组讨论:组织学生进行小组讨论,分享学习心得和解决问题的方法。

3. 课后作业:布置课后作业,检验学生对知识的掌握程度。

4. 期中期末考试:评估学生对整个课程的学习效果。

教学资源:1. 教材:《集合与简易逻辑》2. 课件:教师自制课件3. 案例分析:相关实际问题案例4. 练习题库:相关习题和解答教学进度安排:1. 第一章:2课时2. 第二章:3课时3. 第三章:2课时4. 第四章:3课时5. 第五章:2课时集合与简易逻辑教案教学目标:1. 理解集合的概念,掌握集合的表示方法。

2. 学会运用集合的基本运算。

3. 理解简易逻辑的定义和性质。

4. 学会运用简易逻辑解决问题。

教学内容:第六章:集合的分类6.1 集合的分类标准6.2 有序集合与无序集合6.3 集合的划分与覆盖第七章:集合与函数7.1 函数的定义与性质7.2 函数的图像与特征7.3 函数与集合的关系第八章:集合与数系8.1 自然数系8.2 整数系8.3 有理数系8.4 实数系第九章:集合与逻辑推理9.1 逻辑推理的基本形式9.2 集合与逻辑推理的关系9.3 集合逻辑推理的应用第十章:集合与简易逻辑的综合应用10.1 集合与简易逻辑在科学研究中的应用10.2 集合与简易逻辑在日常生活中的应用10.3 集合与简易逻辑在其它学科中的应用教学方法:1. 采用讲授法,讲解集合与简易逻辑的基本概念、性质和应用。

高中数学教材集合与简易逻辑教学策略分析

高中数学教材集合与简易逻辑教学策略分析
如命题“对顶角相等”的对象“两个角”不明显,命题“偶数的平方是偶数(若x是偶数,则x2是偶数)”的对象不明确。虽然我们不一定特别考究一个命题对象的确定性,但假如要从某一命题出发研究四种命题及其关系,一般就要求其对象具有确定性。否则在制作其他三种命题时就可能造成混乱。对于命题“偶数的平方是偶数”,若在整数集中研究(即对象为整数),则四种命题皆真;若在实数集中研究,则“不是偶数”ቤተ መጻሕፍቲ ባይዱ必“是奇数”,如(2)2=2,此时只有两个命题为真。
新教材在“集合”与“简易逻辑”之间插入了“含绝对值的不等式解法”和“一元二次不等式解法”这两节属于不等式的内容。学生学习不会感到困难,并且安排在这个位置上至少有以下三个优点:
1.巩固学生已经学过的集合基本概念、表示方法和并、交、补运算。
2.巩固并熟练使用前面已学过的“或”、“且”这两个逻辑联结词,为学习简易逻辑打好基础。
四、关于四种命题的教学
高中教材首先从初中数学命题的知识出发,给出四种命题的概念。接着讲述四种命题的关系,最后介绍反证法。大纲规定的教学目标是“理解四种命题及其相互关系”。而教参提出本小节的教学要求是“初步理解四种命题及其相互关系,初步掌握反证法”。从学生的知识准备和接受能力看,应该说教参的调整是恰当的。按照教材编排的内容进行教学,基本上是可以达到这个要求的。
在学习“交”、“并”时,对“且”与“或”这两个困扰高中生的逻辑联结词,特别是“或”,可借助文氏图形象地解读。用文氏图解决集合的元素个数问题,也不失为一个好方法。在学习子集概念后,对巩固集合的概念及表示法有一道很好的练习题:已知A={1,2},B={x|xA},用列举法表示集合B。
二、关于不等式的教学
一、关于集合的教学
这部分内容的教学要求,新教材与旧教材基本相同。其目的主要在于应用。具体地说,就是在学习其他知识时能读懂其中的集合概念和符号;在处理简单的实际问题时,能根据需要,运用集合语言进行表述。因此,不必过分追求概念的严谨性和知识的系统性。但这部分有较多的新概念需要理解(或了解),有较多的新术语和新符号需要掌握。有些术语和符号还容易混淆,需区别开来,并规范书写。在教学中可充分运用文氏图理解交集、并集、补集的概念和性质,而不必对性质加以证明,以免影响对重点内容的掌握。

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案章节一:集合的概念与表示方法教学目标:1. 了解集合的概念,理解集合中元素的特点。

2. 学习集合的表示方法,包括列举法和不完全列举法。

3. 能够正确运用集合的表示方法表示给定的集合。

教学内容:1. 集合的概念:集合是由一些确定的、互不相同的对象组成的整体。

2. 集合的表示方法:列举法:将集合中的所有元素按照一定的顺序列举出来,用大括号括起来,如{1, 2, 3}。

不完全列举法:列举集合中的一部分元素,并用省略号表示还有其他元素,如{1, 2, 3, }。

教学活动:1. 引入集合的概念,通过实际例子讲解集合的定义。

2. 讲解集合的表示方法,包括列举法和不完全列举法。

3. 练习题:让学生运用所学的表示方法表示给定的集合。

章节二:集合的运算教学目标:1. 学习集合的运算,包括并集、交集和补集。

2. 理解并集、交集和补集的定义和性质。

3. 能够正确计算给定集合的并集、交集和补集。

教学内容:1. 并集:由两个或多个集合中所有的元素组成的集合。

2. 交集:属于两个或多个集合的元素组成的集合。

3. 补集:在全集之外的部分组成的集合。

教学活动:1. 引入集合的运算,通过实际例子讲解并集、交集和补集的定义。

2. 讲解并集、交集和补集的性质,如交换律、结合律等。

3. 练习题:让学生运用所学的运算方法计算给定集合的并集、交集和补集。

章节三:简易逻辑教学目标:1. 学习简易逻辑的基本概念和定理。

2. 理解简易逻辑中的推理和证明方法。

3. 能够运用简易逻辑解决实际问题。

教学内容:1. 简易逻辑的基本概念:包括命题、定理、公理等。

2. 推理和证明方法:包括直接证明、反证法、归纳法等。

3. 常用逻辑符号:包括且、或、非、蕴含等。

教学活动:1. 引入简易逻辑的基本概念,通过实际例子讲解命题、定理、公理等。

2. 讲解推理和证明方法,通过实际例子演示直接证明、反证法、归纳法等。

3. 练习题:让学生运用所学的逻辑推理和证明方法解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章“集合与简易逻辑”教材分析
本章安排的是“集合与简易逻辑”,这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合的初步知识是现行高中数学教科书中原来就有的内容,这部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识则是新增加的内容,这部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识
集合概念及其基本理论,称为集合论,是近代数学的一个重要的基础.一方面,许多重要的学科,如数学中的数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.
逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分.
在高中数学中,集合的初步知识与简易逻辑知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,这就是把它们安排在高中数学起始章的出发点.
说明:本章是高中数学的起始章,课时安排得相对宽松一些,像小结与复习部分安排4课时,其中考虑到了对初中内容进行适当复习、巩固的因素.
一、内容与要求大体上按照集合与逻辑这两个基本内容,第一章编排成两大节.
第一大节是“集合”.学生在小学和初中数学中,已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(圆)等,都有了一定的感性认识.在此基础上,这一大节首先结合实例引出集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出子集的概念,此外,还给出了与子集相联系的全集与补集的概念.接着,又讲述了属于集合运算的交集、并集的初步知识.鉴于不等式的内容目前初中数学只讲述一元一次不等式与一元一次不等式组,考虑到集合知识的运用与巩固,又考虑到下一章讨论函数的定义域与值域的需要,第一大节最后安排的是绝对值不等式与一元二次不等式的解法.此外,在这一大节之后,还附了一篇关于有限集合元素个数的阅读材料.
这一大节的重点是有关集合的基本概念.学习集合的初步知识,可以使学生更好地理解数学中出现的集合语言,可以使学生更好地使用集合语言表述数学问题,并且可以使学生运用集合的观点研究、处理数学问题,这里,起重要作用的就是有关集合的基本概念.这一大节的难点是有关集合的各个概念的含义以及这些概念相互之间的区别与联系.学生是从本章才正式开始学习集合知识的,这部分包含了比较多的新概念,还有相应的新符号,有些概念、符号还容易混淆,这些因素都可能造成学生学习的障碍.
第二大节是“简易逻辑”.学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先给出含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的
真假的方法.接下来,讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.
这一大节的重点是逻辑联结词“或”、“且”、“非”与充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.
这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.
根据《全日制职业高级中学数学教学大纲(试验修订版)》的规定,本章的教学要求是:
⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.
⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.
二、本章的特点
⒈注意初中与高中的衔接
近年来,在与本章有关的内容上,按照教学大纲,初中的教学要求有哪些变化呢?
先看有关集合的部分.初中适当渗透一些集合思想,这一点基本没有变化.此外,初中去掉了一元二次不等式与绝对值不等式的内容.
再看有关逻辑的部分.1996年以前的初中毕业生,应该达到以下要求:⑴了解命题的概念;⑵初步掌握逆命题和逆定理的概念,能正确叙述题设与结论都是简单命题的命题的逆命题,了解正确命题的逆命题的逆命题不一定正确;⑶了解四种命题及其相互关系;⑷理解用反证法证明命题的思路,能用反证法证明一些比较简单的几何题.从1996年起,对于高一新生,初中的要求又有进一步调整.上述⑵改为:了解逆命题和逆定理的概念,原命题成立它的逆命题不一定成立,会识别两个互逆命题.⑶删去.⑷改为:了解反证法.基于以上情况,考虑到学习高中数学的需要,新教材一方面补充了一些必要的知识点,例如关于一元二次不等式与绝对值不等式的解法;另一方面对一些初中相对薄弱的内容,适当予以加强,例如关于反证法等.
例如,关于交集、并集的概念,教科书先从图形表示入手,让学生有一个直观的认识,然后给出定义,再用实例加以说明,并且,引出概念的图形也只是采用了一种简明的形式,而没有画出全部可能出现的情况.
又如,本章是对比初中学过的一元一次不等式,并且借助二次函数的图象,讲述一元二次不等式解法的.
⒉重视集合与逻辑在中学数学学习中的应用
本章是高中数学的基础,学习本章,主要目的是为了理解后续章节出现的集合与逻辑语言,会用集合与逻辑语言描述学习中遇到的数学问题,进而解决这些问题.像对一些性质、定理的理解,对函数的定义域、值域的描述,对推理方法的掌握,等等.
本章在集合与逻辑内容的编排上,既考虑到知识的系统性,又照顾到学生的可接受性,并且始终围绕着集合与逻辑在中学数学学习中的应用这一基本出发点.
在集合这部分,有关集合运算的内容,就注意在解方程和不等式方面的应用,在数学概念的分类方面的应用.在逻辑这部分,有关命题的内容,突出的是对逻辑联结词“或”、“且”、“非”的理解和对复合命题真值的认识,而不过多地涉及对一个语句是不是命题的判断.此外,像关于复合命题的否定,对近期学习影响不大,学生学习又比较困难,本章基本未涉及.
为了帮助学生理解逻辑联结词“或”、“且”、“非”,教科书中介绍了“或门电路”、“与门电路”,这是两个应用的实例.实际上,计算机的“智能”装置就是以数学逻辑为基础进行设计的
三、教学中应注意的问题
⒈教学要求的把握要适时、适度
本章是高中数学的起始章,适当地把握本章的教学要求是教学中应该重视的问题.
集合与逻辑的初步知识是高中数学的基础知识,学习这些内容,主要是为今后进一步学习其他知识作基本语言、基本方法的准备,相应地,对知识系统性、严谨性的要求一定要适度.
学习有关集合的初步知识,其目的主要在于应用.具体说,就是在学习其他知识时,能读懂其中的简单的集合概念和符号;在处理简单的实际问题时,能根据需要,运用集合语言进行表述.在安排训练时,要把握一定的分寸,不要搞偏题、怪题.集合有关性质的证明,一般不要求学生掌握.有些可能混淆但在实际问题中并不多见的关系,就不必故意编排在一起,让学生去一一进行辨析.
本章安排的是集合与逻辑的初步知识,这些知识的讲述,是以初中数学的内容为基础的.从引出有关知识的实例,到具体应用的问题,基本都属于初中数学的范围,这种局限自然会对有关知识的理解和掌握造成一定影响.随着后续章节的学习,对集合与逻辑知识的应用将越来越广泛和深入,相应地,对集合与逻辑知识理解和掌握的水平也就越来越高了.因此,本章的教学要求,应该避免一步到位.
关于含有“或”、“且”、“非”的复合命题的真值表,在开始时,教学重点还是借助三个真值表,加深对含有“或”、“且”、“非”的复合命题的了解,而不必急于让学生掌握对一般复合命题的真假的判断.
关于充分条件、必要条件与充要条件,本章对教学要求的尺度,还是控制在对初中代数、几何的有关问题的理解上为宜.
⒉提高集合与逻辑的教学效益
目前高中数学教学的一个突出问题是教学效益不高.具体表现在:一方面,学生用在数学上的时间比较多,像与美国比,是美国学生的好几倍;另一方面,学生在考试中表现良好,但创造性能力和应用能力有一定欠缺,个性发展也存在着不足之处.
为了后续章节的学习,在本章必须给学生打下适当的集合与逻辑基础,限于学生的预备知识与接受能力,在本章又不能过多地追求理论的完整,只有处理好这个关系,才能提高教学效益.因此,在实际教学时,一定要抓住重点.怎样把握本章的教学重点呢?一是要有助于对初中数学的理解,二是要能为高中数学的学习扫除障碍.换句话说,学习集合与逻辑,要着眼于用集合与逻辑的知识解决数学学习中的问题,而不要在概念的严谨性、知识的系统性上花过多的时间与精力.像逻辑中有不少问题,在学术界内部都有争论,在高一数学课上,就完全没有必要去涉及了.
⒊使用数学符号要规范
本章教材有不少集合与逻辑的数学符号,这些符号的采用,依据的是新的国家标准,其中有些符号与原教科书不同,在教学时应该注意.。

相关文档
最新文档