边界元法与无网格法-无网格法
无网格法的理论及应用

为了验证该方法的有效性和可行性,我们进行了一系列实验。实验过程中采 用了某稠油油田的实际数据集,包括地层压力、温度、渗透率等参数。同时,采 用了可视化评估指标,以便直观地评估计算结果的准确性。实验结果表明,该方 法在稠油热采数值模拟过程中具有较高的计算精度和计算效率,可为稠油热采技 术的优化提供有力支持。
1、算法开发:针对稠油热采的物理化学过程,开发相应的数值模拟算法, 如有限元法、有限差分法等。
2、软件架构:设计并实现数值模拟软件的架构,包括前后处理、求解器等 模块,以便用户进行快速高效的计算。
3、数据处理:针对稠油热采数值模拟过程中产生的大量数据,开发相应的 数据处理技术,如数据压缩、可视化等。
无网格法的数值积分采用移动最小二乘法(Moving Least Squares,MLS) 来实现。该方法通过对节点进行加权,构造一个局部近似函数来逼近真实的解。 数值积分通过在节点上建立局部近似函数,然后对该函数进行求导和积分来计算。 无网格法的数值积分具有高精度和高效性,同时避免了传统网格法中的网格生成 和数据处理问题。
1、结构分析
无网格法在结构分析中具有广泛的应用,可以处理各种复杂形状和材料属性 的结构。例如,桥梁、建筑物和飞机等结构分析中,无网格法能够适应复杂的几 何形状和非均匀的材料属性,同时提高计算效率和精度。此外,无网格法在疲劳 分析和振动分析中也得到了广泛应用。
2、流体分析
无网格法在流体分析中也有着广泛的应用,可以处理各种复杂的流体流动问 题。例如,无网格法可以应用于计算流体动力学(CFD)中的复杂流场模拟、燃 烧模拟以及噪声辐射模拟等。无网格法能够适应复杂的几何形状和流场特性,提 高计算精度和效率。
参考内容
稠油热采是一种重要的石油开采方法,具有提高采收率、降低开采成本等优 势。随着计算机技术的不断发展,数值模拟已成为稠油热采领域的重要工具。本 次演示旨在探讨稠油热采数值模拟自适应网格法计算软件的开发研究及实例应用。
多物理场模拟仿真

多物理场模拟仿真第一部分多物理场概述 (2)第二部分仿真模拟技术发展 (3)第三部分数值求解方法介绍 (6)第四部分计算流体力学应用 (8)第五部分热传导与温度调控 (11)第六部分电磁场模拟与优化 (13)第七部分光学现象与仿真应用 (15)第八部分多物理场耦合问题研究 (17)第一部分多物理场概述括对流、热传导、电磁学、力学等多个物理学科的交叉,要求研究人员具备丰富的知识和技能。
在过去的几十年中,随着计算机技术的飞速发展和数值方法的不断创新,多物理场模拟仿真技术得到了广泛应用。
例如,在航空航天领域,需要模拟气动弹性、传热、结构强度等多种物理现象。
在能源方面,需要模拟温度、压力、化学反应等物理参数,以提高能源转换效率和减少污染排放。
此外,在生物医学、环境科学等领域也都需要进行多物理场模拟仿真来提高研究水平。
然而,多物理场模拟仿真的实现并不容易。
它涉及到多种不同的物理现象,需要精确描述每个物理场的相关方程,还需要处理不同时间尺度、空间尺度和物理单元之间的复杂相互作用。
因此,多物理场模拟仿真需要强大的计算能力和先进的算法支持。
为了解决这些问题,研究人员开发了各种多物理场模拟仿真方法。
其中最常用的方法是有限元法,该方法通过将连续体离散化为网格节点,并利用插值函数将物理量从节点扩展到整个区域,从而求解偏微分方程。
此外,还有有限差分法、边界元法、谱元法等多种方法可供选择。
尽管已经取得了一些进展,但多物理场模拟仿真仍然是一个充满挑战的领域。
随着物理问题的复杂性和计算能力的不断提高,新的方法和算法仍需不断研发,以满足日益增长的需求。
第二部分仿真模拟技术发展仿真模拟技术是一种通过计算机模拟真实世界中的物理现象和过程的技术,在科研、工程设计和教学等领域具有广泛的应用。
随着计算能力的提高和数值方法的发展,仿真模拟技术不断进步,为人类社会的发展做出了巨大的贡献。
早在 20 世纪 40 年代,仿真模拟技术就已经开始萌芽。
断裂力学综述

断裂力学概述关键词:断裂力学;现状;阶段性问题;发展趋势中文摘要:本文主要介绍了断裂力学的4个方面,包括对断裂力学的简单介绍,相关的理论和方法,现阶段存在的问题及技术关键,发展趋势。
英文摘要:Four aspects of fracture mechanics are referred in this paper, including brief introduction about fracture mechanics, related theories and methods, problems and key technologies existing at the present stage, and the development.1.引言断裂力学是近几十年才发展起来了的一门新兴学科,主要研究承载体由于含有一条主裂纹发生扩展(包括静载及疲劳载荷下的扩展)而产生失效的条件。
断裂力学应用于各种复杂结构的分析,并从裂纹起裂、扩展到失稳过程都在其分析范围内。
由于它与材料或结构的安全问题直接相关,因此它虽然起步晚,但实验与理论均发展迅速,并在工程上得到了广泛应用。
断裂力学研究的方法是:从弹性力学方程或弹塑性力学方程出发,把裂纹作为一种边界条件,考察裂纹顶端的应力场、应变场和位移场,设法建立这些场与控制断裂的物理参量的关系和裂纹尖端附近的局部断裂条件。
2.国内外相关研究现状目前,断裂力学总的研究趋势是:从线弹性到弹塑性;从静态断裂到动态断裂;从宏观微观分离到宏观与微观结合;从确定性方法到概率统计性方法。
所以就断裂力学本身而言,根据研究的具体内容和范围,它又被分为宏观断裂力学(工程断裂力学)和微观断裂力学(属金属物理范畴)。
宏观断裂力学又可分为弹性断裂力学(它包括线性弹性断裂力学和非线性弹性断裂力学)和弹塑性断裂力学(包括小范围屈服断裂力学和大范围屈服断裂力学及全面屈服断裂力学)。
工程断裂力学还包括疲劳断裂、蠕变断裂、腐蚀断裂、腐蚀疲劳断裂及蠕变疲劳断裂等工程中重要方面。
无网格方法的研究现状和发展

无 网格 方 法 的研 究 现 状 和 发 展
曾
摘
媛戴木Leabharlann 香 要: 通过有限元法和无 网格法的对比分析 , 总结 出无 网格方法 的特 点及优势 , 讲述 了无网格方法的发展 历史, 在此基
础上介绍 了无 网格方法在 国内外 的研 究现状 , 并对 无网格方法 中的难 点和存在 的问题进 行 了探讨。 关键词 : 无网格方法, 限元法 , 有 数值模拟 , 研究现状
维普资讯
第3 4卷 第 2 7期 20 08 年 9 月
山 西 建 筑
S HANXI ARCHI TE rU=E R
Vo . 4 NO. 7 13 2
Sp 2 0 e. 08
・17 ・ 1
文章 编 号 :0 96 2 (0 8 2 —170 1 0 —8 5 2 0 )70 1—2
1对 2无 动 模拟分析 方法对 网格 的依赖性 , 底或部 分地 消除 网格 , 彻 抛开 网 向 : ) 无 网 格 法 理 论 方 面 的进 一 步 研 究 ; ) 网 格 法 在 碰 撞 、 金属 加工成 型等领域 中的应用 。根 据选取基 函数 和 格的初始划分 和网格 重构 的一种 很有发 展前 途 的数 值模 拟分 析 态裂纹扩展 、
中图 分 类 号 : U3 1 T 1 文 献标 识 码 : A
0 引言
常见的数值模拟分析方法按其适 用范围可 以分为 两大类 : 一
类方法才开始引起众 多学者 和研究 人员 的重视 和研 究兴趣 。无
网格发展 至今 已有 十余 种 , 国外 , 早提 出的一种 无 网格方法 在 最
就可以得 到不同的无 网格 方法 。 方 法 。 因此 , 网格 法 在 涉 及 网格 畸 变 、 格 移 动 等 问题 中显 示 权函数 以及积分方式的不 同, 无 网 B lt h o等提出的无 单元 G l kn法 , 出了误差 分析 , e s k yc a ri e 给 并 出了明显的优 势 , 目前 国内外计算力学界 的热点研究领域。 是 掀起 了无 网 无网格方法和有限元法 的主要区别是 : 它在 建立近似 函数 时 成功地应用于动态裂纹 扩展数值 以及三 维撞击分析 , 同时 ,e t h o B l s k 等也 对无单 元 Ga r n法 中 yc ll ed 不需要网格 、 于函数逼近近似而非插值 、 基 采用不 同的形 函数等 。 格法的研究新 高潮 , 的数值积分方案以及近似函数的计算方法 进行 了深入 的研究 , 并 无网格方法 和经典加权残值法 的主要 区别是 : 采用定 义在离散节 克服 了有 限元方法在模拟裂 点上( 通常具有紧支特性 ) 的一组权 函数 和基 函数来构 造 近似 函 重新 用于动态 裂纹 扩展的数值模拟 , Lu等将 无单 元 数, 而不用定义在全域上的级数展开形式 。无 网格方法 的特点 与 纹扩展时 需 要不 断进 行 网格 重新 划 分 的缺 点 ; i a r i法和边界 元 法相耦 合 , 于 固体 的应 力 分析 ; d t h o e 用 B ys k c 优势 主要表现在 : ) 近似函数对 网格没 有依赖 。2 其基 函数可 G l kn 1其 ) 以包含能够反映奇异性 等特 殊性质 的 函数系列 。3 与有 限元法 和 D 等将无单元 Ga r n ) u l l 法用 于三 维撞 击和流体 晃动分析 。 ed 类似 , 采用 紧支 函数 的无 网格 方 法具 有 带状 稀疏 系数 矩 阵 的特 析 。5前 处理简单等。 ) B bsa auk 等将单位分解 与 有限元相 结合 , 出 了单 位分解 有 提 够反 映待求边值 问题特性 的函数 , 并将这 些特殊 函数 与单位分解 该法在标准 有限元空 问中加 入一系列能 点, 适用 于求解大 型的科学 与工 程问题 。4 适合 进行 自适 应性 分 限元法 和广义 有限元法 , ) 因此无 网格方法 已在众 多领域获得 了应用 , 如水下爆 炸仿 真 函数相乘后和原有 的有 限元 形 函数一起 构成 了新 的增广协 调有 模拟 、 高速碰撞等材料 动态 响应 的数值 模拟 、 动态 裂纹扩 展数 值 限元空 间。用该方法求解动态裂纹 扩展 问题 时 , 可以处理任意裂 模拟 、 三维撞击分析和大变形等 问题 中。下面让我们 回顾一下 无 纹状态 , 并且不需 要重新划分 网格 。刘欣 等将单位分解 法用于求
混凝土数值研究中裂缝模拟的新方法

科技信息0.前言混凝土是典型的非均匀材料,其内部有宏观的缺陷如裂纹、夹渣、气泡、孔穴等。
混凝土的强度、变形和破坏性能等都与其内部结构及裂缝的扩展有关。
混凝土破坏是由于体系中潜在的各种缺陷引起的,其破坏过程实际上就是微裂纹萌生、扩展、贯通,直到宏观裂纹产生导致混凝土失稳破裂的过程[1]。
研究混凝土材料的断裂过程及其宏观力学性能有利于认识混凝土断裂破坏机理,为混凝土结构体系的数值仿真分析提供力学依据。
国内外学者提出了很多研究混凝土断裂破坏的数值方法,包括流形元法[2]、边界元法[3]、分形几何法[4]、无网格法[5]、有限元法[6]等等。
这些非连续介质数值计算方法由于其各自的缺陷,如网格重划分问题,计算效率问题等因素限制了其发展。
1999年,美国西北大学以Belytschko 教授为代表的研究组提出了一种在常规有限元框架内求解不连续问题的扩展有限元法,该方法在短短的十年内得到广泛的应用。
Ted Belytschko 等[7]采用XFEM 和水平集模拟了弹塑性介质中的动态裂纹扩展问题,数值模拟和试验结果一致。
Moes 等[8]利用XFEM 进行细观结构的多尺度分析,他们认为,虽然计算中网格不需要与物理表面一致,但仍需要细到足以捕捉这些表面的几何特征。
张晓东[9]用扩展有限元法结合虚拟裂缝模型对单向拉伸混凝土板和三点弯曲混凝土梁进行开裂过程模拟,重点考察初始裂纹长度、混凝土断裂对混凝土板和梁开裂特性的影响。
应宗权[10]等为了简化颗粒增强复合材料的单元划分问题,利用水平集函数来表征夹杂材料的几何界面,从而使得有限元网格的划分无需与材料细观结构的内部边界相协调。
本文首先介绍扩展有限元法的基本原理,给出了扩展有限元进行混凝土开裂及裂纹扩展的分析方法,最后采用扩展有限元模拟了混凝土单轴拉伸的细观断裂破坏过程,展示扩展有限元在混凝土断裂问题研究中的独特优势。
1.扩展有限元基本原理扩展有限元(XFEM )是基于单位分解的思想在常规有限元位移模式中加进一些特殊的函数,即跳跃函数和裂尖渐近位移场,从而反映裂纹的存在。
无网格方法的研究应用与进展

第24卷第4期(总第109期)机械管理开发2009年8月Vol.24No.4(SUM No.109)MECHANICAL MANAGEMENT AND DEVELOPMENT Aug.20090引言有限元法(FEA)是随着电子计算机的发展而迅速发展起来的一种现代计算方法,但FEA是基于网格的数值方法,在分析涉及特大变形(如加工成型、高速碰撞、流固耦合)、奇异性或裂纹动态扩展等问题时遇到了许多困难。
同时,复杂的三维结构的网格生成和重分也是相当困难和费时的。
近年来,无网格得到了迅速的发展,受到了国际力学界的高度重视。
与有限元的显著特点是无网格法不需要划分网格,只需要具体的节点信息,采用一种权函数(或核函数)有关的近似,用权函数表征节点信息。
克服了有限元对网格的依赖性,在涉及网格畸变、网格移动等问题中显示出明显的优势。
1无网格方法的概述无网格方法(Meshless Method)是为有效解决有限元法在数值模拟分析时网格带来的重大问题而产生的,其基本思想是将有限元法中的网格结构去除,完全用一系列的节点排列来代之,摆脱了网格的初始化和网格重构对问题的束缚,保证了求解的精度[1]。
是一种很有发展的数值模拟分析方法。
目前发展的无网格方法有:光滑质点流体动力学法(SPH)、无网格枷辽金法(EFGM)、无网格局部枷辽金法(MLPGM)、扩散单元法(DEM)、Hp-clouds无网格方法;有限点法(FPM)、无网格局部Petrov-Galerkin 方法(MLPG)、多尺度重构核粒子方法(MRKP)、小波粒子方法(WPM)、径向基函数法(RBF)、无网格有限元法(MPFEM)、边界积分方程的无网格方法等。
这些方法的基本思想都是在问题域内布置一系列的离散节点,然后采用一种与权函数或核函数有关的近似,使得某个域上的节点可以影响研究对象上的任何一点的力学特性,进而求得问题的解。
2无网格方法国内外研究的进展无网格法起源于20世纪70年代。
油藏数值模型现状及发展趋势

油藏数值模型现状与开展趋势吴晰一、前言随着计算机工程、数学模型和油藏工程等学科的不断开展以与融合,油藏数值模拟技术得到不断的开展和广泛的应用并日趋成熟完善。
通过油藏数值模拟可以掌握油藏的整体规律;研究合理的开发方案,选择最优的开采参数,以最少的投资、最科学的开采方式而获得最高采收率与最大的经济效益。
试井分析方法随着测试手段的提高,经历了常规试井分析方法和现代试井分析方法的开展和完善,成为油藏精细描述和油藏开发动态调整的重要工具。
二、油藏数值模拟技术现状与开展趋势2.1 渗流模型综述渗流模型有以下几种分类:A.按渗流性质分为黑油模型、组分模型、混相驱模型、热采模型与化学驱模型等B.按油藏类型分为砂岩油藏模型、裂缝性油藏模型、气藏模型、凝析气藏模型与复杂断块模型等IMPES方法、半隐式、交替隐式、全隐式与自适应隐式等D.按线性方程组得解法分为各种节点排序方法、各种直接法与各种迭代法等,并可对井、区块或油田给定各种边界条件。
总结各种模型的共同点就是先进展微元体分析用积分或微分方法导出系统的质量守恒方程,然后将运动方程和状态方程代入,在此根底上,根据实际问题的需要进展各种必要的简化和处理。
2.2 数值求解方法从大的方面而言,离散求解方法主要有四类:有限差分法、有限元法、边界元法与有限体积法。
他们各有优缺点,有限差分法最为成熟,占主导地位,但是在处理网格方向、复杂边界与稳定性方面有局限性。
有限元法可克制这些问题,但是它不太适用于点源和点汇问题。
边界元法是最新兴起的一种解法,它的优点是使问题的维数降低一维,从而使数据准备工作量大为减少,但是求解复杂的边界积分方程与方程推导比拟复杂。
2004年X青山、段永刚等用边界元法处理复杂油藏边界与分析油藏不稳定渗流问题。
在网格离散后形成大型的代数方程组得解法上主要有直接法,迭代法和预处理共轭梯度法。
可根据求解的问题和方程的特点加以选择。
油藏数值模拟技术的开展趋势如今油藏数值模拟在软件与模型的技术上已经很成熟了。
流体仿真知识点总结

流体仿真知识点总结流体仿真是指利用计算机模拟流体力学问题,通过数值方法研究流体的运动规律和流场性质。
它是一种重要的科学计算手段,广泛应用于航空航天、水利工程、环境工程、汽车工程、海洋工程等领域。
本文将对流体仿真的基本概念、数值方法、常见模型以及实际应用进行总结,以帮助读者全面了解流体仿真的知识体系。
一、基本概念1. 流体的基本性质流体是一种特殊的物质状态,具有不固定的形状和容易流动的特性。
其主要物理性质包括密度、压力、温度、速度、粘度等。
在流体力学中,通常将流体分为不可压缩流体和可压缩流体两种类型,分别对应于马赫数小于0.3和大于0.3的情况。
2. 流体力学基本方程流体力学基本方程包括连续方程、动量方程和能量方程。
其中连续方程描述了流体的质量守恒,动量方程描述了流体的动量守恒,能量方程描述了流体的能量守恒。
这些方程是描述流体运动规律的基础,也是流体仿真的数学模型基础。
3. 边界条件和初值条件流体力学问题的边界条件和初值条件对解的精度和稳定性有着重要影响。
边界条件指流场与固体边界的交界处的物理条件,通常包括速度、压力、温度等。
初值条件指初始时刻各物理量的数值分布。
确定合适的边界条件和初值条件是流体仿真的关键步骤之一。
二、数值方法1. 有限差分法有限差分法是一种基本的离散数值方法,它将求解区域分割成有限个离散点,通过差分逼近连续微分方程,将微分方程转化为代数方程组进而进行数值求解。
有限差分法在流体力学中得到了广泛应用,如Navier-Stokes方程、能量方程和扩散方程等都可以通过有限差分法进行离散求解。
2. 有限体积法有限体积法是将求解区域分割成有限个控制体,通过对控制体内部进行积分得到平均值,进而将微分方程转化为代数方程组。
有限体积法在流体力学中得到了广泛应用,特别适用于非结构网格和复杂流场的数值模拟。
3. 有限元法有限元法是一种通过拟合局部基函数的方法,将微分方程转化为代数方程组进而进行数值求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx
N ( x )u
N ( x ) N ( x, x ) x x = p T ( x ) A1 ( x ) B ( x )
移动最小二乘近似
当基函数中最高阶完备多项式的阶数k = 0时,MLS形函数 退化为为Shepard函数
A( x)a( x) B( x)u
N I 1
a( x) A1 ( x) B( x)u
A( x ) wI ( x ) p( xI ) pT ( x I ) B [ w1 ( x ) p( x1 ) w2 ( x ) p( x2 ) wN ( x ) p( x N )]
u h ( x, x) pT ( x) A1 ( x) B( x)u = N ( x, x )u N ( x, x ) = pT ( x ) A1 ( x) B( x)
径向基函数
一类以点x到节点xI的距离dI为自变量的函数,也称为距离 函数
( x xI ) — 中心位于节点xI的距离基函数
MQ: RMQ: TPS:
I ( x) (c2 dI2 )1/ 2
I ( x) (c2 dI2 )1/ 2
I ( x) dI2 log dI
2000年:紧支径向基函数配点法 2001年:最小二乘配点无网格法 2001年:加权最小二乘无网格法 2003年:伽辽金最小二乘无网格法
2003年:伽辽金配点无网格法
2004年:边界弱形式配点法 2005年:物质点有限元法
2006年:质点积分无网格伽辽金法
2009年:冲击爆炸三维物质点法数值仿真软件MPM3D®
N ( x N )
u u1 , u2 ,MQ插值正定
u ( x ) aJJ ( x ) bi pi ( x)
h J 1 i 1
N
m
T ( x ) a p T ( x )b
pT ( x ) [1, x, y, z], m 4
N N wI ( x) pi ( xI ) p j ( xI ) ai ( x) wI ( x) p j ( xI )uI i 1 I 1 I 1 m
移动最小二乘近似
N N wI ( x) pi ( xI ) p j ( xI ) ai ( x) wI ( x) p j ( xI )uI i 1 I 1 I 1 m
无网格法的研究历史
1996年 Computer Methods in Engineering Mechanics and Engineering 出版了无网格法专辑(139卷) 2000年 Computational Mechanics 出版了无网格法专辑 (25卷,2-3期) 近年来许多著名数值方法国际会议都设置了无网格法的主 题会。 许多著名有限元专家,如Zienkiewicz、Belytscho、Atluri、 WK Liu、KJ Bathe等都对无网格法进行了深入研究。
无网格法的研究历史
将无网格法的思想引入有限元法中 PUFEM — Babuska,1996 动态裂纹扩展 GFEM — Duarte 节理岩体 XFEM — Belytschko 应变局部化 流形元法(石根华)
网格连续 近似函数不连续
无网格法的研究历史
m
配点: u h ( xI ) ai pi ( xI ) uI
i 1
I=1,2, …, n
[ P]{a} {u}
MLS拟合(n > m):
[ P] [ P]{a} [ P] {u}
T T
{a} [ P] [ P] [ P]T {u}
T 1
近似函数
u ( x, x ) pi ( x )ai ( x) pT ( x )a( x)
h i 1 m
pi ( x ) — 基函数(多项式或其它已知函数)
ai ( x ) — 待定系数
线性基: pT ( x ) [1, x, y, z], m 4 二次基: pT ( x ) [1, x, y, z, x2 , xy, y 2 , yz, z 2 , xz], m 10
紧支试函数
函数u(x)可以近似为 u( x) u ( x) N I ( x)uI N ( x) u
h I 1 n
大多数无网格法形函数不满足插值特性,即
uh ( xI ) uI , N I ( xJ ) IJ
移动最小二乘法 (Moving Least Square) 核函数近似 (Kernel approximation) 重构核近似(Reproducing Kernel approx.) 单位分解法 (Partition of Unity) 径向基函数(Radial basis functions) 点插值法(Point interpolation method) 自然邻接点插值 Kriging插值 非均匀有理B样条(NURBS)
网格法 (有限元法、边界元)
无网格法
对某些特殊问题,无网格法很有效。
无网格法
无网格法的研究历史 全域插值函数 典型无网格法
无网格法的研究历史
七十年代:非规则网格有限差分法 1977年:Smoothed particle hydrodynamics SPH 归一化光滑函数算法 — 分片试验 不稳定的起因及稳定化方案 克服零能模态的具体方案 MLSPH 水下爆炸仿真模拟、高速碰撞等
无网格法
无网格法的研究历史 全域插值函数 典型无网格法
点插值法
函数逼近:
u ( x ) ai pi ( x ) { p( x )}T {a}
h i 1
m
线性函数: pT ( x ) [1, x, y, z], m 4
T 2 2 2 二次函数: p ( x ) [1, x, y, z, x , xy, y , yz, z , xz], m 10
无网格法的研究历史
1992年:Diffuse element (Nayroles等) 1994年:Element Free Galerkin (Belytschko) 动态裂纹扩展数值模拟 三维撞击、流体晃动分析 板壳分析 节理岩体 2000 EFG和有限元、边界元法耦合 边界条件 2001 相变问题;扩散问题 质点积分 2006 1995年:Reproducing Kernel Particle Method (W K Liu) 多尺度分析、自适应分析 结构动力学、流体动力学 动态断裂和局部化 金属加工成形 中厚梁板、微电子机械系统 纳米管起皱
N
a (x ) u
J 1 J J I
N
I
( I 1,2,
, N)
Aa u
a A1u
N ( x1 ) N ( x2 )
T ( x1 ) 1 ( x1 ) 2 ( x1 ) T ( x2 ) 1 ( x2 ) 2 ( x2 ) A T ( xN ) 1 ( x N ) 2 ( x N )
有限元法存在的某些困难
冲压成型:网格畸变 裂纹动态扩展:网格重分 高速碰撞:网格畸变 奇异性问题:解析函数 自适应问题:网格重分(h)、近似函数(p) 应变局部化:网格重分 薄壳问题:近似函数高阶连续性问题 复杂三维结构有限元网格的生成
无网格法
直接利用分布在求解域中的离散点来构造近似函数的一种 求解偏微分方程的数值方法。不需要借助于网格。
移动最小二乘近似
近似函数
u ( x, x ) pi ( x )ai ( x) pT ( x )a( x)
h i 1
m
pi ( x ) — 基函数(多项式或其它已知函数)
ai ( x ) — 待定系数
线性基: pT ( x ) [1, x, y, z], m 4 二次基: pT ( x ) [1, x, y, z, x2 , xy, y 2 , yz, z 2 , xz], m 10
无网格法基础
高效伟
大连理工大学 航空航天学院
2014年7月3日
参考文献
张雄,刘岩. 无网格法,清华大学出版社,2004 刘更,刘天祥,谢琴. 无网格法及其应用. 西北工业大学出 版社,2005 . G.R.Liu, Y.T. Gu (王建明、周学军). 无网格法理论及程序 设计, 山东大学出版社,2007. S.N. Atluri, S.P.Shen. The Meshless Local Petrov-Galerkin Method, Tech Science Press, 2002.
I
a ( x ) b p ( x ) u
J 1 N J J I i 1 i i I
N
m
I 1,2,
,N
a
J 1
J
pi ( x J ) 0 i 1,2,
,m
如果p中包含常数基和线性基,则插值具有一阶一性; Wang等采用局部形式 — 径向基点插值法
Hermite型径向基函数插值 Nb N k ( x) h u ( x) akk ( x) bk x k 1 k 1
实质上与EFG等价!
无网格法的研究历史
1996年:Finite Point Method(Onate等) 流体动力学 弹塑性分析 1996年:Hp Clouds (Oden等) 铁摩辛柯梁问题 厚板的弯曲问题 基于云团法的新型hp有限元 Hp无网格云团法 1996年:PUFEM和GFEM(Babuska等) 动态裂纹扩展问题 1998年:Local boundary integral equation method (LBIE) 和 Meshless local Petrov-Galerkin法(MLPG) (Atluri)