用一元二次方程解决图形问题
用一元二次方程解决几何图形问题含答案
用一元二次方程解决几何图形问题含答案用一元二次方程解决几何图形问题基础题知识点1:一般图形的问题1.绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米。
设绿地的宽为x米,根据题意,可列方程为x(x+10)=900.2.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48平方米,则原来这块木板的面积是64平方米。
3.一个直角三角形的两条直角边相差5cm,面积是7平方厘米,则它的两条直角边长分别为2cm和7cm。
4.一块矩形菜地的面积是120平方米,如果它的长减少2米,那么菜地就变成正方形,则原菜地的长是12米。
5.一个矩形周长为56厘米。
1) 当矩形面积为180平方厘米时,长、宽分别为18厘米和10厘米。
2) 不能围成面积为200平方厘米的矩形,因为方程y^2-28y+200=0无实数根。
知识点2:边框与甬道问题6.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花,原空地一边减少了1米,另一边减少了2米,剩余空地的面积为18平方米。
求原正方形空地的边长,设原正方形空地的边长为x米,则可列方程为(x-1)(x-2)=18.7.在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为22米,因为可列方程为100×80-100x-80x=7644.10.某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.设道路的宽为x m,则草坪的面积为(32-2x)(20-x),因此正确的方程是A:(32-2x)(20-x)=570.11.在长为70 m,宽为40 m的长方形花园中,欲修宽度相等的观赏路(阴影部分所示),要使观赏路面积占总面积的1/8,则路宽x应满足的方程是C:(40-2x)(70-3x)=2450.。
北师版九年级数学上册 第二章 一元二次方程 应用一元二次方程 第1课时 利用一元二次方程解决几何问题
12.如图,已知一艘轮船以 20 海里/时的速度由西向东航行,途中接到台风警 报,台风中心正以 40 海里/时的速度由南向北移动,距台风中心 20 10 海里的 圆形区域(包括边界)都属台风区.当轮船航行到 A 处时,测得台风中心移到位 于点 A 正南方向的 B 处,且 AB=100 海里,若这艘轮船自 A 处按原速度继续 航行,在途中会不会遇到台风?若会,试求经过多长时间轮船最初遇到台风; 若不会,=90°,AB=5 cm,BC=7 cm,点P 从点A开始沿AB边向点B以1 cm/s的速度移动,同时点Q从点B开始沿 BC边向点C以2 cm/s的速度移动,当其中一点到达终点时,另外一点也 随之停止. (1)几秒后,△PBQ的面积等于4 cm2? (2)几秒后,PQ的长度等于5 cm? (3)△PBQ的面积能否等于7 cm2?
4.(2020·西藏)列方程(组)解应用题 某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下, 围一块面积为600 m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶 园一面靠墙,墙长35 m,另外三面用69 m长的篱笆围成,其中一边开有一扇1 m宽的门(不包括篱笆).求这个茶园的长和宽.
知识点二:用一元二次方程解决动态几何图形问题 5.如图,AB⊥CB,AB=10 cm,BC=8 cm,一只螳螂从A点出发, 以2 cm/s的速度向B爬行,与此同时,一只蝉从C点出发,以1 cm/s的速 度向B爬行,当螳螂和蝉爬行x s后,它们分别到达了点M,N的位置, 此时,△MNB的面积恰好为24 cm2,根据题意可得方程( D )
A.2x·x=24 B.(10-2x)(8-x)=24 C.(10-x)(8-2x)=24 D.(10-2x)(8-x)=48
6.(教材 P53 习题 2.9T2 变式)如图,在矩形 ABCD 中,AB=6 厘米,BC=12 厘米,点 P 从点 A 开始沿 AB 边向点 B 以 1 厘米/秒的速度移动(到点 B 终止), 点 Q 从点 B 开始沿 BC 边向点 C 以 2 厘米/秒的速度移动(到点 C 终止),若两
列一元二次方程解几何问题
9
2 (中考·黔西南州)某校准备修建一个面积为180平方
米的矩形活动场地,它的长比宽多11米,设场地的
宽为x米,则可列方程为( )
A.x(x-11)=180
B.2x+2(x-11)=180
C.x(x+11)=180
D.2x+2(x+11)=180
4.四周一片( ),听不到一点声响。 5.越是在紧张时刻,越要保持头脑的( )。
八、句子工厂。
1.世界上有多少人能亲睹她的风采呢? (陈述 句)
_________________________________ ______ ______ ______ ______ ______ ______ ______ 2.达·芬奇的“蒙娜丽莎”是全人类文 化宝库 中一颗 璀璨的 明珠。 (缩写 句子) ___________________________________ ______ ______ ______ ______ ______ ______ ____ 3.我在她面前只停留了短短的几分钟。 她已经 成了我 灵魂的 一部分 。(用 关联词 连成一 句话) __________________________________ ______ ______ ______ ______ ______ ______ _____
1、世上没有绝望的处境,只有对处境 绝望的 人。 2、挑水如同武术,武术如同做人。循序 渐进, 逐步实 现目标 ,才能 避免许 多无谓 的挫折 。
3、别想一下造出大海,必须先由小河川 开始。 4、自信是所有成功人士必备的素质之一 ,要想 成功, 首先必 须建立 起自信 心,而 你若想 在自己 内心建 立信心 ,即应 像洒扫 街道一 般,首 先将相 当于街 道上最 阴湿黑 暗之角 落的自 卑感清 除干净 ,然后 再种植 信心, 并加以 巩固。 信心建 立之后 ,新的 机会才 会随之 而来。
一元二次方程解决几何图形问题
如图,有长为24米的篱笆,一面利用墙(墙 的最大可用长度a为10米),围成中间隔有一道 篱笆的长方形花圃。设花圃的宽AB为x米,面积 为S米2, (1)求S与x的函数关系式;(2)如果要围成面 积为45米2的花圃,AB的长是多少米?
解:(1)设宽AB为x米,则BC为(24-3x)米,
S=x(24-3x)=-3x2+24x (2)由题意得 -3x2+24x=45
解:(1)设AB长为x米,则BC为(40-2x)米,得
x (40-2x) = 128
解:(1)设AB长为x米,则BC为(40-2x)米,得
x (40-2x) = 128 2x2-40x+128=0
x2-20x+64=0 解得x1=4,x2=16 当x1=4 时,40-2x=32>15,(舍去) 当x2=16 时,40-2x=8<15。 答:花圃的宽AB为16米
要设计一本书的封面,封面长27 ㎝,宽21㎝,正中央是一个与整个封 面长宽比例相同的矩形,如果要使四 周的边衬所占面积是封面面积的四 分之一,上、下边衬等宽,左、右边衬 等宽,应如何设计四周边衬的宽度?
解:设上、下边衬的宽均为9x cm,左、右边 衬的宽均为7x cm.则中央矩形的长为(27-18x) cm,宽为(21-14x)cm,由题意得
(27-18x)(21-14x)=
3 4
27 21
整理,得
16x2-48x+9=0
解得 x 1
63 4
3
(舍去3
上、下边衬的宽均为_____cm,左、右边衬的宽均为_____cm.
方程的哪一个根 更符合实际
意义?为什么?
如果换一种设 未知数的方法, 是否可以更简 单的解决上面
一元二次方程解决几何问题
一元二次方程解决几何问题
一元二次方程是一种形式为ax^2 + bx + c = 0的方程,其中a、b和c是实数,而x是未知数。
它可以用于解决许多几何问题,如以下几个例子:
1. 高度和时间问题:假设一颗物体从一个高度h开始自由下落,利用物体的自由落体运动公式可以得到一个关于时间t的二次方程,通过解方程可以确定物体落地的时间点。
2. 路程和时间问题:假设一个物体以某个速度v在直线上运动,利用物体的匀速运动公式可以得到一个关于时间t的一次方程,通过解方程可以确定物体达到某个距离的时间点。
3. 面积问题:对于某些几何图形,如矩形、正方形和圆等,可以通过设定面积为某个值的条件,建立相应的二次方程来求解图形的尺寸。
这只是一些常见的例子,实际上,一元二次方程在几何问题中具有广泛的应用。
第3课时 用一元二次方程解决几何图形问题
第3课时用一元二次方程解决几何图形问题基础题知识点1 一般图形的问题1.(衡阳中考)绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为( ) A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9002.(白银中考)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=63.(宿迁中考)一块矩形菜地的面积是120 m2,如果它的长减少2 m,那么菜地就变成正方形,则原菜地的长是________m.4.一个直角三角形的两条直角边相差 5 cm,面积是7 cm2,这两条直角边长分别为________________.5.(自贡中考)利用一面墙(墙的长度不限),另三边用58 m长的篱笆围成一个面积为200 m2的矩形场地,求矩形的长和宽.知识点2 边框与甬道问题6.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m2,求道路的宽.如果设小路宽为x m,根据题意,所列方程正确的是( )A.(20-x)(32-x)=540B.(20-x)(32-x)=100C.(20+x)(32-x)=540D.(20-x)(32+x)=5407.如图所示,在一块正方形空地上,修建一个正方形休闲广场,其余部分铺设草坪,已知休闲广场的边长是正方形空地边长的一半,草坪的面积为147 m2,则休闲广场的边长是________m.8.如图所示,某小区计划在一个长为40米,宽为26米的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB垂直,另一条与AB平行,其余部分种草,若使每一块草坪的面积都为144平方米,求甬路的宽度.中档题9.(宁夏中考)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )A.x2+9x-8=0B.x2-9x-8=0C.x2-9x+8=0D.2x2-9x+8=010.(襄阳中考)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m的住房墙,另外三边用25 m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m2?11.在高度为2.8 m的一面墙上,准备开凿一个矩形窗户.现用9.5 m长的铝合金条制成如图所示的窗框.问:窗户的宽和高各是多少时,其透光面积为3 m2(铝合金条的宽度忽略不计)?12.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1.在温室内,沿前侧内墙保留3 m宽的空地,其他三侧内墙各保留1 m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288 m2?综合题13.已知,如图,在△ABC中,∠B=90°.AB=5 cm,BC=7 cm.点P从点A开始沿AB 边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?(3)在问题(1)中,△PBQ的面积能否等于7 cm2?说明理由.参考答案基础题1.B2.B3.124.2 cm 、7 cm5.设垂直于墙的-边长为x 米,由题意,得x(58-2x)=200.解得x 1=25,x 2=4.∴另一边长为8米或50米.答:矩形长为25米宽为8米或矩形长为50米宽为4米.6.A7.78.设甬路的宽度为x 米.依题意,得(40-2x)(26-x)=144×6.解得x 1=2,x 2=44(不合题意,舍去).答:甬路的宽度为2米. 中档题 9.C10.设矩形猪舍垂直于住房墙的一边长为x m ,则平行于住房墙的一边长为(26-2x)m.依题意,得x(26-2x)=80.解得x 1=5,x 2=8.当x =5时,26-2x =16>12(舍去);当x =8时,26-2x =10<12.答:所建矩形猪舍的长为10 m ,宽为8 m .11.设窗户的高为x m ,则窗户的宽为9.5-2x -0.53=3-23x(m),则根据题意列方程为:x(3-23x)=3,解得x 1=1.5,x 2=3(不合题意,舍去).所以窗户的高为1.5 m ,宽为3-23×1.5=2(m). 12.设矩形温室的宽为x m ,则长为2x m .根据题意,得(x -2)·(2x -4)=288.解得x 1=-10(不合题意,舍去),x 2=14.所以x =14,2x =2×14=28.答:当矩形温室的长为28 m ,宽为14 m 时,蔬菜种植区域的面积是288 m 2. 综合题13.(1)设x 秒后,△PBQ 的面积等于4 cm 2.根据题意,得x(5-x)=4.解得x 1=1,x 2=4.∵当x =4时,2x =8>7,不合题意,舍去.∴x =1.(2)设x 秒后,PQ =5,则(5-x)2+(2x)2=25.解得x1=0(舍去),x2=2.∴x=2.(3)设x秒后,△PBQ的面积等于7 cm2.根据题意,得x(5-x)=7.此方程无解.所以不能.周周练(21.2.3~21.3)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.小新在学习解一元二次方程时,做了下面几个填空题:(1)若x2=9,则x=3;(2)方程mx2+m2x=0(m≠0),则x=-m;(3)方程2x(x+1)=x+1的解为x=-1.其中,答案完全正确的有( )A.0个 B.1个C.2个 D.3个2.已知α,β满足α+β=5,αβ=6,则以α,β为根的一元二次方程是( ) A.x2-5x+6=0B.x2-5x-6=0C.x2+5x+6=0D.x2+5x-6=03.(衡阳中考)若关于x的方程x2+3x+a=0有一个根为-1,则另一个根为( ) A.-2 B.2C.4 D.-34.解方程3(x-1)2=6(x-1),最适当的方法是( )A.直接求解 B.配方法C.因式分解法 D.公式法5.多项式a2+4a-10的值等于11,则a的值为( )A.3或7 B.-3或7C.3或-7 D.-3或-76.经计算整式x+1与x-4的积为x2-3x-4,则一元二次方程x2-3x-4=0的所有根是( )A.x1=-1,x2=-4B.x1=-1,x2=4C.x1=1,x2=4D.x1=1,x2=-47.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为( )A.50(1+x)2=60B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120D.50(1+x)+50(1+x)2=1208.(哈尔滨中考改编)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m,若将短边增长到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1 600 m2,那么扩大后的正方形绿地边长为( ) A.120 mB.100 mC.85 mD.80 m二、填空题(每小题4分,共24分)9.(聊城中考)一元二次方程x2-2x=0的解是______________.10.一元二次方程x2+bx+c=0的两根互为倒数,则c=________.11.设一元二次方程x2-7x+3=0的两个实数根分别为x1和x2,则x1+x2=_______,x1x2=_______.12.(南昌中考)已知一元二次方程x2-4x-3=0的两根为m,n,则m2-mn+n2=________.13.已知:如图所示的图形是一无盖长方体的铁盒平面展开图.若铁盒的容积为3 m3,则根据图中的条件,可列出方程:____________.14.(巴彦淖尔中考)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请___个队参赛.三、解答题(共44分)15.(20分)用适当的方法解下列方程:(1)(徐州中考)x2-2x-3=0;(2)(x+2)2=2x+4;(3)(3x+1)2-4=0;(4)4x 2-12x +5=0;(5)4(x -1)2-9(3-2x)2=0.16.(6分)当x 为何值时,32x 2+14(x -1)和13(x -2)互为相反数?17.(8分)向阳村2013年的人均收入为12 000元,2015年的人均收入为14 520元.求人均收入的年平均增长率.18.(10分)(淮安中考)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1 200元.请问她购买了多少件这种服装?参考答案1.A2.A3.A4.C5.C6.B7.D8.D9.x 1=0,x 2=2 10.1 11.7 3 12.25 13.x(x +1)=3 14. 515.(1)x 1=-1,x 2=3.(2)x 1=0,x 2=-2.(3)x 1=13,x 2=-1.(4)x 1=52,x 2=12.(5)x 1=74,x 2=118. 16.∵32x 2+14(x -1)和13(x -2)互为相反数,∴32x 2+14(x -1)+13(x -2)=0.解得x 1=-1,x 2=1118.∴当x 为-1或1118时,32x 2+14(x -1)和13(x -2)互为相反数. 17.设人均收入的年平均增长率为x ,根据题意得12 000(1+x)2=14 520.解得x 1=0.1=10%,x 2=-2.1(不合题意,舍去).答:人均收入的年平均增长率为10%.18.设购买了x 件这种服装,根据题意,得[80-2(x -10)]x =1 200.解得x 1=20,x 2=30.当x =30时,80-2(30-10)=40<50,不合题意,舍去.∴x =20.答:她购买了20件这种服装.。
24.4.1运用一元二次方程解决图形面积问题
利用一元二次方程解决图形问题
【例1】如图,某学校要在校园内墙边
的空地上建一个矩形的存车处,存车 处的一面靠墙(墙长22米),另外三 面用90米长的铁栅栏围起来.如果这 个存车处的面积为700平方米.求这 个矩形存车处的长和宽.
举一反三训练
1.〈2015,保定模拟〉在Rt△ABC中,∠B为直角,AB =6 cm,BC=12 cm,动点P以每秒1 cm的速度匀速 自A点沿AB方向移动,同时点Q以每秒2 cm匀速自B 点沿BC方向移动,则( C )秒后△PQB的面积等于
员?
(1)设增长率为x, 根据题意,得10×(1+x)2=12.1,
解这个方程,得x1=0.1=10%,x2=-2.1(舍去).
答:月平均增长率为10%. (2)6月份的投递任务为:12.1×(1+0.1)=13.31 (万件). ∵13.31÷0.6≈22.18(名),
∴现有的21名快递投递业务员不能完成任务,至少需
利润 ×100% 进价(或成本)
折扣数 =折扣后价格,如原价1 000元,打5.5折,现价550元. 10
谢谢
本题(2)属于典型的增长率问题,这类问题的等量关系 均为:原量×(1+增长率)增长次数=增加后的量,或原量
×(1-减少率)减少次数=减少后的量.
举一反三训练
2.〈2015,湖南长沙〉现代互联网技术的广泛应用,催 生了快递行业的高速发展.据调查,长沙市某家小型 “大学生自主创业”的快递公司,今年三月份与五月 份完成投递的快递总件数分别为10万件和12.1万件. 现假定该公司每月投递的快递总件数的增长率相同. (1)求该快递公司投递快递总件数的月平均增长率; (2)如果平均每人每月最多可投递快递0.6万件,那么该公 司现有的21名快递投递业务员能否完成今年6月份的快 递投递任务?如果不能,请问至少需要增加几名业务
一元二次方程的实际应用题
一元二次方程的实际应用题(一)传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。
3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
4.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。
5.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。
6.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?8.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子)。
4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
用一元二次方程解几何问题
为7x cm,依题意得
(27 18x)(21 14x) 3 27 21 4
解得
x1
6
3 4
3
(不合意,舍去),x2
=
6—3 4
3
∴上、下边衬的宽均为 1.8 cm ,左、右
边衬的宽均为 1.4 cm
感悟新知
思考:如果换一种设未知数的方法,是否可以更简单
地解决上面的问题? 请你试一试.
解: 设正中央的矩形两边长分别为9x cm,7x cm.
认知基础练
6 用配方法解一元二次方程x2+2x-1=0, 可将方程配方为( A ) A.(x+1)2=2 B.(x+1)2=0 C.(x-1)2=2 D.(x-1)2=0
认知基础练
3 【2020·贵阳十七中期中】将代数式x2-10x+5配方 后,发现它的最小值为( B ) A.-30 B.-20 C.-5 D.0
方法技巧练
【点拨】根据a2+b2=12a+8b-52,可以求得a,b的 值 , 由 a , b , c 为 正 整 数 且 是 △ABC 的 三 边 长 , c 是 △ABC的最短边长,即可求得c的值.
方法技巧练
解:将已知等式两边同时加上 2, 得 x2+x12+2+2x+1x=2, 即x+1x2+2x+1x=2. 设 x+1x=y,则x+1x2+2x+1x=2 可化为 y2+2y =2.配方,得 y2+2y+1=2+1,∴(y+1)2=3.
方法技巧练
开平方,得 y+1=± 3. 解得 y1= 3-1,y2=- 3-1. ∴x+1x= 3-1 或 x+1x=- 3-1. 经检验,不存在实数 x 使 x+1x= 3-1,故舍去. ∴x+1x=- 3-1.
认知基础练
2 将代数式a2+4a-5变形,结果正确的是( D ) A.(a+2)2-1 B.(a+2)2-5 C.(a+2)2+4 D.(a+2)2-9
课件中考数学二轮复习_利用一元二次方程解决几何问题课件
2.列方程解应用题的一般步骤.
活学巧记 列方程解应用题,
审设列解和验答;
审题弄清已未知,
设元直间两办法;
等量关系列方程,
解方程时守章法;
检验准且合题意,
问求同一才作答.
情景引入
1.李明准备进行如下操作实验:把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
如何列一元二次方程解决图形类的应用题呢? 根据几何问题中的数量关系列一元二次方程并求解.
解:设出发后x s时,S ∆MON=1/12 S菱形ABCD. 已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3cm DN=x ²cm.
分析:利用正方形的性质,结合勾股定理列方程,据题意,画图如图所示, (2)在运动过程中,△PBQ的面积能否等于矩形ABCD的面积的四分之一?若能,求出运动的时间;
动点M从点A出发沿AC方向以每秒2cm的速度做匀速直线运动,动点N从点B 出发沿BD方向以每秒1cm的速度做匀速直线运动,若M,N同时出发,问出发后几秒时,△MON的面积为菱形
ABCD面积的1/12.
自的位置. 解得x₁=-10(舍去),x₂=4
某村计划建造如图的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m宽的空地,其他三侧内墙各保留1m的通道。
拓展探究
如围,菱形ABCD中AC, BD交于点0.4C=8 cm.BD=6cm.动点M从点A出发沿AC方向以 每秒2cm的速度做匀速直线运动,动点N从点B 出发沿BD方向以每秒1cm的速度做匀速 直线运动,若M,N同时出发,问出发后几秒时,△MON的面积为菱形ABCD面积的1/12.
一元二次方程应用题(几何图形面积问题)
(32 2x)(20 2x) 570 化简得,x2 36x 35 0
(x 35)(x 1) 0 x1 35, x2 1
其中的 x=35超出了原矩形的宽,应舍去.
答:道路的宽为1米.
例3. (2003年,舟山)如图,有长为24米的篱笆,一面 利用墙(墙的最大可用长度a为10米),围成中间隔 有一道篱笆的长方形花圃。设花圃的宽AB为x米, 面积为S米2, (1)求S与x的函数关系式;(2)如果要围成面积为 45米2的花圃,AB的长是多少米?
例1. 镜框有多宽?
一块四周镶有宽度相等的花边的镜框如下图,它的 长为8m,宽为5m.如果镜框中央长方形图案的面积为 18m2 ,则花边多宽? 解:设镜框的宽为xm ,则镜框中央长方形图案的长 为(8-2x)m, 宽为(5-2x) m,得
8
x
x
x
(8-2x)
5
18m2
x
例1. 镜框有多宽?
一块四周镶有宽度相等的花边的镜框如下图,它的
例2:在一块长80米,宽60米的运动场 外围修筑了一条宽度相等的跑道,这 条跑道的面积是1500平方米,求这条 跑道的宽度。
列一元二次方程解应题
补充练习: 1、(98年北京市崇文区中考题)如图,有一面 积是150平方米的长方形鸡场,鸡场的一边靠墙 (墙长18米),墙对面有一个2米宽的门,另三边 (门除外)用竹篱笆围成,篱笆总长33米.求鸡 场的长和宽各多少米?
例1 在矩形ABCD中,AB=6cm,BC=12cm, 点P从点A开始以1cm/s的速度沿AB边向点 B移动,点Q从点B开始以2cm/s的速度沿BC 边向点C移动,如果P、Q分别从A、B同时出 发,几秒后⊿ PBQ的面积等于8cm2?
一元二次方程的实际应用问题
一元二次方程的实际应用问题
一元二次方程是一种重要的数学工具,它可以用来解决许多实际应用问题。
以下是一些常见的一元二次方程实际应用问题的例子:
1.几何问题:例如,已知一个矩形的周长为 20 厘米,长比宽多
2 厘米,求这个矩形的长和宽。
设矩形的宽为 x 厘米,则长为 x+2 厘米。
根据矩形的周长公式2\times(长+宽),可列出方程:
所以,矩形的宽为 4 厘米,长为 6 厘米。
2.经济问题:例如,某商品的进价为每件 20 元,售价为每件 30 元。
如果每天能卖出 200 件,问每天的利润是多少?
设每天的销售量为 x 件,则每天的利润为(30-20)x 元。
根据每天的销售量为 200 件,可列出方程:
3.物理问题:例如,一个物体从高处自由落体,经过时间 t 落地。
已知物体下落的高度为 h,重力加速度为 g,求物体下落的时间t。
根据自由落体公式 h=gt^2/2,可列出方程:
以上只是一些简单的例子,实际上,一元二次方程可以应用于各种各样的实际问题中,例如物理学、工程学、经济学、生物学等等。
一元二次方程应用__图形面积问题
(1)
解2:解1计算时分块较多,还要注意重叠部分要减去。 我们可以利用图形的平移,对图形进行重新整理,如右图。
解:设图中道路的宽为x米, 由题得:(32 x)(20 x) 540
整理得: x2 52 x 100 0 (x 2)(x 50) 0
解得:x1 2, x2 50(不合题意,舍去 ) 故道路宽为 2米.
练习:如图,小华从市场上买回一块矩形铁皮,他将此 矩形铁皮的四个角落各剪去一个边长为1m的正方形后, 剩下的部分刚好能围成一个容积为15m³的无盖长方体箱 子,且此长方体箱子的底面长比宽多2m。已知购买这种 铁皮每平方米需20元,算一算小华购回这张矩形铁皮共 花了多少钱?
解:设无盖长方体箱子宽x米,则长(x 2)米
由题: x( x 2) 1 15
则矩形铁皮面积为: (5 2)(3 2) 35(平方米)
整理得: x2 2x 15 0
35 20 700 元
解得:x1 3, x2 5(舍去)
故这张铁皮共花了 700 元.
课堂小结: 本节课你有哪些收获?
1、仔细分析题目,找准题目中的量,会用含未知 数的代数式准确表示出所需量,进而根据等量关 系列出方程;
解:设金色纸边的宽为xcm,则挂图长为 (80+2x)cm、宽为(50+2x)cm
由题意得:(80 2x)(50 2x) 5400
4x2 260x 1400 0
整理得: x2 6 5, x2 70(不合题意舍去 ) 故金色纸边的宽为5cm.
17.5 一元二次方程应用 ---图形面积问题
例1:学校为了美化校园,准备在一块长32米,宽20米的 长方形草地上修筑若干条宽度相同的道路,余下部分作 草坪。现有一位学生设计了如下一种方案,如图(1), 若使草坪面积为540㎡,求图中道路的宽。
一元二次方程的应用-ppt课件
例1
如图,某小区计划在一块长为 20 m,宽为 12 m
题
型 的矩形场地上修建三条互相垂直且宽度一样的小路,其余
突
破 部分种花草,若要使花草的面积达到 160 m2,则小路的宽
为 ______ m.
第一课时 几何图形面积问题
[解析]如解析图,设小路的宽为 x m,将小路进行平
重
难
题 移,则其余部分可合成相邻两边的长分别为(20-2x) m,
握手问题、照相问
素之间算一 题、比赛问题(每
次
双循环
每两个元素
之间算两次
两队之间赛一场)
循环次数
n(n-1)
互赠贺卡、比赛问
题(每两队之间赛 n(n-1)
两场)
第三课时 循环问题、销售问题及数字问题
归纳总结
考
点
解决循环问题,首先确定是单循环还是双循环,即确定
清
单 每两个元素之间算一次还是算两次,再代入公式列方程求解
清
单
2 的
26
m)的空旷场地为提前到场的观众设立面积为
300
m
解
读 封闭型矩形等候区.如图,为了方便观众进出,在两边空出
两个宽各为 1 m 的出入口,共用去隔栏绳 48 m.求工作人
员围成的这个矩形的相邻两边的长度.
第一课时 几何图形面积问题
[答案] 解:设 AB=x m,则 BC=(48-2x+1+1) m,由
重 ■题型一 传播问题
难
例 1 某种病毒传播非常快,如果一个人被传染,经过
题
型 两轮传染后就会有 64 个人被传染.
考
点
清 题意得 x(48-2x+1+1)=300,解得 x1=10,x2=15.当 x=10
一元二次方程的应用解决几何形状问题
一元二次方程的应用解决几何形状问题一元二次方程是数学中常见的一类方程,拥有广泛的应用领域。
在解决几何形状问题时,一元二次方程也扮演着重要的角色。
本文将讨论一元二次方程在几何形状问题中的应用,并探讨其解决问题的方法。
一、直线与抛物线交点的问题考虑一个几何形状问题,要求找到一条直线与一个抛物线的交点。
此类问题可以通过一元二次方程的解来轻松求解。
假设直线的方程为y = mx + c,抛物线的方程为y = ax^2 + bx + c。
将直线方程代入抛物线方程,可以得到一元二次方程ax^2 + (b - m)x + (c - c) = 0。
通过求解这个一元二次方程,可以得到交点的横坐标x。
将其带入直线方程,可以求解出交点的纵坐标y。
因此,一元二次方程为解决直线与抛物线交点问题提供了有效的方法。
二、求解几何形状的顶点坐标在几何形状中,有些形状可以用一元二次方程来表示。
其中,抛物线是一种常见的形状。
求解抛物线的顶点坐标,也可以通过一元二次方程来实现。
一元二次方程的标准形式为y = ax^2 + bx + c。
在标准形式中,a代表开口的方向和抛物线的形状,b代表抛物线在x轴上的平移,c代表抛物线与y轴的交点。
通过求解一元二次方程,可以得到抛物线的顶点坐标。
顶点坐标为(-b/(2a),-Δ/(4a)),其中Δ为二次方程的判别式。
三、通过一元二次方程求解三角形面积三角形是几何学中的基本形状,而一元二次方程在求解三角形面积的问题中也大有作为。
以一个具体问题为例,假设已知三角形的三个顶点坐标为(x1, y1),(x2, y2),(x3, y3)。
根据三角形的面积公式S = 1/2 * |x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)|,可以将三角形面积问题转化为一元二次方程的求解问题。
以求解三角形的面积为目标,可以通过一元二次方程求解出其中涉及的x和y的值。
将这些值代入面积公式,可以得到三角形的面积。
初中数学一元二次方程的应用题型分类——图形相关问题7(附答案)
故选B.
【点睛】
考查了一元二次方程的运用,此类题是看准题型列面积方程,题目不难,重在看准题.
2.B
【解析】
【分析】
利用多边形对角线条数公式得出关于n的方程,进而求出即可.
【详解】
解:由题意可得: n(n﹣3)=35,
解得:n1=﹣7(不合题意舍去),n2=10,
28.如图,把一个长26cm、宽14m的长方形分成五块,其中两个大正方形相同两个长方形相同,求中间小正方形的面积.
29.如图, ,点 为 内的一个动点,过点 作 与 ,使得 ,分别交 、 于点 、 .
(1)求证: ;
(2)连接 ,若 ,试求 的值;
(3)记 , , ,若 , ,且 、 、 为整数,求 、 、 的值.
点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.
4.C
【解析】
【分析】
观察图形可得,两个直角梯形的斜腰重合在一起可以组成一个长为x,宽为y的矩形,两个直角三角形的斜边重合可以组成一个长为x,宽为(x-y)的矩形,两个矩形放在一起恰好可以组成一个边长为x的正方形,然后根据剪拼前后两个图形的面积不变列方程求解即可.
12.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图如图所示.如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则可列方程.
13.如图,某单位院内有一块长30m,宽20 m的长方形花园,计划在花园内修两条纵向平行和一条横向弯折的道路(所有道路的进出口宽度都相等,且每段道路的对边互相平行),其余的地方种植花草.已知种植花草的面积为532 m2,设道路进出口的宽度为xm,根据条件,可列出方程___________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边衬的宽度?
分析:这本书的长宽之比是27:21=9:7,正中央的
矩形两边之比也为9:7,设中央的矩形的长和宽分
化简得, 2x
35x 123 0 ( x 3)(2 x 41) 0
2
41 x1 3, x 2 (舍去) 2
答:小路的宽为3米.
【解析】(1)设宽AB为x米,
则BC为(24-3x)米,这时面积
S=x(24-3x)=-3x2+24x
(2)由条件-3x2+24x=45 化为:x2-8x+15=0解得x1=5,x2=3 ∵0<24-3x≤10得14/3≤x<8 ∴x2不合题意,AB=5,即花圃的宽AB为5米
1.如图是宽为20米,长为32米的矩形耕地,要
修筑同样宽的三条道路(两条纵向,一条横向,
且互相垂直),把耕地分成六块大小相等的试
验地,要使试验地的面积为570平方米,问:道
路宽为多少米?
解:设道路宽为x米,则
(32 2 x)(20 x) 570 化简得, 2 36 x 35 0
其中的 x=35超出了原矩形的宽,应舍去. 答:道路的宽为1米.
x ( x 35)( x 1) 0 x1 35, x2 1
2.如图,长方形ABCD,AB=15m,BC=20m, 四周外围环绕着宽度相等的小路,已知小 路的面积为246m2,求小路的宽度.
A D
B
C
解:设小路宽为x米,则
(20 2 x)(15 2 x) 246 15 20
如图,是长方形鸡场平面示意图,一边靠 墙,另外三面用竹篱笆围成,若竹篱笆总长 为35m,所围的面积为150m2,则此长方形鸡 场的长、宽分别为_______ 10m或7.5m.
如图,有长为24米的篱笆,一面利用墙(墙 的最大可用长度a为10米),围成中间隔有一道 篱笆的长方形花圃。设花圃的宽AB为x米,面积 为 S 米 2, (1)求S与x的函数关系式;(2)如果要围成面a cm和7a cm,由此得上、下边衬与左、右
边衬的宽度之比也应为9:7,中央矩形的面积即可
用含未知数的代数式表示,进而列出方程,求出
答案.
解:设上、下边衬的宽均为9x cm,左、右边 衬的宽均为7x cm.则中央矩形的长为(2718x) cm,宽为(21-14x)cm 由题意,可列出方程为:
3 (27-18x)(21-14x)= 27 21 4
整理,得 16x2-48x+9=0 解方程,得
63 3 x 4
上、下边衬的宽均为_____cm,左、右边衬的宽均为_____cm.
方程的哪一个根 更符合实际 意义?为什么?
如果换一种设 未知数的方法, 是否可以更简 单的解决上面 的问题?