运动生理名词解释
运动生理学:名词解释
绪论人体生理学:是研究人体生命活动规律的科学,是医学科学的重要基础理论学科。
运动生理学:是人体生理学的分支,是专门研究人体的运动能力和对运动的反应与适应过程的科学,是体育科学中一门重要的应用基础理论学科。
新陈代谢:是生物体自我更新的最基本的生命活动过程。
新陈代谢包括同化和异化两个过程。
同化过程:生物体不断地从体外环境中摄取有用的物质,使其合成、转化为机体自身物质的过程,称为同化过程。
异化过程:生物体不断地将体内的自身物质进行分解,并把所分解的产物排出体外,同时释放出能量供应机体生命活动需要的过程,称为异化过程。
兴奋性:在生物体内可兴奋组织具有感受刺激、产生兴奋的特性,称为兴奋性。
可兴奋组织:在刺激作用下具有能迅速地产生可传布的动作电位的组织,称为可兴奋组织。
刺激:能引起可兴奋组织产生兴奋以及引起不可兴奋组织产生应激的各种环境变化称为刺激。
兴奋:可兴奋组织接受刺激后所产生的生物电反应过程称为兴奋。
应激性:机体或一切活体组织对周围环境变化具有发生反应的能力或特性称为应激性。
适应性:生物体所具有的通过改变自身机能来适应环境的能力,称之为适应性。
稳态:内环境各项理化因素相对处于动态平衡的状态称为稳态。
神经调节:是指在神经活动的直接参与下所实现的生理机能调节过程,是人体最重要的调节方式。
体液调节:是指通过体液运输某些化学物质(如激素、细胞产生的某些化学物质或代谢产物)而引起机体某些特殊生理反应的调节过程,称为体液调节。
靶细胞和靶组织:人体在体液调节过程中,被调节的细胞称为靶细胞,被调节的组织称为靶组织。
自身调节:是指组织、细胞在不依赖于外来的神经或体液调节情况下,自身对刺激发生的适应性反应过程。
生物节律:生物体在维持生命活动过程中,除了需要进行神经调节、体液调节和自身调节外,各种生理功能活动会按一定的时间顺序发生周期性变化,这种生理机能活动的周期性变化,称为生物节律。
非自动控制系统:在控制系统中,控制部分不受受控部分的影响,即受控部分不能通过反馈活动改变控制部分的活动,这种控制系统称为非自动控制系统。
运动生理名词解释对照
名词解释:1、运动性疲劳:指运动引起的肌肉最大收缩或者是最大输出功率暂时下降的表现。
2、氧容量:使血液人为地达到最大限度的氧化时所显示的值。
3、心力储备:指心脏在神经和体液调节下,适应机体代谢的需要而增加心输出量的能力。
4、超量恢复:运动时消耗的能源物质及各器官系统的技能恢复得超过原有水平。
5、身体素质:把人体在运动过程中表现的力量、速度、耐力、柔韧、及灵敏等机能称为身体素质。
6、内环境稳态:在正常生理情况下机体内环境的各种成分理化性质只在很小的范围内发生变动。
7、兴奋性:可兴奋组织或细胞受到刺激时发生兴奋反映的能力或特性。
8、状态反射:当头部在空间的位置改变时,可反射性的引起四肢和躯干的肌肉张力重新调整,这种状态叫状态反射。
9、最大通气量:在单位时间内所呼吸的最大气量。
10、基础代谢:指人在清醒、安静、空腹及室温在20-25度条件下的能量代谢。
11、运动技能:指人体在运动中掌握和有效的完成专门动作的能力。
12、呼吸:指机体与外界环境之间气体交换的过程13.无氧阈:无氧阈就是无氧界限,是指一定跑速时血乳酸浓度突然增加15.牵张反射:当骨骼肌受到牵拉时会产生反射性收缩。
16.极点:人体在剧烈运动时,产生一种呼吸困难,肌肉酸痛,动作迟缓,情绪低落,简直不愿意再继续运动下去的状态。
17.心指数:每平方米体表面积计算的心输出量18.运动性贫血:剧烈运动之后,出现面色苍白,头晕目眩,心慌气促,四肢无力,精神萎靡等症状,即运动性贫血。
19、兴奋性:可兴奋组织接受刺激后产生反应的能力和特性。
20、应激性:机体和一切活组织对环境条件变化发生反应的能力和特性。
21、兴奋-收缩耦联:通常把肌细胞膜产生动作电位过程与引起肌丝滑行过程之间的中介过程。
22、自动节律性:心肌在不受外来刺激的情况下,能自动地产生兴奋和收缩的特性。
23、呼吸:机体在新陈代谢过程中,需要不断地从外界摄取氧并排出二氧化碳。
这种机体与外界环境之间的气体交换称为呼吸。
运动生理名词解释
运动生理名词解释1)运动生理学:是人体科学的分支,是专门研究人体的运动能力和运动反应与适应过程的科学,是体育科学中一门重要的应用基础理论科学。
2)适应性:生物体所具有的这种适应环境的能力。
3)静息电位:指在安静状态时,存在于膜内外的电位差。
4)动作电位:可兴奋细胞兴奋时,细胞产生的可扩布的电位变化。
5)等长收缩:指肌肉长度没有改变而张力增加的收缩。
6)等张收缩:肌肉长度缩短而张力不变的收缩。
7)内环境:内环境是指细胞生活的环境即细胞外液。
8)自稳态:由于人体内的多种调节机理,使内环境中的理化因素的变动不超出正常生理范围,以保持动态平衡,称为内环境的相对稳定性或自稳态。
9)碱贮备:血液中缓冲酸性物质的主要成分是NaHCO3(碳酸氢钠),常以每100ml血浆中碳酸氢钠的含量表示碱贮备量。
10)体液:即人体的水分和溶解于水中的各种物质》。
11)心动周期:心房或心室每收缩和舒张一次。
12)心输出量(每分输出量):指每分钟左心室射入主动脉的血量。
13)心力储备:心输出量随机体代谢需要。
14)血压:指血管内的血液对单位面积血管壁的侧压力,称为血压(动脉血压)。
15)肺活量:最大深吸气后,再做最大呼气时所呼出的气量,称为肺活量。
16)氧容量:每100ml 血液中Hb(血红蛋白)与O2结合的最大量(约19-20m1) 称为Hb的氧容量。
17)基础代谢:在清晨、清醒、静卧、空腹、20-25℃在这种基础状态下的能量代谢。
18)呼吸商:各种物质在体内氧化时所产生的二氧化碳与所消耗的氧气的容积比。
19)排泄:物质经过血液运送到排泄器官排出体外的过程。
20)激素:指由机体某些腺体或组织细胞分泌的一种生物活性物质。
21)前庭机能稳定性:刺激前庭感受器而引起机体各种前庭反应的程度。
22)牵张反射:当骨骼肌受到牵拉时会产生反射性收缩。
23)姿势反射:在身体活动过程中,中枢不断地调整不同部位骨骼肌的张力,已完成各种动作,保持或变更躯体各部分的位置。
运动生理学名词解释
1、人体生理学:是生命科学的一个分支,是研究人体生命活动规律的科学,是医学科学的重要基础理论学科。
2、运动生理学:是人体生理学的分支,是专门研究人体的运动能力和对运动的反应与适应过程的科学,是体育科学中一门重要的应用基础理论学科。
3、新陈代谢:是生物体自我更新的最基本的生命活动过程。
它包括同化和异化过程。
4、兴奋性:是在生物体内可兴奋组织具有感受刺激产生兴奋的特性。
5、应激性:是机体或一切活体组织对周围环境变化具有发生反应的能力或特性。
6:适应性:是生物体所具有的这种适应环境的能力。
7生理负荷:是指机体内部器官和系统在发挥本身所具有的生物学功能,保持一定生理机能活动水平的过程中,为克服各种加载的内、外阻力(负荷)所做生理“功”8、糖酵解:指糖在人体组织中,不需耗氧而分解成乳酸;或是在人体缺氧或供氧不足的情况下,糖仍能经过一定的化学变化,分解成乳酸,并释放出一部分能量的过程,该过程因与酵母菌生醇发酵的过程基本相似故称为糖酵解(一系列酶促反应的过程)。
9、超量恢复:运动时消耗的能源物质及各器官系统机能状态在这段时间内不仅恢复到原来水平,甚至超过原来水平,这种现象称为“超量恢复”。
其保持一段时间后又回到原来水平。
0、牵张反射:当骨骼肌受到牵拉时会产生反射性收缩,这种反射称为牵张反射1、运动单位:是一个@-运动神经元和受其支配的肌纤维所组成的最基本的肌肉收缩单位(运动性单位、紧张性运动单位)2、肌丝滑行学说的过程:肌肉的缩短是由于肌小节中细肌丝在粗肌丝之间滑行造成的.即当肌肉收缩时,由z线发出的细肌丝在某种力量的作用下向A带中央滑动,结果相邻的各z线互相靠近,肌小节的长度变短,从而导致肌原纤维以至整条肌纤维和整块肌肉的缩短.3、动作电位与静息电位产生原因:静息电位是K离子由细胞内向细胞外流,造成内负外正,这是基础,当K离子的静移动两等于零时,其电位差值就稳定在一定的水平,这就是静息电位。
动作电位,由于Na离子在细胞外的浓度比细胞内高的多,所以他一般向内扩散,但他由细胞膜上的钠离子通道控制,安静时关闭,受刺激时,通道激活钠离子内流,造成内正外负,出现电位变化,形成峰电位上升支,最后达到一个平衡点时,钠离子平衡电位。
运动生理学 名词解释
1.运动生理学:是人体生理学的分支,是专门研究人体的运动能力和对运动的反应与适应过程的科学,是体育科学中一门重要的应用基础理论学科2.兴奋:可兴奋组织接受刺激后所产生的生物电反应过程及表现称为兴奋3.应激性:机体或一切活体组织对周围环境变化具有发生反应的能力或特性4.适应性:生物体具有适应环境的能力5.肌小节:相邻的两条Z线之间的一段肌原纤维,是肌纤维最基本的结构和功能单位。
6.运动单位:一个α运动神经元和受其支配的肌纤维所组成的最基本的肌肉收缩单位。
7.肌电图:用适当的方法将骨骼肌兴奋时发生的电位变化引导、记录所得到的图形。
8.向心收缩:肌肉收缩时,长度缩短的收缩。
9.等长收缩:肌肉在收缩时长度不变的收缩。
10.离心收缩:肌肉在收缩产生张力的同时被拉长的收缩。
11.红细胞压积(红细胞比容):红细胞在全血中所占的百分比,健康成年人红细胞比容12.血液粘滞性:决定血流阻力的因素之一。
全血的粘滞度为水的粘滞度的4-5倍.13.内环境:细胞外液,细胞直接生活的环境14.等渗溶液:正常人在体温37ºC时,以血浆的正常渗透压(5800mmHg)为标准,与血浆正常渗透压近似的溶液15.碱储备:血液中缓冲酸性物质的主要成分是碳酸氢钠,常以每100毫升血浆的碳酸氢钠含量来表示碱贮备量16.每搏输出量:一侧心室每次收缩所射出的血量,常以左心室的每搏量为标准。
17.血压:指血管内的血液对单位面积血管壁的侧压力18.窦性心动徐缓:某些优秀的耐力运动员安静时心率可达到40-60次每分钟19.射血分数:每搏输出量占心室舒张末期的容积百分比20.心力储备:心输出量随机体代谢需要而增长的能力21.心动周期:心房或心室每收缩和舒张一次构成一个心动周期22.肺活量:最大深吸气后再做最大呼气时所呼出的气量23.最大通气量:以适宜的呼吸频率和呼吸深度进行呼吸时所测得的每分钟通气量24.氧离曲线:表示氧分压与血氧饱和度关系的曲线,以氧分压(PO2)值为横坐标,相应的血氧饱和度为纵坐标25.肺通气:单位时间内吸入(或呼出)的气量26.每分通气量:呼吸深度(潮气量)x呼吸频率(每分钟呼吸次数)27.每分肺泡通气量:(呼吸深度-生理无效腔)X呼吸频率28.有氧氧化:糖原或葡萄糖在耗氧条件下彻底氧化,产生二氧化碳和水的过程。
运动生理学名词解释
运动生理学名词解释点击上方“蓝字”关注1、兴奋性:肌肉在刺激作用下具有产生兴奋的特性2、肺活量:最大吸气后,尽力所能呼出的最大气量3、运动性疲劳:在运动过程中,当机体生理过程不能继续保持在特定水平上进行或不能维持预定的运动强度时,即称之为运动性疲劳。
4、运动后尿蛋白:正常人在运动后出现的一过性蛋白尿5、碱储备:血浆中的NaHCO2(碳酸氢钠)6、心输出量:一侧心室每分钟所输出的血量。
7、运动后血尿:正常人在运动后出现的一过性、显微镜下或肉眼可见的血尿8、最大摄氧量:人体在进行有大量肌肉参与的长时间激烈的运动中,心肺功能和肌肉利用氧的能力达到本人极限水平时,单位时间所能摄取的最大氧气量。
9、反应时:从感受器接受刺激产生兴奋并沿反射弧传递开始,到引起效应器发生反应所需的时间称为反应时10、整理活动:是指在正式练习后所做的一些加速机体功能恢复的较轻松的身体练习。
11、超负荷原则:指练习的负荷要逐渐超过本人已经适应或已经习惯的负荷。
12、异常自身调节:指与神经、体液因素无关,由于心肌初长度改变而导致搏出量改变的一种调节方式。
13、心肌收缩能力:心肌不依赖前后负荷而改变其力学性能的一种内在特性。
14、心电图:将引导电极置于体表一定部位所记录到的心电变化的波形。
16、血压:指血管内的血液对于单位面积血管壁的侧压力17、最佳心率范围;使心输出量处于较高水平的心率范围。
18、内环境:细胞外液生存的环境。
19、基础代谢率:单位时间内的基础代谢20、运动性贫血:由于运动训练引起的Hb(血红蛋白)浓度、红细胞数或HCT低于正常水平的一种暂时性现象21、呼吸:机体在新陈代谢过程中,需要不断地从外界环境摄取氧并排出二氧化,这种机体与环境之间进行的气体交换称为呼吸。
22、心动周期:心脏每收缩和舒张一次,构成一个机械活动周期。
23、极点:在进行强度较大、持续时间较长的剧烈运动中,由于运动开始阶段内脏器官的活动不能满足运动器官的需要,练习者常常产生一些非常难受的生理反应,如呼吸困难、胸闷、头晕、心率剧增、肌肉酸软无力、动作迟缓不协调,甚至产生停止运动的念头,这种机能状态称为极点。
运动生理学名词解释
1.新陈代谢:一切生物体存在德最基本特征是在不断地破坏和清除已经衰老的结构,重新新的结构,这是生物体与周围环境进行物质与能量交换中实现自我更新的过程,称为新陈代谢2.兴奋性:生物体对刺激发生反应的能力称为兴奋性3.反应:生物体生活在一定的外界环境中,当环境发生变化时,细胞、组织或机体内部的新陈代谢及外部的表现都将发生相应的改变,这种改变称为反应4.内环境:相对于人体生存的外界环境,细胞外液是细胞生活的直接环境,称为内环境5.稳态:在一定范围内,经过体内复杂的调节机制,维持不断变化的内环境理化性质并保持相对动态平衡的状态称为稳态6.反射是指在中枢神经系统参与下,机体对内、外环境刺激产生的应答性反应7.体液调节:人体内分泌细胞分泌的各种激素进入血液后,经血液循环运送到全身各处,对人体的新陈代谢、生长、发育和生殖等重要基本功能进行的调节,称为体液调节8.自身调节:当体内外环境变化时,器官、组织、细胞可以不依赖于神经或体液调节而产生的某些适应性反应,称为自身调节9.反馈:在机体内进行各种生理功能的调节时,被调节的器官功能活动的改变又可通过回路向调节系统发送变化的信息,改变其调节的强度,这种调节的方式称为反馈10.前馈:在调节系统中,干扰信息可以通过受控装置作用于控制部分,引起输出效应发生变化,具有前瞻性的调节特点,称为前馈第一章肌肉活动1.兴奋是生物体的器官、组织或细胞受到足够强的刺激后所产生的生理功能加强的反应2.横桥:在组装粗肌丝的肌球蛋白分子球状头部,有规则地突出在M线两侧的粗肌丝主干表面的突起部分,称为横桥3.可兴奋细胞:在机体内神经、肌肉和内分泌腺细胞在刺激作用下能够产生可传播的动作电位,因此,这些细胞被称为可兴奋细胞4.静息电位:静息电位是指细胞未收刺激时存在于细胞膜两侧的电位差。
由于这一电位差存在于安静的细胞膜的两侧,故又称为跨膜静息电位或膜电位5.动作电位:细胞受到刺激而兴奋时,细胞膜在原来静息电位的基础上发生的一次迅速、短暂、可向周围扩布的电位波动称为动作电位6.阈强度:固定刺激作用时间和时间-强度变化率,可引起组织兴奋的最小刺激强度,称为阈强度7.阈电位:能够触发细胞兴奋产生动作电位的临界膜电位,称为阈电位8.极化状态:细胞在安静状态时,膜电位处于正常数值的外正内负状态,称为极化状态9.去极化:去极化时指膜内电位负值较静息电位时减少的过程,即极化状态减弱10.复极化:细胞去极化后又向原来极化状态恢复的过程,称为复极化11.超极化:膜内电位复值较静息电位时加大的过程称为超极化,即极化状态加强12.局部反应:细胞受到阈下刺激时,在细胞膜上产生的局部去极化,其电位变化不能向远处扩布,因此称为局部反应13.肌肉的兴奋-收缩耦联:肌细胞兴奋过程是以膜的电变化为特征的,而肌细胞的收缩过程是以肌纤维机械变化为基础,它们有着不同的生理机制,肌肉收缩时必定存在某种中介过程把它们联系起来,这一中介过程称为肌肉的兴奋-收缩耦联14.在肌肉收缩和舒张过程中,与肌丝滑行有关的蛋白质,称为肌肉收缩蛋白,包括肌球蛋白和肌动蛋白15.等长收缩:当肌肉收缩产生的张力等于外力时,肌肉积极收缩,当长度不变,这种收缩形式称为等长收缩16.前负荷:肌肉收缩之前所承受的负荷称为前负荷17.后负荷:肌肉开始收缩后所遇到的负荷称为后负荷18.缩短收缩:缩短收缩是指肌肉收缩所产生的张力大于外加的阻力时,肌肉缩短,并牵引骨杠杆做相向运动的一种收缩形式。
运动生理学名词解释
运动生理学:研究人体在体育运动的影响下机能活动变化规律的科学。
稳态:在一定范围内,经过体内复杂的调节机制,维持不断变化的内环境理化性质保持相对动态平衡的状态。
兴奋:可兴奋组织接受刺激后产生生物电反映的过程,以及由相对静止转为活动状态或活动由弱变强的表现。
阈值:在固定剌激作用时和刺激强度一时间变化率条件下,引起组织细胞兴奋所必须的最小刺激强度。
肌小节:相邻两Z线之间的一段肌原纤维。
运动单位:一个运动神经元连同它所支配的全部肌纤维统称为一个运动单位。
缩短收缩:当肌肉收缩产生的张力大于外加的阻力时,肌肉收缩,长度缩短,肌肉的这种收缩形式称为缩短收缩。
拉长收缩:当肌肉收缩产生的张力小于外加的阻力时,肌肉积极收缩,被拉长,肌肉的这种收缩形式称为拉长收缩。
等长收缩:当肌肉收缩产生的张力等于外加的阻力时,肌肉积极收缩,长度不变,肌肉的这种收缩形式称为等长收缩。
姿势反射:在躯体活动过程中,中枢神经系统不断地调整不同部位骨骼肌的张力,以完成各种动作,保持或变更躯体各部分的位置,这种反射总称为姿势反射。
前庭反应:当人体前庭感受器受到过度刺激时,反射性的引起骨骼肌紧张性的改变、眼震颤以及自主功能反应,如心率加快、血压下降、恶心呕吐、眩晕出冷汗等现象,这些改变统称为前庭反应。
前庭功能稳定性:过度刺激前庭感受器而引起机体各种前庭反应的程度称为前庭功能稳定性。
激素:是指由内分泌腺或内分泌细胞分泌的具有传递信息的高效能生物活性物质。
血红蛋白氧容量:指血液中Hb的氧饱和度为100%时,每升血液中的血红蛋白所结合的氧气量。
血红蛋白氧含量:把每升血液中血红蛋白实际结合的氧量称为血红蛋白氧含量。
血红蛋白氧饱和度:指血液中Hb与氧结合的程度,即血红蛋白氧含量与血红蛋白氧容量的百分比。
氧离曲线:表示血氧饱和度与氧分压之间关系的曲线。
内环境:细胞外液是细胞生活的直接环境,称为内环境。
内环境稳态:由于人体内有多种调节机制,使内环境中理化因素的变动不超出正常生理范围,以保持动态平衡,这一生理现象就称为内环境稳态。
运动生理 名词解释
名词解释1.能量统一体:运动生理学把完成不同类型的运动项目所需能量之间,以及各能量系统供应的途径之间相互联系所形成的整体,称为能量统一体2.兴奋:是指组织细胞接受刺激产生动作电位的过程兴奋性:································特性3.缩短收缩:是指肌肉收缩时产生的张力大于外加的阻力,肌肉的长度缩短拉长收缩:························小于··········,肌肉积极收缩但被拉长等长收缩:························等于·······················但长度不变4.神经元:又称神经细胞,是指神经系统的基本结构与功能单位5.运动单位:一个运动神经元与它所支配的那些肌纤维组成一个运动单位6.姿势反射:在躯体运动过程中,中枢神经系统不断地调整不同部位骨骼的张力,以完成各种动作,保持或变更躯体各部分的位置,这种反射活动总称为姿势反射7.内分泌:是由内分泌腺和分散存在于某些组织器官中的内分泌细胞所共同组成的一个信息传递系统8.应急反应:通常将机体遭遇紧急情况时紧急动员交感一肾上腺髓质系统的过程称为应急反应9.红细胞比容:红细胞在全血中所占的容积百分比10.氧解离曲线:是表示血氧饱和度与氧分压之间的关系的曲线11.肺活量:最大吸气后,尽力所能呼出的最大气量为肺活量12.通气/血流比值:每分肺泡通气量和肺血流量的比值13.心力储备:心输出量可以随着机体代谢需要而增加,具有一定的贮备14.最佳心率范围:当心率在(110,120)~(170,180)次·min时,心排出量维持在较高水平,使心输出量处于较高水平的这一心率范围15.动脉血压:是指动脉血管内的血液对于单位面积血管壁的侧压力16.酸碱平衡:机体通过血液缓冲系统,肺,肾调节体内酸性和碱性物质的含量比例,维持体液PH恒定17.碱储:NaHco3是血浆中含量最多的碱性物质,在一定程度上可以代表对固定酸的缓冲能力,故把血浆中的NaHco3看成血浆的碱贮备18.排泄:是指机体将代谢产物,多余的水分和盐类以及进入体内的异物,经过血液循环由排泄器官排除体外的过程19.体适能:是指在应付日常之于,身体不会感到过度疲倦,还有余力去享受及应付突发事件的能力20.肌肉力量:是肌肉在紧张或收缩时所表现出来的一种能力,或说是肌肉抵抗阻力的能力21.运动处方:是健身活动者进行身体活动的指导性条款,它是根据参加活动者的体适能水平和健康状况以处方形式确定其活动强度、时间、频率和活动方式,这如同临床医生根据病人的病情开出不同的药物和不同的用量的处方一样22.身体成分:指组成人体的各组织,器官的总成分,根据各个成分的生理功效的不同,常把体重分为体脂重和去脂体重。
运动生理学名词解释
参考答案(一)名词解释液态镶嵌模型:关于细胞膜结构的学说.其基本内容是:细胞膜的共同结构是以液态的脂质双分子层为基架,其中镶嵌着具有不同结构和生理功能的蛋白质.单纯扩散:脂溶性物质由细胞膜高浓度一侧向低浓度一侧的移动称为单纯扩散.这是一种简单的物理扩散过程,比较肯定的有O2和CO2等.易化扩散:是体内不溶于脂质或溶解度较小的物质,借助于某些膜蛋白质,由高浓度一侧向低浓度一侧的扩散过程.易化扩散有载体易化扩散和通道易化扩散两种类型. 主动转运:是指在膜蛋白的参与下,细胞依靠本身的耗能过程,将某种物质分子或离子由膜的低浓度一侧或低电位一侧移向高浓度或高电位一侧的过程.主动转运可分为原发性主动转运和继发性主动转运.继发性主动转运:是指不直接消耗细胞代谢所产生能量,而是依靠另一物质浓度梯度的势能储备释放实现的跨膜物质主动转运过程,多见于小肠和肾小管上皮细胞对葡萄糖和氨基酸的主动转运.出胞:是指细胞内的大分子物质或物质团块通过细胞膜结构和功能的变化从细胞排出的过程,也称胞吐.入胞:细胞外某些物质团块等通过细胞膜结构和功能的变化进入细胞的过程称为入胞,也称胞吞.G蛋白:G蛋白是可与鸟苷酸结合的蛋白的总称.G蛋白连接膜受体和细胞内的效应器蛋白(酶或离子通道).G蛋白耦联受体:G蛋白耦联受体是最大的细胞表面受体家族.大约有100多种激素,神经递质和其他信息分子调节靶细胞功能是通过它介导的.G蛋白耦联受体在分子结构上属于同一个受体超家族,都是由一条多肽链组成,其中含有7次跨膜疏水区域,因此也称7次跨膜受体.当细胞外信号分子与受体结合后,可以触发受体蛋白的构象改变,受体再进一步调节G蛋白的活性,将细胞外的信号传递到细胞内.第二信使:是指细胞外信号分子作用于细胞膜后产生的细胞内信号分子.目前,已知的第二信使物质主要有环一磷酸腺苷,三磷酸肌醇,二酰甘油和Ca2+等.静息电位:静息电位是指细胞在未受到刺激而处于安静状态时,存在于细胞膜内,外两侧的电位差,表现为膜内电位较膜外为负.动作电位:是指可兴奋细胞受到一个阈刺激或阈上刺激时,膜电位在静息电位的基础上产生一个迅速的,可逆的,可传导的电位变化.动作电位由锋电位和后电位组成,是细胞兴奋的标志.极化:安静时,膜两侧电位保持着内负外正的状态,称为极化状态.阈电位:是能使Na+通道突然大量开放产生动作电位的临界膜电位数值.一般可兴奋细胞的阈电位大约比静息电位的绝对值小10~20mV.局部电位:阈下刺激引起少量Na+通道开放,使少量Na+内流,在受刺激的局部出现一个较小的膜的除极化反应,称局部电位或局部兴奋.超射:产生动作电位时,膜电位由零电位变为正电位的过程称为超射或反极化.跳跃式传导:有髓神经纤维在轴突外面包有一层具有电绝缘性的髓鞘.两段髓鞘之间为郎飞结.由于结间髓鞘高电阻和低电容,当某一结外产生动作电位时,局部电流将主要在结区之间发生,并使邻近的郎飞结去极化达到阈电位,产生动作电位.这一过程在郎飞结处重复,好象动作电位由一个结区跳到另一个结区,这种动作电位的传导方式称为跳跃式传导.量子式释放:神经肌接头处ACh的释放是通过出胞作用,以囊泡为单位倾囊释放的,称为量子式释放.Na+-K+泵:Na+-K+泵即Na+泵,因其具有ATP酶活性,也称Na+-K+依赖式ATP酶.Na+泵分解细胞产生的能量,用于将胞内的Na+移至胞外和将胞外的K+泵入胞内的逆浓度梯度转运,故其主要作用是"驱钠摄钾".终板电位:终板膜产生的局部去极化电位.肌接头释放的ACh与N2型ACh受体结合后,导致与受体在同一分子上的通道开放,使终板膜发生去极化,产生终板电位.绝对不应期:绝对不应期是指细胞在一次兴奋的初期,无论接受多么强大的刺激,都不能再产生兴奋,这一时期,称为绝对不应期.在此期,兴奋性降低到零.全或无现象:动作电位的"全或无"现象,具有两个方面的含义:①在单一可兴奋细胞,阈下刺激不引起动作电位,而动作电位一旦产生则其幅度即达最大值,不会因刺激强度增加而增大.也就是,阈刺激和阈上刺激引起同一细胞的动作电位幅度相等.②动作电位在同一细胞上传导时,不因传导距离增加而有所衰减,即呈不衰减传导.兴奋-收缩耦联:肌膜的动作电位借Ca2+为中介引起肌丝滑行的过程称为兴奋-收缩耦联.兴奋-收缩耦联包括:①肌膜动作电位通过横管系统向内传导到细胞深处;②信息在三联管处传递;③肌浆网对Ca的储存,释放和再聚集及其与肌丝滑行的关系. 前负荷:在肌肉收缩前就加在肌肉上的负荷称前负荷.前负荷能改变肌肉收缩的初长度.后负荷:是肌肉在收缩开始后才遇到的负荷或阻力.等长收缩:肌肉收缩中只有长度发生缩短而张力保持不变的收缩形式称为等长收缩. 等张收缩:肌肉收缩时长度保持不变,只有张力的增加的收缩形式称为等张收缩. (三)问答题简述细胞膜的分子组成和结构特点.细胞膜以蛋白质和脂质为主,糖类只占极少量.细胞膜的共同结构是以液态的脂质双分子层为基架,其中镶嵌着具有不同结构和生理功能的蛋白质.膜脂质以脂质双层的形式存在于细胞膜中,主要由磷脂和胆固醇组成.膜蛋白主要以球形或α螺旋结构分散镶嵌在脂质双分子层中,可分为表面蛋白和整合蛋白两大类.表面蛋白主要分布在脂质双分子层的内表面或外表面,与膜表面结合较疏松.整合蛋白约占膜蛋白的70%~80%,其肽链一次或反复多次穿越脂质双分子层,与脂质很难分离.细胞膜中寡糖和多糖链以共价键的形式与膜蛋白或膜脂质结合,形成糖蛋白或糖脂.试述细胞膜物质转运的形式及机制.细胞膜跨膜物质转运过程可分为主动转运和被动转运.单纯扩散和易化扩散属于被动转运,主动转运则包括原发性主动转运,继发性主动转运以及出胞和入胞等.两者的主要区别是被转运的小分子物质或离子是否逆电位或逆化学浓度的转运,以及转运中是否需要细胞参与供给能量.1,单纯扩散脂溶性物质由细胞膜高浓度一侧向低浓度一侧的移动称为单纯扩散,这是一种简单的物理扩散过程.机体内依靠单纯扩散通过细胞膜的物质较少,比较肯定的有O2和CO2等.单纯扩散的能量来源于高浓度电化学梯度本身所包含的势能. 2,易化扩散体内不溶于脂质或溶解度较小的物质,借助于膜的某些蛋白质,由高浓度一侧向低浓度一侧的扩散称为易化扩散.易化扩散有两种类型:载体易化扩散和通道易化扩散.3,主动转运是指在膜蛋白的参与下,细胞依靠本身的耗能过程,将某种物质分子或离子由膜的低浓度一侧或低电位一侧移向高浓度或高电位一侧的过程.主动转运可分为原发性主动转运和继发性主动转运.其中,进行原发性主动转运的离子泵将细胞代谢产生的ATP分解释放能量,供给离子跨膜转运.继发性主动转运不是直接消耗细胞代谢所产生的ATP供能,而是依靠另一物质浓度梯度的势能储备而实现的主动转运,多见于小肠和肾小管上皮细胞对葡萄糖和氨基酸的主动转运.4,出胞和入胞出胞是指细胞内的大分子物质或物质团块从细胞排出的过程,也称胞吐.各种细胞的分泌活动就是出胞的一种主要表现形式.细胞外某些物质团块,如红细胞碎片,侵入体内的细菌,病毒,异物等进入细胞的过程称为入胞,也称胞吞.如果进入细胞的物质为固体物,则称吞噬;如果进入细胞的物质为液态,则称吞饮或胞饮.受体介导式入胞是最主要的入胞形式.这是一种与细胞膜表面受体有关的入胞.简述单纯扩散和易化扩散的异同点.易化扩散和单纯扩散的相同点是:扩散的动力都来自膜两侧物质的浓度梯度和电位梯度,转运过程不需要消耗细胞代谢所产生的能量.由于物质移动的能量来自高浓度溶液本身所含的势能储备,因而单纯扩散和易化扩散也称为被动转运.两者之间的不同点是:①单纯扩散所转运的物质是脂溶性的,易化扩散的物质是非脂溶性的;②单纯扩散率与膜两侧物质的浓度差成正比,而载体易化扩散仅当物质浓度很低时才保持这种关系,浓度增大时则表现出饱和现象,通道易化扩散的能力还决定于通道的关闭和开放,对离子转运的特异性不如载体严格;③单纯扩散是一种单纯的物理过程,易化扩散分别需要载体和通道蛋白的协助.简述Na-K泵的本质,作用及生理意义.在膜的主动转运过程中对细胞生存和活动最重要的是进行Na+,K+主动转运的Na+-K+泵.Na+-K+泵即Na+泵,因其具有ATP酶活性,也称Na+-K+依赖式ATP酶.Na+泵ATP酶分解产生的能量,用于将胞内的Na+移至胞外和将胞外的K+泵入胞内的逆浓度梯度转运,故其主要作用是"驱钠摄钾".当细胞内Na+浓度升高或细胞外K+浓度升高时,都可激活钠泵.一般,每消耗1分子ATP,可泵出3个Na+,摄入2个K+,故钠泵是一种生电性泵.据估计,在安静状态下细胞大约将代谢所获能量的20%~30%用于钠泵的转运活动.钠泵的活动具有重要的生理意义:①由钠泵造成的细胞内高K+,是细胞进行代谢反应的必要条件.②钠泵的活动能将细胞内Na+和与之相伴的水泵出细胞,以维持细胞的正常渗透压和形态.③钠泵活动的最重要意义在于,它能建立一种势能储备和保持细胞内外Na+,K+不均匀分布.这样,膜上的离子通道一旦开放,Na+或K+便可迅速地顺浓度差进行跨膜扩散,这也是可兴奋组织或细胞具有兴奋性和产生兴奋的基础;同时,钠泵活动建立的Na+浓度势能储备也是一些营养物质,如葡萄糖,氨基酸等进行继发性主动转运的能量来源.试述细胞膜受体在膜信号转导中的作用.细胞膜受体是将细胞外信号导入细胞内的重要枢纽,在跨膜信号转导过程中,不同的跨膜信号转导方式由不同的膜受体介导.外界的刺激多种多样,可以引发不同的细胞产生不同的反应,但其间的信号转导过程却都是通过少数几种类似的途径或方式实现的.1,离子通道受体介导的跨膜信号转导目前已确定体内至少存在化学门控通道,电压门控通道和机械门控通道三种类型的通道样结构.在离子通道受体介导的跨膜信号转导系统中,其受体本身就是离子通道的组成部分.例如终板膜上与乙酰胆碱(ACh)特异性结合的N型ACh受体,是将运动神经的兴奋传给肌细胞的关键受体.受体和通道在同一个分子上.当两个ACh分子与受体分子上的α亚单位结合后,受体-离子通道分子构象发生改变致使通道开放,Na+,K+都能通过,产生终板电位.在神经细胞和肌细胞膜上有Na+,K+,Ca2+的电压门控通道分子结构,控制这类通道开放和关闭的因素是通道所在膜两侧跨膜电位的改变.另外,许多细胞如耳蜗毛细胞膜上感受外来机械信号可能使膜的局部变形或牵引直接刺激附近膜中的机械门控通道,进而完成细胞内的信号转导.2,G蛋白耦联受体介导的跨膜信号转导 G蛋白耦联受体是最大的细胞表面受体家族.大约有100多种激素,神经递质和其他信息分子调节靶细胞功能是通过其介导完成的.通过G蛋白耦联受体完成跨膜信号转导需要有膜受体,G蛋白,G蛋白效应器,第二信使,蛋白激酶等一系列存在于细胞膜,细胞浆和细胞核中的信号分子参与.G蛋白耦联受体在分子结构上属于同一个受体超家族,都是由一条多肽链组成,其中含有7次跨膜疏水区域.当细胞外信号分子与受体结合后,可以触发受体蛋白的构象改变,受体再进一步调节G蛋白的活性,将细胞外的信号传递到细胞内.3,酶耦联受体介导的跨膜信号转导酶耦联受体可分为两类:一类受体分子具有酶的活性,即受体与酶是同一蛋白分子,称为酪氨酸激酶受体;另一类受体本身没有酶的活性,但当它被配体激活时立即与酪氨酸激酶结合,并使之激活,称为结合酪氨酸激酶的受体.试述G蛋白耦联受体介导的细胞信号转导系统.G蛋白耦联受体介导的信号转导是指细胞外信号分子-受体复合物与靶蛋白(酶或离子通道)的作用通过与G蛋白的耦联后,导致细胞内信使分子浓度或膜对离子通透性的改变,从而将细胞外信号传递到胞内的过程.通过G蛋白耦联受体完成跨膜信号转导需要有膜受体,G蛋白,G蛋白效应器,第二信使,蛋白激酶等一系列存在于细胞膜,细胞浆和细胞核中的信号分子参与.大约有100多种激素,神经递质和其他信息分子调节靶细胞功能是通过它介导的.1,G蛋白耦联受体(7次跨膜受体) 与G蛋白耦联受体结合的细胞外信号分子尽管千差万别,但G蛋白耦联受体在分子结构上属于同一个受体超家族,都是由一条多肽链组成,其中含有7次跨膜疏水区域.当细胞外信号分子与受体结合后,可以触发受体蛋白的构象改变,受体再进一步调节G蛋白的活性,将细胞外的信号传递到细胞内. 2,G蛋白 G蛋白是可与鸟苷酸结合的蛋白的总称.G蛋白连接着膜受体和细胞内的效应器蛋白(酶或离子通道).G蛋白有两类,包括单体G蛋白和异源三聚体G蛋白,其共同特征是:①由α,β,γ三个不同的亚单位组成;②具有结合GTP或GDP的能力,并有GTP酶(GTPase)的活性,能将结合的GTP分解形成GDP;③G蛋白构象的改变可激活效应器蛋白,使之活化,从而实现细胞内,外信号的传递.3,G蛋白效应器 G蛋白效应器包括催化生成第二信使的效应器酶和离子通道.G蛋白效应器酶主要有细胞膜上的腺苷酸环化酶(AC),磷脂酶C(PLC),依赖cGMP的磷酸二酯酶(PDE)和磷脂酶A2等.4,第二信使如将与细胞膜结合的细胞外信号分子称为第一信使,则第二信使是指第一信使作用于细胞膜后产生的细胞内信号分子.目前,已知的第二信使物质主要有环一磷酸腺苷(cAMP),三磷酸肌醇(IP3),二酰甘油(DG),环一磷酸鸟苷(cGMP)和Ca2+等.5,蛋白激酶这些第二信使既可直接作用于效应蛋白,也可活化相应的蛋白激酶,后者包括依赖于cAMP的蛋白激酶(蛋白激酶A,PKA),依赖于Ca2+的蛋白激酶(或称蛋白激酶C,PKC)等.这些蛋白激酶的激活可使底物蛋白磷酸化,使信号得到逐渐放大,产生各种生物学作用.简述G蛋白耦联受体细胞内信号转导系统.G蛋白耦联耦联受体介导的信号转导系统中的配体-受体复合物与靶蛋白(酶或离子通道)的作用通过与G蛋白的耦联,导致细胞内信使分子浓度或膜对离子通透性的改变,从而将细胞外信号传递到胞内影响细胞的行为.根据第二信使及其以后作用途径的不同,主要的细胞内信号转导途径有:①cAMP-PKA途径腺苷酸环化酶位于细胞膜上的G蛋白效应器蛋白,可环化胞浆中的ATP生成cAMP,cAMP可进一步激活PKA,PKA再使某些底物蛋白发生磷酸化.这些底物蛋白通常也是基因表达的调节因子,表达的蛋白质可使细胞产生各种生物学效应.cAMP也可通过调节离子通道来实现第二信使的作用.②IP3-Ca2+途径许多配体与受体结合后可激活另一种G蛋白Gq,Gq能激活膜上的磷脂酶C,催化细胞膜上的二磷酸磷脂酰肌醇(PIP2)分解为DG和IP3两种第二信使.IP3受体激活后可导致细胞内Ca2+库中的Ca2+释放到胞浆中去.Ca2+作为第二信使,Ca2+既可以直接作用于底物蛋白发挥调节作用,也可以和胞浆中的钙调蛋白(CaM)结合后发挥作用.③DG-PKC途径细胞的PLC水解PIP2生成的另一个产物是DG.DG是脂溶性的,存在于膜的内表面,可活化蛋白激酶C.PKC有多种亚型,广泛分布于不同的组织中,激活后可使底物蛋白磷酸化,产生多种生物效应.④G蛋白-离子通道途径 G蛋白也可直接或间接通过第二信使调控离子通道的活动实现信号转导.试述静息电位及其形成机制.静息电位是指细胞在未受到刺激而处于安静状态时,存在于细胞膜内,外两侧的电位差,表现为膜内电位较膜外为负,大都在-10~-100mV之间.静息电位主要是由离子的跨膜扩散形成的.细胞内外K+的不均衡分布和安静时膜主要对K+有通透性,K+进行选择性跨膜移动,可能是细胞膜保持膜内较膜外为负的极化状态的基础.Na+-K+泵主动转运造成的细胞内,外离子的不均衡分布,是形成细胞生物电活动的基础.细胞外Na+浓度约为膜内7~14倍,而细胞内K+浓度比细胞外高20~40倍.安静时,膜对K+有通透性,K+必然有向细胞外扩散的趋势,其向膜外扩散的驱动力是跨膜的离子浓度差和电位差.当K+向膜外扩散时,膜内主要带负电的蛋白质却因膜对蛋白质不通透而不能透出细胞膜,于是K+向膜外扩散将使膜内电位变负而膜外变正.但K+向膜外扩散并不能无限制地进行,因为先扩散到膜外的K+所产生的外正内负的电场力,将阻碍K+继续向膜外扩散,并随着K+外流的增加,这种K+外流的阻力也不断增大.当促使K+外流的驱动力和阻止K+外流的阻力达到平衡时,膜对K+的净通量为零,于是K+不再向膜外扩散,此时膜两侧电位差稳定于某一数值不变,此电位差称为K+的电-化学平衡电位,也称K+的平衡电位(Ek).此即静息电位.形成静息电位的机制除细胞膜内,外离子分布不均衡及膜对K+有较高通透性外,Na+-K+泵也参与静息电位的形成.总之,影响静息电位水平的因素主要有:①膜内,外K+浓度差;②膜对K+和Na+的相对通透性;③Na+-K+泵活动的水平.试述动作电位及其形成机制.动作电位或锋电位是可兴奋细胞的兴奋标志.动作电位是指可兴奋细胞受到一个阈刺激或阈上刺激时,膜电位在静息电位的基础上产生一个迅速的,可逆的,可传导的电位变化.不同组织细胞受到刺激后所产生的动作电位形态不尽相同.神经纤维的动作电位由锋电位和后电位两个部分组成的.锋电位是动作电位的主要部分.动作电位由去极相(上升支)和复极相(下降支)组成.后电位指膜电位恢复到静息电位前经历的一段较长的微弱电位变化的时期.后电位由后去极化或称负后电位以及后超极化或称正后电位组成.动作电位是由于膜对Na+,K+通透性发生变化形成的.细胞膜内,外Na+浓度差很大.当神经纤维受到刺激时,首先激活膜上的Na+通道,引起少量Na+通道开放,Na+顺浓度差少量内流,使细胞膜轻度去极化.当膜电位降低到阈电位,引起电压门控Na+通道蛋白质分子的构象变化,大量的Na+通道被激活开放,Na+大量通过易化扩散跨膜进入细胞内.随着Na+内流增加,膜进一步去极化,而去极化本身又促进更多的Na+通道开放,如此反复形成Na+再生性循环,形成了动作电位的上升支.细胞膜在去极化过程中,Na+通道开放时间很短,仅万分之几秒,随后既关闭失活.使Na+通道开放的膜去极化也使电压门控K+通道延迟开放,膜对K+的通透性增大,膜内K+顺电化学驱动力向膜外扩散,使膜内电位由正值向负值转变,直至原来的静息电位水平,便形成了动作电位的下降支即复极相.锋电位发生后,膜电位产生了微小而缓慢波动,持续时间较长的后电位.后电位包括负后电位和正后电位.何谓动作电位的全或无现象动作电位只要产生,动作电位的幅度就相同,不随刺激强度增加而增大;而刺激引起的去极化达不到阈电位时,则不能形成Na+内流和去极化的正反馈,不能产生动作电位,这一特性称为动作电位"全或无"特性.可兴奋细胞的动作电位及其传导过程表现为"全或无",具有两个方面的含义:①在单一可兴奋细胞,阈下刺激不引起动作电位,而动作电位一旦产生则其幅度即达最大值,不因刺激强度增加而增大.也就是,阈刺激和阈上刺激引起同一细胞的动作电位幅度相等.②动作电位在同一细胞上传导时,不因传导距离增加而有所衰减,即呈不衰减传导.试述阈刺激,阈电位,局部电位与动作电位的关系.在产生兴奋的有效刺激三因素中,固定了强度-时间变化率和刺激的持续时间不变,达到阈强度引起细胞兴奋产生动作电位的刺激称为阈刺激.当刺激强度增加达到阈强度后,由于刺激引起的去极化明显,开放的电压门控Na+通道数量增加,形成Na+内流与去极化的正反馈,使膜去极化迅速发展形成动作电位上升支,从动作电位形成过程看,阈电位是使去极化突然转变为锋电位的最小膜电位水平.也即阈电位是能使Na+通道突然大量开放产生动作电位的临界膜电位数值.一般可兴奋细胞的阈电位大约比静息电位的绝对值小10~20mV.可见,引起细胞兴奋或产生动作电位的关键在于能否使静息电位减小到阈电位水平,而与导致这种膜电位减小的手段或刺激方式无关.即膜电位一旦达到阈电位水平,此时的去极化不再依赖于刺激强度,膜电位的变化成为一种自动的过程并直至动作电位结束.阈下刺激引起少量Na+通道开放,少量Na+内流,在受刺激的局部出现一个较小的膜的除极化反应,称局部电位或局部兴奋.局部电位与动作电位相比,其基本特点如下:①不是"全或无"的,而是有等级性和衰减性的,局部电位去极化幅度随着阈下刺激强度的大小而增减,呈等级性;②电紧张扩布.局部电位仅限于刺激部位,不能在膜上远距离扩布,随着扩布距离的增加,这种去极化电位迅速衰减和消失;③可以总和,互相叠加.先后多个或细胞膜相邻多处的阈下刺激所引起的局部电位可以叠加,产生时间总和,空间总和.试比较局部电位与动作电位的不同.局部电位与动作电位的比较项目局部反应动作电位刺激强度。
运动生理学,常考的57个名词解释
运动生理学,常考的57个名词解释我们专门花了些时间,重新梳理了运动生理学的名词解释。
推荐正在体育考研、考编、专升本的体育生!感觉有用就收藏本文吧!1.激素是内分泌腺或器官组织的内分泌细胞所分泌,以体液为媒介,在细胞之间递送调节信息的高效能生物活性物质。
2.第一信使生物体内结合并激活受体的细胞外配体包括激素、神经递质、细胞因子、淋巴因子、生长因子和化学诱导剂等物质,通常统称为第一信使。
3.第二信使它是指第一信使作用于靶细胞后,刺激大脑浆中产生的信息分子,获得的信息经过增强、分化、整合、放大后传递给效应器产生效应,是细胞外信息与细胞内效应之间必不可少的中介。
4.应激反应当机体突然受到创伤、手术、冷冻、饥饿、疼痛、感染、惊恐和剧烈运动等不同刺激时,均可出现血中促肾上腺皮质激素浓度的急剧增高和糖皮质激素的大量分泌,将这种非特异反应称为"应激反应"。
5.体液免疫以 B细胞产生抗体来达到保护目的的免疫机制。
体液免疫的应答反应过程包括感应、增殖和分化、效应三个阶段。
6.血细胞比容血液中血细胞的比例称为血细胞比容。
7.运动性贫血由于运动训练引起的血红蛋白浓度、红细胞数和/或血细胞比容低于正常水平的一种暂时性现象,称为运动性贫血。
8.碱储备由于血浆中的 NaHCO3 是缓冲固定酸的主要物质,习惯上将血浆中的NaHCO3称为碱储备,通常以每 100ml 血浆中的碳酸氢钠含量来表示碱储备量。
9.肺容积肺气体的总体积称为肺容积,包括潮气量、吸气量、呼气量和残气量。
10.功能余气量平静呼气末尚存留于肺内的气体量称为功能余气量,功能余气量等于余气量和补呼气量之和。
11.肺活量最大吸气后再做最大呼气,所能呼出的气量称为肺活量,它是潮气量、补吸气量和补呼气量三者之和。
12.解剖无效腔在呼吸的过程中,留在呼吸性细支气管前呼吸道的气体在每次吸气中都无法进行交换,这部分空腔称为解剖无效腔。
13.氧储备正常情况下,02不仅维持身体的代谢消耗,还会在体内储存一小部分以备后用。
运动生理学名词解释
一、名词解释1、运动生理学:是一门研究在体育活动影响下人体机能变化规律的科学。
2、人体机能:是指人体整体及其各组成系统、器官所表现出来的生命活动现象3、新陈代谢:生物体是在不断地更新自我,破坏和清除已经衰老的结构,重建新的结构。
这是一切生物体存在的最基本特征,是生物体不断地与周围环境进行物质与能量交换中实现自我更新的过程。
新陈代谢一旦停止,生命也就终结。
4、兴奋性:指组织细胞在受刺激时具有产生动作电位的能力或特性。
5、阈刺激:刺激有强弱或大小的差别,凡能引起某种组织产生兴奋的最弱(最小)刺激强度成为阈刺激。
6、反应:生物体生活在一定的外界环境中,当环境发生变化时,细胞、组织或机体内部的新陈代谢及外部的表现都将发生相应的改变,这种改变称为反应。
7、适应性:机体长期处在某种环境变化时,会发生不断调整自身各部分间的关系,及相应的机能变化,使自身和环境间经常保持相对稳定。
生物体所具有的这种能力称之为适应性。
8.单纯扩散:脂溶性小分子物质由膜的高浓度一侧向低浓度一侧的转运过程。
9.易化扩散:水溶性小分子物质在膜结构中特殊蛋白质的“帮助下”,由膜的高浓度一侧向低浓度一侧的转运,包括“载体”介导的易化扩散和“通道”介导的易化扩散。
10.主动转运:在膜结构中特殊蛋白质的“帮助下”,某些物质由膜的低浓度一侧向高浓度一侧的转运过程。
11.基强度:刺激的强度低于某一强度时,无论刺激的作用时间怎延引起组织兴奋,这个最低的或者最基本的阈强度称为基强度。
12.时值:两倍于基强度的刺激,刚刚能引起兴奋所需的最短时间。
13.静息电位:在细胞未受到刺激时,存在细胞膜内外两侧的电位差,即膜内为正膜外为负。
14.动作电位:细胞受到刺激而兴奋时,细胞膜内外两侧的电位发生一次短暂而可逆的变化。
15. “全或无”现象:“全或无”现象:无论使用任何种性质的刺激,只要达到一定的强度,它们在同一细胞所引起的动作电位的波形何变化过程是一样的,并在刺激强度超过阈值时,即使刺激强度再增加,动作电位幅度不变,这种现象称为“全或无”现象。
运动生理学名词解释
运动生理学名词解释呼吸频率(Respiratory rate)呼吸频率是指每分钟呼吸的次数,通常以次/分钟(bpm)为单位表示。
运动时,呼吸频率会增加,以满足身体对氧气的需求。
呼吸频率的变化可以用来评估运动的强度和身体的适应程度。
心率(Heart rate)心率是指心脏每分钟跳动的次数,通常以次/分钟(bpm)为单位表示。
运动时,心率会增加,以满足身体对氧气和营养的需求。
通过监测心率,可以评估运动的强度、身体的适应程度以及心血管健康状况。
最大心率(Maximum heart rate)最大心率是指个体在最大运动负荷下所能达到的最高心率。
最大心率可以通过不同的测试方法进行测量,比如运动负荷测试、心率监测等。
最大心率的测量有助于制定个性化的训练计划和评估运动能力。
有氧耐力(Aerobic endurance)有氧耐力是指通过氧气供应来提供持久的运动能力。
有氧耐力的训练可以改善心血管系统的功能、提高肺部的有效利用能力以及提升肌肉的耐力。
长时间、低至中等强度的有氧运动(如慢跑、游泳、骑自行车等)可以增强有氧耐力。
无氧耐力(Anaerobic endurance)无氧耐力是指在没有足够氧气供应的情况下进行高强度运动的能力。
无氧耐力的训练可以提高肌肉的爆发力和耐力,促进乳酸的产生和处理。
短时间、高强度的无氧运动(如重量举起、冲刺训练等)可以增强无氧耐力。
肌肉耐力(Muscular endurance)肌肉耐力是指肌肉在长时间持续收缩时的表现能力。
肌肉耐力的训练可以增加肌肉的耐力和稳定性,减少疲劳和受伤的风险。
高重量、低次数的力量训练和轻重量、高次数的重复训练都可以提升肌肉耐力。
动作范围(Range of motion)动作范围是指某个关节在特定方向上能够进行的最大运动幅度。
动作范围受到骨骼结构、肌肉灵活性和关节的限制等因素的影响。
通过动作范围的评估,可以了解关节活动的自由度和肌肉灵活性的水平,以便进行运动康复和灵活性训练。
运动生理学名词解释
1氧脉搏:心脏每次搏动输出的血量所摄取的氧量成为氧脉搏,可以用每分摄氧量除以心率来计算,氧脉搏越高说明心肺功能越好,效率越高、2最大摄氧量:指人体进行大量肌肉群参加的长时间剧烈运动中,当心肺功能与肌肉利用率的能力达到本人极限水平时,单位时间内所能摄取的氧量、3最大通气量:以适宜的呼吸频率与呼吸深度进行呼吸时所测得的每分通气量4无氧功率:指机体在最短的时间内,在无氧条件下发挥出最大力量与速度的能力5超量恢复:运动时消耗的能源物质及各器官系统机能状态,在这段时间内不仅恢复到原来水平,甚至超过原来水平,这种现象称为超量恢复、6有氧耐力:指人体长时间进行以有条件代谢(糖与脂肪等有氧氧化)供能为主的运动能力、7无氧耐力:指机体在无氧代谢(糖无氧酵解)的情况下较长时间进行肌肉活动的能力、8个体乳酸阈:个体在渐增负荷运动中,血乳酸浓度随运动负荷的递增而增加,当运动强度达到某一负荷时,血乳酸出现急剧增加的那一点(乳酸拐点)称为个体乳酸阈9真稳定状态:在进行强度较小\运动时间较长的运动时,进入工作状态结束后,机体需要的氧可以得到满足,即吸氧量与需氧量保持运动动态平衡、这种状态称为真稳定状态10假稳定状态:当进行强度大,持续时间较长的运动时,进入工作状态结束后,吸氧量已达到并稳定在最大吸氧量水平,但仍不能满足机体对氧的需要、此时机体能够稳定工作的持续时间较短,很快进入疲劳状态、这种机能状态为假稳定状态、11进入工作状态:在进行体育运动时,人的机能能力并不就是一开始就达到最高水平,而就是在活动开始后一段时间内逐渐提高的,这个机能水平逐渐提高的生理过程与机能状态叫做进入工作状态、12无氧阈:指人体在递增工作强度运动中,由有氧代谢功能开始大量动用无氧代谢功能的临界点,常以血乳酸含量达到4MG/分子/升时所对应的强度或功率来表示、超过时血乳酸将急剧下降、13呼吸商:各种物质在体内氧化时产生的二氧化碳与所消耗的氧的容积之比、14疲劳:机体不能将它的机能保持在某一特定水平或者不能维持某一特定运动强度,功能效率逐渐下降的现象叫疲劳、15运动性疲劳:指在运动过程中,机体承受一定时间的负荷后,机体的机能能力与工作效率下降,不能维持在特定的水平上的生理过程、16每搏输出量:指一分钟侧心室每次收缩所射出的血量、17心率储备:指单位时间内心输出量能随机体代谢需要而增长的能力、18心输出量:左心室在每分钟内射入主动脉的血量、19运动性心脏肥大:指由于运动而引起的心脏适应性增大,形态上多以左心室增大,室壁增厚为特征,机能上表现为运动时能持续较厂时间高效率的工作、安静时出现节省化,心力储备增强、第2 / 6页20心动周期:心房或心室每收缩与舒张一次称为一个心动周期、21心音:在一个心动周期中,心脏的收缩,启闭的机械震动22心指数:以每一平方米面积计算的心输出量称为心指数、23身体素质:就是人体以适应运动的需要所储备的身体能力要素、24青春期高血压:青春期发育后,心脏发育速度增长快,心血管系统发育处于落后状态,同时由于性腺\甲状腺等分泌旺盛,引起血压升高,即青春期高血压、25运动电位:可兴奋细胞兴奋时,细胞内产生的可扩布的电位变化称运动电位、26运动动力定性:大脑皮层运动中枢支配的部分肌肉活动的神经元在机能上进行排列组合,兴奋与抑制在运动中枢有顺序地\有规律地与有严格时间间隔地交替发生形成一个系统,成为一定的形式与格局、使条件反射系统化、大脑皮层机能的这种系统性27柔韧素质:指用力做动作时扩大动作幅度的能力、28准备活动:指在比赛\训练与体育课的基本部分之前,为克服内脏器官生理惰性,缩短进入工作状态时程与预防运动创伤而有目的的进行的身体练习,为即将来临的剧烈运动或比赛做好准备、29赛前状态:人体参加比赛或训练前,身体的某些器官与系统会产生的饿一系列条件反射性变化,将这种特有的机能变化与生理过程称为赛前状态、30运动性贫血:经过长时间的系统的运动训练,尤其就是耐力性训练的运动员在安静时,其红细胞数并不比一般人高,有的甚至低于正常值、这个就叫运动员贫血、第3 / 6页31速度素质:指人体进行快速运动的能力或在最短的时间内完成某种运动的能力、32减压反射(颈动脉窦及主动脉弓压力感受性反射):正常机体动脉中经常保持一定的血压,因此颈动脉窦神经与主动脉弓神经不断传递神经冲动进入脑干心血管中枢,提高迷走紧张性并抑制心交感细胞血管紧张性,结果使心脏活动不致过高,外周阻力不会太高,使动脉血压保持在较低的安静水平、33牵张反射:当骨骼肌受到牵拉时会产生反射性收缩,这种反射称牵张反射、34等动收缩:在整个关节运动范围内肌肉以恒定的速度,且肌肉收缩时产生的力量始终与阻力相等的肌肉收缩称为等动收缩、35等长收缩:肌肉在收缩时其长度不变,称等长收缩,又称静力收缩、36离心收缩:肌肉在收缩产生张力的同时被拉长的收缩称为离心收缩、37超等长练习:肌肉的向心收缩(肌肉收缩力大于外力时,肌肉收缩使肌肉缩短)如果仅按在同一肌肉的离心收缩(肌肉收缩小于外力,肌肉收缩时肌肉拉长)之后,会更有力、利用这种方法进行力量训练就称为超等长练习、38运动技能:指人体在运动中掌握与有效地完成专门动作的能力、39基础代谢率:指单位时间内的基础代谢,即在基础状态下,单位时间内的能量代谢,这种能量代谢就是维持最基本生命活动所需要的最低限度的能量、40积极性休息:运动结束后采用变换运动部位与运动类型,以及调整运动强度的方法或来消除疲劳的方法称为积极性休息、第4 / 6页41极点:在进行剧烈运动开始阶段,由于植物性神经系统的机能动员速率明显滞后于躯体神经系统,导致植物神经于躯体神经系统机能水平的动态平衡关系失调,内脏器官的活动满足不了运动器官的需要,出现一系列的暂时性生理机能低下综合症,主要表现为呼吸困难,胸闷,肌肉酸软无力,动作迟缓,不协调,心率剧增及精神低落等症状、这种机能状态称为极点、42高原环境习服:人体在高原地区停留一定时期,机体对低氧环境会产生迅速的调节反应,提高对缺氧的耐受能力,称为高原习服、43第二次呼吸:极点出现后,经过一定时间的调整,植物神经与躯体神经系统机能水平达到了新的动态平衡,生理机能低下综合症状明显减轻或消失,这时人体的动作变得轻松有力,呼吸变的均匀自如这中机能变化过程与状态称为"第二次呼吸"、44自动化:练习某一套技术动作时可以在无意识的条件下完成、45激素:由内分泌腺或散在的内分泌细胞分泌的\经体液运输到某器官或组织而发挥其特定调节作用的高效能生物活性物质称为激素、46时间肺活量:在最大吸气之后以最快速度进行最大呼气,记录一定时间内所能呼出的气量、47心电图:用引导电极置于肢体或躯体的一定部位记录出来的心脏电变化曲线称心电图。
运动生理学名词解释
名词解释1氧脉搏:心脏每次搏动输出的血量所摄取的氧量成为氧脉搏,可以用每分摄氧量除以心率来计算,氧脉搏越高说明心肺功能越好,效率越高.2最大摄氧量:指人体进行大量肌肉群参加的长时间剧烈运动中,当心肺功能和肌肉利用率的能力达到本人极限水平时,单位时间内所能摄取的氧量.3最大通气量:以适宜的呼吸频率和呼吸深度进行呼吸时所测得的每分通气量4无氧功率:指机体在最短的时间内,在无氧条件下发挥出最大力量和速度的能力5超量恢复:运动时消耗的能源物质及各器官系统机能状态,在这段时间内不仅恢复到原来水平,甚至超过原来水平,这种现象称为超量恢复.6有氧耐力:指人体长时间进行以有条件代谢(糖和脂肪等有氧氧化)供能为主的运动能力.7无氧耐力:指机体在无氧代谢(糖无氧酵解)的情况下较长时间进行肌肉活动的能力.8个体乳酸阈:个体在渐增负荷运动中,血乳酸浓度随运动负荷的递增而增加,当运动强度达到某一负荷时,血乳酸出现急剧增加的那一点(乳酸拐点)称为个体乳酸阈9真稳定状态:在进行强度较小\运动时间较长的运动时,进入工作状态结束后,机体需要的氧可以得到满足,即吸氧量和需氧量保持运动动态平衡.这种状态称为真稳定状态10假稳定状态:当进行强度大,持续时间较长的运动时,进入工作状态结束后,吸氧量已达到并稳定在最大吸氧量水平,但仍不能满足机体对氧的需要.此时机体能够稳定工作的持续时间较短,很快进入疲劳状态.这种机能状态为假稳定状态.11进入工作状态:在进行体育运动时,人的机能能力并不是一开始就达到最高水平,而是在活动开始后一段时间内逐渐提高的,这个机能水平逐渐提高的生理过程和机能状态叫做进入工作状态.12无氧阈:指人体在递增工作强度运动中,由有氧代谢功能开始大量动用无氧代谢功能的临界点,常以血乳酸含量达到4MG/分子/升时所对应的强度或功率来表示.超过时血乳酸将急剧下降.13呼吸商:各种物质在体内氧化时产生的二氧化碳与所消耗的氧的容积之比.14疲劳:机体不能将它的机能保持在某一特定水平或者不能维持某一特定运动强度,功能效率逐渐下降的现象叫疲劳.15运动性疲劳:指在运动过程中,机体承受一定时间的负荷后,机体的机能能力和工作效率下降,不能维持在特定的水平上的生理过程.16每搏输出量:指一分钟侧心室每次收缩所射出的血量.17心率储备:指单位时间内心输出量能随机体代谢需要而增长的能力.18心输出量:左心室在每分钟内射入主动脉的血量.19运动性心脏肥大:指由于运动而引起的心脏适应性增大,形态上多以左心室增大,室壁增厚为特征,机能上表现为运动时能持续较厂时间高效率的工作.安静时出现节省化,心力储备增强.20心动周期:心房或心室每收缩和舒张一次称为一个心动周期.21心音:在一个心动周期中,心脏的收缩,启闭的机械震动22心指数:以每一平方米面积计算的心输出量称为心指数.23身体素质:是人体以适应运动的需要所储备的身体能力要素.24青春期高血压:青春期发育后,心脏发育速度增长快,心血管系统发育处于落后状态,同时由于性腺\甲状腺等分泌旺盛,引起血压升高,即青春期高血压.25运动电位:可兴奋细胞兴奋时,细胞内产生的可扩布的电位变化称运动电位.26运动动力定性:大脑皮层运动中枢支配的部分肌肉活动的神经元在机能上进行排列组合,兴奋和抑制在运动中枢有顺序地\有规律地和有严格时间间隔地交替发生形成一个系统,成为一定的形式和格局.使条件反射系统化.大脑皮层机能的这种系统性27柔韧素质:指用力做动作时扩大动作幅度的能力.28准备活动:指在比赛\训练和体育课的基本部分之前,为克服内脏器官生理惰性,缩短进入工作状态时程和预防运动创伤而有目的的进行的身体练习,为即将来临的剧烈运动或比赛做好准备.29赛前状态:人体参加比赛或训练前,身体的某些器官和系统会产生的饿一系列条件反射性变化,将这种特有的机能变化和生理过程称为赛前状态.30运动性贫血:经过长时间的系统的运动训练,尤其是耐力性训练的运动员在安静时,其红细胞数并不比一般人高,有的甚至低于正常值.这个就叫运动员贫血.31速度素质:指人体进行快速运动的能力或在最短的时间内完成某种运动的能力.32减压反射(颈动脉窦及主动脉弓压力感受性反射):正常机体动脉中经常保持一定的血压,因此颈动脉窦神经和主动脉弓神经不断传递神经冲动进入脑干心血管中枢,提高迷走紧张性并抑制心交感细胞血管紧张性,结果使心脏活动不致过高,外周阻力不会太高,使动脉血压保持在较低的安静水平.33牵张反射:当骨骼肌受到牵拉时会产生反射性收缩,这种反射称牵张反射.34等动收缩:在整个关节运动范围内肌肉以恒定的速度,且肌肉收缩时产生的力量始终与阻力相等的肌肉收缩称为等动收缩.35等长收缩:肌肉在收缩时其长度不变,称等长收缩,又称静力收缩.36离心收缩:肌肉在收缩产生张力的同时被拉长的收缩称为离心收缩.37超等长练习:肌肉的向心收缩(肌肉收缩力大于外力时,肌肉收缩使肌肉缩短)如果仅按在同一肌肉的离心收缩(肌肉收缩小于外力,肌肉收缩时肌肉拉长)之后,会更有力.利用这种方法进行力量训练就称为超等长练习.38运动技能:指人体在运动中掌握和有效地完成专门动作的能力.39基础代谢率:指单位时间内的基础代谢,即在基础状态下,单位时间内的能量代谢,这种能量代谢是维持最基本生命活动所需要的最低限度的能量.40积极性休息:运动结束后采用变换运动部位和运动类型,以及调整运动强度的方法或来消除疲劳的方法称为积极性休息.41极点:在进行剧烈运动开始阶段,由于植物性神经系统的机能动员速率明显滞后于躯体神经系统,导致植物神经于躯体神经系统机能水平的动态平衡关系失调,内脏器官的活动满足不了运动器官的需要,出现一系列的暂时性生理机能低下综合症,主要表现为呼吸困难,胸闷,肌肉酸软无力,动作迟缓,不协调,心率剧增及精神低落等症状.这种机能状态称为极点.42高原环境习服:人体在高原地区停留一定时期,机体对低氧环境会产生迅速的调节反应,提高对缺氧的耐受能力,称为高原习服.43第二次呼吸:极点出现后,经过一定时间的调整,植物神经与躯体神经系统机能水平达到了新的动态平衡,生理机能低下综合症状明显减轻或消失,这时人体的动作变得轻松有力,呼吸变的均匀自如这中机能变化过程和状态称为"第二次呼吸".44自动化:练习某一套技术动作时可以在无意识的条件下完成.45激素:由内分泌腺或散在的内分泌细胞分泌的\经体液运输到某器官或组织而发挥其特定调节作用的高效能生物活性物质称为激素.46时间肺活量:在最大吸气之后以最快速度进行最大呼气,记录一定时间内所能呼出的气量.47心电图:用引导电极置于肢体或躯体的一定部位记录出来的心脏电变化曲线称心电图。
运动生理学名词解释
19.比肌力 20.肌电图
1阈值:在固定剌激作用时和刺激强度一时间变化率条件下,引起组织细胞兴奋所 必须的最小刺激强度,称为阈值。
2.强度一时间曲线:在固定刺激强度一时间变化率情况下,将引起组织细胞兴奋的各个不同由 阔强度和与它们相对应的作用时间描记在直角坐标系上,所得到的一条类似于X 曲线的曲线,为强度一时间曲线。
11在昕觉系统的各级中枢中,特征频率不同的神经元在解剖上是按一定顺 序排列的,每一个特定部位感受一种频率的声音,这种定位方式被称为音频区域 定位。
12.通过基底膜不同部位神经纤维发放冲动的空间构型传递声音信息称为单 位编码。
13.在任何动物的体表或组织内部,存在着一些专门感受机体内、外环境变化 所形成的剌激结构和装置,称为感受器。
6.乳酸能系统:是指糖原或葡萄糖在细胞浆内元氧分解生成乳酸过程中(又称 酵解) ,再合成ATP的能量系统。
7.有氧氧化系统:是指糖、脂肪和蛋白质在细胞内(主要是线粒体内)彻底氧化 成H20和CO2的过程中,再合成ATP的能量系统。
8.呼吸商:生理学把机体在同一时间内呼出的CO2量'与摄入的O2量的比值称为呼吸商。
7.化学性突触传递是通过突触前膜释放的化学物质来完成的,这些化学物质 通常被称为神经递质。
8.身体进行各种变速运动或重力不平衡时产生的感觉,称为位觉,也可称之 为前庭觉。
9.根据声音的频率,昕神经发放不同频率的冲动传递声音频率信息,称为频 率编码。 而 产生生物效应的大分子被称为受体。
17.肌肉的收缩能力:是指肌肉收缩时本身的机能状态,它是影响肌肉收缩的 内部条件。
运动生理名词解释
运动生理学名词解释07年1.强度—时间曲线2.肌电图3.血氧饱和度4.有氧氧化系统5.反应速度08年1.离心收缩2.运动单位募集3.最大通气量4.血液氧容量5.第一心音6.外周阻力09年1.等长收缩2.肌纤维选择性肥大3.肺泡通气量4.血氧饱和度5.运动性疲劳6.每分心输出量7.氧亏8.基础代谢率9.前庭反射10.稳定状态10年1.身体素质增长的顺序性2.保护性抑制学说3.离心练习4.水下称重法5.减压反射6.“静脉泵”或“肌肉泵”7.第二心音8.心肌“全或无”9.血红蛋白氧容量10.应急反应11年1、热服习2、运动性疲劳3、最大氧亏积累4、假稳定状态5、最大摄氧量直接测定法6、超等长练习7、最大心率贮备百分比8、心跳徐缓9、脉压10、氧通气当量12年1.位觉2.应激3.射血分数4.静脉泵5.心脏离心性肥大6.心搏徐缓7.力量耐力8.最大摄氧量间接测定法9.最大氧亏积累10.中枢疲劳13年1.氧通气当量2.心肌细胞的自律性3.心率阶梯现像4.力量训练的交叉转移现象5.最大摄氧量的中央机制6.肌肉生理横断面7.假稳定状态8.闪光融合频率9.内环境稳定性失调学说10.骨龄14年1.外周化学感受器2.窦性心律3.每博输出量4.心脏离心性肥大5.力量的“交叉转移现象”6.最大摄氧量利用率7.低氧训练8.向心性肥胖9.最大摄氧量间接测定法10.亚极量强度运动时心泵功能节省化。
运动生理三个字的名词解释
运动生理三个字的名词解释运动生理:深度解析身体与运动的奥秘运动,是人类生活的一部分,不仅仅带给我们快乐和放松,而且对身体健康至关重要。
然而,为何运动可以如此神奇地影响我们的身体?这其中涉及到一个神秘而又庞大的领域——运动生理。
运动生理是研究人体在运动过程中的生理变化的学科,揭示了人体的运动机制以及运动带来的各种益处。
本文将对运动生理进行深度解析,探讨运动生理背后的三个关键方面。
一、能量代谢:动力源的释放能量代谢是运动生理的核心概念之一。
人体运动时需要能量,而能量的来源主要来自于食物中的营养物质。
这些物质经过消化吸收后转化为能源,为人体提供动力。
在运动过程中,肌肉需要大量的能量来收缩和移动身体,产生力量和速度。
这能量主要来自ATP(三磷酸腺苷)的分解。
而我们的身体在运动过程中会产生出包括碳水化合物、脂肪和蛋白质等不同的代谢产物。
运动生理研究了不同运动强度和持续时间下能量代谢的变化规律,有助于我们了解如何更科学地利用能量。
二、心血管系统:供血与输送的表演无论是慢跑、打篮球还是游泳,运动都需要大量的供给氧气和营养物质的血液。
心血管系统在运动生理中发挥着重要的作用,它负责将血液从心脏输送到全身各个部位。
当我们运动时,心脏会加快跳动,使血液流速加快,增强供血能力。
而血管在此过程中也会扩张,以提高血流量和氧气的运输效率。
这种改变使得运动肌肉能够更好地得到充足的氧气和营养,延缓肌肉疲劳和乳酸积累,提高运动能力。
同时,心血管系统还有助于排除运动时产生的代谢废物,维持内环境的稳定。
运动生理通过研究心血管系统的工作原理,帮助我们了解体内血液供应与循环的重要性。
三、神经系统:运动行为的控制中心想要进行有组织且有目的的运动,离不开神经系统的调控。
神经系统是人体运动控制的中枢,包括大脑、脊髓和周围神经系统。
在运动生理中,神经系统负责向肌肉发送指令,调节肌肉的收缩和放松。
在进行高强度运动时,神经系统会让肌肉神经元产生更快的电信号,使肌肉更快、更强力地收缩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动生理名词解释(共6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--运动生理名词解释第一章绪论运动生理学:运动生理学是人体生理学的分支,是专门研究人体的运动能力和对运动的反应与适应过程的科学,是体育科学中一门重要的应用基础理论科学。
新陈代谢:生物体与外界环境之间的物质和能量交换以及生物体内物质和能量的转变过程叫做新陈代谢。
新陈代谢是生物体内全部有序化学变化的总称。
它包括物质代谢和能量代谢两个方面。
异化过程:生物体不断地将体内的自身物质进行分解,并把所分解的产物排出体外,同时释放能量供应机体生命活动需要的过程。
兴奋:生理学中将可兴奋组织接受刺激后所产生的生物电反应过程及表现称之为兴奋。
抑制活动: 可兴奋组织由活体状态转变为相对静止状态,或是兴奋性由强变弱的活动。
应激性:应激性是指一切生物对外界各种刺激(如光、温度、声音、食物、化学物质、机械运动、地心引力等)所发生的反应。
适应性:生物体对所处生态环境的适应能力。
神经体液调节:自动控制系统:控制系统中受控部分不断有反馈信息返回输入给控制部分,并改变它的活动。
前馈控制系统:是受控部分的输出变量不发出反馈信息,监测装置检测到干扰信息后发出前馈信息,直接作用于控制部分,调整控制信息以对抗干扰信息对受控部分的作用,从而使输出变量保持稳定。
第二章肌肉三联管:由横管和两侧的终池构成的结构单位称三联体,它是把肌细胞膜的电位变化和细胞内的收缩过程耦联起来的关键部位。
亦称三联体。
静息电位:安静时细胞膜两侧的电位差(内-外+)。
动作电位:细胞受到刺激时,在静息电位的基础上产生的一次迅速而短暂的、可以传播的电位变化。
运动终板:运动神经元轴突末梢与肌纤维间的一种化学突触结构。
离子学说:(1) 细胞膜内外离子的分布和浓度不同(2) 细胞膜选择通透性(3) K+在浓度差推动下外流的结果→内-外+.滑行学说:骨骼肌收缩的原理。
肌肉的缩短是由于肌小节中细肌丝在横桥的带动下,向暗带中央(M线)滑行的结果。
最后肌节缩短。
兴奋—收缩耦联:通常把以肌细胞的电变化为特征的兴奋过程和以肌丝滑行为基础的收缩过程之间的总结称为兴奋—收缩耦联。
向心收缩:肌肉收缩时所产生的张力大于外加阻力(负荷)肌肉缩短。
等长收缩:收缩时肌肉只有张力的增加而长度保持不变离心收缩:与向心收缩相反,肌肉在产生时被拉长,这是由于肌肉收缩时所产生的张力小于外力,肌肉虽积极地收缩但仍被拉长。
等动收缩:在整个关节运动范围内,以恒定的速度(等动)进行最大收缩。
相对肌力:运动单位:一个脊髓α-运动神经元或脑干运动神经元和受其支配的全部肌纤维所组成的肌肉收缩的最基本的单位称为运动单位。
运动单位动员:参与活动的运动单位数目,与兴奋频率的结合。
肌纤维选择性肌大:当进行耐力训练时,慢肌纤维选择性肥大;当进行速度、爆发力训练时,快肌纤维选择性肥第三章血液血液:血液是一种粘滞液体,由血细胞和血浆组成。
血液的粘滞性:血液在血管内运行时,液体内部各种物质豁颗粒之间的摩擦而产生阻力的性质。
渗透压:一切溶液中溶质分子运动所造成的压力,是一切溶液所固有的特性。
血液缓冲对:血液中存在的具有抗酸和碱作用物质。
硷贮备:每100ml血液中所含碳酸氢钠的含量。
硷贮备量:血液中缓冲酸性物质的主要成分是碳酸氢钠,同城以每100毫升血浆的碳酸氢钠含量来表示硷贮备量血容量:人体循环血量的总量,包括血浆容量和血细胞容量。
第四章循环自动节律性:指心肌在没有外来刺激的情况下,自动产生节律性兴奋的能力。
窦性心率:窦房结节律性兴奋所形成心脏节律。
心脏的特殊传导系统 :包括窦房结、结间束、房室结,房室束和浦肯野氏纤维。
心肌的有效不应期:心肌细胞兴奋后如果再有第二个刺激,无论刺激多强,肌膜都不会进一步发生任何程度的去极化,获虽可发生局部去极化但不能引起扩布的动作电位。
心电图:将测量电极置于体表一定部位,即可以导出心脏兴奋过程中所发生的电位变化,这种电位变化经一定处理后并记录到特殊的记录纸上便成为心电图。
期前收缩:心室肌的有效不应期后、下一次窦房结兴奋达到前,心室受外来刺激,会提前产生一次兴奋和收缩,该收缩成为期前收缩。
代偿间歇:一次期前收缩后出现一段较长舒张期。
心脏的“全或无”形收缩:由于心脏存在心室肌与心房肌的同步缩,心脏要么不收缩,如果一不收缩,其收缩就达到一定强度,称为全或无式的收缩。
心动周期:心脏每收缩和舒张一次的时间总和最大心率:每个人的心率增加都有一定的限度,这个限度叫最大心率。
心输出量:一侧心室每分钟射出的血量射血分数:每博量占心室舒张末期容积比的百分数。
心指数:单位体表面积计算心输出量。
心率贮备:心率随机体代谢需要而增加的能力(=最大心率-安静心率)心力贮备:心输出量能够随机体代谢的增强而增强的能力。
血压:血管内血液对于单位面积血管壁的侧压力。
外周阻力: 血液在血管内流动时所遇到的阻力,受血管口径、血液粘度和血流速度的影响。
动脉脉搏:在每个心动周期中,动脉内的压力发生周期性的波动,这种周期性的压力变化可引起动脉血管发生博动,称为动脉脉搏。
减压反射:颈动脉窦和主动脉弓压力感受性反射。
运动时血量的重新分配:运动时体内的血液分配量发生改变。
窦性心动徐缓:运动训练,特别是耐力训练可使安静时心率减慢。
某些优秀运动员心率可低至40-60次/分。
第五章呼吸肺活量:最大吸气后,从肺内能呼出的最大气体量。
功能余气量:平静呼气后,存留于肺中的气量。
时间肺活量:一次最大吸气后,尽力尽快呼出所能呼出的气体量。
气体的张力:当气体与液体表面接触时,由于气体分子运动而溶解于液体内,液体中气体分子也能从液体中逸出,这种溶于液体内的气体分子逸出的力成为气体的张力。
氧热价:各种营养物质在细胞内氧化时,消耗1L氧所产生的能量。
Hb的氧饱和度:氧离曲线:表示血液PO2与Hb氧饱和度关系的曲线。
氧利用率:每100mL动脉血流经组织时所释放的氧气占动脉血氧含量的百分数。
氧脉搏:心脏每次搏动输出的血量所摄取的氧量。
肺牵反射:由肺扩张或肺萎陷引起的吸气抑制吸气兴奋反射。
外周化学感受器:是位于颈内动脉分叉处的颈动脉体和主动脉弓血管壁外的主动脉体。
第六章代谢物质代谢:人体与其周围环境之间不断进行的物质交换的过程。
能量代谢:物质代谢过程中伴随着能量的贮存、释放、转移和利用。
化学性消化:通过各种酶将食物中的大分子分解为可吸收的小分子物质的过程。
吸收:食物经消化后的小分子物质,以及维生素、无机盐和水通过消化道黏膜,进入血液和淋巴的过程。
糖酵解供能:糖酵解供能系统是指糖在无氧的条件下进行无氧酵解产生乳酸的过程。
有氧氧化供能:有氧氧化系统是糖、脂肪、蛋白质在氧气供应充足条件下进行氧化分解,生成二氧化碳和水,同事释放能量合成ATP的供能过程。
基础状态:是指人体处在清醒而又非常安静,不收肌肉活动、精神紧张、食物及环境温度等因素影响时的状态。
氧热价:各种能源物质在体内氧化分解时,每消耗1L氧气所产生的热量称该物质的氧热价。
呼吸商:一定时间没机体呼出的CO2量与吸入的O2量的比值。
代谢当量:食物的特殊动力作用 : 进食能刺激机体额外消耗能量的作用磷酸盐系统 : 又称ATP-CP系统,主要由结构中带有磷酸基团的ATP、CP构成。
由于在供能代谢中均发生磷酸基团的转移,故称之为磷酸盐系统酵解能系统 : 运动中骨骼肌糖原或葡萄糖在无氧条件下酵解,生成乳酸并释放能量供肌肉利用的能源系统氧化能系统:运动中骨骼肌糖原或葡萄糖在无氧条件下酵解,生成乳酸并释放能量供肌肉利用的能源系统第七章肾脏运动性蛋白尿:正常人在运动后出现的一过性蛋白尿称为运动性蛋白尿。
运动性血尿:正常人在运动后出现的一过性显微镜下或肉眼可见的血尿称为运动性血尿。
第八章内分泌激素:是内分泌腺或器官组织的内分泌细胞所分泌,以体液为媒介,在细胞之间递送调节信息的高效能生物活性物质。
应激轴:鉴于下丘脑-垂体-肾上腺轴,这条内分泌轴的动员与机体抵抗内外刺激的应答性反应有关,与身体运动最为紧密的内分泌功能轴兴奋剂:指国际体育组织规定的禁用药物和方法的统称。
第九章神经感受器:指分布于体表或组织内部的一些专门感受机体内、外环境变化的结构或装置。
特异性传入系统:各感受器传入的神经冲动都要经脊髓或脑干,上行至丘脑换神经元,并按排列顺序投射到大脑皮质特定区域,引起特异的感觉,故称为特异性传入系统。
非特异传入系统:特异投射传入系统的神经纤维经脑干时,发出侧枝与脑干的网状结构的神经元发生突触联系,通过多次更换神经元之后,上行抵达丘脑内侧部再交换神经元,发出纤维弥散地投射到大脑皮质的广泛区域,此投射途径称为非特异性传入系统。
大脑皮质的功能定位:大脑区域在功能上具有不同的作用称为大脑皮质的功能定位。
皮层体表感觉区的感觉柱:皮层体表感觉区神经细胞的纵向柱状排列构成大脑皮质的基本功能单位。
三原色学说:该学说认为在视网膜上存在三种不同的视锥细胞,分别含有对红、绿、蓝三种光敏感的视色素。
当某一波长的光线作用于视网膜时,可以一定的比例使三种视锥细胞分别产生不同成都的兴奋,这样的信息传至中枢,就产生某一种颜色的感觉。
视野:单眼固定注视前方一点时,该眼所能看到的空间范围。
立体视觉:双眼视物时,主观上可以产生被视物的厚度以及空间的深度或距离等感觉,称为立体视觉。
听阈:对于每一种频率的声波,都有一个刚能引起听觉的最小强度。
肌梭:腱反射和肌紧张的感受器是肌梭。
前庭功能稳定性:刺激前庭感受器而引起机体各种前庭反应的程度。
腱梭:分布在腱胶原纤维之间,与梭外肌纤维串联,是一种张力感受器。
本体感觉:指来自躯体深部的肌肉、肌腱和关节等处的组织结构,主要是对躯体的空间位置、姿势、运动状态和运动方向的感觉。
兴奋性突触后电位:兴奋性递质导致后膜去极化效应,称为兴奋性突触后电位。
抑制性突触后电位:抑制性地址导致突触后膜产生超级化,称为抑制性突触后电位。
运动神经元池:一块肌肉往往受许多运动神经元的支配,支配某一肌肉的一群运动神经元,称为运动神经元池。
牵性反射:指骨骼肌受外力牵拉时引起受牵拉的同一肌肉收缩的反射活动。
肌紧张:缓慢持续牵拉肌腱时发生的牵张反射,其表现为受牵拉的肌肉发生紧张性收缩,阻止被拉长。
姿势反射:中枢神经系统可通过调节骨骼肌的紧张度或产生相应的运动,以保持或改正躯体在空间的姿势,这种反射称为姿势反射。
状态反射:头部在空间的位置发生改变以及头部与躯干的相对位置发生改变,都可发射性地改变躯体肌肉的紧张性。
锥体系:锥体系是指由皮层发出并经延髓锥体抵达对侧脊髓前角的皮层脊髓束和抵达脑神经运动核的皮层脑干束。
锥体外系:是指除锥体系以外的一切调节躯体运动的下行传导系。
主要作用是调节肌紧张,配合锥体系协调随意运动,维持机体姿势平衡。
超限抑制:由于过强或过长的刺激超过了大脑皮质神经细胞的工作承受能力、为防止皮质细胞受损害而产生的保护性抑制,称为超限抑制。