热学(李椿章立源钱尚武)习题解答第三章气体分子热运动速率和能量的统计分布律

合集下载

热学第三章气体分子速率和能量统计分布律

热学第三章气体分子速率和能量统计分布律

v0 2v0 3v0 4v0 5v0 v
i
1 9
v0 2
2 9
3v0 2
3 9
5v0 2
2 9
7v0 2
1 9v0 92
5v0 2
2021/4/24
15
例4:讨论下列各式的物理意义
1. f (v)dv
平衡态下,分子速率分布在v → v+dv区间内的分子数 占总分子数的比率。
2. Nf (v)dv
求:1) 速率在 vp ~ v 间的分子数;2)速率在 vp ~
间所有分子动能之和 . 3)速率在 1 ~ 2 区间的分子
平均速率。
解: 速率在 v v dv 间的分子数 dN Nf (v)dv
1)
v v Nf ( )dv
vp
2)
vp
1 2
mv2 Nf
(v)dv
3)
2 Nf ()d
1~2
f (v) 4π(
m
)3
2
mv 2
e 2kT
v2
2πkT
dN 4π(
m
)3
2
mv 2
e 2kT
v2dv
N
2πkT
反映理想气体在热动平衡
波尔兹曼常量
f (v) dN Ndv
f (v)
条件下,气体分子按速率
分布的规律 .
o
v
三 三种统计速率
1)最概然速率 v p
f (v)
f max
df (v) 0 dv vvp
v1
v1
平衡态下,分子速率分布在v1 → v2区间内的分子数。
例 5已知f v为 N 个(N 很大)分子组成的系统的速率分

第三章 气体分子热运动速率和能量的统计分布规律

第三章 气体分子热运动速率和能量的统计分布规律

Ndv
2kT
1.麦克斯韦速率分布函数f()的物理意义
由 dN f (υ)dυ N
f (υ) dN Ndυ
f()表示:在速率附近的单位速率区间内的分子数占总 分子数的百分比。或分子速率出现在附近的单位速率区间内
的概率概率密度。
f (υ)dυ dN
N
—在速率区间 ~ +d 内的分子数占
例 (1) n f()d 的物理意义是什么?(n是分子的数密度)
(2) 写出速率不大于最可几速率p的分子数占总分子数
的百分比。
解 nf (υ)dυ Nf (υ)dυ dN
V
V
n f()d —表示单位体积中,速率在 ~+d 内的分子数。
(2) 写出速率不大于最可几速率p的分子数占总分子数的
dN v y N
g(y )dy
dNvz N
g(z )dz
(2)由独立概率相乘原理,粒子出现在x ~x+dx,y ~y+dy,z ~z+dz的
概率为:
dNv N

g(x )g(y )g(z )dxdydz
F • dxdydz
F就是速度分布函数
(3)由于粒子在任何方向上运动的概率相等,所以F应该与速度的方向 无关,应该是速度的大小的函数。
dNv N
1
3 3
e dv dv dv (vx2 vy2 vz2 ) / 2 xyz
转化成球坐标:
dvxdvydvz v2 sin dddv
vx2

v
2 y

vz2

v2
麦克斯韦速度分布:dNv 1 v2ev2 / 2 sin dddv N 3 3

热学答案第二版(完整版)解析_李椿_章立源等著

热学答案第二版(完整版)解析_李椿_章立源等著

第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

(1)在室温时,水银柱的长度为多少?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。

热学[李椿 章立源 钱尚武]习题解答_第三章气体分子热运动速率与能量的统计分布律

热学[李椿 章立源 钱尚武]习题解答_第三章气体分子热运动速率与能量的统计分布律

第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下:试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。

解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。

解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。

解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ ∵ V p2= 2KTm ,代入上式 △N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p=)代入计算得:△N=×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。

李椿热学答案及部分习题讲解部分习题的参考答案

李椿热学答案及部分习题讲解部分习题的参考答案

“热学”课程第一章作业习题说明:“热学”课程作业习题全部采用教科书(李椿,章立源,钱尚武编《热学》)里各章内的习题。

第一章习题:1,2,3[1],4,5,6,8,10,11,20,24[2],25[2],26[2],27,28,29,30,31,32,33. 注:[1] 与在水的三相点时[2] 设为等温过程第一章部分习题的参考答案1.(1) –40;(2) 574.5875;(3) 不可能.2.(1) 54.9 mmHg;(2) 371 K.3. 0.99996.4. 400.574.5. 272.9.6. a = [100/(X s–X i)]⋅(︒C/[X]), b = –[100 X i/(X s–X i)]︒C, 其中的[X]代表测温性质X的单位.8. (1) –205︒C;(2) 1.049 atm.10. 0.8731 cm, 3.7165 cm.11. (1) [略];(2) 273.16︒, 273.47︒;(3) 不存在0度.20. 13.0 kg⋅m-3.24. 由教科书137页公式可得p = 3.87⨯10-3 mmHg.25. 846 kg⋅m-3.26. 40.3 s (若抽气机每旋转1次可抽气1次) 或40.0 s (若抽气机每旋转1次可抽气2次, 可参阅教科书132页).27. 28.9, 1.29 kg⋅m-3.28. 氮气的分压强为2.5 atm, 氧气的分压强为1.0 atm, 混合气体的压强为3.5 atm.29. 146.6 cm-3.30. 7.159⨯10-3 atm, 71.59 atm, 7159 atm; 4.871⨯10-4 atm, 4.871 atm, 487.1 atm.31. 341.9 K.32. 397.8 K.33. 用范德瓦耳斯方程计算得25.39 atm, 用理想气体物态方程计算得29.35 atm.“热学”课程第二章作业习题第二章习题:1,3,4,5,6,7,8,9[3],10,11,12,13[4],16,17,18,19,20.注:[3] 设为绝热容器[4] 地球和月球表面的逃逸速度分别等于11.2 km⋅s-1和2.38 km⋅s-1第二章部分习题的参考答案1. 3.22⨯103 cm-3.3. 1.89⨯1018.4. 2.33⨯10-2 Pa.5. (1) 2.45⨯1025 m-3;(2) 1.30 kg⋅m-3;(3) 5.32⨯10-26 kg;(4) 3.44⨯10-9 m;(5) 6.21⨯10-21 J.6. 3.88⨯10-2 eV,7.73⨯106 K.7. 301 K.8. 5.44⨯10-21 J.9. 6.42 K, 6.87⨯104Pa (若用范德瓦耳斯方程计算) 或6.67⨯104 Pa (若用理想气体物态方程计算).10. (1) 10.0 m⋅s-1;(2) 7.91 m⋅s-1;(3) 7.07 m⋅s-111. (1) 1.92⨯103 m⋅s-1;(2) 483 m⋅s-1;(3) 193 m⋅s-1.12. (1) 485 m⋅s-1;(2) 28.9, 可能是含有水蒸气的潮湿空气.13. 1.02⨯104 K, 1.61⨯105 K; 459 K, 7.27⨯103 K.16. (1) 1.97⨯1025 m-3 或2.00⨯1025 m-3;(2) 由教科书81页公式可得3.26⨯1027m-2或3.31⨯1027 m-2;(3) 3.26⨯1027 m-2或3.31⨯1027 m-2;(4) 7.72⨯10-21 J, 6.73⨯10-20 J.17. 由教科书81页公式可得9.26⨯10-6 g⋅cm-2⋅s-1.18. 2.933⨯10-10 m.19. 3.913⨯10-2 L, 4.020⨯10-10 m, 907.8 atm.20. (1) (V1/3 -d)3;(2) (V1/3 -d)3 - (4π/3)d3;(3) (V1/3 -d)3 - (N A - 1) ⋅(4π/3)d3;(4)因V1/3>>d,且N A>>1, 故b = V - (N A/2)⋅{(V1/3 -d)3 +[(V1/3 -d)3 - (N A - 1)⋅(4π/3)d3]}⋅(1/N A) ≈ 4N A(4π/3)(d/2)3.“热学”课程第三章作业习题第三章习题:1,2,4,5[5],6,7,9,10,11,12,13,15,16,17,18,19,20[6],22[7],23,24,25[8],26,27,28,29,30.注:[5] 设p0 = 1.00 atm[6] 分子射线中分子的平均速率等于[9πRT/(8μ)]1/2[7] 设相对分子质量等于29.0[8] f(ε)dε = 2π-1/2(kT)-3/2ε1/2e-ε/kT dε第三章部分习题的参考答案1. (1) 3.18 m⋅s-1;(2) 3.37 m⋅s-1;(3) 4.00 m⋅s-1.2. 395 m⋅s-1, 445 m⋅s-1, 483 m⋅s-1.4. 3π/8.5. 4.97⨯1016个.6. 0.9534.7. (1) 0.830 %;(2) 0.208 %;(3) 8.94⨯10-7 %.9. [2m/(πkT)]1/2.10. (1) 198 m⋅s-1;(2) 1.36⨯10-2 g⋅h-1.11. [略].12. (1) [略];(2) 1/v0;(3) v0/2.13. (1) 2N/(3v0);(2) N/3;(3) 11v0/9.15. [略].16. [略].17. 0.24 %.18. (1) 0.5724N;(2) 0.0460N.19. n[kT/(2πm)]1/2⋅[1 + (mv2/2kT)]⋅exp[ –(mv2/2kT)]或[nv p /(2π1/2)] ⋅[1 + (v2/v p2)]⋅exp[ –(v2/v p2)].20. 0.922 cm, 1.30 cm.22. 2.30 km.23. 1955 m.24. kT/2.25. f(ε)dε = 2(π)-1/2(kT)-3/2ε1/2exp[ -ε/(kT)]dε, kT/2.26. 3.74⨯103 J⋅mol-1, 2.49⨯103 J⋅mol-1.27. 6.23⨯103 J⋅mol-1, 6.23⨯103 J⋅mol-1; 3.09⨯103 J⋅g-1, 223 J⋅g-1.28. 5.83 J⋅g-1⋅K-1.29. 6.61⨯10-26 kg和39.8.30. (1) 3, 3, 6;(2) 74.8 J⋅mol-1⋅K-1.“热学”课程第四章作业习题第四章习题:1,2,4,6[7],7,8,10,11,13[2],14,15,17,18[9],19,21.注:[2] 设为等温过程[7] 设相对分子质量等于29.0[9] CO2分子的有效直径等于4.63×10-10 m第四章部分习题的参考答案1. 2.74⨯10-10 m.2. 5.80⨯10-8 m, 1.28⨯10-10 s.4. (1)5.21⨯104 Pa; (2) 3.80⨯106 m-1.6. (1) 3.22⨯1017 m-3;(2) 7.77 m (此数据无实际意义);(3) 60.2 s-1 (此数据无实际意义).7. (1) 1.40;(2) 若分子有效直径与温度无关, 则得3.45⨯10-7 m;(3) 1.08⨯10-7 m.8. (1) πd2/4;(2) [略].10. (1) 3679段;(2) 67段;(3) 2387段;(4) 37段;(5) 不能这样问.11. 3.11⨯10-5 s.13. (1) 10.1 cm;(2) 60.8 μA.14. 3.09⨯10-10 m.15. 2.23⨯10-10 m.17. (1) 2.83;(2) 0.112;(3) 0.112.18. (1) –1.03 kg⋅m-4;(2) 1.19⨯1023 s-1;(3) 1.19⨯1023 s-1;(4) 4.74⨯10-10 kg⋅s-1.19. [略].21. 提示:稳定态下通过两筒间任一同轴柱面的热流量相同.“热学”课程第五章作业习题第五章习题:1,2,3,5,7,8,10,12,13,15,16,17,18,19,21,22[10],23,24[11],25,26,27,28,29,31,33[12],34,35.注:[10] 使压强略高于大气压(设当容器中气体的温度与室温相同时其压强为p1)[11] γp0A2L2/(2V)[12] 设为实现了理想回热的循环第五章部分习题的参考答案1.(1) 623 J, 623 J, 0;(2) 623 J, 1.04⨯103 J, –416 J;(3) 623 J, 0, 623 J.2.(1) 0, –786 J, 786 J;(2) 906 J, 0, 906 J;(3) –1.42⨯103 J, –1.99⨯103 J, 567 J.3.(1) 1.50⨯10-2 m3;(2) 1.13⨯105 Pa;(3) 239 J.4.(1) 1.20;(2) –63.3 J;(3) 63.3 J;(4) 127 J.7. (1) 265 K;(2) 0.905 atm;(3) 12.0 L.8. (1) –938 J;(2) –1.44⨯103 J.10. (1) 702 J;(2) 507 J.12. [略].13. [略].15. 2.47⨯107 J⋅mol-1.16. (1) h = CT + v0p + bp2;(2) C p = C, C V= C + (a2T/b)–ap.17. –46190 J⋅mol-1.18. 82.97 %.19. [略].21. 6.70 K, 33.3 cal, 6.70 K, 46.7 cal; 11.5 K, 80.0 cal, 0, 0.22. γ = ln(p1/p0)/ln(p1/p2).23. (1) [略];(2) [略];(3) [略].24. (1) [略];(2) [略].25. (1) p0V0;(2) 1.50 T0;(3) 5.25 T0;(4) 9.5 p0V0.26. (1) [略];(2) [略];(3) [略].27. 13.4 %.28. (1) A→B为吸热过程, B→C为放热过程;(2) T C = T(V1/V2)γ– 1, V C = V2;(3) 不是;(4) 1 – {[1 – (V1/V2)γ– 1]/[(γ– 1)ln(V2/V1)]}.29. [略].31. 15.4 %.33. [略].34. [略].35. [略].“热学”课程第六章作业习题第六章习题:2,3,5,9,10,11,12[13],13,15,16,19.注:[13] 设为一摩尔第六章部分习题的参考答案2. 1.49⨯104 kcal.3. (1) 473 K;(2) 42.3 %.5. 93.3 K.9. (1) [略];(2) [略];(3) [略].10. [略].11. [略].12. [略].13. [略].15. ∆T = a (v2-1–v1-1)/C V = –3.24 K.16. [略].19. –a(n A–n B)2/[2C V V(n A+ n B)].“热学”课程第七章作业习题第七章习题:8.第七章部分习题的参考答案8. 提示:在小位移的情况下, exp[ -(cx2-gx3-fx4)/(kT)]≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)]}⋅{1 + [fx4/(kT)]}≈ exp[ -cx2/(kT)]⋅{1 + [gx3/(kT)] + [fx4/(kT)]}.“热学”课程第八章作业习题第八章习题:1,2,3,4,6,7[14],8,10.注:[14] 设θ= 0第八章部分习题的参考答案1. 2.19⨯108 J.2. 7.24⨯10-2 N⋅m-1.3. 1.29⨯105 Pa.4. 1.27⨯104 Pa.6. f = S[α(R1-1 + R2-1) – (ρgh/2)]= {Sα⋅[2cos(π–θ)]/[2(S/π)1/2 ⋅cos(π–θ) + h–h sin(π–θ)]} +{Sα⋅[2cos(π–θ)]/h} – (Sρgh/2)≈Sα⋅[2cos(π–θ)/h]= 25.5 N.7. 0.223 m.8. 2.98⨯10-2 m.10. (1) 0.712 m; (2) 9.60⨯104 Pa; (3) 2.04⨯10-2 m.“热学”课程第九章作业习题第九章习题:1,2,4[15],6[5],7,8,9[16],11,12,13[17].注:[5] 设p0 = 1.00 atm[15] 水蒸气比体积为1.671 m3/kg[16] 100℃时水的饱和蒸气压为1.013×105Pa,而汽化热为2.38×106 J⋅kg -1,由题8中的[17] 23.03 - 3754/T第九章部分习题的参考答案1. 3.21⨯103 J.2. (1) 6.75⨯10-3 m3;(2) 1.50⨯10-5 m3;(3) 液体体积为1.28⨯10-5 m3, 气体体积为9.87⨯10-4 m3.4. 373.52 K.6. 1.36⨯107 Pa.7. [略].8. [略].9. 1.71⨯103 Pa.11. 4.40⨯104 J⋅mol-1.12. (1) 52.0 atm;(2) 157 K.13. (1) 44.6 mmHg, 195 K;(2) 3.121⨯104 J⋅mol-1, 2.547⨯104 J⋅mol-1, 5.75⨯103 J⋅mol-1.。

热学(李椿章立源钱尚武~)习题解答第四章气体内的输运过程

热学(李椿章立源钱尚武~)习题解答第四章气体内的输运过程

第四章气体内的输运过程4-1.氢气在,时的平均自由程为×m,求氢分子的有效直径。

解:由=得:=代入数据得:(m)4-2.氮分子的有效直径为,求其在标准状态下的平均自由程和连续两次碰撞间的平均时间。

解:=代入数据得:-(m)=代入数据得:=(s)4-3.痒分子的有效直径为3.6×m,求其碰撞频率,已知:(1)氧气的温度为300K,压强为1.0atm;(2)氧气的温度为300K,压强为1.0×atm解:由=得==代入数据得:=6.3×()()4-4.某种气体分子在时的平均自由程为。

(1)已知分子的有效直径为,求气体的压强。

(2)求分子在的路程上与其它分子的碰撞次数。

解:(1)由得:代入数据得:(2)分子走路程碰撞次数(次)4-5.若在下,痒分子的平均自由程为,在什么压强下,其平均自由程为?设温度保持不变。

解:由得4-6.电子管的真空度约为HG,设气体分子的有效直径为,求时单位体积内的分子数,平均自由程和碰撞频率。

解:(2)(3)若电子管中是空气,则4-7.今测得温度为压强为时,氩分子和氖分子的平均自由程分别为和,问:(1)氩分子和氖分子的有效直径之比是多少?(2)时,为多大?(3)时,为多大?解:(1)由得:(2)假设氩分子在两个状态下有效直径相等,由得:(3)设氖气分子在两个状态下有效直径相等,与(2)同理得:4-8.在气体放电管中,电子不断与气体分子相碰撞,因电子的速率远远大于气体分子的平均速率,所以后者可以认为是静止不动的。

设电子的“有效直径”比起气体分子的有效直径来可以忽略不计。

(1)电子与气体分子的碰撞截面为多大?(2)证明:电子与气体分子碰撞的平均自由程为:,n为气体分子的数密度。

解:(1)因为电子的有效直径与气体分子的有效直径相比,可以忽略不计,因而可把电子看成质点。

又因为气体分子可看作相对静止,所以凡中心离电子的距离等于或小于的分子都能与电子相碰,且碰撞截面为:(2)电子与气体分子碰撞频率为:(为电子平均速率)4-9.设气体分子的平均自由程为试证明:一个分子在连续两次碰撞之间所走路程至少为x的几率是解:根据(4.6)式知在个分子中自由程大于x的分子占总分子数的比率为=由几率概念知:对于一个分子,自由程大于x的几率为,故一个分子连续两次碰撞之间所走路程至少为x的几率是。

热学教程习题参考解(第三章)

热学教程习题参考解(第三章)

《热学教程》习题参考答案第三章 习 题3-1. 在掷两颗骰子时,组成总点数为2,3,4,5,6,7,8,9,10,11,12的概率各为多少? 并用所得结果检验归一化条件.(答: P 2=P 12=361,P 3= P 11=181,P 4= P 10=121,P 5= P 9=91,P 6=P 8=365,P 7=1;1P 122=∑=i i )解:每个骰子有六个面,在条件完全等同的情况下掷骰子,出现每个面的概率都相等,等于()61,满足等概率原理. 当掷两个骰子时,出现任意一种组合的概率为()361. 考虑到骰子的六个面形成三组对称面,分别为1-6,2-5,3-4. 故出现两颗骰子总数为2的概率与出现总数为12的概率相等;同理出现总数为3与总数为11的概率相等,故一般情况下出现总数为i 和()i -14的概率满足关系式:i i P P =-14,12,,3,2 =i .因此, 可以写出:()361122==P P ,()181113==P P ,为什么掷两个骰子时出现总数为3的概率比总数为2的概率大一倍?这是因为形成总数为2时的两骰子,只有一种组合()1,1;而形成总数为3时的两骰子,可以有两种组合:()1,2 或 ()2,1. 作类似分析可知:()121104==P P ,两面的可能组合为()2,2,()1,3,()3,1;()195==P P ,组合为()4,1,()1,4,()3,2,()2,3;()586==P P ,组合为()3,3,()4,2,()2,4, ()5,1,()1,5;()617=P ,组合为()6,1,()1,6,()5,2,()2,5,()4,3,()3,4.不难看出总概率之和满足归一条件:1122=∑=i i P ,这结果说明,只要掷两个骰子一次,总会出现各种可能组合中的一种组合,事件总是会发生的.3-2. 从一副扑克的52张牌中,任意抽取两张,问都是红桃的概率有多大?( 答: 5.88 %) 解:3-3 甲、乙两个高射炮手同时射击一入侵敌机,甲和乙分别击中敌机的概率为60% 和50%,问敌机被击落的概率为多少? ( 答:80% ) 解:3-4. 计算300K 时氧分子的最概然、平均和方均根速率.(答:395 m/s,446 m/s,483 m/s) 解: 氧分子的最概然、平均和方均根速率分别为:13s m 395103230031.822--⋅=⨯⨯⨯==μRTv p , 13s m 446103214.330031.888--⋅=⨯⨯⨯⨯==μπRTv , 132s m 483103230031.833--⋅=⨯⨯⨯==μRTv . 3-5. 气体分子速率与最概然速率之差不超过1%的分子数目占全部分子数目的百分之几? (答:1.66 %)解: 应用麦克斯韦速率分布律,可得:(),%66.10166.002.042exp 24B 2p 23B 2p p ==⨯⨯==∆⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∆ev T k mv T k m v Nv N πππ其中的 p 02.0v v =∆;m T k v B p 2=.3-6. 试就下列几种情况,求气体分子数目占总分子数目的比率:(1) 速率在区间p p ~v v 1.01内;(2) 速度分量x v 在区间p p ~v v 1.01内;(3) 速度分量x v ,z y v v ,同时在区间p p ~v v 1.01内.(答:8.3×103-;2.08×103-;9×109-) 解: (1)();103.801.0401.02ex p 243p B 2p 3B 2p -⨯=⨯⨯=⨯⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m v Nv N p πππ (2)();1008.201.001.02ex p 23p B 2p 21B p -⨯=⨯=⨯⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m N v N ππ (3)()932363p 6B 2p 23B p 1094.8101023ex p 2---⨯=⨯=⨯⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m N v N ππ 3-7. 设有一群粒子具有下列速率分布:试求:(1)平均速率v ;(2)方均根速率2v ;(3)最概然速率p v .(答:(1)318m/s ;(2)337m/s ;(3)400m/s) 解:(1);s m 31820806040205002040080300602004010020=++++⨯+⨯+⨯+⨯+⨯==∑∑iiiii N v N v(2)s m 33722==∑∑iiii i N v N v ;(3)s m 400p =v .3-8. 设氢气的温度为300K,求速率在3000~3010m/s 之间的分子数1n 与速率在最概然速率附近10~p p +v v m/s 之间的分子数2n 之比.(答:26.5 %)解: 应用麦克斯韦速率分布律,可得两种速率区间内气体分子数之比为:()()⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=∆∆=2p 2p212p 21p p 11p 1ex p v v v v v v v f v v f n n , 已知式中的 ;m 157910230031.822,s m 30003p 1=⨯⨯⨯===-μRT v v,s m 10p 1=∆=∆v v 故可求得()%5.26265.0p 1==n n .3-9. 证明: 若以最概然速率为度量气体分子速率的单位,用u 表示此相对速率,则速率处于u u u d ~+之间的分子数与气体的温度无关.解: 以最概然速率m T k v B p 2=为单位,衡量气体分子的速率,可以引进无量纲速 率()p v v u =,从而可写出无量纲的麦克斯韦速率分布律及其分布函数:()()u u f N u N d d =, ()()22ex p 4u u u f -=π. 不难看出,无量纲的麦克斯韦速率分布律仍然满足归一条件,而且与温度明显无关.3-10. 根据麦克斯韦速率分布律,求速率倒数的平均值 v / 1,并与速率平均值v 的倒数相比较.(答:T k m B 2π)解: 应用麦克斯韦速率分布律,可得:()21B 20B 223B 02d 2ex p 22d 11⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==⎰⎰∞∞T k m v T k mv T k m v v f v v πππ,显然它较之平均速率的倒数 21B 81⎪⎪⎭⎫⎝⎛=T k m v π要大. 3-11. 用泻流分离从天然铀中将同位素U 235浓缩到99.5%,需作几级泻流?(答:2395)解: 应用能计算泻流使轻组元较之种组元相对富集的公式2122121''β⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛m m n n n n ,式中的‘1’和‘2’分别表示泻流气体中的轻组元6235F U 和重组元6238F U ;1m 和2m 分别是轻和重组元的分子质量,即它们的摩尔质量分别为/m ol kg 349.0A 11==N m μ和kg/mol 352.0A 22==N m μ,这里的A N 是阿伏伽德罗常数;1n ,'1n 和2n ,'2n 分别表示轻和重组元在泻流前和经过β次泻流后的丰度,由题意可知:%7.01=n ,%3.992=n 和%5.99'1=n ,%5.0'2=n .故可求得泻流级数为:2395349352ln 5.07.03.995.99ln 2ln ln 22112'2'1=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⨯⨯=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=m m n n n n β. 3-12. N 个气体分子满足如图所示的速率分布,试(1)由N 和0v 求a ;(2)求速率在1.500~v v 2.0之间的分子数目;(3)求分子的平均速率.(答:(1) 032v N ;(2)3N ;(3)9110v )解:(1) 由归一条件可得:()()()N v v f N v v f N v v f N v v v =+=⎰⎰⎰∞0200d d d ,按题意可知:()()a v f N v v v av v f N v v =>=≤,;,000,故得()N av av v v a v v f N ==⎪⎪⎭⎫ ⎝⎛+⨯=⎰∞232d 002000, 032v Na =; 习题3-12图(2)气体分子速率在000.2~5.1v v 之间的分子数目为()35.0d d 00.25.10.25.10N v a v a v v f N v v v v===⎰⎰; (3)气体分子的平均速率为()020000911d 32d d 000v v v v v v N v a vv v f v v v v v =+==⎰⎰⎰∞。

热学课后习题答案

热学课后习题答案

.第一章温度1-1定容气体温度计的测温泡浸在水的三相点槽内时,个中气体的压强为50mmHg.(1)用温度计测量300K的温度时,气体的压强是若干?(2)当气体的压强为68mmHg时,待测温度是若干?解:对于定容气体温度计可知:(1)(2)1-3用定容气体温度计测量某种物资的沸点.本来测温泡在水的三相点时,个中气体的压强;当测温泡浸入待测物资中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,从新测得,当再抽出一些气体使减为100mmHg时,测得.试肯定待测沸点的幻想气体温度.解:依据从幻想气体温标的界说:依以上两次所测数据,作T-P图看趋向得出时,T约为亦即沸点为400.5K.题1-4图1-6水银温度计浸在冰水中时,水银柱的长度为;温度计浸在滚水中时,水银柱的长度为.(1)在室温时,水银柱的长度为若干?(2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为,试求溶液的温度.解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-14水银气压计中混进了一个空气泡,是以它的读数比现实的气压小,当准确的气压计的读数为时,它的读数只有.此时管内水银面到管顶的距离为.问当此气压计的读数为时,现实气压应是若干.设空气的温度保持不变.题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分离为和,依据静力均衡前提可知,因为T.M不变依据方程有,而1-25一抽气机转速转/分,抽气机每分钟可以或许抽出气体,设容器的容积,问经由若干时光后才干使容器的压强由降到.解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,疏忽抽气进程中压强的变更而近似以为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时光为分,转数1-27把的氮气压入一容积为的容器,容器中本来已充满同温同压的氧气.试求混杂气体的压强和各类气体的分压强,假定容器中的温度保持不变.解:依据道尔顿分压定律可知又由状况方程且温度.质量M不变.第二章气体分子活动论的根本概念2-4 容积为2500cm3×1015个氧分子,有×1015个氮分子和×10-7g的氩气.设混杂气体的温度为150℃,求混杂气体的压强.解:依据混杂气体的压强公式有PV=(N 氧+N 氮+N 氩)KT个中的氩的分子个数:N 氩=15231001097.410023.640103.3⨯=⨯⨯⨯=-N M 氩氩μ(个)∴ P=(1.0+4.0+4.97)10152231033.225004231038.1--⨯=⨯⨯⋅Pa 41075.1-⨯≅mmHg2-5一容器内有氧气,其压强P=1.0atm,温度为t=27℃,求 (1) 单位体积内的分子数: (2) 氧气的密度; (3) 氧分子的质量; (4) 分子间的平均距离; (5) 分子的平均平动能. 解:(1)∵P=nKT∴n=252351045.23001038.110013.10.1⨯=⨯⨯⨯⨯=-KT P m -3(2)l g RTP /30.1300082.0321=⨯⨯==μρ(3)m 氧=23253103.51045.2103.1-⨯≅⨯⨯=n ρg (4) 设分子间的平均距离为d,并将分子算作是半径为d/2的球,每个分子的体积为v 0. V 0=336)2(34d d ππ=∴71931028.41044.266-⨯=⨯⨯==ππn d cm (5)分子的平均平动能ε为:ε14161021.6)27273(1038.12323--⨯=+⨯⨯==KT (尔格)2-12 气体的温度为T = 273K,压强为 P=×10-2atm,密度为ρ×10-5g(1) 求气体分子的方均根速度.(2) 求气体的分子量,并肯定它是什么气体.解:(1)s m P RT V /485332===ρμ(2)mol g mol kg PRTn PN A /9.28/109.283=⨯===-ρμ 该气体为空气2-19 把尺度状况下224升﹒l 2mol-2-1.解:在尺度状况西224l 的氮气是10mol 的气体,所以不竭紧缩气体时,则其体积将趋于10b,即0.39131,分子直径为: 内压强P 内=8.90703913.039.122≅=V a atm 注:一摩尔现实气体当不竭紧缩时(即压强趋于无穷大)时,气体分子不成能一个挨一个的慎密分列,因而气体体积不克不及趋于分子本身所有体积之和而只能趋于b.第三章 气体分子热活动速度和能量的统计散布律3-1 设有一群粒子按速度散布如下:试求(1)平均速度V;(2)方均根速度2V (3)最可几速度Vp 解:(1)平均速度:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速度37.322≅∑∑=ii i N V N V(m/s)3-2 盘算300K 时,氧分子的最可几速度.平均速度和方均根速度.解:s m RT V P /395103230031.8223=⨯⨯⨯==-μ3-13 N 个设想的气体分子,其速度散布如图3-13所示(当v >v 0时,粒子数为零).(1)由N 和V 0求a.00之间的分子数.(1) 求分子的平均速度.解:由图得分子的速度散布函数:N V Va 0 (00V V 〈〈) Na (002V V V 〈〈)f(v)= 0 (02V V 〉)(1) ∵dv V Nf dN )(=∴aV aV V V a advdV V VadV V f N N VV V 00200202321)(0=+=+==⎰⎰⎰∞(2) 00之间的分子数3-21 收音机的腾飞前机舱中的压力计批示为1.0atm,温度为270C;腾飞后压力计指导为0.80atm,温度仍为27 0C,试盘算飞机距地面的高度.解:依据等温气压公式: P=P0e -有In = - ∴ H = - In •个中In =In = -0.223,空气的平均分子量u=29. ∴××103(m)3-27 在室温300K 下,一摩托车尔氢和一摩尔氮的内能各是若干?一克氢和一克氮的内能各是若干?×103(J) ×103(J)可见,一摩气体内能只与其自由度(这里t=3,r=2,s=0)和温度有关.一克氧和一克氮的内能: ∴××103(J)3-30 某种气体的分子由四个原子构成,它们分离处在正四面体的四个极点:(1)求这种分子的平动.迁移转变和振动自由度数.(2)依据能均分定理求这种气体的定容摩尔热容量.解:(1)因n个原子构成的分子最多有3n个自由度.个中3个平动自由度,3个迁移转变自由度,3n-1个是振动自由度.这里n=4,故有12个自由度.个中3个平动.个迁移转变自由度,6个振动自由度.(2) 定容摩尔热容量:Cv= (t+r+2s)R = ×18×2= 18(Cal/mol•K)第四章气体内的输运进程4-2.氮分子的有用直径为,求其在尺度状况下的平均自由程和持续两次碰撞间的平均时光.解:=代入数据得:-(m)=代入数据得:=(s)4-4.某种气体分子在时的平均自由程为.(1)已知分子的有用直径为,求气体的压强.(2)求分子在的旅程上与其它分子的碰撞次数.解:(1)由得:代入数据得:(2)分子走旅程碰撞次数(次)4-6.电子管的真空度约为HG,设气体分子的有用直径为,求时单位体积内的分子数,平均自由程和碰撞频率.解:(2)(3)若电子管中是空气,则4-14.今测得氮气在时的沾次滞系数为试盘算氮分子的有用直径,已知氮的分子量为28.解:由《热学》()式知:代入数据得:4-16.氧气在尺度状况下的集中系数:.求氧分子的平均自由程.解:代入数据得4-17.已知氦气和氩气的原子量分离为4和40,它们在尺度状况嗲的沾滞系数分离为和,求:(1)氩分子与氦分子的碰撞截面之比;(2)氩气与氦气的导热系数之比;(3)氩气与氦气的集中系数之比.解:已知(1)依据(2)因为氮氩都是单原子分子,因而摩尔热容量C雷同(3)现P.T都雷同,第五章热力学第必定律5-21. 图5-21有一除底部外都是绝热的气筒,被一地位固定的导热板隔成相等的两部分A和B,个中各盛有一摩尔的幻想气体氮.今将80cal 的热量迟缓地同底部供应气体,设活塞上的压强始终保持为1.00atm,求A部和B部温度的转变以及各接收的热量(导热板的热容量可以疏忽).若将地位固定的导热板换成可以自由滑动的绝热隔板,反复上述评论辩论.解:(1)导热板地位固定经底部向气体迟缓传热时,A部气体进行的是准静态等容进程,B部进行的是准表态等压进程.因为隔板导热,A.B两部气体温度始终相等,因而(2)绝热隔板可自由滑动B部在1大气压下整体向上滑动,体积保持不变且绝热,所以温度始终不变.A部气体在此大气压下吸热膨胀5-25.图5-25,用绝热壁作成一圆柱形的容器.在容器中央置放一无摩擦的.绝热的可动活塞.活塞两侧各有n 摩尔的幻想气体,开端状况均为p0.V0.T0.设气体定容摩尔热容量C v为常数,将一通电线圈放到活塞左侧气体中,对气体迟缓地加热,左侧气体膨胀同时通度日塞紧缩右方气体,最后使右方气体压强增为p0.问:(1)对活塞右侧气体作了若干功?(2)右侧气体的终温是若干?(3)左侧气体的终温是若干?(4)左侧气体接收了若干热量?解:(1)设终态,阁下两侧气体和体积.温度分离为V左.V右.T左.T 右,两侧气体的压强均为p0对右侧气体,由p0 =p右得则外界(即左侧气体)对活塞右侧气体作的功为(2)(3)(4)由热一左侧气体吸热为5-27 图5-27所示为一摩尔单原子幻想气体所阅历的轮回进程,个中AB为等温线.已知3.001, 求效力.设气体的解:AB,CA为吸引进程,BC为放热进程.又且故%5-28 图5-28(T-V图)所示为一幻想气体(已知)的轮回进程.个中CA为绝热进程.A点的状况参量(T, )和B点的状况参量(T, )均为已知.(1)气体在A B,B C两进程中各和外界交流热量吗?是放热照样吸热?(2)求C点的状况参量(3)这个轮回是不是卡诺轮回?(4)求这个轮回的效力.解:(1)A B是等温膨胀进程,气体从外界吸热,B C是等容降温进程,气体向外界放热.从又得(3)不是卡诺轮回(4)==5-29 设燃气涡轮机内工质进行如图5-29的轮回进程,个中1-2,3-4为绝热进程;2-3,4-1为等压进程.试证实这轮回的效力为又可写为个中是绝热紧缩进程的升压比.设工作物资为幻想气体, 为常数.证:轮回中,工质仅在2-3进程中吸热,轮回中,工质仅在4-1进程中放热轮回效力为从两个绝热进程,有或或由等比定理又可写为5-31 图5-31中ABCD为一摩尔幻想气体氦的轮回进程,全部进程由两条等压线和两条等容线构成.设已知A点的压强为 2.0tam,体积为 1.01,B点的体积为2.01,C点的压强为 1.0atm,求轮回效力.设解:DA和AB两进程吸热,===6.5atmlBC和CD两进程放热==%5-33 一制冷机工质进行如图5-33所示的轮回进程,个中ab,cd分离是温度为, 的等温进程;cb,da为等压进程.设工质为幻想气体,证实这制冷机的制冷系数为证:ab,cd两进程放热, 而Cd,da两进程吸热, ,而则轮回中外界对体系作的功为从低温热源1,(被致冷物体)接收的热量为制冷系数为证实进程中可见,因为,在盘算时可不斟酌bc及da两进程.第六章热力学第二定律6-24 在一绝热容器中,质量为m,温度为T1的液体和雷同质量的但温度为T2的液体,在必定压强下混杂后达到新的均衡态,求体系从初态到终态熵的变更,并解释熵增长,设已知液体定压比热为常数CP.解:两种不合温度液体的混杂,是不成逆进程,它的熵变可以用两个可逆进程熵变之和求得.设T1>T2,(也可设T1<T2,成果与此无关),混杂后均衡温度T知足下式mC p(T1-T)=mC p(T-T1)∴ T = (T1+T2)温度为T1的液体准静态等压降温至T,熵变成温度为T2的液体准静态等压升温至T熵变成由熵的可加性,总熵变成:△S=△S+△S=mC p(ln+ln)=mC p ln=mC p ln因(T1-T2)2>0 即T12-2T1T2+T22>0T12+2T1T2+T22-4T1T2>0由此得(T1+T2)2>4T1T2所以,△S>0因为液体的混杂是在绝热容器内,由熵增长道理可见,此进程是不成逆.6-26 如图6—26,一摩尔幻想气体氢(γ=1.4)在状况1的参量为V1=20L,T1=300K.图中1—3为等温线,1—4为绝热线,1—2和4—3均为等压线,2—3为等容线,试分离用三条路径盘算S3-S1:(1)1—2—3(2)1—3(3)1—4—3解:由可逆路径1—2—3求S3-S1C p ln-C v ln=R ln=R ln=8.31 ln=5.76 J·K-1(2)由路径1—3求S3-S1=5.76 J·K-1因为1—4为可逆绝热进程,有熵增道理知S4-S1=0从等压线4—3= =从绝热线1—4 T1v1γ-1或则即故=5.76 J·K-1盘算成果标明,沿三条不合路径所求的熵变均雷同,这反应了一切态函数之差与进程无关,仅决议处.终态.6-28 一现实制冷机工作于两恒温热源之间,热源温度分离为T1=400K,T2=200K.设工作物资在没一轮回中,从低温热源接收热量为200cal,向高温热源放热600cal.(1)在工作物资进行的每一轮回中,外界对制冷机作了若干功?(2)制冷机经由一轮回后,热源和工作物资熵的总变更(△S b)(3)如设上述制冷机为可逆机,经由一轮回后,热源和工作物资熵的总变更应是若干?(4)若(3)中的饿可逆制冷机在一轮回中从低温热源接收热量仍为200cal,试用(3)中成果求该可逆制冷机的工作物资向高温热源放出的热量以及外界对它所作的功.解:(1)由热力学第必定律,外界对制冷机作的功为A=Q1-Q2=600-200=400cal=1672J(2)经一轮回,工作物资又回到初态,熵变成零,热源熵变是高温热源熵变△S1与低温热源熵变△S2之和.所以,经一轮回后,热源和工作物资的熵的总变更为△S b=(3)视工资与热源为一绝热系,若为可逆机,由熵增长道理知,全部体系的总熵变成零.即△S0=0(4)由(3)知,对于可逆机即工质想高温热源放出的热量.而外界对它的功为A=Q1'-Q2=400-200=200cal=836J盘算成果标明,,当热源雷同,从低温热源取相等的热量时,可逆制冷机比现实制冷机所需的外功少。

大学热学(李椿+章立源+钱尚武)习题解答第二章气体分子运动论基本概念

大学热学(李椿+章立源+钱尚武)习题解答第二章气体分子运动论基本概念

第二章 气体分子运动论的基本概念2-1目前可获得的极限真空度为10-13mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。

解: 由P=n K T 可知n =P/KT=)27327(1038.11033.1101023213+⨯⨯⨯⨯⨯-- =3.21×109(m –3) 注:1mmHg=1.33×102N/m 22-2钠黄光的波长为5893埃,即5.893×10-7m ,设想一立方体长5.893×10-7m , 试问在标准状态下,其中有多少个空气分子。

解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105N/m 2∴N=623375105.52731038.1)10893.5(10013.1⨯=⨯⨯⨯⨯⨯=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5mmHg 的真空。

为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。

若烘烤后压强增为1.0×10-2mmHg ,问器壁原来吸附了多少个气体分子。

解:设烘烤前容器内分子数为N 。

,烘烤后的分子数为N 。

根据上题导出的公式PV = NKT 则有:)(0110011101T P T P K V KT V P KT V P N N N -=-=-=∆ 因为P 0与P 1相比差103数量,而烘烤前后温度差与压强差相比可以忽略,因此T P 与11T P 相比可以忽略 1823223111088.1)300273(1038.11033.1100.1102.11⨯≅+⨯⨯⨯⨯⨯⨯⨯=⋅=∆---T P K N N 个2-4 容积为2500cm 3的烧瓶内有1.0×1015个氧分子,有4.0×1015个氮分子和3.3×10-7g的氩气。

设混合气体的温度为150℃,求混合气体的压强。

热学(李椿+章立源+钱尚武)习题解答_第1章 温度知识分享

热学(李椿+章立源+钱尚武)习题解答_第1章 温度知识分享

热学(李椿+章立源+钱尚武)习题解答_第1章温度第一章温度1-1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

李椿 热学 思考题答案

李椿 热学 思考题答案

部分思考题解答1、气体的平衡状态有何特征?当气体处于平衡状态时还有分子热运动吗?与力学中所指的平衡有何不同?实际上能不能达到平衡态?答;系统处于平衡状态时,系统和外界没有能量交换,内部也没有化学变化等任何形式的能量转换,系统的宏观性质不随时间变化。

对气体来说,系统状态的宏观参量有确定数值,系统内部不再有扩散、导热、电离或化学反应等宏观物理过程发生。

气体处于平衡态时,组成系统的分子仍在不停地运动着,只不过分子运动的平均效果不随时间变化,表现为宏观上的密度均匀,温度均匀和压强均匀。

与力学中的平衡相比较,这是两个不同的理想概念。

力学中的平衡是指系统所受合外力为零的单纯静止或匀速运动问题。

而热力学中的平衡态是指系统的宏观性质不随时间变化。

但组成系统的分子却不断地处于运动之中,只是与运动有关的统计平均量不随时间改变,所以这是一种热动平衡。

平衡态是对一定条件下的实际情况的概括和抽象。

实际上,绝对的完全不受外界条件变化影响的平衡状态并不存在。

2、一金属杆一端置于沸水中,另一端和冰接触,当沸水和冰的温度维持不变时,则金属杆上各点的温度将不随时间而变化。

试问金属杆这时是否处于平衡态?为什么?答:金属杆就是一个热力学系统。

根据平衡态的定义,虽然杆上各点的温度将不随时间而改变,但是杆与外界(冰、沸水)仍有能量的交换。

一个与外界不断地有能量交换的热力学系统所处的状态,显然不是平衡态。

3、水银气压计中上面空着的部分为什么要保持真空?如果混进了空气,将产生什么影响?能通过刻度修正这一影响吗?答:只有气压计上面空着的部分是真空,才能用气压计水银柱高度直接指示所测气体的压强。

如果气压计内混进了一些空气,则这种气体也具有一定的压强。

这时,水银柱高度所指示的压强将小于所测气体的真实压强,而成了待测气体与气压计内气体的压强之差。

能否在刻度时扣除漏进气体的压强,而仍由水银柱的高度来直接指示待测气体的压强呢?也不行。

因为水银气压计内部气体的压强随着温度和体积的变化而变化,对不同压强和不同温度的待测气体测量时,内部气体的压强是不同的。

第三章气体分子热运动速率和能量的统计分布律

第三章气体分子热运动速率和能量的统计分布律
麦克斯韦严谨的科学态度和科学研究方法是人类极其宝贵的精 神财富。
热学
14
讨论
麦克斯韦速率分布中最概然速率 vp 的概念
下面哪种表述正确?
(A) vp 是气体分子中大部分分子所具有的速率. (B) vp 是速率最大的速度值. (C) vp 是麦克斯韦速率分布函数的最大值.
(D) 速率大小与最概然速率相近的气体分子的比 率最大.
N
N
v
v f (v)dv
8kT
0
πm
v 1.60 kT 1.60 RT
f (v)
m
M
3)方均根速率 v2
o
v
v2
N
0
v2dN N
0
v2
Nf
N
(v)dv
v2 3kT m
热学
8
vp v v2
vrms
v2
3kT m
3RT M
v 1.60 kT 1.60 RT
m
M
vp
2kT m
为清楚起见 , 从正面来
观察。
铁钉
隔板
热学
28
统计规律和方法
伽尔顿板 再投入小球: 经一定段时间后 , 大量小
球落入狭槽。
分布情况:中间多,两边少。
重复几次 ,结果相似。
单个小球运动是随机的 , 大量小球运动分布是确定的。
大量偶然事件整体所遵 循的规律 —— 统计规律。
热学
小球数按空间 位置 分布曲线
v2
dN 4π(
m
)3
2
e
mv2 2 kT
v2
dv
N
2πkT
热学
5
反映理想气体在热动 平衡条件下,各速率区间 分子数占总分子数的百分

热学 (3 第三章 气体分子热运动速率和能量的统计分布率)

热学 (3 第三章 气体分子热运动速率和能量的统计分布率)
或概率密度。
f ()d dN
N
dN
2

f
( )d
N 1
表示速率分布在→+d内的
分子数占总分子数的概率
表示速率分布在1→2内的分
子数占总分子数的概率
N
0
dN N


0
f
d
1
归一化条件
应注意的问题:
分布函数是一个统计结果,以上各种讨论都是建立在众多分子微 观运动基础上的,分子的数目越大,结论越正确。所以:
1、作速率分布曲线。 2、由N和vo求常数C。 3、求粒子的平均速率。 4、求粒子的方均根速率。
f (v)
C ( vo> v > 0) 0 ( v > vo )
f (v)
解:

f (v)dv
0
vo 0
Cdv

Cvo
1
C
C 1 vo
o
vo v
o f ()d o Cd C o2
3. 方均根速率
2


2
f
d
0
3
2

4

m
2 kT
2


e
m 2 2kT

4
d

3kT

3RT
0
mM
2 3kT 3RT
m
M
4. 三种速率的比较
最概然速率
p
2kT m
2RT M
平均速率
8kT 8RT m M
方均根速率
一、速率分布函数
气体分子处于无规则的热运动之中,由于碰撞,每个分子的速度都

《热学》(李椿-章立源-高教版)-课后答案

《热学》(李椿-章立源-高教版)-课后答案

《热学》(李椿-章立源-高教版)-课后答案第一章温度1-1 在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。

1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。

(1)用温度计测量300K 的温度时,气体的压强是多少?(2)当气体的压强为68mmHg 时,待测温度是多少?解:对于定容气体温度计可知:(2)1-3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。

解:根据已知冰点。

1-4 用定容气体温度计测量某种物质的沸点。

原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400.5K亦即沸点为400.5K.题1-4 图1-5 铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35 欧姆。

当温度计的测温泡与待测物体接触时,铂电阻的阻值为90.28 欧姆。

试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273.16K。

解:依题给条件可得则故1-6 在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为。

设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b。

解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1-7 水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在沸水中时,水银柱的长度为24.0cm。

热学答案第三章 完整版

热学答案第三章 完整版
可得:
3-14
平均自由程:
碰撞频率为:
两次碰撞的时间间隔为:
t=1/z=1.28*10-10s
3-15
当T不变时,改变压强有:
3-16
(1)
(2)
(3)
3-17
(1)
设电子直径 分子直径d
因为
所以
(2)
电子速度远大于分子,两者相对速率可以认为是电子的速度
3-18
(1)
还需要知道打入分子1的平均速率 和两种分子的平均相对速率
其中
所以:
带入理想气体状态方程: 知, 。
3.7
(1)利用范德瓦尔斯方程可知;
由理想气体状态方程知:
(2)
同理,
范:t=424.09k
理:t=424.11k
(3)
范:t=279.53k
理:t=279k
3-8
根据题意:每个分子的体积为:
d=2.92*10-10m
3.9
(1)
按照3.4.2第一段,认为分子分为六组,分别沿xyz轴正负方向运动,设有一分子沿x正向运动,t1=0时刻碰撞到容器壁,速度变为x负向,t2=L/vx时刻碰撞到对面的器壁,速度变为x正向,t3=(2L)/vx时刻再次撞击原器壁。
(2)
碰撞频率
3-19
气体分子按自由程分布:
当分子无碰撞的至少通过L的路程概率小于50%时有:
3-20
气体分子的自由程分布为
所以:
由3-17题结论可知:
3-21
(1)
气体分子按自由程分布:
所以:
(2)
由3-17题可知
所以
参考书中3.1.8公式的推到方法,将三维情况转变为二维情况,
在 中的分子数为:

热学第三章习题参考答案

热学第三章习题参考答案

热学习题答案第三章:气体分子的输运过程(内容对应参考书的第四章)1. 某一时刻,氧气中一组分子刚与其他分子碰撞过,问:经过多长时间后,其中还保留一半未与其他分子相碰。

设氧气分子都以平均速率运动,氧气温度300K ,在给定压强下,分子平均自由程为2.0cm 。

解:设这组分子个数为0N ,经过时间t (对应的路程为x )后未碰撞的分子数为N ,根据分子按自由程的分布()dx e dx x f N dN x⋅==-λλ10 由已知:t v x =,210=N N ,则有 210===⋅--λλt v x e e N N ,即2ln v t λ= 又由πμRTv 8=,mol Kg /10323-⨯=μ,代入上式得()s RT t 532101.32ln 30031.88103214.3100.22ln 8---⨯≈⨯⨯⨯⨯⨯==πμλ。

2. (P 142。

8)在气体放电管中,电子不断与气体分子相碰,因电子的速率远远大于气体分子的平均速率,所以后者可以认为是静止不动的。

设电子的“有效直径”比起气体分子的有效直径d 来可以忽略不计。

(1)电子与气体分子的碰撞截面σ为多大?(2)证明:电子与气体分子碰撞的平均自由程为σλn e 1= 解:(1)电子与气体分子的碰撞截面22⎪⎭⎫ ⎝⎛+=d d e πσ,由于d d e <<,故 22412d d d e ππσ≈⎪⎭⎫ ⎝⎛+=(2)由于气体分子可以认为是静止不动的,则电子与气体分子间的平均相对速率就等于电子的平均速率e v 。

在时间t 内,电子走过的路程为t v e ,相应的圆柱体的体积为t v e σ,则在此圆柱体内的气体分子数为t v n e σ,即为时间t 内电子与气体分子的碰撞次数,故碰撞频率为e e v n t t v n Z σσ==电子与气体分子碰撞的平均自由程为σλn Z v e e 1==。

3. (P 143。

18)一长为2m ,截面积为410-米2的管子里贮有标准状态下的2CO 气,一半2CO 分子中的C 原子是放射性同位素C 14。

分子运动速率分布规律课后习题答案及解析

分子运动速率分布规律课后习题答案及解析

分子运动速率分布规律课后习题答案及解析1.从宏观上看,一定质量的气体体积不变仅温度升高或温度不变仅体积减小都会使压强增大。

从微观上看,这两种情况有没有区别?解析:因为一定质量的气体的压强是由单位体积内的分子数和气体的温度决定的,气体温度升高,气体分子运动加剧,分子的平均速率增大,分子撞击器壁的作用力增大,故压强增大.气体体积减小时,虽然分子的平均速率不变,分子对容器的撞击力不变,但单位体积内的分子数增多,单位时间内撞击器壁的分子数增多,故压强增大,所以这两种情况下在微观上是有区别的。

2.体积都是1 L的两个容器,装着质量相等的氧气,其中一个容器内的温度是0℃,另一个容器的温度是100℃。

请说明:这两个容器中关于氧分子运动速率分布的特点有哪些相同?有哪些不同?解析:相同点:都呈现“中间多、两头少”的分布。

不同点:这两个温度下具有最大比例的速率区间是不同的。

0℃时速率在300~400 m/s的分子最多; 100℃时速率在400~500 m/s的分子最多。

100℃的氧气,速率大的分子比例较多,其分子的平均速率比0℃的大。

3.有甲、乙、丙、丁四瓶氢气。

甲的体积为V,质量为m,温度为t,压强为p。

乙、丙、丁的体积、质量、温度如下所述。

试问:乙、丙、丁的压强是大于p还是小于p?或等于p?请用气体压强的微观解释来说明。

(1)乙的体积大于V,质量、温度和甲相同。

解析:乙的体积大于V,质量、温度和甲相同,则分子平均速率相同,气体分子对器壁的平均作用力相同,而由于乙的体积较大,则分子密度较小,则单位时间撞击器壁的分子数较少,则气体压强较小,即乙的压强小于p。

(2)丙的温度高于t,体积、质量和甲相同。

解析:丙的温度高于t,体积、质量和甲相同。

则丙分子密度与甲相同,丙的温度高,则分子平均速率较大,分子对器壁的平均撞击力较大,则丙气体的压强较大,即丙的压强大于p。

(3)丁的质量大于m、温度高于t,体积和甲相同。

解析:丁的质量大于m、温度高于t,体积和甲相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 三 章 气体分子热运动速率和能量的统计分布律3-1 设有一群粒子按速率分布如下: 粒子数N i 2 4682速率V i (m/s )试求(1)平均速率V ;(2)方均根速率2V (3)最可几速率Vp解:(1)平均速率:18.32864200.5200.4800.3600.2400.12≅++++⨯+⨯+⨯+⨯+⨯=V (m/s)(2) 方均根速率37.322≅∑∑=ii i N V N V(m/s)3-2 计算300K 时,氧分子的最可几速率、平均速率和方均根速率。

解:s m RTV P /395103230031.8223=⨯⨯⨯==-μs m RTV /446103214.330031.8883=⨯⨯⨯⨯==-πμs m RTV/483103230031.83332=⨯⨯⨯==-μ3-3 计算氧分子的最可几速率,设氧气的温度为100K 、1000K 和10000K 。

解:μRTV P 2=代入数据则分别为:T=100K 时 s m V P /1028.22⨯= T=1000K 时 s m V P /1021.72⨯= T=10000K 时 s m V P /1028.23⨯=3-4 某种气体分子在温度T 1时的方均根速率等于温度T 2时的平均速率,求T 2/T 1。

解:因μRTV32=πμ28RT V =由题意得:μRT3πμ28RT =∴T 2/T 1=83π3-5 求0℃时1.0cm 3氮气中速率在500m/s 到501m/s 之间的分子数(在计算中可将dv 近似地取为△v=1m/s )解:设1.0cm 3氮气中分子数为N ,速率在500~501m/s 之间内的分子数为△N ,由麦氏速率分布律:△ N=V V e KTm N V KTm∆⋅⋅⋅-22232)2(4ππ ∵ V p2= 2KTm ,代入上式△N=VV V ppe V V VN∆--⋅⋅222214ρπ因500到501相差很小,故在该速率区间取分子速率V =500m/s , 又s m V P /402102827331.823≅⨯⨯⨯=- △V=1m/s (vv p =)代入计算得:△N=×10-3N 个3-6 设氮气的温度为300℃,求速率在3000m/s 到3010m/s 之间的分子数△N 1与速率在1500m/s 到1510m/s 之间的分子数△N 2之比。

解: 取分子速率为V 1=3000m/s V 2=1500m/s, △V 1=△V 2=10m/s由5题计算过程可得: △V 1=12212214V V V p ppe V V VN∆--⋅⋅π△N 2=22222214V V V pppe V V VN∆--⋅⋅π∴ △N/△N 2=2121)(21)(21)()(ppp V V V V p e V V e V V --⋅其中V P =331018.210257331.82⨯=⨯⨯⨯-m/s v 1v p =,v 2v p=∴ 969.0687.0375.122687.02375.1221≅⨯⨯=∆∆--ee N N 解法2:若考虑△V 1=△V 2=10m/s 比较大,可不用近似法,用积分法求△N 1,△N 2dN=dVV V V p PeV N22234--⋅π△N 1=⎰⎰⎰-=1221V V V V dN dN dN△N 2=⎰⎰⎰-=3443V V V V dN dN dN令X i =v iv pi=1、2、3、4利用16题结果:22)([0i ix i i V e x x erf N dN --=⎰π∴ △N 1=]2)([]2)([2122112x x i e x x erf N e x x erf N -----ππ(1)△N 2=]2)([]2)([23243344x x e x x erf N e x x erf N -----ππ(2)其中V P =s m RT/10182.223⨯=μ375.111==P V V x 379.122==P V Vx 687.033==P V V x 6722.044==PV Vx 查误差函数表得: erf(x 1)= erf(x 2)= erf(x 3)= erf(x 4)=将数字代入(1)、(2)计算,再求得:703.021=∆∆N N3-7 试就下列几种情况,求气体分子数占总分子数的比率: (1) 速率在区间v p ~内 (2) 速度分量v x 在区间v p ~内(3) 速度分量v p 、v p 、v p 同时在区间v p ~内解:设气体分子总数为N ,在三种情况下的分子数分别为△N 1、△N 2、△N 3 (1) 由麦氏速率分布律: △ N=⎰⎰⎰-=1221V V V V dN dN dN令v 2=,v i =v p ,p i i v v x =,则111==p v v x ,01.122==pv vx ,利用16题结果可得;2122112212)(2)(x x e x x erf e x x erf N N --+--=∆ππ 查误差函数表:erf (x 1)= erf (x 2)= ∴008.01=∆NN (2) 由麦氏速率分布律:x v v px dv ev NdN px221--=π∴x v v v p x v v v p dv ev Ndv ev NN px px 2122)(1)(012----⎰⎰-=∆ππ)(])(exp[1)(])(exp[12020212px p x v v p x p x v v v v d v v v v d v v N N p p ⎰⎰---=∆ππ令p x v v x =, 111==p v v x ,01.122==pv vx ∴dx edx eN N x x x x ⋅-=∆--⎰⎰2122211ππ利用误差函数:dx x xp e x erf x)(2)(20-=⎰π%21.0]8427.08468.0[21)()([21122=-=-=∆x erf x erf N N (3)令pxv v x =,由麦氏速度分布律得: z y x v v v v p dv dv dv e v N dN pzy x ⋅=++--2222331ππ833230033108.0)002.0()(][)1(211222---⨯==∆=-=∆⎰⎰NN dx e dx e N N x x x x π3-8根据麦克斯韦速率分布函数,计算足够多的点,以dN/dv 为纵坐标,v 为横坐标,作1摩尔氧气在100K 和400K 时的分子速率分布曲线。

解:由麦氏速率分布律得:22232)2(4v e KTm N dv dN v KTm-=ππ将π=,N=N A =×1023T=100K m=32×10-3代入上式得到常数:A=e KT m N A 23)2(4ππ KTmB 2=∴22V Ae dvdNBV ⋅=- (1) 为了避免麻烦和突出分析问题方法,我们只做如下讨论:由麦氏速率分布律我们知道,单位速率区间分布的分子数随速率的变化,必然在最可几速率处取极大值,极大值为: 令22V Ae dvdNy BV ⋅==-则 0)]2(2[222=-⋅+⋅=--BV e V V e A dvdy BV BV 得BV V P 1== 又在V=0时,y=0,V →∞时,y →0 又mKT B V P 11121==mKT B V P 22221== ∵T 1=100K <T 2=400K ∴1P V <2P V 由此作出草图3-9根据麦克斯韦速率分布律,求速率倒数的平均值v1。

解:VKT m e mKTKT m V KTm d V e m KT KT m VdVe KTm dv V f Vv KTmV KT mKTmv ππππππππ42)()2(4)2()()2(4)2(4)(1102232202230223022==⋅-⋅=-⋅⋅-===∞-∞-∞-∞⎰⎰⎰3-10一容器的器壁上开有一直径为0.20mm 的小圆孔,容器贮有100℃的水银,容器外被抽成真空,已知水银在此温度下的蒸汽压为。

(1) 求容器内水银蒸汽分子的平均速率。

(2) 每小时有多少克水银从小孔逸出?解:(1))/(1098.11020114.337331.88823s m RTV ⨯=⨯⨯⨯⨯==-πμ(2)逸出分子数就是与小孔处应相碰的分子数,所以每小时从小孔逸出的分子数为:t s V n N ⋅⋅=41其中KT V P V n ⋅=4141是每秒和器壁单位面积碰撞的分子数,2)2(ds π=是小孔面积,t=3600s ,故t s V KTPN ⋅⋅⋅=41,代入数据得: N=×1019(个) ∴)(1035.11005.41002.610201219233g N N mN M A--⨯=⨯⨯⨯⨯===μ3-11如图3-11,一容器被一隔板分成两部分,其中气体的压强,分子数密度分别为p 1、n 1、p 2、n 2。

两部分气体的温度相同,都等于T 。

摩尔质量也相同,均为μ。

试证明:如隔板上有一面积为A 的小孔,则每秒通过小孔的气体质量为:)(221P P A RTM -=πμ证明:设p 1>p 2,通过小孔的分子数相当于和面积为A 的器壁碰撞的分子数。

从1跑到2的分子数:t A V n N ⋅⋅=11141从2跑到1的分子数:t A V n N ⋅⋅=22241实际通过小孔的分子数:(从1转移到2))221121(41V n V n At N N N -=-=∆因t=1秒,KTPn =,πμRTV 8=T 1=T 2=T∴)(2)(841)(841212121P P A RTP P RTRTA KT P KT PRT Am n m M -=-=-==∆=πμπμμπμ若P 2>P 1,则M <0,表示分子实际是从2向1转移。

3-12 有N 个粒子,其速率分布函数为)0()(0〉〉==v v C NdvdNv f)(0)(0v v v f 〈=(1)作速率分布曲线。

(2)由N 和v 0求常数C 。

(3)求粒子的平均速率。

解:(1) )0()(0〉〉=v v C v f )(0)(0v v v f 〈= 得速率分布曲线如图示(2)∵1)(0=⎰∞dv v f∴10)(0==⎰⎰∞v cdv dv v f即10=cv 01v c =(3)02002121)(v cv dv v vf v ===⎰∞3-13 N 个假想的气体分子,其速率分布如图3-13所示(当v >v 0时,粒子数为零)。

(1)由N 和V 0求a 。

(2)求速率在到之间的分子数。

(3) 求分子的平均速率。

相关文档
最新文档