330MW汽轮机疏水系统
汽轮机疏水系统的几种水封
冶金动力METALLURGICAL POWER 2019年第2期总第228期汽轮机疏水系统的几种水封黎旭(杭州中能汽轮动力有限公司,浙江杭州310018)【摘要】汽轮机疏水系统中有时要用到U型水封管,这种疏水方式结构简单,没有机械传动和电气元件,运行可靠,维护方便。
根据使用场合不同,需要选择不同种类的U型水封管,并根据使用条件对水封管的直径和长度进行计算,以保证其疏水通畅、不漏气。
【关键词】水封;疏水;汽轮机【中图分类号】TK26【文献标识码】B【文章编号】1006-6764(2019)02-0050-03Water Seals for the Drainage System of Steam TurbineLI Xu(Hangzhou Chinen Steam Turbine Power Co.,Ltd.,Hangzhou,Zhejiang310018,China)【Abstract】The drainage system of steam turbine sometimes uses U type water seal pipe,which has the characteristics of simple structure,without mechanical drive or electric elements,reliable operation and easy maintenance.Different types of U water seal pipe should be selected according to different usage conditions,while the diameter and length of water seal pipe should be calculated according to specific usage condition,to ensure smooth drainage without air leakage.【Keywords】water seal;drainage;steam turbine引言汽轮机疏水系统是将汽轮机本体、辅机和管道中的凝结水通过疏水管导出,以防止积水冲击造成汽轮机叶片损伤、大轴弯曲、管道振动等事故[1]。
汽轮机疏水系统技术特点及负压稳定性维护
汽轮机疏水系统技术特点及负压稳定性维护摘要:汽轮机在重新启动或者长时间停机后启动的过程中,势必需要蒸汽管道与汽缸的预热处理过程,同时还需要确保温度能够达到允许汽轮机升速以及带负荷的条件。
在汽轮机系统设计中,疏水系统是其重要的组成部分,通过设置疏水管可以在汽轮机的启停、负荷变动和运行过程中,有效控制疏水阀,将汽轮机内部积水排出,避免汽轮机设备和相关管道等出现冷蒸汽回流问题,造成设备损伤。
因此,相关人员在对汽轮机设备进行管理时,需要掌握疏水系统的常见故障,并采取有效对策,保证汽轮机的安全、稳定运行。
关键词:汽轮机;疏水系统;措施随着当前我国社会的不断发展,汽轮机设备的应用越来越常见,具体到汽轮机的实际运行中,疏水系统作为比较关键的重要组成部分,应确保汽轮机本体设备能够通过相关管道进行输水管的设置,进而控制疏水阀将汽轮机中的积水及时排除,避免其较大程度上影响汽轮机运行安全性效果。
在汽轮机疏水系统的运行中,其还能够表现出较为理想的经济性优势,较好实现汽轮机整体应用性能的优化。
基于此,重点加强对于汽轮机疏水系统的研究极为必要,需要有效规避当前比较常见的各个隐患威胁,确保运行流畅有序,充分发挥经济性和安全性保障价值。
一、汽轮机疏水系统技术运行问题在汽轮机疏水系统的设计应用中,重点加强对于相关需求的详细分析是比较重要的一个方面,以确保疏水系统能够在汽轮机任何状态下实现对于本体设备以及相关管道设备积水的排出,进而也规避因为积水回流带来的较大隐患威胁。
结合当前汽轮机疏水系统的运行,虽然确实能够表现出较为理想的作用价值,但是因为设置不当,或者是运行条件不合理,很容易在运行中出现一些明显的缺陷问题,其中较为常见的问题表现在以下方面。
1、冷蒸汽回流导致气缸上下温差增大。
对于汽轮机疏水系统的运行,其出现冷蒸汽回流问题的威胁是比较大的,因为冷蒸汽的回流必然会导致气缸上下温差比较大,进而也就很可能会对于气缸自身带来较为明显的威胁影响,甚至会直接影响到整个汽轮机运行效果,比如机组的再次启动就可能受到较大威胁。
汽机疏放水系统讲解
汽机疏放水系统讲解一、概述一般疏水分为汽轮机本体疏水和系统疏水两大类。
汽轮机本体疏水包括汽缸疏水,及直接与汽缸相连的各管道疏水,包括高、中压主汽门后,与汽缸直接连通的各级抽汽管道阀门前,高压缸排汽逆止门前,轴封系统等。
其他的疏水归类为系统疏水,如小机第一级汽缸、高压导汽管、内汽封疏水等等。
机组设计的疏水系统,在各种不同的工况下运行,应能防止可能的汽轮机外部进水和汽轮机本体的不正常积水,并满足系统暖管和热备用要求。
大型汽轮机组在启动、停机和变负荷工况下,蒸汽与汽轮机本体和蒸汽管道接触,蒸汽一般被冷却。
当蒸汽温度低于与蒸汽压力相对应的饱和温度时,蒸汽就凝结成水。
若不及时排出这些凝结水,它会积存在某些管段和汽缸中。
运行中,由于蒸汽和水的密度、流速不同,管道对它们的阻力也不同,这些积水可能引起管道水冲击,轻则使管道振动,产生噪声污染环境;重则使管道产生裂纹,甚至破裂。
更为严重的是,一旦部分积水进入汽轮机,将会使动静叶片受到水冲击而损伤、断裂,使金属部件因急剧冷却而造成永久性变形,甚至导致大轴弯曲。
另外汽轮机本体疏放水应考虑一定的容量,当机组跳闸时,能立即排放蒸汽,防止汽轮机超速和过热。
为了有效防止汽轮机发生这些恶劣的工况,必须及时地把汽缸和蒸汽管道中积存的凝结水排出,以确保机组安全运行。
同时尽可能地回收合格品质的疏水,以提高机组的经济性。
为此,汽轮机都设置有疏水系统,它包括汽轮机的高、中压主汽门前后,各主汽、中压调节阀前后及这些高温高压阀门的阀杆漏汽疏水管道,抽汽管道,轴封供汽母管等。
另外汽轮机的辅汽系统,小汽轮机本体及高、低压主汽门前后进汽管,除氧器加热以及高低加等系统也都有自己的疏水系统。
这些疏水有直接排放至疏水扩容器后回收至凝汽器的,也有直接排放至地沟的。
汽轮机疏放水主要由以下部分组成:主蒸汽、再热蒸汽管道上低位点疏水,汽轮机缸体及主汽调门、高压导汽管疏水,抽汽管道疏水,给水泵汽轮机供汽管道疏水、辅助蒸汽、除氧器加热管道疏水,轴封系统疏水及门杆漏汽,其它辅助系统的疏放水等。
330MW机组锅炉暖风器及疏水系统改造
330MW机组锅炉暖风器及疏水系统改造【摘要】本文主要介绍了旋转式暖风器的特点、主要的技术参数及其结构组成特点,在此基础上了介绍了暖风器的工作机理,最后深入研究了暖风器及疏水系统的改造设计思路,并提出了相应的改造方案。
【关键词】暖风器;工作原理;结构特点;改造方案0.引言暖风器是利用汽轮机低压抽汽加热空气预热器进口空气的热交换器,安装在送风机出口与空气预热器入口之间,故又称前置式空气预热器。
随着电站设备的综合经济性及使用寿命的考虑,暖风器作为电厂主要的锅炉辅机设备之一,越来越被重视。
较其他加热方式,如热风再循环、电加热等更具经济性和实用性。
加装暖风器,使进入空气预热器的空气温度升高,空气预热器壁温升高,从而可防止低温腐蚀。
而且在锅炉冷态启动中,暖风器可用来提高点火风温,改善初始燃烧条件,不仅节省启动用油,而且大幅降低未燃烬油烟油垢聚积在尾部而引发二次燃烧可能性。
是锅炉安全经济启动不可缺少重要措施之一。
采用暖风器后,使空气预热器的传热温差减小,锅炉排烟温度也就下降,锅炉热效率提高,但暖风器是以汽轮机低压抽汽为加热热源,低压抽汽量的增加,使汽轮机循环效率提高。
锅炉热效率下降,汽轮机效率提高,两者相互抵偿,所以全厂效率基本不受影响。
换热效率是暖风器的主要设计要素,也是考虑电厂综合效率的关键,目前暖风器是以广泛使用的螺旋翅片管为换热元件,它具有结构紧凑,阻力小,散热面积大,焊接牢固,不易积灰等优点,和其他换热元件比较其换热面积扩大5~6%,节能效果显著,其阻力特性和传热效率均得到国内外的认可。
锅炉的空气预热器入口端采用暖风器后,可以避免在预热器金属表面造成的氧腐蚀和三氧化硫造成的硫酸腐蚀,使金属壁的积灰大为减轻,不致因堵灰造成引风阻力的增加,从而大大延长空气预热器的使用寿命,确保机组的安全运行。
尤其在低负荷及原煤含硫量较大时,暖风器的投入使用就充分体现了必要性和重要性。
暖风器疏水的回收方式是利用磁力驱动泵,把回收水打至除氧器。
主蒸汽及疏水系统图
M
上下缸 法兰疏水
V段抽气 III段抽气 一 抽 管 道 疏 水 一 抽 阀 体 疏 水 二 抽 管 道 疏 水 二 抽 阀 体 疏 水 调 节 级 前 疏 水 调 节 级 后 疏 水 三 抽 阀 体 疏 水 四 抽 管 道 疏 水 四 抽 阀 体 疏 水 五 抽 管 道 疏 水
汽 封 供 汽ຫໍສະໝຸດ 本 体 疏 水新晨电厂汽机主蒸汽及疏水系统图
电动主汽门
M
主蒸汽
去轴加 左侧自动主汽门 电 动 门 前 疏 水
汽轮机
导管疏水
调节汽门 门杆漏气
右侧自动主汽门 I段抽气 Ⅰ Ⅱ
M
减 温 减 压 器
Ⅲ II段抽气 Ⅳ Ⅴ 自动主汽门 门杆漏气
III段抽气
凝结水
至 排 汽 装 置
IV段抽气
排 地 沟
疏水至排气装置
III段抽气
前 汽 封 疏 水
后 汽 封 疏 水
均压箱
高压疏水膨胀箱
低压疏水膨胀箱
汽轮机疏水系统分解
疏水集管运行主要流程
1、各疏水按压力高低顺序经各疏水孔板或节流组件依次汇集于疏水 母管,并通过疏水接管与疏水扩容器相连接,扩容后的蒸汽由扩容器 的汽管进入凝汽器,凝结的疏水则通过疏水管接至凝汽器热井。这种 疏水方式阀门集中,便于控制、维护检修,又由于汽水分离,避免了 热井内汽水冲击。 2、布置的三个原则: (1)压力相同或相近的疏水布置在同一集管 (2)压力高的疏水布置在压力低的后面 (3)各疏水支管应与集管成45度夹角接入且进口方向与流动方向一 致
疏水扩容器结构
疏水扩容器采用全焊结构,由壳体、疏水接管、喷水管、 缓冲板、波形膨胀节等零部件组焊而成。喷水管上的喷嘴 采用进口喷嘴,使其喷出的凝结水更均匀,雾化效果达到 最好。为便于电站的安装布置,疏水扩容器的外形设计为 矩形结构,两台疏水扩容器布置在高压凝汽器侧和低压凝 汽器侧。由于疏水管的布置位置、疏水量和其它电站辅机 设备的布置及疏水要求限制,两台疏水扩容器各接口管的 尺寸并不完全相同。
中压缸启动时,为防止高压缸及转子因鼓风发热而超温,在高压缸排 汽口出处设有通风阀与凝汽器相连,以控制高压缸的温升。
3、汽轮机所有的疏水阀启闭须遵守以下几点
疏水系统包括
1、在汽轮机停机后到被冷却前疏水阀一般要一直打开(特殊情况要 闷缸)
2、机组启动和向轴封送汽前必须打开 3、高压疏水在机组负荷升至10%额定负荷前保持开启状态,高于 10%额定负荷关闭 4、中压疏水在机组负荷升至20%额定负荷前保持开启状态,高于 20%额定负荷关闭 5、低压疏水在机组负荷升至30%额定负荷前保持开启状态,高于 30%额定负荷关闭
疏水系统概括
1、疏水来源:大型汽轮机组在启停和变负荷工况下运行时,蒸汽与 汽轮机本体及蒸汽管道接触时被冷却,当蒸汽温度低于蒸汽压力对应 的饱和温度时会凝结成水,若不及时排出,则会存积在某些管道和汽 缸中。 2、可能的危害: 运行时,由于蒸汽和水的密度、流速、管道阻力都 不同(两相流)⑴、这些积水可能引起管道发生水冲击,轻则使管道 振动,产生巨大噪音污染环境;重则使管道产生裂纹,甚至破裂。⑵、 而且一旦部分积水进入汽轮机,将会使动叶片受到水冲击而损伤,使 金属部件急剧冷却而造成永久变形,甚至使大轴弯曲。 3、应对措施:为了有效的防止汽轮机进水事故、管道中积水而引起 的水冲击,必须及时地把汽缸中和蒸汽管道中存积的凝结水排出,以 确保机组安全运行。同时还可以回收洁净的凝结水,而这对提高机组 的经济性是有利的
330MW机组低加疏水系统的改进精品文档5页
330MW机组低加疏水系统的改进1前言华电中宁发电有限责任公司#1、2机是由上海汽轮机厂制造的N330―16.7/537/537型汽轮机组,分别于2004年12月和2005年11月投产发电。
该机组回热加热系统由三高、四低一除氧组成,其中#5、6、7、8低加为表面式加热器,为哈尔滨汽轮机辅机厂生产制造,#7、8低加合为一体放置在凝汽器喉部。
低加疏水采用逐级自流的方式,最终由#8低加排入凝汽器。
为保证机组的安全运行,各加热器除设有正常疏水外,还设有一路紧急疏水,在事故或低加水位过高时将疏水直接排入到凝汽器。
2现状分析华电中宁发电有限责任公司#1、2机组投产以来,一直存在#7低加疏水不畅的问题,即在#7低加正常疏水调阀全开的情况下,低加水位仍持续升高,导致#7低加紧急疏水调阀必须开启一定开度方能维持低加正常水位,其中#1机组#7低加在正常运行中疏水紧急放水门开度在27%~53%之间,#2机组#7低加在正常运行中疏水紧急放水门开度在26%~50%之间。
由于#7低加运行中紧急放水门不能完全关闭,致使#7低加的部份疏水不能到#8低加加热凝结水,而是流到凝汽器,使部份疏水中的热焓释放在凝汽器中(#7低加紧急放水温度在90℃左右),#1、#2机组#7低压加热器运行中的不正常疏水,导致了如下两个严重后果:2.1安全问题按设计要求,危急疏水仅是在加热器水位高时才动作,而平常是由正常疏水调节阀控制水位的,两者控制特性不同。
现正常疏水工作不正常,若危急疏水阀出现机械故障或控制部分发生故障,则会由于抽汽管道上无阀门而无法隔离汽侧造成停机甚至汽缸进水事故。
2.2经济性问题加热器的疏水由于不从正常疏水口走而从危急疏水管道直接排走,一方面导致加热器无水而使加热器内传热恶化,传热效率降低;另一方面又造成疏水冷却段完全失效,使加热器的疏水端差增加。
上述都会增加汽轮机的热耗率。
3 原因分析我们通过对运行参数进行观察,以及查阅设计图纸等相关资料,并结合现场管路的布置,认真分析#7、8低加的运行状况,如表1及图1所示:表1 # 7、8低加运行参数统计从表1中可以看出,#1机组在各个负荷工况下,#7、8低加之间的压差均大于并接近设计值(53kpa),但各个工况下#7低加紧急疏水调门均有一定的开度,且负荷越高开度越大,说明疏水量越大疏水越不畅。
胜利发电厂300MW汽轮机组疏水系统的改造
胜利发电厂300MW汽轮机组疏水系统的改造摘要:胜利油田胜利发电厂4号汽轮机原疏水系统结构不合理,针对原系统存在空间狭小不利于巡检、阀门排列紧密手轮磕碰操作不便等问题进行了改造。
改造的重点是简化、改装一些结构不合理的疏水管路、阀门和控制部分。
改造后,疏水系统结构更为合理,更利于机组的安全稳定运行,产生了较好的经济效益。
关键词:胜利发电厂;300MW汽轮机;疏水系统;改造胜利发电厂4号机组为C300/237-16.7/0.39/537/537型汽轮机组,属亚临界中间再热两缸两排汽采暖抽汽凝汽式汽轮机。
东方汽轮机厂生产制造,由西北电力设计院设计。
机组参数见表1。
汽轮机原疏水系统由于设备系统结构不合理,利用机组大修期间,对汽轮机疏水等系统进行了改造,达到了预期的效果。
一、目前4号机疏水系统附属设备存在的问题自4号机组疏水系统因初期安装未考虑现场实际操作需要,造成目前现场空间狭小,闷热。
特别是4A扩容器及附属疏水支管阀门布置极不合理,手动阀门排列较密,阀门手轮互相磕碰,操作不便;气动阀均布置在手动门内侧,各疏水支管间距只有150-200mm,检修人员根本无法进入里面进行检修。
待解决的问题主要有如下四个方面:1.巡检:如疏水管道或阀门泄漏时,由于管道阀门被铁皮全部遮盖,无法判断漏点位置;2.操作:运行人员就地检查、操作阀门困难,阀门扳手几乎无法使用;3.热工:气动门全部布置安装在手动门内侧,内部空间狭小,闷热,热工人员根本无法调试;4.机务:检修人员因阀门位置不当而无法进行维护及检修。
二、疏水系统改造经过现场测量,疏水系统进行如下改造以解决目前存在的问题。
1.为便于疏水管道布置摆放,将北侧4A胶球泵移至主油箱西侧,其附属管道重新布置。
2.将4号机凝结水最小流量阀至凝汽器的管道抬高重新布置,使4A扩容器南侧留出空间布置疏水管。
3.将8号低加逐级疏水管道抬高沿供热抽汽管道上方接入4A扩容器。
使4A 扩容器北侧留出空间布置疏水管。
330mw汽轮机疏水系统
设计手册
—GBV WR 2985共12页
翻译/编制:杨 舰 98年7月20日
校对:朱文贵 98年8月20日
编辑:杨 舰 98年9月10日
打字:杨 舰 98年9月15日
审定: 年 月 日
批准: 年 月 日
北京重型电机厂
GBV WR 2985
汽轮机疏水系统
1.目录……………………………………………………………………(1)
机组负荷超过20%后,喷水阀自动关闭。
若发出打开命令10秒后,喷水阀位置开关仍未被激活,控制室显示报警信号“喷水阀位置不符”。
426.报警信号简介
GPV UA 001/B 高压缸真空阀失效
高压真空阀位置不符。
高压真空外泄。
高压逆止阀旁路不符。
GPV UV 002/R 低压喷水阀失效
喷水阀不符。
5.动力不足或控制流体不足时情况分析
6.与其它系统的联系
61.与汽轮机监控系统的联系(GMA)
62.与压缩空气系统的联系(SAP)
63.与汽轮机控制系统的联系(GRE)
64.与汽轮机安全系统的联系(GSE)
65.与疏水管路复位系统的联系(ACO)
66.与VVP系统的联系
逻辑图表符号
疏水阀开启
疏水阀关闭
高压缸真空阀“开启”
高压缸真空阀“关闭”
高压调节阀顺流疏水管:GPV 002 T
该疏水管收集高压缸进汽口与主蒸汽室之间的主蒸汽管内底部的冷凝水。装有一手动阀GPV HV 104、一气动阀GPV UV 004和一个疏水节流孔板GPV 004 DI。
高压缸第一级自流疏水管:GPV 005 T
该疏水管在启动时收集高压缸第一级流出的冷凝水。装有一手动阀GPV HV 110、一气动阀GPV UV 010和一个疏水节流孔板GPV 010 DI。
汽轮机疏水系统
疏水扩容器安装
1、矩形疏水扩容器也称为挎蓝式疏水扩容器,安装在凝汽器汽机侧 和发电机侧。 2、位于汽轮机侧的疏水扩容器,设有8个疏水接管,用于接纳汽轮机 本体及管道疏水,5#低加事故疏水,中压缸启动疏水。各疏水接管 的接口不得互换。 3、位于发电机侧的疏水扩容器,,用于接纳6#、7#、8#低加危急 疏水,8#低加正常疏水,辅汽疏水,除氧器溢流疏水,小汽机本体 疏水,1#、2#、3#高加危急疏水等。各疏水接管接口不得互换。 4、各疏水支管接入疏水母管时,必须按各疏水点的疏水压力分类排 列,对于接入同一母管上疏水压力较高者须离疏水扩容器相对较远处 接入,压力较低者应靠近疏水扩容器接入,且各支管应与母管成45° 夹角接入,方向向着扩容器,以保证各疏水点疏水畅通。 5、扩容器安装就位,管路连接好后与凝汽器一道做密封性试验。试 验时扩容器必须加临时支撑
疏水系统包括
1、按压力分成高压疏水、中压疏水和低压疏水
主要有:(1)汽轮机本体疏水 (2) 主、再热蒸汽进汽管道疏水;高、中压主汽门、调门疏水 (3)抽汽管道疏水 (4)门杆漏汽及轴封系统疏水 (5)小机供汽管道疏水 (6)其它辅助系统的疏放水
2、其中本体疏水系统还包括通风系统(通风阀)
疏水扩容器结构
疏水扩容器采用全焊结构,由壳体、疏水接管、喷水管、 缓冲板、波形膨胀节等零部件组焊而成。喷水管上的喷嘴 采用进口喷嘴,使其喷出的凝结水更均匀,雾化效果达到 最好。为便于电站的安装布置,疏水扩容器的外形设计为 矩形结构,两台疏水扩容器布置在高压凝汽器侧和低压凝 汽器侧。由于疏水管的布置位置、疏水量和其它电站辅机 设备的布置及疏水要求限制,两台疏水扩容器各接口管的 尺寸并不完全相同。
汽轮机本体疏水系统
定期对疏水系统进行整体性能检 测,确保系统运行正常。
建立维护保养记录
01
对每次维护、检查、维修和更换部件的情况进行记录。
02
记录疏水系统的运行参数,如温度、压力、流量等,以便分析
系统的性能和存在的问题。
定期对维护保养记录进行整理和分析,总结经验教训,提高维
03
护保养水平。
06
汽轮机本体疏水系统的未来发展
解决方案
定期对疏水阀进行清洗和检查,保持阀门的通畅。同时,加强水质管理,减少管道内壁结 垢和杂质堵塞的可能性。在发现阀门堵塞时,应及时采取措施进行疏通或更换阀门。
疏水管路漏水
总结词
疏水管路漏水会导致系统排水效果不佳,影响汽轮机的正常运行,甚至可能引发安全事故。
详细描述
疏水管路漏水通常是由于管道老化、腐蚀或安装不当等原因引起的。漏水不仅会影响汽轮机本体疏水系统的排水效果 ,还会增加系统的能耗和降低汽轮机的效率。严重时,会导致系统无法正常运行,甚至引发安全事故。
05
汽轮机本体疏水系统的维护与保养
定期检查与清理
定期检查疏水系统各 部件的完好性,确保 无泄漏、堵塞等现象。
检查疏水箱的液位, 确保正常,及时清理 疏水箱内的沉积物。
对疏水管道、阀门等 部件进行清理,保持 清洁,防止堵塞。
及时维修与更换部件
对于发现的泄漏、损坏部件及时 进行维修或更换。
对于达到使用寿命的部件,及时 进行更换,确保系统的安全运行。
02
汽轮机本体疏水系统的组成
疏水阀
疏水阀是汽轮机本体疏水系统中 的关键部件,用于控制蒸汽和冷
凝水的流动。
疏水阀应具有足够的流通能力和 良好的密封性能,以确保蒸汽和 冷凝水能够顺畅地流动,同时防
300MW汽轮机低压加热器疏水系统变频改造及效益分析
3 0MW 汽 轮 机 低 压 加 热 器 疏 水 系统 0 变 频 改 造 及 效 益 分 析
郑 国 ,龙新峰
( 湛江发 电厂 ,广 东 湛江 5 4 9 ;2 1 2 0 9 .华 南理 _ 大学 化 _ 与能源学院 。广州 5 (41 T - T - 16 ( 1 )
摘
要 :针对 31 Mw 机组低 压加 热器疏水 系统运行 时存在 的泵故 障率 高、管道振 动大、投运 率低 等 问题 ,根 (1 (
维普资讯
第 1 9卷 第 1 期
2{ 06年 1 1 月
广 东 电 力
GUANGD ONG EI ECr C P RI OW ER
Vo 1 . l 9 NO 1
J n 11 a 2( 6 (
文章编号 :0 72 0 2 { ) 1(1 —5 10 —9 X(0} 0 一( 30 6 )6
a t r t e mo iia i n d mo sr t s t a sn r q e c o to e h i u d c e s s n r y c n u fe h d fc t e n t a e h t u i g f e u n y c n r l t c n q e e r a e e e g o s mpt n a d mp o e o i n i r v s o
ZHENG u . LONG n f n O o_ _ Xi — e g
( . h nin o e ln ,Z a j n , a g o g5 4 9 , hn ; ,Sh o f h mi l n n ryE gn eig S uh 1 Z aj gP w rPa t h ni g Gu nd n 2 0 9 C ia 2 c o l e c dE eg n ie r . o t a a oC aa n
汽轮机本体疏水系统
汽轮机本体疏水系统第一节汽轮机跳闸自动开启下列气动阀门17.1.1 主蒸汽管道三岔前疏水阀。
17.1.2 左侧主汽管道疏水阀。
17.1.3 右侧主汽管道疏水阀。
17.1.4 #1、2 高压主汽导汽管疏水阀。
17.1.5 #3-6 高压主汽导管管疏水阀。
17.1.6 左侧主蒸汽进汽管放气。
17.1.7 右侧主蒸汽进汽管放气。
17.1.8 汽缸缸疏水阀。
17.1.9 高压外缸疏水阀。
17.1.10 中压外缸疏水阀。
17.1.11 高压缸第一级疏水阀。
17.1.12 高中压缸汽平衡管疏水阀。
17.1.13 高压缸排汽管逆止门前疏水阀。
17.1.14 高压缸排汽管逆止门后疏水阀。
17.1.15 高压缸排汽通风阀。
17.1.16 再热汽管道三岔前疏水阀。
17.1.17 左侧再热蒸汽管路疏水阀。
17.1.18 右侧再热蒸汽管路疏水阀。
17.1.19 左侧中压导汽管疏水阀。
17.1.20 右侧中压导汽管疏水阀。
17.1.21 左侧再热进汽门疏水开。
17.1.22 右侧再热进汽门疏水开。
17.1.23 低旁前再热蒸汽管道疏水阀。
17.1.24 一段抽汽逆止阀前、后疏水阀。
17.1.25 一段抽汽电动门后疏水阀。
17.1.26 二段抽汽逆止阀前、后疏水阀。
17.1.27 二段抽汽电动门后疏水阀。
17.1.28 三段抽汽逆止阀前、后疏水阀。
17.1.29 三段抽汽电动门后疏水阀。
17.1.30 四段抽汽逆止阀 1 前疏水阀。
17.1.31 四段抽汽逆止阀 2 后疏水阀。
17.1.32 四段抽汽电动门后疏水阀。
17.1.33 五段抽汽逆止阀前、后疏水阀。
17.1.34 五段抽汽电动门后疏水阀。
17.1.35 六段抽汽逆止阀前、后疏水阀。
17.1.36 六段抽汽电动门后疏水阀第二节机组负荷<10%自动开下列气动门17.2.2 左侧主汽管道疏水阀。
17.2.3 右侧主汽管道疏水阀。
17.2.4 #1、2 高压主汽导汽管疏水阀。
基于电厂汽轮机疏水系统的优化分析
基于电厂汽轮机疏水系统的优化分析在电厂汽轮机疏水系统工作的过程中,常常发生导汽管及高压缸排汽管疏水阀阀门外漏和内漏问题,以及轴封汽输水管原设计未配置自动疏水器导致在机组启动的过程中,轴封汽管压力波动的问题。
针对上述问题,需要对电厂汽轮机疏水系统进行优化改造,旨在能够更好地解决相关问题。
本文首先针对疏水系统优化原则进行阐述,然后进行疏水系统的相关问题进行原因分析,并提出有效的解决方案和投资估算,希望能够在确保机组正常运行的前提下降低经济成本。
关键字:汽轮机;疏水系统;自动疏水器引言:目前某机组存在着导汽管及高压缸排汽管疏水阀内漏和轴封汽疏水管无疏水器的问题,准备在进行机组A级检修时对该机组导汽管及高压缸排汽管疏水系统进行改造,从而解决导汽管及高压缸排汽管疏水阀阀门外漏、内漏的问题,还有在轴封汽疏水管原设计未配置自动疏水器导致机组启动时,轴封汽管压力波动的问题。
针对此问题,下面让我们具体进行分析。
一、电厂汽轮机疏水系统优化原则电厂汽轮机疏水系统在进行优化时,需要通过一定的原则进行改造。
疏水系统设置是为了能够及时地排走系统内部存在的积水,从而能够有效提高机组的安全性。
因此,机组的安全应该放在第一位,在进行优化时有限考虑安全性能,然后在保证安全的情况下进行系统优化改造。
在充分保证系统安全的情况下,部分疏水如果能够取消就可以进行取消。
在进行疏水系统优化的过程中,可以将同等压力的两路及以上的疏水改造成一路,这样能够通过一个阀门就能够对其进行控制。
与两路疏水相比,一路的疏水内漏量会明显减少很多,从而可以达到降低经济成本的目的。
也可以在疏水气动阀门前面加装手动阀门,通过此种优化,能够在气动阀门内漏严重的情况下,通过手段阀门进行关闭,从而能够减少漏汽量,进而节约经济成本[[]]。
二、电厂汽轮机疏水系统问题分析该机组导汽管和高压缸排汽管疏水阀原来安装的设备是进口的球阀,它是一个气动阀,设计的压力为17.5MPa,设计的温度为545°,此气动疏水阀在这些年中的机组运行和使用过程中出现了以下几个问题:(一)阀门内漏首先,是阀门内漏的问题。
大型汽轮机停机的的疏水探讨
大型汽轮机停机的的疏水探讨⑥,11995年第2期大型汽轮机停机后的疏水探讨周余庆.(重庆赶电厂6soo53)7:爨轮…嘲Z口Yuqinff(Chongping,,PowerPlant.ChongqSng630053) keyWordsstegmturbinedrainvalveoileratlngmodethermalstress'汽轮机的启,停是l汽轮机运行中一项最重太的操作.启,停操作不当会直接影响机组的安全运行和机组的使用寿命.特别是高参数大型机组,由于缸体厚重,体积庞大,形态复杂,动静间隙小,在启,停中各部应刀和温度状况都要发生很大的变化,因而在整个启停过程中都潜伏着发生异常情况的危险.国产200MW机扭由予自动控制项目较少,启,停工作主要靠运行人员操作,因而开,停机中的监护工作就十分重要这里只就0MW机组在停机后的硫水问题作一个简要的探讨.高参数大型机组停机后,如果在金属温度较高对发生冷汽,冷水侵入汽缸,必然使上下汽缸产生较大的温差,造成汽缸,转子热挠曲变形,这种热变形会使间隙较小的轴封等处发生摩擦,使盘车运行恶化,声音,电流增大,甚至跳闸.因为高温状态下的转子在下侧接触到冷汽冷水时,局部受冷收缩,就会逐渐发生弯曲变形,如果此时能及时消除冷源,在盘车连续运行状况下,较大温差被消除,.转子的暂时热弯曲也就会恢复正常,否则,情况就会恶化.因为转子表面被冷却的局部在盘属材料收缩时,会受到未被冷却而温度较高材质的约束,从而产生很大的拉应力,寅l果这个拉应力超过了材料的屈服极限,金属就会产生拉伸塑性变形,从而造成大辅永久性弯曲.围绕l大型机组停机后的疏水问题,一直存在着两种眚珐:一是认为在杜绝了冷汽冷水源厝,可以打开本体疏水'一是认海为了防止冷汽冷水侵^汽靓,_l_不得打开本体疏水.一些技术资科电认为停机后不能开疏水.例如;原水种电力出版社发行的中级工教材"汽轮机设备蓬行技术在谈到一台苏制200MW机组情况时说:"……经多次试验表明,汽轮机停机后,立即将汽缸和抽汽管及再热蒸汽管疏水打l开,将其疏水通至扩容器,会使上下汽缸的温差明显增加.所以制造厂规定,停机后当高压缸进汽部分金属温度降到20O℃时,才可打开汽缸疏水门." (278页)因此,重庆电厂200MW机组在投运时规定,停机后杰体各疏水门应完全关闭,不得打开.《四川电力技术≯一3一l停机后大轴弯曲分析停机后,采取切实可行的措施防止冷汽冷水侵入汽缸是绝对必要的.但是只单纯强调不开疏水门却是值得商讨的问题,因为这一措施尚不完善,还有一些特殊情况未予考虑,比如;1)缸温商时,要防止冷汽冷水侵入汽缸,缸温低对(室温),也要防止热汽热水侵入汽缸,否则同样舍造成转子热弯曲的2)实际生产中,隔断阀门不严密的情况时有发生,一旦冷汽冷水漏八汽缸,而疏水门又不开,后果如何却没有考虑.3)认为停机后疏水门开不得,因而连高排逆止门前排漏斗疏水门也不开,认为自然冷空气会从该处进入汽缸,会造成大轴弯曲,这却是认识上的误解.停机后冷汽冷水侵入汽缸有以下三个方面;一是冷汽冷水经主,再热蒸汽管道从进汽通道进入汽缸;三是炉内余汽(再热,冷段管内余汽)或减温水,一级旁路漏来的余汽或冷水,经高排逆止门从排汽口侵入汽缸;三是经疏扩的疏水管路系统汽加热系统或汽封系统侵入汽缸.造成汽缶工变形,大轴热弯曲.实际上停机后,打开了各蒸汽管道上排大气与地沟疏水门,管内余汽已经排尽,因而从第一方面冷汽冷水进入汽缸的可能性不大,冷汽冷水多是从二,三方面漏^汽缸的.但冷汽冷水要侵入汽缸,还要有一个重要的条件,就是要有压力才能进入汽缸.例如,1985年2月18日,某电厂3机停机消缺,检修人员消除了汽加热系统阀门不灵活的缺陷后,将阀门留一定的开发,3炉上水时满水,(主蒸汽管内也进了水),当后来'3I炉点火起压后,发现胀差正值增大,盘车跳闸,电机燃毁,检查高压外缸上部为260%.下部为55℃,大轴挠度显着增大.分析原因就是锅炉满水后,主汽管内积术来彻底排除, 锅炉起压后,冷水经汽加热进汽门压进下夹层,使下缸温度从250"C降到5℃,上下温差遮200~C以上,汽缸收缩变形,转子严重热弯曲,动静部分摩擦而使盘车跳闸,被迫停止启动进行处理.这次故障虽然发生在开机前,怛冷水是在有一定压力后才进入汽缸的.而自然的室内空t与汽缸内部同在一个大气压力下,没有显着的压力差,如图l所示,PP.因山:Y一;'而是不会产生流速的,加之室内冷空气比重还略大于缸内热空气,由于高压缸内不是负压,因而开起高排前疏水防腐门,也不会从高排口进入冷空气.因此停机后打开该疏水门完全是没有问题的.同理,只要确证疏扩无冷汽冷水压力存在,开起汽缸本体疏水rJ 也是没有问题的.但是由于大型机组流经疏扩自{J疏水系统比较复杂,为防万一,开本体(汽缸及抽汽管道)疏水要慎重中级工教材上提到的情况,就有阀门不严密问题,在同时打开了本体与再热汽管道疏水到疏扩时, 使停炉不久的余汽返回汽缸内所致.如果改进系统与操作就可能不会出现这种情况. 2及时排出进入汽缸的冷汽冷水重庆电厂'31机在投运初期,由于执行停机后不开疏水门,连续几次造成大轴挠度一3B一1995年第2期增大,均是采取了疏放水的措施,才避免了严重的不安全情况发生.这个问题在事后来分析当然是简单的,但当时.汽缸进冷汽冷水与否是不能直观的,要认真分析下结论,才能采取这一安全措施.造成太轴挠度增大的原因是什么呢?主要就是高排逆止门关不严,从炉内或高旁漏来的冷汽冷水侵入高压缸内所致.例如1986年11月l6且,'3l机22:l8第7次停机后,于17:30大轴挠度由0.08ram 逐渐增大No.12mm,根据分析,是汽缸进入了冷汽,进将高排前及缸体疏水门开起, 并从高排前防腐门放出大量积水,半小时后挠度逐渐恢复正常,同耐关闭疏水门.到5:20,大轴挠度义增大No.15mm,又开起上述疏水门恢复正常.经检查发现是高排逆止门关不严所致.同年l2月1日24h,'81机第8次停机,当时提醒了值班司机在4h左右要注意大轴挠度及采取的安全措施,不出所料,于l2月2日4{45,火轴挠度增大到0.15ram,开疏水后恢复正常.同年12月l6日,31机第9次停机后,在确证疏扩无回汽的情况下,将本体各路疏水门打开部分,将高排前防腐门垒开.高排后防腐门开少许消压.此次停机大轴未出现过热弯曲现象.1987年元月18日2h,31机第lO次停机后,将高排逆止rJ加压关闭,疏水未开.当日12h后,大轴挠度又逐渐增大,到l6:3O已达0.2ram,立即打开术体及高排前排漏斗疏水门,但挠度继续增加,盘车电流在6—3OA范围内波动,17h许,盘车噪音继续恶化,电流波动达4OA左右,挠度最大时达0.45mm.因挠度表测点在2轴承处,而当时高压缸内转子最大弯曲处的挠度值还要大得多,挠曲后的大轴甚至撞亮了车头危急遮断器的动作指示灯.也就是说,辛头短轴挠曲已超过O?5到1?Omm范围(见图二示意图).到7;35后,盘车电流开始明显下车头指示灯圈2危患磕裔指示矗动作示意阳降,l7;58已基本恢复正常,但天轴挠度直到2O:30经过4h的连续盘车才调整过来恢复正常.由于此次停机后,虽使高排逆止门减少了漏泄,但仍然在漏,又较长时间未进行疏放水,冷汽冷水积结在汽缸下部,造成转子热弯曲增大,幸亏较为及时的进行了疏放水,才保证了'31机的安全.经过这次事情后,对漏入汽缸的冷汽冷水二定要及时排出"这样一个问题,有了较明确的认识.3停机后开起高排前防腐门针对高排逆止等关不严的问题,停机后将其排漏斗疏水门开起,是防止冷汽冷水从高排口倒入汽缸的关键.其作用有三个,一是防腐并排尽管内及缸内余汽}二是将高排逆止门漏来的冷汽冷水及时排出,不使其倒入缸内}三是可以作为观察信号管使用,停机后发现经常有水流出时,就一定要我出原因并消除它.这一措施该厂…直坚持沿用至今.现在,'81,'32机停机后,在关严各汽水系统阀门,隔断有关与疏扩的汽,水源后,垒开防腐门及排大气疏水门.词时,不管有无冷汽冷水返回汽缸,均将缸体,各抽汽管道,导汽管及高排逆止门前琉水门开起排尽内部余汽,5min后关闭,而高排前防Ⅸ四川电力枝术*一3g一热力系统节能分析与改进王运民(安徽淮北发电厂235000)7如f- Analysisandimprovement过热器减温水系统miCSvstsm矿Ⅱ口Yunmi~(HuaibeiPowerPlant,Anhui23500o) keyWordsheatsystemsanalysisec0n0myofenergyc0n8u1nptionmodification准jE电厂'5汽轮机为N2O0一l30—535/535型机组.为提高其运行经济性,本文应用等效热降法对该机组的琉水冷却器系统,低加疏水泵系统,过热器减温水系统及锅炉袭1基确敷措汇总排污利甩系统的运行情况进行定量分析,并提出具体的改进方案.1基础数据加热器序号抽汽效率J0.0993060.1B8010.198860.257520.284780.314170.430340.46551抽份额给冰在加热蒸汽在加热器疏水在加热器嘶中熄升中放热量pI中放热量,I(kJ/kg)(kJ/kg)腐门开起则不关,作为观察用.为慎重起见,本体疏水每隔4小时排放一次,直到高压内缸温度降到300~C以下才金开.这样执行后,两台200MW机组共停机已达,i00多次,没有再发生大轴热弯曲情况.1989年2l5.711B.3147.7l0B.8】554修订运行规段时,专门增写了汽输机大轴弯曲"一节内容,并将以上停机后的疏放水等五条措施纳入了停机后的安全措施中去为该厂两台200MW机组停机后的安全提供了技术保证.瓤黼进OO0000OO1284667B。
如何管理好300MW汽轮机疏水系统
如何管理好300MW汽轮机疏水系统摘要:在火力发电厂中,汽轮机众多疏水构成了复杂的疏水系统。
疏水应及时排放并进行回收利用,以减少工质和热量的损失。
疏水可分为“启动性疏水”和“经常性疏水”,经常性疏水包括“管线疏水”和“过程疏水”。
应该做好几方面的工作,管理好汽轮机疏水系统,既可以取得一定节能效益,也提高机组的安全性和经济性。
关键词:汽轮机;疏水系统;管理引言在火力发电厂中,300MW汽轮机各种疏水数量众多,有的达500多处(引进机组),少的也有100多处,构成了复杂的疏水系统。
汽轮机疏水是蒸汽在管道或换热器内发生热交换放热而产生的凝结水。
疏水应及时排放,否则不仅吸收管内蒸汽热量、影响蒸汽流动,严重的将会产生管道水击现象;或使换热器换热面积减小,降低换热效果,甚至倒水至汽轮机引起水冲击,造成严重后果。
疏水排放后应尽可能进行回收利用,以减少工质和热量的损失,降低发电能耗和补水率。
为了排放这些疏水而安装的管道和阀门就组成了疏水系统。
汽轮机疏水可分为“启动性疏水”和“经常性疏水”。
启动性疏水主要是指在机组启、停过程中,蒸汽在管道、缸体内由于压力、温度变化产生的凝结水。
经常性疏水又包括“管线疏水”和“过程疏水”。
管线疏水是不参与蒸汽工艺过程的(并联应用),是蒸汽传输过程中由于热量的损失在某些部位产生凝结水的疏水,需要及时、连续排走,如辅助蒸汽系统的疏水。
而过程疏水是参与蒸汽工艺过程的(串联应用),是利用蒸汽放热来加热其它工质而产生的疏水,这些疏水还要进行连续调节以维持疏水水位,如高、低压加热器的疏水[1]。
汽轮机疏水系统在火电厂中有一定的节能潜力,管理好汽轮机疏水系统将起到较大的节能效益作用,也是保证汽轮机安全运行的重要组成部分,还对降低机组发电能耗,帮助实现我国的节能减排目标。
管理好汽轮机疏水对机组的安全性和经济性有着重要作用,在实际生产运行中,为了管理好汽轮机各种疏水,应该做好以下几点:一、根据汽轮机疏水系统现场实际布置和使用情况,改造汽轮机疏水系统。
汽轮机疏水系统问题分析
汽轮机疏水系统问题分析摘要:汽轮机疏水系统是指汽轮机高压缸、中压缸、低压缸、前后汽封、主汽门、调门等设备及相关蒸汽管道的最低点设置疏水管,在机组启动、停机、暖机等过程中,通过打开相应的疏水阀,排尽汽轮机设备及管道积水,避免汽轮机汽缸倒进水或冷蒸汽倒流,确保汽轮机安全稳定运行。
同时,为了提高机组运行的节能效果,疏水系统的排放应尽可能减少热量损失。
文章分析了汽轮机疏水系统问题,包括设计要求,汽缸壁温上下温差大、中调门后扩散器呈现裂纹、转子动叶损伤或转速失控等,最后提出了解决措施。
关键词:汽轮机;疏水;温差引言目前,机组容量越来越大,对应的汽轮机主蒸汽压力、温度等参数越来越高,汽轮机的构造和控制更加复杂,从而汽轮机疏水系统设计难度提高很多。
最近由于汽轮机疏水系统引起的问题经常发生,比如汽缸壁温上下温差大、一抽至三抽等抽汽管道有冷凝水、疏水管道和设备及主管道接口附近出现裂纹等,有必要研究以上问题产生的原因,并提出对应的解决办法,避免汽轮机设备受到损坏。
1汽轮机疏水系统设计要求汽轮机疏水系统的运行工况不仅制约汽轮机安全运行,而且影响汽轮机暖机时间。
所以疏水系统设计必须符合标准规范,尤其符合以下几点要求:(1)各疏水支管并入疏水母管时,各疏水支管接入点应根据疏水压力的高低区别对待。
按照疏水点压力从高到低的顺序,接入点距离疏水扩容器应从远到近。
且疏水支管和母管的接入角度为45℃,以便确保疏水通畅。
(2)顺着介质流动方向,各疏水管道有一定坡度,防止管道出现积水现象。
(3)汽轮机启动前,需要暖机和暖管,打开各疏水支管高、中、低压段上的疏水阀门。
当汽轮机带负荷至10%额定负荷时,关闭高压段疏水阀;当汽轮机带负荷至20%额定负荷时,关闭中压段疏水阀;当汽轮机带负荷至30%额定负荷时,关闭低压段疏水阀。
(4)主蒸汽管道疏水和设备本体疏水必须分别接入不同的疏水扩容器。
要清楚了解汽轮机跳机后哪些管道或者设备会产生真空与非真空,防止积水或冷凝蒸汽回流至汽轮机室。
汽轮机疏水系统
3、汽轮机所有的疏水阀启闭须遵守以下几点
疏水系统包括
1、在汽轮机停机后到被冷却前疏水阀一般要一直打开(特殊情况要 闷缸)
2、机组启动和向轴封送汽前必须打开 3、高压疏水在机组负荷升至10%额定负荷前保持开启状态,高于 10%额定负荷关闭 4、中压疏水在机组负荷升至20%额定负荷前保持开启状态,高于 20%额定负荷关闭 5、低压疏水在机组负荷升至30%额定负荷前保持开启状态,高于 30%额定负荷关闭
疏水扩容器介绍
1、本疏水扩容器配置两只13m³的矩形容器组成,一只 主要接纳汽轮机本体及管道疏水、低加事故疏水、中压缸 启动疏水,另一只主要接纳高加事故疏水、除氧器溢流疏 水、低加事故及正常疏水、辅汽疏水等。疏水进入扩容器 后,经消能装置,并在扩容器巨大空间内闪蒸扩容、喷水 减温,使其能级降至凝汽器允许值,消能后的蒸汽和水分 别排入凝汽器喉部和热井内,既保证了机组及管道疏水畅 通,又确保凝汽器的内部零件不被损坏,还能回收汽轮机 工质 。 2、主要特性参数: 型号: SW-1300型 设计压力:0.2MPa 设计温度: 300℃ 工作介质: 水、蒸汽 容积: 13m³
疏水扩容器安装
1、矩形疏水扩容器也称为挎蓝式疏水扩容器,安装在凝汽器汽机侧 和发电机侧。 2、位于汽轮机侧的疏水扩容器,设有8个疏水接管,用于接纳汽轮机 本体及管道疏水,5#低加事故疏水,中压缸启动疏水。各疏水接管 的接口不得互换。 3、位于发电机侧的疏水扩容器,,用于接纳6#、7#、8#低加危急 疏水,8#低加正常疏水,辅汽疏水,除氧器溢流疏水,小汽机本体 疏水,1#、2#、3#高加危急疏水等。各疏水接管接口不得互换。 4、各疏水支管接入疏水母管时,必须按各疏水点的疏水压力分类排 列,对于接入同一母管上疏水压力较高者须离疏水扩容器相对较远处 接入,压力较低者应靠近疏水扩容器接入,且各支管应与母管成45° 夹角接入,方向向着扩容器,以保证各疏水点疏水畅通。 5、扩容器安装就位,管路连接好后与凝汽器一道做密封性试验。试 验时扩容器必须加临时支撑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
330MW汽轮机疏水系统设计手册—GBV WR 2985 共12页翻译/编制:杨舰 98年7月20日校对:朱文贵 98年8月20日编辑:杨舰 98年9月10日打字:杨舰 98年9月15日审定:年月日批准:年月日北京重型电机厂GBV WR 2985汽轮机疏水系统目录0.目录 (1)1.系统作用 (2)2.系统简介 (2)3.运行 (3)4.控制与仪表监测 (3)5.动力不足或控制流体不足时情况分析 (5)6.与其它系统的联接 (5)逻辑符号及流程图 (7)汽轮机疏水系统1.系统作用疏水系统有以下作用:●在每个汽缸蒸汽室和蒸汽管道,包括通向给水加热器的抽汽管道内,任何位置外的水都能疏出。
●起动时加热汽轮机内的金属部件到饱和温度以上。
●中压缸起动时,使高压缸维持在真空下。
●低负荷运行时,通过喷水控制低压缸排热。
2.系统简介关于电动部件,请参见电力辅助设备清单。
21.常用疏水管路高压外缸疏水管路:GPV 006 T保证高压外缸低点处的冷凝水的排出。
疏水通过自身重力流向高压缸排汽口。
中压外缸疏水管路:保证中压外缸低点处的冷凝水的排出。
疏水通过自身重力经过蒸汽管道到6#给水加热器。
高压缸排汽管疏水管路:AC0 004 T汽轮机正常运行时,高压缸排空阀关闭,疏水通过逐级自流管路GPV 032 PU排出,使管路维持在饱和温度下。
逐级自流管路配GPV HV 112、止回阀GPV HV 132和旁路阀GPV HV 192。
22.启动用疏水管路每个启动用疏水管路都配套装有两个阀门:手动阀、受电磁阀控制的单功能气动阀。
手动阀装在气动阀前面,确保隔离。
高压缸排汽管道只配有一个电动阀,是因为它与汽轮机运行没有直接联系,不是真正的疏水阀。
●主蒸汽管道疏水:ACO 001 T这些疏水管的控制在ACO系统里介绍。
●高压调节阀逆流疏水管:GPV 001 T该疏水管收集主蒸汽室内底部的冷凝水,在启动时暖管暖机。
装有一手动阀GPV HV 103、一气动阀GPV UV 003和一个疏水节流孔板GPV 003 DI。
●高压调节阀顺流疏水管:GPV 002 T该疏水管收集高压缸进汽口与主蒸汽室之间的主蒸汽管内底部的冷凝水。
装有一手动阀GPV HV 104、一气动阀GPV UV 004和一个疏水节流孔板GPV 004 DI。
●高压缸第一级自流疏水管:GPV 005 T该疏水管在启动时收集高压缸第一级流出的冷凝水。
装有一手动阀GPV HV 110、一气动阀GPV UV 010和一个疏水节流孔板GPV 010 DI。
●高压排汽逆止阀顺流疏水管:ACO 003 T该疏水的控制在ACO系统里介绍。
●再热管疏水:ACO 002 T该疏水的控制在ACO系统里介绍。
●再热截流阀逆流疏水:GPV 003 T用于启动时加热中压蒸汽室。
装有一手动阀GPV HV 117、一气动阀GPV UV 017和一个疏水节流孔板GPV 017 DI。
●中压顺流截止阀疏水:GPV 004 T该疏水管将截止阀与中压缸进汽段较低出的凝水收集。
装有一手动阀GPV HV 118、一气动阀GPV UV 018和一个疏水节流孔板GPV 018 DI。
●抽汽逆止阀逆流疏水:将蒸汽管道中的疏水排向给水加热器,防止水倒流流入汽轮机。
由给水加热系统控制(ABP,ADG,AHP)。
23.高压缸排空疏水在中压缸启动时允许高压缸内形成并保持真空。
装有一个电动阀GPV UV 512、一个压力开关GPV PSH 012和一个疏水节流孔板012 DI。
24.低压排汽喷水装置低负荷运行时,凝结水抽出沿低压末级叶片出汽周围喷出,以吸收末级叶片产生的热量。
该系统包括:●流速调节孔板 GPV 043 DI●气动隔离阀 GPV UV 040●两个过滤网GPV 040 FI和GPV 041 FI以防止喷水喷嘴阻塞,每个过滤网又分别配有顺流逆流隔离阀(GPV 140 和GPV HV 142供GPV 041 FI,GPV 141和GPV HV 143供GPV 041 FI),这样在电厂运行中可通过互换各自的隔离阀使两个过滤网互换位置。
●两个节流孔板以平衡喷嘴前后的水流量。
3.运行31.正常运行机组负荷超过20%时,所有启动疏水管路受控制台上的开关GRE HSN 001而关闭。
高压缸排空阀关闭。
32.启动时疏水管路全部打开。
排空阀的位置取决于高压缸的温度。
若高压缸是冷却的,排空阀保持关闭。
高压缸则在升速过程中由再热蒸汽加热。
再热蒸汽通过高压排汽逆止阀进入旁路系统。
若高压缸已足够热,排空阀打开使高压缸内形成真空。
在高压切换时排空阀是关闭的。
33.减负荷─厂用电运行机组负荷降至低于20%时,启动疏水管路全部自动打开。
高压切换完成后,高压调节阀关闭,高压排空阀打开,在高压缸内形成真空。
34.汽轮机跳闸此时高压真空阀打开,启动疏水管路全部打开,高压缸内形成真空。
35.系统阀门操作试验规定做蒸汽阀门试验时,相关疏水管路都要打开。
4.监控与仪表监测41.逻辑控制方式控制室内控制台:GPV HSN 001:疏水管路开关“ON/OFF”42.逻辑图表(见754R90274)421.启动疏水管路的操作高压第一级顺流疏水管路GPV UV 010:阀门在以下几种情况下打开:●手动操作(GPV HSN 001)●汽轮机跳闸后●机组负荷降至低于20%机组负荷超过20%时,通过人工切断开关(GPV HSN 001)到OFF关闭阀门。
主蒸汽室疏水管路GPV UV 003与UV 004不进行截止阀门密闭性试验时,在下列情况下阀门打开:●手动开启(GPV HSN 001)●汽轮机跳闸后●机组负荷降至20%以下●在主蒸汽阀进行常规试验时在以下几种情况下阀门是关闭的:●若机组负荷超过20%且不进行主蒸汽阀常规试验时,通过疏水系统开关“OFF”状态(GPV HSN 001)关闭阀门。
●进行截止阀密闭性试验。
再热蒸汽室疏水管路:GPV UV 017与018不进行截止阀门密闭性试验时,在下列情况下阀门打开:●手动开启(GPV HSN 001)●汽轮机跳闸后●机组负荷降至20%以下●在再热蒸汽阀进行常规试验时在以下几种情况下阀门是关闭的:●若机组负荷超过20%且不进行再热蒸汽阀常规试验时,通过疏水系统开关“OFF”状态(GPV HSN 001)关闭阀门。
●进行截止阀密闭性试验。
422.高压真空阀的操作GPV UV 512高压真空阀在以下几种情况下是打开的:●高压外缸温度高于190°C或汽轮机转速超过1020rpm,高压真空阀没有接到关闭指令。
●汽轮机跳闸后(开启命令只持续一分钟)。
●厂用电负荷运行后(开启命令只持续一分钟)。
高压真空阀在以下几种情况下是关闭的:●汽轮机转速低于1020rpm,且高压外缸温度低于190°C。
●由于高压缸真空阀关闭命令(GRE US 084B)。
高压真空阀位置不符:在高压缸真空阀开关命令(开或关)与阀的位置(开或关)不相符合时,经过一段延时后安全系统跳闸,控制室内显示报警信号:“高压真空阀位置不符”高压缸真空外泄:压力开关GPV PSH 012被驱动时,经过一段延时后安全系统跳闸,控制室内显示报警信号:“高压缸真空外泄”423.高压排汽逆止阀的操作:以下几种情况下,高压排汽逆止阀在电磁阀VVPUV001的协助下关闭:●高压缸真空阀没有接到关闭指令(GRE US 084B)。
●汽轮机跳闸后(命令只持续一分钟)。
●厂用电负荷运行后(命令只持续一分钟)。
由于高压缸真空阀关闭命令(GRE US 084B),高压排汽逆止阀将能量传给电磁阀VVP UV 001而能自由移动。
424. 高压排汽逆止阀旁路用于高压外缸温度低于190°C或汽轮机转速低于1020rpm冷启动时,旁路系统只在汽轮机运行时才被打开。
在以下几种情况下是关闭的:●汽轮机不在运行。
●当汽轮机转速高于1020rpm或高压外缸温度高于190°C,高压缸真空阀没有接到关闭命令时。
旁路开关阀切换至“OFF”70秒后,位置开关“旁路阀关闭”仍未被激活时,控制室显示报警信号,汽轮机安全系统收到跳闸命令“高压缸旁路阀错位”。
425.喷水阀的操作GPV UV040机组负荷降至低于20%时,电磁阀失去磁性,喷水阀自动打开。
机组负荷超过20%后,喷水阀自动关闭。
若发出打开命令10秒后,喷水阀位置开关仍未被激活,控制室显示报警信号“喷水阀位置不符”。
426.报警信号简介GPV UA 001/B 高压缸真空阀失效●高压真空阀位置不符。
●高压真空外泄。
●高压逆止阀旁路不符。
GPV UV 002/R 低压喷水阀失效●喷水阀不符。
5.动力不足或控制流体不足时情况分析51.压缩空气不足气动疏水阀打开。
高压排汽逆止阀在外力协助下关闭。
52.220V交流控制电压不足真空疏水阀打开。
高压排汽逆止阀在外力协助下关闭。
53.380V交流电压不足若高压缸在运行中,则没有反应(高压缸真空阀位置不变)。
若在减负荷或厂用电负荷运行下,由于高压缸真空阀在70秒后位置与命令不符,会使汽轮机跳闸。
6.与其它系统的联系61.与汽轮机监控系统的联系(GMA)62.与压缩空气系统的联系(SAP)63.与汽轮机控制系统的联系(GRE)64.与汽轮机安全系统的联系(GSE)65.与疏水管路复位系统的联系(ACO)66.与VVP系统的联系逻辑图表符号高压旁路逆止阀“位置不符”。