第3章静态场的边值问题及解的唯一性定理
电磁场与电磁波6静态场边值问题的求解
( An ' cos K n x Bn ' sin K n x)(Cn ' chKn y Dn ' shKn y )
n 1
4)利用给定边界条件确定积分常数,最终得到电位函数的解。 a ) y轴 x 0 0 y a 0
b ) x轴 y 0 0 x a 0 0 C0 0 Cn 0 Cn c) x a 0 y a 0 B0 0 Bn 0
400
1 n n sin xsh y n1 nshn a a
接地金属槽内的等位线分布
(n 1, 3, 5 )
三、分离变量法:柱坐标系中
电位微分方程在圆柱坐标系中的展开式为
1 1 2 2 2 0 r 2 2 r r r r z
( ) A sin m B cosm
考虑到 k m,以及变量 的方程式,则前述方程可表示为
1 d dR m 2 1 d 2 Z 0 r 2 2 Rr dr dr r Z dz
三、分离变量法:柱坐标系中
上式左边第一项仅为变量 r 的函数,第二项仅为变量 z 的函数,因
(6 )
(7 )
1 d 21 2 K n 1 dx2
1 d 2 2 2 K n 2 dy2
Kn 2 0
(8)
3)解常微分方程,将各特解线性叠加得通解。
1 ( x) 2 ( y) ( A0 B0 x)(C0 D0 y)
( An chKn x Bn shKn x)(Cn cos K n y Dn sin K n y )
1 d 2 2 k d 2
电磁场与电磁波第三章静态场及其边值问题的解PPT课件
解法的优缺点
分离变量法的优点是简单易行,适用于具有多个变量 的偏微分方程。但是,该方法要求边界条件和初始条
件相互独立,且解的形式较为复杂。
有限差分法的优点是简单直观,适用于各种形状的求 解区域。但是,该方法精度较低,且对于复杂边界条
件的处理较为困难。
有限元法的优点是精度较高,适用于各种形状的求解 区域和复杂的边界条件。但是,该方法计算量大,且
05 实例分析
实例一:简单电场的边值问题求解
总结词
通过一个简单的电场边值问题,介绍如 何运用数学方法求解静态场的边值问题 。
VS
详细描述
选取一个简单的电场模型,如平行板电容 器间的电场,通过建立微分方程和边界条 件,采用有限差分法或有限元法进行数值 求解,得出电场分布的解。
实例二:复杂电场的边值问题求解
恒定磁场与准静态场的定义与特性
恒定磁场
磁场强度不随时间变化的磁场。
准静态场
接近静态场的动态场,其特性随 时间缓慢变化。
特性
恒定磁场与准静态场均不产生电 磁波,具有空间稳定性和时间恒
定性。
恒定磁场与准静态场的边值问题
边值问题
描述场域边界上物理量(如电场强度、磁场强度)的约束条件。
解决边值问题的方法
静电屏蔽
在静电屏蔽现象中,静态 场用于解释金属屏蔽壳对 内部电荷或电场的隔离作 用。
高压输电
在高压输电线路中,静态 场用于分析电场分布和绝 缘性能。
02 边值问题的解法
定义与分类
定义
边值问题是指在一定的边界条件下,求解微分方程或积分方程的问题。在电磁场理论中,边值问题通常涉及到电 场、磁场和波的传播等物理量的边界条件。
特性
空间均匀性
静态场的解法
(3)混合边值问题,又称为第三类边值问题, 它是第一类和第二类边值问题旳混合型。
式中常数Am、Bm由边界条件决定。 例3.8 无限大介质外加均匀电场,在介质内有一种半 径为a旳球形空腔,介质旳介电常数为ε,求空腔内、 外旳电位分布及电场强度。
解 本题为球坐标系中具有轴对称性旳二维场问题 在空腔内旳通解为
在介质中旳通解为
下面利用边界条件拟定各个系数。 所以B1=0 ③ 系数A1、C1、D1能够由r=a时旳边界条件求出,当 r=a时由φ1=φ2 所以能够得出
所以k必须为整数,令k=n,于是式(3.4.7)变为
(3.4.8) 用n替代k,并把式(3.4.5)改写为如下形式
(3.4.9)
它是一种欧拉方程,其解为
(3.4.10)
式中旳系数由边界条件拟定
(3.4.11)
球坐标系中旳拉普拉斯方程为 ▪ 2.在球坐标系旳分离
变量法 在球坐标系中具有轴对称旳二维场旳解
按照梯形算法,每一种小梯形区间宽度为
,
第n个梯形采样点为
则 然后编写程序计算数值解。
2.有限差分法
在一种闭合边界L所界定旳平面域,其定解问 题可表述为
首先是把求解旳场域离散化,即在求解旳场域划提成 网格,网格旳划分有许多种措施,最简朴旳是正方形 网格划分,如图3.6.2所示。然后对偏微分方程进行 离散化,对正方形网格可采用五点差分格式。在二维 场域中取一点P,则沿x轴方向并经过P点旳直线上任 意一点旳数值ux用泰勒公式展开为
电磁场公式整理
第一章标量三重积: 矢量三重积方向导:梯度:计算公式:矢量线方程:通量:散度:散度计算公式: 散度定理(高斯定理): 旋度:斯托克斯定理: 拉普拉斯运算:第二章电流连续性方程微分形式:对于恒定电流场: )()()(B A C A C B C B A⨯⋅=⨯⋅=⨯⋅CB A BC A C B A )()()(⋅-⋅=⨯⨯grad nu u en∂=∂zy x x y x∂∂+∂∂+∂∂=∇e e e ),,(d ),,(d ),,(d z y x F zz y x F y z y x F x z y x ==00cos cos cos |lim M l u u u u ul lx y z αβγ∆→∂∆∂∂∂==++∂∆∂∂∂d d d n SSψψF S F e S==⋅=⋅⎰⎰⎰ττ∆⋅=⎰→∆SSd F div F lim 0z F y F x F Sd F div z y x S ⋅∇=∂∂+∂∂+∂∂=∆⋅=⎰→∆ττF lim⎰⎰⋅∇=⋅VSVF S F d dmax ]rot [F e F n n =⨯∇zy x z y xF F F z y xe e e F ∂∂∂∂∂∂=⨯∇=⎰⎰⋅⨯∇=⋅SCS F l F d d )()(2F F F ⨯∇⨯∇-⋅∇∇=∇uu 2)(∇=∇⋅∇0d ⎰=⋅SS J 、0=⋅∇JtJ ∂∂-=⋅∇ρ静电场散度:高斯定理的积分形式: 静电场旋度:毕奥萨法尔定律:任意电流回路 C 产生的磁感应强度恒定磁场散度: 恒定磁场是无散场恒定磁场旋度: 恒定磁场是有旋场,它在任意点的旋度与该点的电流密度成正比,电流是磁 场的旋涡源。
极化强度:----------电介质的电极化率电位移矢量:电介质中高斯定理的积分形式: 磁化强度矢量: 磁化电流体密度: 真空中安培环路定理推广到磁介质中: 磁场强度 :M B H-=0μ麦克斯韦方程组的微分形式传导电流和变化的电场都能产生涡旋磁场。
《电磁》第三章 静态场及其边值问题的解
选参考点
令参考点电位为零
电位确定值(电位差)
选择电位参考点的原则 应使电位表达式有意义。
两点间电位差有定值
应使电位表达式最简单。若电荷分布在有限区域,通常取无
限远作电位参考点。
同一个问题只能有一个参考点。
广东工业大学
物理与光电工程学院
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
10
例 3.1.1 求电偶极子的电位. 解 在球坐标系中
(P) E0 r
P
r
O
z E0
在球坐标系中,取极轴与 的E方0 向一致,
即
,E则0 有 ez E0
(P) E0 r ez r E0 E0r cos
在圆柱坐标系中,取 E0与x 轴方向一致,即 E0 exE0 ,而 r e ez z ,故 (P) E0 r ex E0(e ez z) E0 cos
(6) 求比值 C q U,即得出所求电容。
广东工业大学
物理与光电工程学院
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
22
例3.1.4 同心球形电容器的内导体半径为a 、外导体半径为b,其 间填充介电常数为ε的均匀介质。求此球形电容器的电容。
解:设内导体的电荷为q ,则由高斯定理可求得内外导体间
广东工业大学
物理与光电工程学院
电磁场与电磁波 第3章 静态电磁场及其边值问题的解
20
1. 电容 电容是导体系统的一种基本属性,是描述导体系统 储存电荷能
力的物理量。
孤立导体的电容
孤立导体的电容定义为所带电量q与其电位 的比值,即
C q
两个带等量异号电荷(q)的
1 U
E
2 0
导体组成的电容器,其电容为
第3章 静态电磁场及其边值问题的解剖析
ε
(Poisson方程)
(2)
该式即为静电位满足的微分方程— Poisson方程。Poisson 方程和上述方程组等价,故它也唯一确定了静电场。
在无电荷分布区域
2 r 0
(Laplace方程)
求解Poisson方程或Laplace方程时,解电位中的积分常 数需要应用电位的边界条件确定:
第三章 静态电磁场及其 边值问题的解
3.1 静电场分析
1. 基本方程
微
D ρ
分
形
或
积 分
SD dS V ρdV
形
式 E 0
式 l E dl 0
这组方程揭示静电场的基本性质:有散、无旋、保守性
2. 边界条件
eˆn E1 E2 0 或
E1t E2t
eˆn D1 D2 S
1 r2
d dr
r2
d
dr
0
r
c1 r
c2
c
c1、c2待定积分常数。
边界条件:
求解区域的边界是r=a
和r=的两闭合球面
① r a, U
② r , 0
利用条件 1得 c1 aU 利用条件 2得 c2 0
故解 r aU
r
5. 导体系统的电容
电容是导体系统的一种基本属性,它是 描述导体系统储存电荷能力的物理量。任何导体和导体之 间以及导体和大地之间都存在电容。
-E0
r
eˆz
rE0
E0r cosθ
在柱坐标系中,取x轴与电场方向一致,则
P
-E0
r
eˆx E0
eˆρ ρ eˆzz
E0 cos
o
E0
在坐
点
第3章静态场的边值问题及解的唯一性定理
l 2π
ln
r0 r
l 2π
ln
1 r
C
1)长直线电荷与接地的长直圆柱导体平行,求圆柱外电位分布
在圆柱与线电荷之间,在圆柱内离轴线的距离b 处,平行放置一
根镜像线电荷 , 代替圆柱导体上的感应电荷. l
第3 章
若令镜像线电荷 产 生的电位也取相同的 l
作r0为参考点,则
及l
在 圆柱面上 P 点共同产生的电位为
R
l
h
R′
x
-h
l ln x2 (z h)2 , z 0
l′
2 x2 (z h)2
均匀带电直线的电位分布
z 0,R R z0 0
l ln R C l ln R0
2
2 R
显然,满足边界条件。所以,原问题不变,所得的解是正确的。
第3 章
例3. 点电荷对相交半无限大接地导体平面的镜像 如图所示,两个相互垂直相连的半无限大接地导体平板,点
3、对于均匀分布在球面上的-q'电荷,可用另一个镜像电荷q"= q' 代替,但必须位于球心。
第3 章
结论:点电荷q对非接地导体球面的镜像电荷有两个:
镜像电荷1: 电量:q ' a q
位置: d ' a2
d
镜像电荷2: d
电量: q '' q ' a q
d
r r'
q O
'' d'
q' d
q
4 0 r
0
q q
即像电荷q'与原点电荷q电量相等,电性相反;用q'代替了
导体上的感应电荷。
在z>0区域内,P点的电位为
电磁场与波第3章 静态电磁场及其边值问题的解
静态电磁场及其边值 问题的解
时变情况下,电场和磁场相互关联,构成统一的电磁场 当场源不随时间变化时,激发不随时间变化的静态场 静态情况下,电场和磁场由各自的源激发,且相互独立
3.1 静电场分析
3.1.1 静电场的基本方程和边界条件
基本方程
D d S
S
dV
V
E d l 0
M P
E d l
rQ rPΒιβλιοθήκη Q ME d l
l
2 0 rQ rP
Q M
r r
2
d r
rQ
M
l
2 0
1 r
dr
l
2 0
ln
如果选择参考点在rQ=∞,得P=∞,显然不合理。 如果选择rQ=1,得 P
O
rP
P
l
2 0
ln
1 rP
,显然这种形式最简单。
,
D2
S 0b 0
最后得
1 ( x ) 2 ( x) 0a S 0b 0a
S 0 (a b)
(0 ≤ x ≤ b ) (b ≤ x ≤ a )
所以 D1 0
C 2 a D2 0 C1b D1 C 2 b D2 C 2 C1
d 1 ( x )
2
dx
2
2
0,
(0 x b)
y
S0
d 2 ( x) dx
2
1 ( x ) 2 ( x)
0,
(b x a )
o
b
a
x
方程的解为 1 ( x ) C1 x D1
《电磁场理论》第三章 静态场边值问题的解析解1
2
除 q点 外
(3.2)
边界条件为:
R , 0 z 0, 0
(3.3) (3.4)
在 ( 0 , 0 , h ) 处放一镜像电荷 q q 来代替导体 表面上感应电荷的作用, 并将 z 0 区域换成真空。 判断能否代替的标准是看代替后在 z 0 区域内所 产生的场是否仍满足方程(3.2)和边界条件(3.3)、 (3.4)。
也满足式(3.4)的边界条件。 在 z 0 的区域内的电位为
75
q 4 0
(
1 R
1 R
)
q 4 0
(
1 x y (z h)
2 2 2
1 x y (z h)
2 2 2
)
(3.6)
式(3.6)既满足方程(3.2) ,又满足边界条件式(3.3) 、 (3.4) ,由解的唯一性定 理可知,它就是原问题所求的电位解。 为了更好地理解镜像法的物理含意,我们对此例再稍加讨论。由式(3.6)可求出上半 空间的电场为
2
和
2
取两解之差 ,在 V 内 一定满足拉普拉斯方程
2
( ) 0
n
2
2
2
利用格林第一恒等式,
(
V
2
)dV
Ñ
S
dS
令式中的 ,得
S S 1 面上有
n
n
n
0 ,所以由式(3.1)仍然可得出
(
V
) dV 0
电动力学 第三章 静态电磁场及其边值问题的解
最后得
所以
第3章 静态电磁场及其边值问题的解
18
3.1.3 导体系统的电容与部分电容
电容器广泛应用于电子设备的电路中: • 在电子电路中,利用电容器来实现滤波、移相、隔直、旁
路、选频等作用; • 通过电容、电感、电阻的排布,可组合成各种功能的复杂
电路; • 在电力系统中,可利用电容器来改善系统的功率因数,以
减少电能的损失和提高电气设备的利用率;
第3章 静态电磁场及其边值问题的解
19
1. 电容 电容是导体系统的一种基本属性,是描述导体系统 储存电荷
能力的物理量。
孤立导体的电容
孤立导体的电容定义为所带电量q与其电位 的比值,即
两个带等量异号电荷(q)的导 体组成的电容器,其电容为
电容的大小只与导体系统的几何尺寸、形状和及周围电介质 的特性参数有关,而与导体的带电量和电位无关。
将
两端点乘 ,则有
上式两边从点P到点Q沿任意路径进行积分,得
电场力做 的功
关于电位差的说明
P、Q 两点间的电位差
P、Q 两点间的电位差等于电场力将单位正电荷从P点移至Q 点 所做的功,电场力使单位正电荷由高电位处移到低电位处;
电位差也称为电压,可用U 表示; 电位差有确定值,只与首尾两点位置有关,与积分路径无关。
第3章 静态电磁场及其边值问题的解
2
3.1 静电场分析
学习内容 3.1.1 静电场的基本方程和边界条件 3.1.2 电位函数 3.1.3 导体系统的电容与部分电容 3.1.4 静电场的能量 3.1.5 静电力
第3章 静态电磁场及其边值问题的解
3
3.1.1 静电场的基本方程和边界条件
1. 基本方程
两点间电位差有定值
第3章静电场及其边值问题的解法
2
y 2
2
z2
0
二维问题 0:
z
2 2
x2 y 2 0
设 因此 即
于是有
(x, y, z) X (x)Y ( y)
YZ d 2 X XZ d 2Y 0
dx2
dy 2
s
n
z0
z
z0
2
qh x2 y2 h2
3 2
导体表面的总感应电荷
Qi
S sds
2
d
0
0
qh 2
(
2
d h2
)3
2
qh
q
2 h2 0
ห้องสมุดไป่ตู้
可见, 镜像电荷 q 代q 替了导体表面所有感应电荷对上半空间的作用。
9
§ 3.6 镜像法
二、导体劈间的点电荷
设有两块接地半无限大导体平板相交成角,且 =n为n,正整数,交角内置一点电荷
11
§3.7 分离变量法The Method of Separation of Variables
* 分离变量法是一种最经典的微分方程解法。
* 采用正交坐标系可用分离变量法得出拉普拉斯方程或波动方程的通解; * 只有当场域边界与正交坐标面重合(或平行)时,才可确定积分常数,
从而得到边值问题的特解。
x2 y2 (z h)2
可见,引入镜像电荷 q q 后保证了边界条件不变;镜像点电荷位于z<0的空间,未改变所
求空间的电荷分布,因而在z>0的空间,电位仍然满足原有的方程。由惟一性定理知结果正确。
注意:仅对上半空间等效。
8
§ 3.6 镜像法
(2)根据静电场的边界条件,求导体表面的感应电荷密度:
谢处方《电磁场与电磁波》(第4版)章节习题-第3章 静态电磁场及其边值问题的解【圣才出品】
第3章 静态电磁场及其边值问题的解一、判断题1.为了简化空间电位分布的表达式,总可以将电位参考点选择在无穷远处。
()【答案】×2.焦耳定律只适用于传导电流,不适应于运流电流。
()【答案】√3.绝缘介质与导体分界面上,在静电情况下导体外的电力线总是垂直于导体表面的。
()【答案】√4.位移电流的假说就是变化的磁场产生电场的假说。
()【答案】×5.任意两个带电导体之间都存在电容,对电容有影响的因素包括导体几何形状,导体上的电荷量、两导体相对位置和空间介质。
()【答案】×6.恒定电场中理想导体内的电场强度为零。
()【答案】√7.空间体积中有电流时,该空间内表面上便有面电流。
()【答案】×8.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
()【答案】×9.一个点电荷Q放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
()【答案】×台10.在线性磁介质中,由的关系可知,电感系数不仅与导线的几何尺寸、材料L Iψ=特性有关,还与通过线圈的电流有关。
( )【答案】×二、填空题1.镜像法是在所求场的区域之外,用_______来代替场问题的边界。
假想电荷和场区域原有的电荷一起产生的电场必须要满足_______。
【答案】一些假想电荷;原问题的边界条件。
2.磁介质中恒定磁场的基本方程为:_______。
【答案】,;,.d 0S B S =⎰v v Ñ0B ∇⋅=v d 0CH l ⋅=⎰v v ÑH J ∇⨯=v v 3.位移电流假说的实质是_______。
【答案】变化的电场可以产生磁场4.位移电流和真实电流(如传导电流和运流电流)的区别在于_______。
【答案】位移电流不对应任何带电质点的运动,只是电场随时间的变化率5.已知磁感应强度为,则m 的值为_______。
my第三章静态场及其边值问题的解讲解
3.1 静电场分析
学习内容 3.1.1 静电场的基本方程和边界条件 3.1.2 电位函数 3.1.3 导体系统的电容与部分电容 3.1.4 静电场的能量 3.1.5 静电力
3.1.1 静电场的基本方程和边界条件
1. 基本方程
微分形式:
D
E 0
本构关系: D E
积分形式:SD
dS
q
CE dl 0
D和2 ) S
D
媒质1 1 媒质2 2
1 P1 2 P2
l
2
2
n
1
1
n
S
• 若介质分界面上无自由电荷,即S 0
2
2
n
1
1
n
•
导体表面上电位的边界条件: 常数,
n
S
例 3.1.1 求电偶极子的电位.
解 在球坐标系中
(r )
q
(1 1)
q
r2 r1
40 r1 r2 40 r1r2
1
dz
40 L 2 (z z)2
z ' dl dz
y
l0 ln[z z
L
2 (z z)2 ]
4 0
L
x
l0 ln 2 (z L)2 (z L)
2. 边界条件
en
(D1
D2
)
S
en (E1 E2 ) 0
或
ED11tn
D2 E2t
n
0
S
若分界面上eenn不 (存(DE1在1面DE电22))荷0,0 即ρ或S=0,则ED11tn
D2 E2t
n
场矢量的折射关系
tan 1 E1t / E1n 1 / D1n 1 tan 2 E2t / E2n 2 / D2n 2
电磁矢论 第三章、静态电磁场及其边值问题的解
q C 单位:F/法拉 U
统的几何尺寸及周围电介质的特性参数有关。
3.1 静电场分析
4. 静电场的能量 (1)静电场的能量
在静电场中,电场对电荷有作用力,电荷在电场力作用下沿
电场方向发生运动,意味着电场力对电荷作功了,表明静电 场是有能量的。
电场能量的来源:建立电荷系统过程中外界提供的能量。
1 P1 2 Δl
P2
3.1 静电场分析
3. 导体系统的电容 电容是导体系统的一种基本属性,是描述导体系统储存电荷 能力的物理量。 孤立导体的电容:孤立导体所带电荷量q与其电位φ之比。
C
U之比。
q
单位:F/法拉
导体系统的电容:任一导体上的总电荷量q与导体间的电位差
电容的大小与电荷量、电位差无关,只与孤立导体或导体系
求对应的电场强度。
1 r 1 1 r [ 2 e ( )e ]e r 4 0 r r q 1 1 r ( 2 )e e r 4 0 r r q
3.1 静电场分析
(3)电位差(电压) 电位差:电场空间中不同位置处电位的变化量,也称电压,可 用U表示。 注:空间中某点的电位无物理意义,只有两点间的电位差才有 意义。
3.1 静电场分析
在均匀介质中
2
泊松方程
在无源区域中 0 : 2 0
拉普拉斯方程
解上述的微分方程,结合给定的边界条件,就可得出电位的
定解。
1 2 边界条件 2 1 2 1 S n n
媒质1 媒质2
1
2
电位差有确定值,其取值只与首尾两点的位置有关,与积分
路径无关。
3.1 静电场分析
[工学]第三章静态电磁场及其边值问题的解
P'
q O
E
Q l P
q 1 1 er ( ) dr 2 P ' 4 0 rP rQ 4 0 r 选取Q点为电位参考点,则 Q 0 q 1 1 P ( ) 4 0 rP rQ
q
Q
遵循最简单原则,电位参考点Q在无穷远处,即 r Q
则:
(r )
E
ex ey ez x y z
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
电位方程
E / 0 / 2 即: / 0 0 E
在无源区域, 0
q
r
r
l
1 1 P ( ) 4 0 r r
q
O
q
r r l r r r 2 l 2 2rl cos 1 1 1 l 2 cos (r 2 r l l r r r 1 2 2 cos r r q l pr P 2 cos = 4 0 r 4 0 r 3
点电荷在空间中产生的电位 4 r
0
q
说明:若电荷分布在有限区域,一般选择无穷远点为电位参考点
电子科技大学电磁场与电磁波课程组
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
无限长线电荷的电位
l E er 2 0 r l P (ln rQ ln rP ) 2 0
电位参考点不能位于无穷远点,否则表 达式无意义。 根据表达式最简单原则,选取r=1柱面 为电位参考面,即 rQ 1 得:
电磁场与电磁波
第3章 静态电磁场及其边值问题的解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
第3 章
3.4.1 边值问题的类型
边值问题包括位方程(拉普拉斯方程或泊松方程)和边界 条件,根据在场域V的边界S上的边界条件,边值问题类型有:
21
22
0
在格林第一恒等式中,令 0 则 g00 020 (0)2
Ñ V g00 dV V (0 )2 dV S 00 gdS V (0 )2 dV
4
第3 章
对于第一类和第二类边值问题,在边界S上分别有
3.5.1接地导体平面的镜像
例1、求置于无限大接地平面导体上方,
距导体面为h 处的点电荷q 的电位。
6
第3 章
分析: 在导体上方, 2 0 在导体表面处, |z0 0
导体平面上空的电场是由点电荷 q和导体表面的感应电荷
共同产生。但感应电荷分布非均匀,且未知,直接求解困难。
设在导体下方与点电荷对称的位置处有一点电荷 (q像电 荷),用该像电荷代替导体上的感应电荷,即引入 q后,就
Q
|z0
q
4 0 r
q
4 0 r
0
q q
即像电荷q'与原点电荷q电量相等,电性相反;用q'代替了
导体上的感应电荷。
在z>0区域内,P点的电位为
q [1 1 ] 40 r r
r [x2 y2 (z h)2 ]1/2 r [x2 y2 (z h)2 ]1/2
8
第3 章
在z>0区域内,电场为
r E
q
4 0
r
[
r r3
rr r3
]
Ex
qx
40
1 r3
1 r3
,
Ey
qy
40
1 r3
1 r3
,
Ez
q
40
zh r3
zh r3
则,面密度S
0Ez
0S
0和
0
n
S
1
n
S
2
n
S
0
Ñ S
0
0
n
dS
V (0 )2 dV 0 0 0
0
1
2
C
1和
只相差一个常数
2
设 E1 1 和 E2 2 E1=E2 1和2描述同样的电场,所以场分布是唯一确定的。 对于第三类边值问题,可以得到同样的结论。
第一类边值问题:给定整个边界上的位函数值
狄里赫利问题 S f1 S
如果f1(S)=0称为 齐次边界条件
第二类边值问题:给定边界上每一点位函数的法向导数
纽曼问题
n
S
f2 S
第三类边值问题:给定一部分边界上每一点的电位,同时
给定另一部分边界上每一点的电位法向导数。
混合边值问题
3
第3 章
静电场唯一性定理的表述
对于三类边值问题中的任何一类,在满足泊松方程(或拉 普拉斯方程)和边界条件下,无论用什么方法所得的解都是 正确的,且是唯一的。
静电场唯一性定理的证明
设有两个解1和2,分别满足方程
21
和 2 2
令 0 1 2
则在V内
2 0
第3 章
§3.4 静态场的边值问题及解的惟一性定理
前面讨论了静电场、恒定电场和稳恒磁场,得到了这些场的 位函数满足的微分方程和边界条件;并且在均匀线性媒质中, 对一些简单的场源分布情况求出了场的解。
但在工程中通常会遇到更复杂的情况,此时求解场的问题 就须要解场的二阶偏微分方程,并满足一定的边界条件,即 通常所说的边值问题。本节讨论静态场边值问题解法。
|z0 0
z
|z0 2 (x2
qh y2 h2 )3/2
导体表面总的感应电荷:
q
S dS
qh
2
dxdy
(x2 y2 h2 )3/2
qh 2d
2
0 ( 2 h2 )3/2 q
S1 f1 S1 ,
n S2 f2 S2
2
第3 章
自然边界条件
如果场域伸展到无限远处,必须提出所谓无限远处的边界 条件。对于场源分布在有限区域的情况,在无限远处应有
lim r 有限值 它表明在无限远处位函数取值为零。
r
涉及不同介质时,还有介质分界面处的边界条件。
像把导体平面抽走一样,用两点电荷的场叠加计算。
7
第3 章
解:用一个处于镜像位置的点电荷代替导体边界的影响, 则z>0空间任一点 P 的电位由 q 及 q' 共同产生,即
q q 1 (
q
q
)
4π0 r 4π0 r 4π0 x2 y2 (z h)
x2 y2 (z h)2
唯一性定理的意义:
1、指出了静态场边值问题具有唯一解的条件;
2、为静态场边值问题求解方法提供了理论依据,为结果正确性提供了判据。
5
第3 章
§ 3.5 镜 像 法
依据:唯一性定理,若能找到一个函数既满足该问题的微分方程, 又满足该问题的边界条件,则它一定是场的真解,且唯一。 基本思想:在研究的区域外,用一些假想电荷(电流)代替边界 面处复杂的、未知的感应电荷、极化电荷或电流。用假想电荷 (电流)与原有电荷(电流)一起产生的场来满足原来的边界条 件,那么它们的电位(磁矢位)的叠加就是解 关键和原则:确定像电荷(像电流)的位置、个数和电量大小以 及电流的流向等,但必须满足场区域的边界条件且像电荷(或像 电流)只能置于求解区域外。
3.4.2 解的唯一性定理
对于任何数学物理方程需要研究解的存在、稳定及惟一性问题。 • 解的存在性是指在给定的定解条件下,方程是否有解。 • 解的稳定性是指当定解条件发生微小变化时,所求得的解是 否会发生很大的变化。 • 解的唯一性是指在给定的定解条件下所求得的解是否惟一。
电磁场是客观存在的,因此位函数的微分方程的解的存在确信 无疑。泊松方程及拉普拉斯方程解的稳定性在数学中已经得到 证明。下面证明电位微分方程解也是惟一的。