高数练习题及答案
高等数学练习题(附答案)
《高等数学》专业年级学号姓名一、判断题.将√或×填入相应的括号内.(每题2分,共20分)()1.收敛的数列必有界.()2.无穷大量与有界量之积是无穷大量.()3.闭区间上的间断函数必无界.()4.单调函数的导函数也是单调函数.()5.若f (x )在x 0点可导,则f (x )也在x 0点可导.()6.若连续函数y =f (x )在x 0点不可导,则曲线y =f (x )在(x 0,f (x 0))点没有切线.()7.若f (x )在[a ,b ]上可积,则f (x )在[a ,b ]上连续.()8.若z =f (x ,y )在(x 0,y 0)处的两个一阶偏导数存在,则函数z =f (x ,y )在(x 0,y 0)处可微.()9.微分方程的含有任意常数的解是该微分方程的通解.()10.设偶函数f (x )在区间(-1,1)内具有二阶导数,且f ''(0)=f '(0)+1,则f (0)为f (x )的一个极小值.二、填空题.(每题2分,共20分)1.设f (x -1)=x ,则f (x +1)=.22.若f (x )=2-12+11x1x,则lim +=.x →03.设单调可微函数f (x )的反函数为g (x ),f (1)=3,f '(1)=2,f ''(3)=6则---------------------------------------------------------------------------------------------------------------------------------g '(3)=.4.设u =xy +2x,则du =.y35.曲线x =6y -y 在(-2,2)点切线的斜率为.6.设f (x )为可导函数,f '(1)=1,F (x )=f ()+f (x ),则F '(1)=.7.若1x2⎰f (x )0t 2dt =x 2(1+x ),则f (2)=.8.f (x )=x +2x 在[0,4]上的最大值为.9.广义积分⎰+∞0e -2x dx =.2210.设D 为圆形区域x +y ≤1,⎰⎰y D1+x 5dxdy =.三、计算题(每题5分,共40分)111+Λ+).1.计算lim(2+22n →∞n (n +1)(2n )2.求y =(x +1)(x +2)(x +3)ΛΛ(x +10)在(0,+∞)内的导数.23103.求不定积分⎰1x (1-x )dx .4.计算定积分⎰πsin 3x -sin 5xdx .3225.求函数f (x ,y )=x -4x +2xy -y 的极值.6.设平面区域D 是由y =x ,y =x 围成,计算⎰⎰Dsin ydxdy .y7.计算由曲线xy =1,xy =2,y =x ,y =3x 围成的平面图形在第一象限的面积.---------------------------------------------------------------------------------------------------------------------------------8.求微分方程y '=y -2x的通解.y四、证明题(每题10分,共20分)1.证明:arc tan x=arcsinx 1+x 2(-∞<x <+∞).2.设f (x )在闭区间[a ,b ]上连续,且f (x )>0,F (x )=⎰f (t )dt +⎰x xb1dt f (t )证明:方程F (x )=0在区间(a ,b )内有且仅有一个实根.《高等数学》参考答案一、判断题.将√或×填入相应的括号内(每题2分,共20分)1.√;2.×;3.×;4.×;5.×;6.×;7.×;8.×;9.√;10.√.二、填空题.(每题2分,共20分)21.x +4x +4; 2.1; 3.1/2;4.(y +1/y )dx +(x -x /y )dy ;25.2/3;6. 1;7.336;8.8;9.1/2;10.0.三、计算题(每题5分,共40分)n +1111n +1<++L +<1.解:因为(2n )2n 2(n +1)2(2n )2n 2且lim 由迫敛性定理知:lim(n →∞n +1n +1=0lim ,=0n →∞(2n )2n →∞n 2111++Λ+)=0222n (n +1)(2n )2.解:先求对数ln y =ln(x +1)+2ln(x +2)Λ+10ln(x +10)---------------------------------------------------------------------------------------------------------------------------------∴11210y '=++Λ+y x +1x +2x +10∴y '=(x +1)Λ(x +10)(3.解:原式=21210++Λ+)x +1x +2x +10⎰11-xd x =2⎰11-(x )2d x=2arcsin4.解:原式=x +c⎰πsin 3x cos 2xdxπ32=⎰π2020cos x sin xdx -⎰cos x sin xdx232ππ32=⎰sin xd sin x -⎰ππ2sin xd sin x32222-[sin 2x ]π=[sin 2x ]0π552=4/525.解:f x'=3x -8x -2y =0f y'=2x -2y =05π5故⎨⎧x =0⎧x =2或⎨⎩y =0⎩y =2当⎨⎧x =0''(0,0)=-2,f xy ''(0,0)=2''(0,0)=-8,f yy 时f xx⎩y =0---------------------------------------------------------------------------------------------------------------------------------Θ∆=(-8)⨯(-2)-22>0且A=-8<0∴(0,0)为极大值点且f (0,0)=0当⎨⎧x =2''(2,2)=-2,f xy ''(2,2)=2''(2,2)=4,f yy 时f xxy =2⎩Θ∆=4⨯(-2)-22<0∴无法判断6.解:D=(x ,y )0≤y ≤1,y 2≤x ≤y{}∴⎰⎰D1y sin y 1sin y sin y dxdy =⎰dy ⎰2dx =⎰[x ]y dyy 20y 0y y y =⎰(sin y -y sin y )dy1=[-cos y ]+10⎰1yd cos y 1=1-cos1+[y cos y ]0-⎰cos ydy 01=1-sin17.解:令u =xy ,v =y;则1≤u ≤2,1≤v ≤3x1x uJ =yuxv =2uv y vv-u 2v v =12v u2u v231dv =ln 3∴A =⎰⎰d σ=⎰du ⎰112v D8.解:令y =u ,知(u )'=2u -4x由微分公式知:u =y =e ⎰22dx 2(⎰-4xe ⎰-2dx dx +c )---------------------------------------------------------------------------------------------------------------------------------=e 2x (⎰-4xe -2x dx +c )=e 2x (2xe -2x +e -2x +c )四.证明题(每题10分,共20分)1.解:设f (x )=arctan x -arcsinx 1+x 221Θf '(x )=-21+x 1x 1-1+x 221+x -⋅1+x 2x 21+x 2=0∴f (x )=c-∞<x <+∞令x =0Θf (0)=0-0=0∴c =0即:原式成立。
高等数学试题及参考答案
高等数学试题及参考答案一、选择题(每题4分,共20分)1. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值。
A. 0B. 1C. 2D. \(\infty\)答案:B3. 以下哪个级数是收敛的?A. \(\sum_{n=1}^{\infty} \frac{1}{n^2}\)B. \(\sum_{n=1}^{\infty} \frac{1}{n}\)C. \(\sum_{n=1}^{\infty} \frac{1}{2^n}\)D. \(\sum_{n=1}^{\infty} \frac{1}{n^3}\)答案:A4. 函数 \(y = e^x\) 的导数是?A. \(e^x\)B. \(-e^x\)C. \(\ln(e)\)D. \(\frac{1}{e^x}\)答案:A5. 计算定积分 \(\int_0^1 x^2 dx\) 的值。
A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A二、填空题(每题6分,共30分)1. 函数 \(y = \ln(x)\) 的反函数是 \(y = \boxed{e^x}\)。
2. 函数 \(y = x^2 + 2x + 1\) 的最小值是 \(\boxed{0}\)。
3. 函数 \(y = \sin(x)\) 的周期是 \(\boxed{2\pi}\)。
4. 函数 \(y = \frac{1}{x}\) 的不定积分是 \(\boxed{\ln|x| + C}\)。
5. 函数 \(y = \cos(x)\) 的导数是 \(\boxed{-\sin(x)}\)。
高数习题集及答案
高数习题集及答案一、极限1. 求下列极限:- \( \lim_{x \to 0} \frac{\sin x}{x} \)- \( \lim_{x \to \infty} (1 + \frac{1}{x})^x \)2. 利用夹逼定理证明:- \( \lim_{n \to \infty} (1 + \frac{1}{n})^n = e \)答案:1. 对于第一个极限,我们可以使用洛必达法则或者直接利用三角函数的性质得到:\[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \]对于第二个极限,我们可以使用重要极限:\[ \lim_{x \to \infty} (1 + \frac{1}{x})^x = e \]2. 利用夹逼定理,我们可以找到两个序列 \( a_n \) 和 \( b_n \) 使得:\[ a_n \leq (1 + \frac{1}{n})^n \leq b_n \]并且 \( \lim_{n \to \infty} a_n = e \) 和 \( \lim_{n \to \infty} b_n = e \),从而证明 \( \lim_{n \to \infty} (1 +\frac{1}{n})^n = e \)。
二、导数与微分1. 求下列函数的导数:- \( f(x) = x^3 - 2x^2 + x \)- \( g(x) = \ln(x) \)2. 利用导数求函数的单调区间:- 对于函数 \( h(x) = x^2 - 4x + 4 \),求其单调增区间。
答案:1. 对于 \( f(x) \) 的导数,我们有:\[ f'(x) = 3x^2 - 4x + 1 \]对于 \( g(x) \) 的导数,我们有:\[ g'(x) = \frac{1}{x} \]2. 对于函数 \( h(x) \),我们先求导:\[ h'(x) = 2x - 4 \]令 \( h'(x) > 0 \),解得 \( x > 2 \),因此 \( h(x) \) 在\( (2, \infty) \) 上单调增。
高等数学试题库及答案doc
高等数学试题库及答案doc一、选择题1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A2. 曲线 y = x^2 在点 (1,1) 处的切线斜率是多少?A. 0B. 1C. 2D. -2答案:C二、填空题1. 极限lim(x→0) (sin(x)/x) 的值是 __________。
答案:12. 函数 f(x) = x + 1 在 x = 2 处的导数是 __________。
答案:1三、计算题1. 求函数 f(x) = x^3 - 2x^2 + 3x 的导数。
解:f'(x) = 3x^2 - 4x + 32. 计算定积分∫(0 到 1) x^2 dx。
解:∫(0 到 1) x^2 dx = [1/3 * x^3] (从0到1) = 1/3四、证明题1. 证明函数 f(x) = e^x 是严格单调递增的。
证明:设任意 x1 < x2,则 f(x1) - f(x2) = e^x1 - e^x2。
由于e^x 是严格单调递增的,所以当 x1 < x2 时,e^x1 < e^x2,从而f(x1) < f(x2)。
因此,函数 f(x) 是严格单调递增的。
五、应用题1. 一个物体从静止开始,以初速度为零的匀加速直线运动,其加速度为 2 m/s²。
求物体在前 3 秒内的位移。
解:根据匀加速直线运动的位移公式 s = 1/2 * a * t²,代入 a = 2 m/s²和 t = 3 s,得到 s = 1/2 * 2 * 3² = 9 m。
六、论述题1. 论述微积分在物理学中的应用。
答案:微积分在物理学中有广泛的应用,例如在力学中计算物体的运动轨迹、在电磁学中分析电场和磁场的变化、在热力学中研究温度分布等。
微积分的基本原理—极限和导数,为物理学家提供了一种强大的工具,用以描述和预测物理现象的变化趋势。
高数试题及答案 五套
高学试题及答案一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()02lim1cos t t xx e e dtx-→+-=-⎰( )A .0B .1C .-1D .∞3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞=9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________. 13.设2ln 2,6aa π==⎰则___________.14.设2cos xz y=则dz= _______.15.设{}2(,)01,01y DD x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________. 三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1xy x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x +→18.求不定积分.19.计算定积分I=.⎰20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
完整)高等数学练习题附答案
完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。
+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。
2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。
大三高数考试题及答案
大三高数考试题及答案一、选择题(每题3分,共30分)1. 已知函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. -2C. 1D. 2答案:B2. 求极限lim(x→0) (sin(x)/x)的值为:A. 1B. 0C. -1D. 2答案:A3. 若函数f(x)在点x=a处可导,则以下说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不连续D. f(x)在x=a处的导数为0答案:A4. 以下哪个函数是奇函数:A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B5. 计算定积分∫(0 to 1) x^2 dx的值为:A. 1/3B. 1/2C. 1/4D. 1答案:A6. 以下哪个选项是二阶导数:A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B7. 若函数f(x)的导数f'(x)=2x,则f(x)的原函数为:A. x^2 + CB. x^2 - CC. x^3 + CD. x^3 - C答案:A8. 以下哪个选项是二重积分:A. ∫f(x) dxB. ∫∫f(x,y) dxdyC. ∫f(x) dyD. ∫f(x,y) dydx答案:B9. 若函数f(x)的不定积分为F(x),则以下说法正确的是:A. F(x)是f(x)的原函数B. F(x)是f(x)的导数C. F(x)是f(x)的二阶导数D. F(x)是f(x)的积分答案:A10. 以下哪个选项是正确的泰勒级数展开:A. e^x = 1 + x + x^2/2! + x^3/3! + ...B. sin(x) = x - x^3/3! + x^5/5! - ...C. cos(x) = 1 - x^2/2! + x^4/4! - ...D. ln(1+x) = x - x^2/2 + x^3/3 - ...答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x的导数为________。
大学高等数学习题及答案
高等数学(A)1习题1-11.求下列函数的自然定义域:(3)y =1-1-x 2x⎧1-x 2≥0⎧-1≤x ≤1解:由⎨,所以函数的定义域为:[-1,0)⋃(0,1]⇒⎨⎩x ≠0⎩x ≠0(7)y =arcsin(x -3)解:由-1≤x -3≤1⇒2≤x ≤4,所以函数的定义域为:[2,4]1(8)y =3-x +arctanx⎧3-x ≥0⎧x ≤3解:由⎨x ≠0⇒⎨x ≠0,所以函数的定义域为:(-∞,0)⋃(0,3]⎩⎩9.求下列函数的反函数:(1)y =3x +1解:由y 3=x +1⇒x =y 3-1,所以反函数为:y =x 3-11-xy =(2)1+x解:由y (1+x )=1-x ⇒x =1-x 1-yy =1+x1+y ,所以反函数为:习题1-21.下列各题中,哪些数列收敛?哪些数列发散?1(2){(-1)n }n 收敛.且极限为0.⎧n -1⎫(4)⎨⎬n +1⎩⎭收敛,且极限为12n -1(6){3n }2n -12n 1n收敛.且因为:3n =(3)-(3),知极限为0.习题1-3x |x |当x →0时的左、右极限,并说明它们在x →0时的极限4.求f (x )=,φ(x )=x x 是否存在.解:x →0lim -f (x )=lim -x →0x →0x x=lim -1=1,lim +f (x )=lim +=lim +1=1x →0x →0x x →0x x →0∴lim f (x )=1|x |-x |x |x=lim -lim(-1)=-1,lim φ(x )=lim =lim =lim +1=1x →0x →0x x →0x x →0-x →0+x →0+x x →0+x x →0∴lim φ(x )不存在.lim -φ(x )=lim -x →0习题1-44.求下列极限并说明理由.(1)lim x →∞2x +1x2x +1112x +1=2+,而lim =0,由定理1可知:lim =2.解:x x →∞x →∞x x x 1-x 2(2)lim x →∞1-x1-x 2(1-x )(1+x )1-x 2=1+x ,而lim x =0,由定理1可知:lim =1解:1-x =x →0x →01-x1-x 习题1-51.计算下列极限.x 2-32(2)x lim →3x +1解:lim x →x -3x →30===023x +1lim(x 2+1)4x →32lim(x 2-3)x 2-2x +1(3)lim x →1x 2-1x 2-2x +1(x -1)2x -1lim =lim =lim =0解:x →1x 2-1x →1(x +1)(x -1)x →1x +14x 3-2x 2+x (4)lim x →03x 2+2x 解:lim 4x -2x +x 4x -2x +1=lim =x →0x →03x 2+2x 3x +2322lim(4x 2-2x +1)x →0lim(3x +2)x →0=1=02x 2-1(7)lim x →∞2x 2-x -11)2x -11x →∞x lim =lim ==解:x →∞2x 2-x -1x →∞111122--2lim(2--2)x x x →∞x x 21-1x 2lim(1-x 2-6x +8(9)lim x →4x 2-5x +4x 2-6x +8(x -4)(x -2)(x -2)2lim =lim =lim 解:x →4x 2-5x +4x →4(x -4)(x -1)x →4(x -1)=3习题1-61.计算下列极限:1-cos2x lim (5)x →0x sin x 1-cos2x 2sin 2x sin xlim =lim =2lim =2⋅1=2解:x →0x sin x x →0x sin x x →0x 2.计算下列极限.-x )(1)lim(1x →0-1lim(1-x )=lim[(1+(-x ))]=e 解:x →0x →01x1-x -11x+2x )(2)lim(1x →02lim(1+2x )=lim[(1+2x )]=e 解:x →0x →01x12x 21x习题1-75.利用等价无穷小的性质,求下列极限:tan3xlim (1)x →02x tan3x ~3x ,∴lim 解:当x →0时,(3)lim x →0tan3x 3x 33=lim =lim =x →0x →02x x →022x 2tan x -sin xsin 3x 1x ⋅x 2tan x -sin x tan x (1-cos x )2=lim 1=1lim =lim =lim 333x →0x →0x →0x →02sin xsin x x 2解:1(x →0,tan x ~x ,1-cos x ~x 2,sin 3x ~x 3)2习题1-83.下列函数在指出的点处间断,说明这些间断点属于哪一类,如果是可去间断点,那么补充或改变函数的定义使它连续:x 2-1(1)y =x 2-3x +2,x =1,x =2解:在x =1点,lim y =lim x →1(x -1)(x +1)(x +1)=lim =-2x →1(x -1)(x -2)x →1(x -2)故x =1点为第一类中的可去间断点.如果补充f (1)=-2,则f (x )在x =2点连续。
高数习题集(附答案)
第一章 函数与极限§1 函数必作习题P16-18 4 (5) (6) (8),6,8,9,11,16,17必交习题一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从出站经过T 时间后,又以等减速度a 2进站,直至停止。
(1) 写出火车速度v 与时间t 的函数关系式;(2) 作出函数)(t v v =的图形。
二、 证明函数12+=x x y 在),(+∞-∞内是有界的。
三、判断下列函数的奇偶性: (1)x x x f 1sin)(2= ;(2)1212)(+-=x x x f ;(3))1ln()(2++=x x x f 。
四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。
§2 初等函数必作习题P31-33 1,8,9,10,16,17必交习题一、 设)(x f 的定义域是]1,0[,求下列函数的定义域:(1))(x e f ;(2))(ln x f ;(3))(arcsin x f ;(4))(cos x f 。
二、(1)设)1ln()(2x x x f +=,求)(x e f -;(2)设23)1(2+-=+x x x f ,求)(x f ;(3)设x x f -=11)(,求)]([x f f ,})(1{x f f 。
)1,0(≠≠x x三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。
四、设⎩⎨⎧>+≤-=0,20,2)(x x x x x f ,⎩⎨⎧>-≤=0,0,)(2x x x x x g ,求)]([x g f 。
P42 3 (3) (4),4,5,6必交习题一、 写出下列数列的前五项 (1)3sin 31n n x n =;(2)n n n n x n ++++++=22212111 ;(3)nx n x n n n)1(1211122-=+++=-, 。
高数练习册答案(完整版)
高等数学1C 习题解答习题一一.单项选择题1、A2、D3、C 二.填空题1、22)1(133-+-x x x 2、(-9,1)三.计算题 1、(1)解 函数要有意义,必须满足⎩⎨⎧≥-≠0102x x 即⎩⎨⎧≤≤-≠110x x 定义域为]1,0()0,1(⋃- (2)解 函数要有意义,必须满足⎪⎪⎩⎪⎪⎨⎧≤≤-≠≥-111003x x x 解得1-≤x 或31≤≤x 3.(1)解 由1-=x e y 得 1ln +=y x 交换x 、y 得反函数为1ln +=x y(2)解 由11+-=x x y 得 y y x -+=11 交换x 、y 得反函数为xxy -+=114.(1)解 只有t=0时,能;t 取其它值时,因为 112>+t ,x arcsin 无定义 (2)解 不能,因为11≤≤-x ,此时121-=x y 无意义 5.解(1)12arccos 2-====x w wv v u ey u(2) 令22y y y += 则11ln 21+=+==x u uv v yx w e m m x v v u ey wu2)sin(32==+===6.解 ⎪⎩⎪⎨⎧-≤+≤<-+->-=1101)1(0)]([22x x x x x x x f g7.解 设c bx ax x f ++=2)(所以⎪⎩⎪⎨⎧==++=++41242c c b a c b a 解得 25214-===b a c习题二一.单项选择题1、A2、B3、D 二.填空题1、>12、单调增加 三.计算题1、(1)解 因为)(sin )sin()(x f x x x x x f ==--=- 所以函数是偶函数 (2)解 因为)()1ln(11ln )1ln()(222x f x x xx x x x f -=-+-=-+=++=-所以函数是奇函数(3)解 )(0)1(000)1(010001)(x f x x x x x x x x x x x f -=⎪⎩⎪⎨⎧>+-=<--=⎪⎩⎪⎨⎧<---=->-+-=- 所以函数是奇函数 2.解 因为 x x y 2cos 2121sin 2-== 而x 2cos 的周期为π,所以x y 2sin =是周期函数,周期为π 3.解 由h r V 231π=得23rv h π= 表面积: )0(919221226224222222≥++=++=+⋅+=r r v r r r r v r r r r h r s πππππππ四 证明 )()1()1(11)(x f e e e e e e x f x x x x x x -=+-=+-=---习题三一.单项选择题1、C2、C3、B4、C 二.填空题1、12、a3、≥4、2,05、1 三.判断正误1、对;2、对;3、错 四.(1) 证明 令12+=n nx n ε<=<+=-nn n n n x n 11022只要ε1>n ,取]1[ε=N当N n >时,恒有ε<-0n x 所以01lim2=+∞→n nn(2)证明 因为)0()(lim >=+∞→A A x f x ,对取定的2A=ε,存在M>0,当x>M 时,有 2)()(A A x f A x f <-<- 故当x>M 时,2)(A x f > 习题四一.单项选择题1、B2、B3、B4、D 二.填空题1、ae 2、0,6 3、6 4、2,-2 三.判断正误1、错;2、错;3、错; 四.计算题 1、原式=2112lim )1)(1()1)(2(lim11=+--=+---→→x x x x x x x x2、原式=01111lim11lim=++=+++∞→+∞→xxxx x x 3、原式=2311lim)1)(1()1)(1(lim32313231=+++=-+++-→→xx x x x x x x x x 4、原式=31)32(131)32(31lim )32(13233lim 1111=-⋅+=-++∞→++++∞→n n n n n n n n n 5、原式=]21)121121(21)5131(21)311[(lim ⋅+--++⋅-+⋅-+∞→n n n21)2112121(lim =⋅+-=∞→n n6、、原式=23232223)12)(1(21lim 3)21(3lim n n n n n n n n n n -++=-+++∞→+∞→ 2132123lim 22=+=∞→n nn n 7、因为 0lim =-+∞→xx e1sin ≤x 所以 0sin lim =-+∞→x exx习题五一、1.B , 2.A, 3. B二、1.sin tan x x x << 2.0 三、1.(1)0sin 77limtan 55x x x →=解:(2)0lim sin0x x xπ→=解:这是有界函数乘无穷小量,故(3)000sin 5sin 5115sin 55lim lim lim 1sin 3sin 3sin 31133x x x x x x x x x x xx x x x→→→---===-+++解: (4)00sin 1lim lim sin 1()x x x x x x++→→+=解:原式=后一项是无穷小量乘有界函数2.(1)22222222222lim(1)lim[(1)]lim(1)1n n n n n e e n n n⨯+→∞→∞→∞=+=++==原式 (2)()1()1111lim(1)lim 1xx x x x x e ---•-→∞→∞⎡⎤⎛⎫-=-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦原式=(3)22322(3)3332233lim(1)lim(1)22x x x x e x x -++-•---→∞→∞⎡⎤-=-=⎢⎥++⎢⎥⎣⎦原式= (4)13330lim(13)xx x e •→=+=原式(中间思维过程同前)(5)222222lim ln()lim ln(1)lim ln(1)lim ln(1)1nn n n n nn n n n n nn•→∞→∞→∞→∞+==+=+=+=原式 四.1.证明:2......n n n π<+<+1,,.n n ==而故由夹逼准则知原式成立2.证明:只要证明原数列单调有界就可以达到目的()()2211112,110,0,.n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x ++++=-+-=-=-->->>n 即而0<x <1,故即故数列单调递增且有界,极限存在.22212(21)11(1)1lim 1n n n n n n n n x x x x x x x +→∞=-+=--++=--<∴=习题六一、1.B,2.B,3.B,4.B,5。
高数试题及详细答案解析
高数试题及详细答案解析一、选择题(每题5分,共20分)1. 函数f(x) = x^2 - 4x + 3的零点个数为:A. 0B. 1C. 2D. 3答案:C解析:函数f(x) = x^2 - 4x + 3是一个二次函数,我们可以通过判别式Δ = b^2 - 4ac来判断零点的个数。
这里a = 1, b = -4, c = 3,所以Δ = (-4)^2 - 4*1*3 = 16 - 12 = 4 > 0,说明函数有两个不同的实数零点。
2. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. -1D. 2答案:B解析:这是一个著名的极限,lim(x→0) (sin(x)/x) = 1。
可以通过洛必达法则或者夹逼定理来证明。
3. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x答案:B解析:奇函数满足f(-x) = -f(x)的性质。
A选项是偶函数,C选项也是偶函数,D选项是奇函数,但B选项f(x) = x^3满足奇函数的性质,因为(-x)^3 = -x^3。
4. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 2 + 4 + 8 + ...D. 1/2 + 1/4 + 1/8 + 1/16 + ...答案:D解析:A选项是等比级数,公比为1/2,收敛;B选项是交错级数,但项的绝对值不递减,不满足交错级数的收敛条件;C选项是等比级数,公比为2,发散;D选项是等比级数,公比为1/2,收敛。
二、填空题(每题5分,共20分)5. 函数f(x) = e^x的导数为_________。
答案:e^x解析:e^x的导数是其本身,这是指数函数的基本性质。
6. 定积分∫(0 to 1) x^2 dx的值为_________。
高等数学试题题库及答案
高等数学试题题库及答案一、单项选择题(每题2分,共10题)1. 函数f(x)=x^2+2x+1的导数是:A. 2x+2B. 2x+1C. x^2+2xD. 2x^2+2x+1答案:A2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. 不存在答案:B3. 若f(x)在x=a处连续,则下列哪个选项一定成立:A. f(a)存在B. f(a)=lim(x→a)f(x)C. f(a)=lim(x→a)f(x)且f(a)存在D. f(a)不存在答案:C4. 函数y=e^x的不定积分是:A. e^x + CB. e^xC. ln(e^x) + CD. ln(x) + C答案:A5. 曲线y=x^3-3x^2+2在点(1,0)处的切线斜率是:A. 0B. 1C. -2D. 2答案:C6. 以下哪个函数是奇函数:A. f(x)=x^2B. f(x)=x^3C. f(x)=x+1D. f(x)=x^2+1答案:B7. 二重积分∬(x^2+y^2)dxdy在区域D上,其中D是由x^2+y^2≤1定义的圆盘,其值是:A. πB. 2πC. π/2D. 4π答案:A8. 微分方程dy/dx=2x的通解是:A. y=x^2+CB. y=2x+CC. y=x^2D. y=2x^2+C答案:A9. 函数f(x)=x^3在x=0处的泰勒展开式是:A. x^3B. x^3+3x^2+3x+1C. x^3+3x^2+3xD. x^3+3x^2答案:C10. 以下哪个级数是收敛的:A. 1+1/2+1/4+1/8+...B. 1-1/2+1/3-1/4+...C. 1+1/2+1/3+1/4+...D. 1-1/2+1/3-1/4+1/5-...答案:A二、填空题(每题3分,共5题)11. 函数f(x)=x^2+3x+2的二阶导数是________。
答案:212. 极限lim(x→∞) (x^2-3x+2)/(x^3+x)的值是________。
高数集合试题题库及答案
高数集合试题题库及答案一、选择题1. 集合A={1,2,3},B={2,3,4},求A∩B。
A. {1,2,3}B. {2,3}C. {4}D. {1,4}2. 设集合A={x|x<5},B={x|x>3},求A∪B。
A. {x|x<5}B. {x|x>3}C. {x|x≤3}D. R(实数集)3. 已知集合C={x|x²-5x+6=0},求C的元素。
A. {2,3}B. {1,6}C. {-1,6}D. {-2,3}4. 集合D={x|x²-4=0},求D的补集(相对于实数集R)。
A. {x|x≠-2}B. {x|x≠2}C. {x|x≠±2}D. Ø(空集)5. 集合E={x|-1≤x≤1},F={x|x>1},判断E⊆F是否成立。
A. 成立B. 不成立二、填空题6. 集合G={x|x²-4=0}的元素个数是____。
7. 若集合H={x|x²+x+1=0},求H的元素个数是____。
8. 集合I={x|-3<x<5}与集合J={x|x≥5}的交集I∩J是____。
9. 集合K={x|x>0}与集合L={x|x≤0}的并集K∪L是____。
10. 若M={x|x²-4x+3=0},求M的补集(相对于实数集R)是____。
三、解答题11. 已知集合P={x|0<x<10},Q={x|x是奇数},求P∩Q的所有元素。
12. 设集合R={x|x²-4x+3=0},求R的补集(相对于实数集R)。
13. 集合S={x|-2≤x≤2},T={x|x是偶数},求S∪T。
14. 集合U={x|x²-9=0},求U的元素,并判断U是否为有限集合。
15. 若集合V={x|x²-6x+8=0},求V的元素,并求V的补集(相对于实数集R)。
答案:1. B2. D3. A4. C5. B6. 2个元素7. 0个元素8. Ø(空集)9. R(实数集)10. {x|x≠1, x≠3}11. {1, 3, 5, 7, 9}12. {x|x≠-2, x≠2}13. {x|-2≤x≤2或x是偶数}14. {3, -3},是有限集合15. {2, 4},补集为{x|x≠2, x≠4}。
高数考试题库及答案解析
高数考试题库及答案解析一、选择题1. 函数f(x)=x^2-3x+2在区间[1,4]上的最大值是:A. 0B. 3C. 6D. 7答案:D解析:首先求导f'(x)=2x-3,令f'(x)=0,解得x=3/2。
在区间[1,4]上,f'(x)在x<3/2时为负,x>3/2时为正,说明f(x)在x=3/2处取得极小值。
计算f(3/2)=-1/4,再计算区间端点f(1)=0和f(4)=6,可知最大值为f(4)=6。
2. 若f(x)=sin(x)+cos(x),则f'(x)的表达式为:A. cos(x)-sin(x)B. cos(x)+sin(x)C. sin(x)-cos(x)D. sin(x)+cos(x)答案:A解析:根据导数的运算法则,f'(x)=[sin(x)]'+[cos(x)]'=cos(x)-sin(x)。
二、填空题1. 曲线y=x^3-6x^2+9x在点(2,0)处的切线斜率为______。
答案:-12解析:首先求导y'=3x^2-12x+9,将x=2代入y'得到切线斜率为-12。
2. 定积分∫(0,1) x^2 dx的值为______。
答案:1/3解析:根据定积分的计算公式,∫(0,1) x^2 dx = [x^3/3](0,1) = 1/3。
三、解答题1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。
答案:函数f(x)的单调增区间为(1,3),单调减区间为(-∞,1)和(3,+∞)。
解析:首先求导f'(x)=3x^2-12x+11,令f'(x)=0解得x=1,3。
根据导数符号变化,可得单调区间。
2. 求曲线y=x^2-4x+3与直线y=2x平行的切线方程。
答案:切线方程为:x-y-1=0。
解析:曲线y=x^2-4x+3的导数为y'=2x-4,令y'=2得到x=3,此时切点坐标为(3,2)。
高数练习册答案(完整版)
1 高等数学1C 习题解答习题一一.单项选择题1、A 2、D 3、C 二.填空题1、22)1(133-+-x x x 2、(-9,1)三.计算题1、(1)解函数要有意义,必须满足îíì³-¹0102x x 即îí죣-¹110x x 定义域为]1,0()0,1(È-(2)解函数要有意义,必须满足ïïîïïí죣-¹³-111003x xx 解得1-£x 或31££x 3.(1)解由1-=x e y 得1ln +=y x 交换x 、y 得反函数为1ln +=x y (2)解由11+-=x x y 得y yx -+=11交换x 、y 得反函数为xx y -+=114.(1)解只有t=0时,能;t 取其它值时,因为112>+t ,x arcsin 无定义(2)解不能,因为11££-x ,此时121-=x y 无意义5.解(1)12arccos 2-====x w wv vu ey u(2) 令22y y y +=则11ln 21+=+==x u u v vy xw em m x v v u ey wu2)sin(32==+===6.解ïîïíì-£+£<-+->-=1101)1(0)]([22x x x x x x x f g 7.解设cbx ax x f ++=2)(所以ïîïíì==++=++41242c c b a c b a 解得25214-===b a c习题二习题二一.单项选择题一.单项选择题1、A 2、B 3、D 二.填空题二.填空题1、>1 2、单调增加、单调增加 三.计算题三.计算题1、(1)解)解 因为)(sin )sin()(x f x x x x x f ==--=- 所以函数是偶函数所以函数是偶函数 (2)解)解 因为)()1ln(11ln )1ln()(222x f x x xx x x x f -=-+-=-+=++=-所以函数是奇函数所以函数是奇函数(3)解)解 )(0)1(000)1(010001)(x f x x x x x x x x x x x f -=ïîïíì>+-=<--=ïîïíì<---=->-+-=- 所以函数是奇函数所以函数是奇函数2.解.解 因为因为 x x y 2cos 2121sin 2-== 而x 2cos 的周期为p ,所以x y 2sin =是周期函数,周期为p3.解.解 由h r V 231p = 得23rvh p =表面积:表面积: )0(919221226224222222³++=++=+×+=r r v r r r rv r r r r h r s p p p p p p p 四 证明证明 )()1()1(11)(x f e e e e e e x f x x xxxx-=+-=+-=--- 习题三习题三一.单项选择题一.单项选择题1、C 2、C 3、B 4、C 二.填空题二.填空题1、1 2、a 3、³4、2,0 5、1 三.判断正误三.判断正误1、对;、对;2、对;、对;3、错、错 四.(1) 证明证明 令12+=n nx ne <=<+=-n nn n nx n11022只要e 1>n ,取]1[e=N当N n >时,恒有e <-0n x所以01lim2=+¥®n nn(2)证明)证明 因为)0()(lim>=+¥®A A x f x ,对取定的2A=e ,存在M>0,当x>M 时,有时,有2)()(AA x f A x f <-<-故当x>M 时,2)(Ax f >习题四习题四一.单项选择题一.单项选择题1、B 2、B 3、B 4、D 二.填空题二.填空题1、ae 2、0,6 3、6 4、2,-2 三.判断正误三.判断正误 1、错;、错; 2、错;、错; 3、错;、错; 四.计算题四.计算题 1、原式=2112lim )1)(1()1)(2(lim 11=+--=+---®®x x x x x x x x 2、原式=01111lim 11lim =++=+++¥®+¥®xxxx x x 3、原式=2311lim )1)(1()1)(1(lim 32313231=+++=-+++-®®xx x x x x x x x x 4、原式=31)32(131)32(31lim )32(13233lim 1111=-×+=-++¥®++++¥®n n n n n nn nn 5、原式=]21)121121(21)5131(21)311[(lim ×+--++×-+×-+¥®n n n 21)2112121(lim =×+-=¥®n n 6、、原式=23232223)12)(1(21lim 3)21(3lim n n n n n n n n n n -++=-+++¥®+¥® 2132123lim 22=+=¥®nn n n 7、因为、因为 0lim =-+¥®xx e 1s i n £x 所以所以 0s i nl i m =-+¥®x e xx习题五习题五一、1.B , 2.A, 3. B 二、1.sin tan x x x << 2.0.0 三、1. (1)0sin 77lim tan 55x x x ®=解:(2)0lim sin0x x x p ®=解:这是有界函数乘无穷小量,故 (3)000sin 5sin 5115sin 55lim lim lim 1sin 3sin 3sin 31133x x x xxx x x x x x x x x x®®®---===-+++解: (4)00sin 1lim lim sin 1()x x x x x x ++®®+=解:原式解:原式==后一项是无穷小量乘有界函数2.(1)22222222222lim(1)lim[(1)]lim(1)1n nn n n e e nn n´+®¥®¥®¥=+=++==原式 (2)()1()1111lim(1)lim 1x x x x x x e ---·-®¥®¥éùæö-=-=êúç÷èøêúëû原式原式== (3)22322(3)3332233lim(1)lim(1)22x x xx e x x -++-·---®¥®¥éù-=-=êú++êúëû原式= (4)13330lim(13)xx x e ·®=+=原式(中间思维过程同前) (5)222222lim ln()lim ln(1)lim ln(1)lim ln(1)1nnn n n n n n n nn n n·®¥®¥®¥®¥+==+=+=+=原式四.四.1.证明:证明:22222111......2n n n n n n n n n ppppp<+++<+++++22limlim 1,,.n n n nn n n p p®¥®¥==++而故由夹逼准则知原式成立 2.证明:证明:只要证明原数列单调有界就可以达到目的只要证明原数列单调有界就可以达到目的()()2211112,110,0,.n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x ++++=-+-=-=-->->> n 即而0<x <1,<1,故故即故数列单调递增且有界故数列单调递增且有界,,极限存在极限存在..22212(21)11(1)1lim 1n nnnn n n n x x x x x x x +®¥=-+=--++=--<\=习题六习题六一、1.B ,2.B ,3.B ,4.B ,5。
高数考试试题及答案
高数考试试题及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 \)在区间[-1, 2]上的最大值是:A. 1B. 2C. 4D. 32. 微分方程\( y'' - y' - 6y = 0 \)的特征方程是:A. \( r^2 - r - 6 = 0 \)B. \( r^2 - 6 = 0 \)C.\( r^2 + r - 6 = 0 \) D. \( r^2 + 6 = 0 \)3. 若\( \lim_{x \to 0} \frac{f(x)}{x} = 1 \),则\( f(0) \)的值是:A. 0B. 1C. 无法确定D. 无穷大4. 曲线\( y = x^3 \)在点(1, 1)处的切线斜率是:A. 3B. 1C. 0D. -35. 函数\( f(x) = \ln(x) \)的原函数是:A. \( x^2 \)B. \( x^3 \)C. \( e^x \)D. \( x \ln(x) - x \)6. 定积分\( \int_{0}^{1} x^2 dx \)的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{4} \)C.\( \frac{1}{2} \) D. 17. 无穷级数\( \sum_{n=1}^{\infty} \frac{1}{n^2} \)的和是:A. \( \frac{\pi^2}{6} \)B. \( \frac{\pi^2}{4} \)C.\( e \) D. \( \ln(2) \)8. 若\( \lim_{n \to \infty} a_n = 0 \),则级数\( \sum_{n=1}^{\infty} a_n \):A. 一定收敛B. 一定发散C. 可能收敛也可能发散D. 无法判断9. 函数\( f(x) = \sin(x) + \cos(x) \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi/4 \)10. 函数\( f(x) = x^3 - 3x \)的极值点是:A. \( x = 1 \)B. \( x = -1 \)C. \( x = 0 \)D.\( x = \pm 1 \)二、填空题(每题4分,共20分)1. 函数\( g(x) = 3x - 5 \)的反函数是 \( g^{-1}(x) = ______ \)。
大一高数试题及答案
大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)的值。
A. 3x^2-3B. x^2-3C. 3x^2+3D. x^3-3答案:A2. 求极限lim(x→0) (sinx/x) 的值。
A. 0B. 1C. 2D. -1答案:B3. 设曲线y=x^2+1与直线y=2x+3相交于点A和点B,求交点的横坐标。
A. -2, 1B. 1, 2C. -1, 2D. 1, -2答案:C4. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1/4答案:B二、填空题(每题5分,共20分)5. 设函数f(x)=x^2-4x+3,求f(2)的值。
答案:-16. 求不定积分∫(1/x) dx。
答案:ln|x|+C7. 设函数f(x)=e^x,求f'(x)的值。
答案:e^x8. 计算定积分∫(0,π) sinx dx。
答案:2三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6的极值点。
解:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
当x<1或x>11/3时,f'(x)>0,函数单调递增;当1<x<11/3时,f'(x)<0,函数单调递减。
因此,x=1为极大值点,x=11/3为极小值点。
10. 求曲线y=x^3-3x^2+2在点(1,0)处的切线方程。
解:首先求导数y'=3x^2-6x,代入x=1得y'|_(x=1)=-3。
切线方程为y-0=-3(x-1),即y=-3x+3。
11. 计算二重积分∬D (x^2+y^2) dxdy,其中D是由x^2+y^2≤4所围成的圆域。
解:将二重积分转换为极坐标系下的形式,即∬D (x^2+y^2) dxdy = ∫(0,2π) ∫(0,2) (ρ^2) ρ dρ dθ = 8π。
(完整)高等数学考试题库(附答案)
高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。
2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。
3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。
4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。
5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。
6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。
7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。
8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。
9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。
10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。
11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。
12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。
13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。
14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。
15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。
16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。
17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。
18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。
19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。
20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。
高数难题试题库及答案
高数难题试题库及答案1. 极限计算题目:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,原式等于 \(\lim_{x \to 0} \frac{\cos x}{1} = 1\)。
2. 导数求解题目:求函数 \(f(x) = x^3 - 3x^2 + 2\) 的导数。
答案:\(f'(x) = 3x^2 - 6x\)。
3. 不定积分题目:计算不定积分 \(\int (2x + 3) \, dx\)。
答案:\(\int (2x + 3) \, dx = x^2 + 3x + C\)。
4. 定积分计算题目:计算定积分 \(\int_{0}^{1} x^2 \, dx\)。
答案:\(\int_{0}^{1} x^2 \, dx = \frac{1}{3}x^3 \Big|_0^1= \frac{1}{3}\)。
5. 级数求和题目:求级数 \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\) 的和。
答案:通过裂项法,\(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1\)。
6. 微分方程求解题目:解微分方程 \(y'' - 2y' + y = 0\)。
答案:该方程的特征方程为 \(t^2 - 2t + 1 = 0\),解得 \(t =1\),因此通解为 \(y = C_1e^x + C_2xe^x\)。
7. 多元函数偏导数题目:求函数 \(z = x^2y + y^2\) 在点 \((1, 2)\) 处的偏导数。
答案:\(\frac{\partial z}{\partial x} = 2xy\),\(\frac{\partial z}{\partial y} = 2x + y\)。
在点 \((1, 2)\) 处,\(\frac{\partial z}{\partial x} = 4\),\(\frac{\partialz}{\partial y} = 4\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(下)模拟试卷一一、 填空题(每空3分,共15分)(1)函数11z x y x y =++-的定义域为 (2)已知函数arctan y z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2)设是由方程2222xyz x y z +++=确定,则在点(1,0,1)-处的dz =( ) A.dx dy + B.2dx dy + C.22dx dy +D.2dx dy -(3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( )A.2253000d r dr dzπθ⎰⎰⎰ B.24530d r dr dzπθ⎰⎰⎰C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 122(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A. B.()x ax b xe + C.()xax b ce ++ D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂ 3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值 5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t ty t=-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)模拟试卷二一.填空题(每空3分,共15分)(1)函数24x y z -=的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;得分阅卷人(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则Lyds =⎰;(5)已知微分方程20y y y '''-+=,则其通解为 . 二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z - D.2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( ); A.2()x ax b e + B.2()xax b xe + C.2()x ax b ce ++D.2()xax b cxe ++(4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( );A 222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20a d d rdrππθϕ⎰⎰⎰D.220sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 122三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctan D y dxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
(A )单调增加; (B )单调减少;(C )单调增加且单调减少; (D)可能增加;可能减少。
4、1sin xtdt⎰的一阶导数为 .(A )sin x (B )sin x - (C )cos x (D )cos x -5、向量{1,1,}a k =-与{2,2,1}b =--相互垂直则k = .(A )3 (B )-1 (C )4 (D )2三.计算题(3小题,每题6分,共18分)1、求极限123lim()21x x x x +→∞+-2、求极限30sin lim x x x x →-3、已知ln cos xy e =,求dy dx四.计算题(4小题,每题6分,共24分)1、已知221t x y t ⎧=⎪⎨⎪=-⎩,求22d y dx2、计算积分2cos x xdx⎰ 3、计算积分10arctan xdx⎰4、计算积分⎰五.觧答题(3小题,共28分)1、(8)'求函数42341y x x =-+的凹凸区间及拐点。
2、(8)'设1101()101x x xf x x e +⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰3、(1)求由2y x =及2y x =所围图形的面积;(6)'(2)求所围图形绕x 轴旋转一周所得的体积。
(6)'高等数学(下)模拟试卷四一. 填空题(每空3分,共15分)1、函数1y x =的定义域为 .2、0,0ax e dx a +∞->⎰= .3、已知sin(21)y x =+,在0.5x =-处的微分dy = .4、定积分121sin 1xdx x -+⎰= .5、函数43341y x x =-+的凸区间是 . 二.选择题(每空3分,共15分)1、1x =是函数211x y x -=-的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、若()0,(0)0,(0)1,limx f ax a f f x →'≠==-==(A)1 (B)a(C)-1 (D) a -3、在[0,2]π内函数sin y x x =-是 。
(A )单调增加; (B )单调减少;(C )单调增加且单调减少; (D)可能增加;可能减少。
4、已知向量{4,3,4}a =-与向量{2,2,1}b =则a b ⋅为 . (A )6 (B )-6 (C )1 (D )-35、已知函数()f x 可导,且0()f x 为极值,()f x y e=,则x x dy dx==.(A )0()f x e (B )0()f x ' (C )0 (D )0()f x三.计算题(3小题,每题6分,共18分)1、求极限10lim(1-)k xx kx +→2、求极限12cos 2sin limsin xx t dtx x→⎰3、已知1lnsinxy e=,求dy dx四. 计算题(每题6分,共24分)1、设10ye xy --=所确定的隐函数()yf x =的导数0x dydx=。
2、计算积分arcsin xdx⎰3、计算积分0π⎰4、计算积分0,0a >⎰五.觧答题(3小题,共28分)1、(8)'已知2223131at x t aty t ⎧=⎪⎪+⎨⎪=⎪+⎩,求在2t =处的切线方程和法线方程。
2、(8)'求证当0a b >>时,1ln ln 1a b a a b b -<<- 3、(1)求由3y x =及0,2y x ==所围图形的面积;(6)' (2)求所围图形绕y 轴旋转一周所得的体积。
(6)'高等数学(下)模拟试卷五一. 填空题(每空3分,共21分)1.函数y y x z )ln(-=的定义域为 。
2.已知函数22y xez +=,则=dz 。