数学建模讲义 线性规划模型2_运输问题等

合集下载

数学建模之运输问题

数学建模之运输问题

数学建模之运输问题1. 引言运输问题是指在给定产地到销售地之间有若干个供应点和需求点的情况下,如何安排运输使得总运输成本最低。

这是一个经济管理中的经典问题,也是数学建模中常见的一个研究方向。

2. 问题描述假设有n个供应点和m个需求点,其中每个供应点的供应量和每个需求点的需求量已知,并且每个供应点到每个需求点的运输成本也已知。

我们的目标是确定供应点到需求点的运输量,使得总运输成本最小。

3. 模型建立为了建立数学模型,我们可以引入一个矩阵来表示供应点和需求点之间的运输成本。

设C为一个n行m列的矩阵,其中Cij表示供应点i到需求点j的运输成本。

我们需要引入决策变量X,其中Xij表示从供应点i到需求点j的运输量。

那么,目标函数可以定义为最小化总运输成本,即$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij}$$同时,我们需要保证供应点和需求点的供需平衡,即满足每个供应点的供应量和每个需求点的需求量。

这可以表示为以下约束条件:1. 对于每个供应点i,有 $\sum_{j=1}^{m} X_{ij} = s_i$,其中$s_i$ 表示供应点i的供应量。

2. 对于每个需求点j,有 $\sum_{i=1}^{n} X_{ij} = d_j$,其中$d_j$ 表示需求点j的需求量。

进一步地,我们需要确保运输量的非负性,即$X_{ij} \geq 0$。

4. 求解方法对于较小规模的问题,我们可以使用线性规划方法求解运输问题。

线性规划是一种数学优化方法,可以在满足一定约束条件的前提下,使得目标函数达到最小值。

对于大规模的问题,我们可以使用近似算法或启发式算法进行求解。

这些算法可以快速找到较好的解,但不能保证找到最优解。

常用的算法包括模拟退火算法、遗传算法等。

5. 应用领域运输问题在许多实际应用中都有广泛的应用。

例如,在物流管理中,优化运输方案可以减少运输成本、提高运输效率;在生产计划中,合理安排运输可以确保供应链的稳定性和高效性。

运筹学第3章:运输问题-数学模型及其解法

运筹学第3章:运输问题-数学模型及其解法

整数规划模型
01
整数规划模型是线性规划模型 的扩展,它要求所有变量都是 整数。
02
整数规划模型适用于解决离散 变量问题,例如车辆路径问题 、排班问题等。
03
在运输问题中,整数规划模型 可以用于解决车辆调度、装载 等问题,以确保运输过程中的 成本和时间效益达到最优。
混合整数规划模型
混合整数规划模型是整数规划和线性规划的结合,它同时包含整数变量和 连续变量。
运筹学第3章:运输问题-数学模 型及其解法
目录
• 引言 • 运输问题的数学模型 • 运输问题的解法 • 运输问题的应用案例 • 结论
01 引言
运输问题的定义与重要性
定义
运输问题是一种线性规划问题,主要 解决如何将一定数量的资源(如货物 、人员等)从起始地点运送到目标地 点,以最小化总运输成本。
总结词
资源分配优化是运输问题在资源管理 领域的应用,主要解决如何将有限的 资源合理地分配到各个部门或项目, 以最大化整体效益。
详细描述
资源分配优化需要考虑资源的数量、 质量、成本等多个因素,通过建立运 输问题的数学模型,可以找到最优的 资源分配方案,提高资源利用效率, 最大化整体效益。
05 结论
运输问题的发展趋势与挑战
生产计划优化
总结词
生产计划优化是运输问题在生产领域的应用,主要解决如何合理安排生产计划, 满足市场需求的同时降低生产成本。
详细描述
生产计划优化需要考虑原材料的采购、产品的生产、成品的销售等多个环节,通 过建立运输问题的数学模型,可以找到最优的生产计划和调度方案,提高生产效 率,降低生产成本。
资源分配优化
发展趋势
随着物流行业的快速发展,运输问题变得越来越复杂,需要更高级的数学模型和算法来 解决。同时,随着大数据和人工智能技术的应用,运输问题的解决方案将更加智能化和

数学建模运输问题

数学建模运输问题

有时候把两个表写在一起:
销地 产地 1 2 . . . m 销量
销地 产地 1 2 . . . m
1
2

n
产 量 a1 a2 . . . am 销地 产地 1 1 2 … n 产 量 a1 a2 . . . am
b1
1
b2
2


bn
n
2 . . . m
销量
c11 c12 … c1n c21 c22 … c2n . . . . . . . . . cm1 cm2 … cmn b1 b2 … bn
B2 10 4 5 6 14 6 5 3 4 3+4 B3 B4’ B4’’ 产量 (万台) 10 12 10 10
4
4 2
6
4
Global optimal solution found at iteration: 8 Objective value: 172.0000
销地 厂家 1 2
1
2
3
4
销地 厂家 A1 A2 A3 最高需求(万台)
31
x
32
x x x x x
33
x 2 3 4 6
34
7
x 11 x x 12 x x 13 x x 14 x x
ij
21
31
22
32
23
33
LINGO求解
24
34
0
设有三个电视机厂供应四个地区某种型号的电视机。 各厂家的年产量、 销地 各地区的年销售量以及 B1 B2 B3 厂家 各地区的单位运价 A1 6 3 12 如右表, A2 4 3 9 试求出总的运费最省的 A3 9 10 13 6 14 0 最低需求(万台) 电视机调拨方案。

数学建模,线性规划,运输为问题

数学建模,线性规划,运输为问题
X26 20.00000 0.000000
X31 30.00000 0.000000
X32 20.00000 0.000000
X33 0.000000 3.000000
X34 0.000000 11.00000
X35 0.000000 23.00000
X36 0.000000 8.000000
X41 0.000000 7.000000
Objective value: 1620.000
Infeasibilities: 0.000000
Total solver iterations: 9
Variable Value Reduced Cost
X11 0.000000 14.00000
X12 0.000000 6.000000
X13 0.000000 4.000000
X55 0.000000 8.000000
X56 0.000000 32.00000
X64 30.00000 0.000000
X65 0.000000 3.000000
X66 0.000000 7.000000
Row Slack or Surplus Dual Price
1 1620.000 -1.000000
X42 0.000000 0.000000
X43 40.00000 0.000000
X44 0.000000 26.00000
X45 0.000000 16.00000
X46 0.000000 13.00000
X52 30.00000 0.000000
X53 0.000000 0.000000
X54 0.000000 21.00000
供应限制:x11+x12+x13+x14+x15+x16=20

管理运筹学讲义运输问题

管理运筹学讲义运输问题

管理运筹学讲义运输问题引言在现代社会,运输问题是管理运筹学中的一个重要问题。

无论是物流行业还是供应链管理,运输问题都是必不可少的一环。

运输问题的解决可以帮助企业有效地规划和管理物流流程,降低运输成本,提高运输效率。

本文将介绍管理运筹学中的运输问题,包括问题的定义、数学模型、常用的解决方法以及在实际应用中的案例分析。

运输问题的定义在管理运筹学中,运输问题是指在给定的供应点和需求点之间,如何分配物品的问题。

通常,问题的目标是找到一种分配方案,使得总运输成本最小。

运输问题可以抽象成一个图模型,其中供应点和需求点之间的路径表示运输线路,路径上的边表示运输的数量和成本。

每个供应点和需求点都有一个需求量或供应量。

问题的目标是找到一种分配方案,使得满足所有需求量的同时最小化总运输成本。

数学模型运输问题可以用线性规划来建模。

假设有m个供应点和n个需求点,每个供应点的供应量为si,每个需求点的需求量为dj。

定义xij为从供应点i到需求点j 的运输量,则运输问题的数学模型可以形式化表示为如下线性规划问题:minimize ∑(i=1 to m)∑(j=1 to n) cij * xijsubject to∑(j=1 to n) xij = si, for all i = 1,2,...,m∑(i=1 to m) xij = dj, for all j = 1,2,...,nxij >= 0, for all i = 1,2,...,m and j = 1,2,...,n其中cij表示从供应点i到需求点j的运输成本。

解决方法针对运输问题,常用的解决方法有以下几种:1. 单纯形法单纯形法是一种用于解决线性规划问题的常用方法。

对于运输问题,可以通过将其转化为标准的线性规划问题,然后使用单纯形法来求解最优解。

2. 匈牙利算法匈牙利算法是一种经典的图论算法,可以用于解决运输问题。

算法的核心思想是通过不断寻找增广路径来寻找最大匹配。

数学建模中优化模型之运输问题讲解

数学建模中优化模型之运输问题讲解

6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:5-(4+(-4)=5
4 3
u1=-4
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(10)
1
2
3
6
7
5
1
14
5
5
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
v3=4
单位费用变化:3-(0+(-4)=7
4
3 u1=-4
7
7 u2=-2
6
6
13 u3=6
v4=0
对偶变量法(6)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u2+v1=c21 v1=10
v3=4
4 3
u1
7 u2=-2
6
13 u3=6
v4=0
对偶变量法(7)
1
2
3
6
7
5
1
14
8
4
2
2
8
13
6
5 3
9
10
6
v1=10
v2=6
u1+v1=c11 u1=-4
运输问题
运输问题的表示 网络图、线性规划模型、运输表 初始基础可行解 西北角法、最小元素法 求解方法 闭回路法、对偶变量法 特殊形式运输问题 不平衡问题、转运问题

数学建模--运输问题

数学建模--运输问题

运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。

关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。

考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。

关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。

首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。

即最短路线为:1-5-7-6-3-4-8-9-10-2-1。

但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。

关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。

这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。

因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。

得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。

关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。

运输问题的数学模型详细讲解,有案例+多种方法

运输问题的数学模型详细讲解,有案例+多种方法
i 1 j 1 m n
m ( 3 1) x ij b j j 1,2, , n i 1 n s .t . x ij a i i 1,2, , m j 1 x 0 ij m n 其中,ai和bj满足: ai b j 称为产销平衡条件。
2、流向图
流向图:
在交通图上表示物资流向的图被称为流向 图。在图中每个发点吨数全部运完,每个 收点所需吨数均已满足。
2、流向图
发点A到收点B的 运输量,用括号 括起。
2、流向图
关于流向图的一些规定 箭头必须表示物资运输的方向 流量写在箭头的旁边,加小括号。 流向不能直接跨越路线上的收点、发点、 交叉点 任何一段弧上最多只能显示一条流向!即 同一段弧上的多条流向必须合并。 除端点外,任何点都可以流进和流出
2 4 6 4 B4
(2)
B5
4 2
8 B3
(8)
4
B2
(8) (1)
4 6 7 A1
3
5 8 A2
图 4-10
第三步:补上丢掉的边,检查有无迂回。 圈 B5B4B3A2 的 圈 长 =4+4+5+8=21, 内 圈长= 4+4+5=13>21/2,有迂回,所 以流向图不是最优流向图。需要调整。
约束方程式中共mn个变量,m+n个约束。
上述模型是一个线性规划问题。但是其结构很特殊, 特点如下: 1.变量多(mn个),但结构简单。
x11 x12 x1n x 21 x 22 x 2 n x m 1 x m 2 x mn 1 1 1 1 1 1 技术系数矩阵 A 1 1 1 1 1 1 1 1 1 1 1 1 m行 n行

数学建模---第四章-运输问题

数学建模---第四章-运输问题
分组构成闭回路,则该变量组对应的列向量组
p , p , , p i1 j1 i2 j2
ir jr
是线性相关的.
推论 1 若变量组对应的列向量组线性无关,则该变 量组一定不包含闭回路.
Go on
性质 1 的证明
Proof : 由直接计算可知
p p p p i1 j1
i1 j2
i2 j2
从理论上讲,运输问题也可用单纯形法来求解, 但是由于运输问题数学模型具有特殊的结构,存在一 种比单纯形法更简便的计算方法 —— 表上作业法, 用表上作业法来求解运输问题比用单纯形法可节约计 算时间与计算费用.但表上作业法的实质仍是单纯形法
§1 运输问题及其数学模型
§1 运输问题及其数学模型
一、运输问题的数学模型
A3 55
6
3
10 4
10
bj 5500 25 10 15
§2 运输问题的表上作业法 2、最小元素法 规则:优先安排单位运价最小的产地与销地之间的运输
任务. Note : 在某行(或列)填入最后一个数时,如果行和 列同时饱和,规定只划去该行(或列)
z 10 40 5 25 3 5 110
设某种物资共有 m 个产地 A1,A2,…,Am,各 产地的产量分别是a1,a2 ,…,am;有n 个销地 B1, B2,…,Bn ,各销地的销量分别为b1,b2,…,bn .
假定从产地Ai(i =1,2,…,m)向销地Bj(j =1, 2,…,n)运输单位物资的运价是cij,问怎样调运才能 使总运费最小?
j 1
i 1, 2, , m
m
xij bj
i 1
j 1, 2, , n
xij 0 i 1, 2, , m; j 1, 2, , n xij 0 i 1, 2, , m; j 1, 2, , n

运筹学 运输问题例题数学建模

运筹学 运输问题例题数学建模

运筹学运输问题例题数学建模运筹学是一门研究如何在有限的资源和多种约束条件下,寻求最优或近似最优解的科学。

运输问题是运筹学中的一个重要分支,它主要研究如何把某种商品从若干个产地运至若干个销地,使总的运费或总的运输时间最小。

本文将介绍运输问题的数学建模方法,以及用表上作业法求解运输问题的步骤和技巧。

同时,本文还将给出几个典型的运输问题的例题,帮助读者理解和掌握运输问题的求解过程。

运输问题的数学建模运输问题可以用以下的数学模型来描述:设有m 个产地(或供应地),分别记为A 1,A 2,…,A m ,每个产地i 的产量(或供应量)为a i ;有n 个销地(或需求地),分别记为B 1,B 2,…,B n ,每个销地j 的需求量为b j ;从产地i 到销地j 的单位运费(或单位运输时间)为c ij ;用x ij 表示从产地i 到销地j 的运量,则运输问题可以归结为以下的线性规划问题:其中,目标函数表示总的运费或总的运输时间,约束条件表示每个产地的供应量必须等于其产量,每个销地的需求量必须等于其销量,以及每条运输路线的运量不能为负数。

在实际问题中,可能出现以下几种情况:产销平衡:即∑m i =1a i =∑n j =1b j ,也就是说总的供应量等于总的需求量。

这种情况下,上述数学模型可以直接应用。

产大于销:即∑m i =1a i >∑n j =1b j ,也就是说总的供应量大于总的需求量。

这种情况下,可以增加一个虚拟的销地,其需求量等于供需差额,且其与各个产地的单位运费为零。

这样就可以把问题转化为一个产销平衡的问题。

产小于销:即∑m i =1a i <∑n j =1b j ,也就是说总的供应量小于总的需求量。

这种情况下,可以增加一个虚拟的产地,其产量等于供需差额,且其与各个销地的单位运费为零。

这样也可以把问题转化为一个产销平衡的问题。

弹性需求:即某些销地对商品的需求量不是固定不变的,而是随着商品价格或其他因素而变化。

数学建模线性规划模型

数学建模线性规划模型

设xj(j=1,2)为第j个化工厂每天处理污水量 (河水流量中忽略了工厂的排入量。) 模型为:
min Z 1000 x1 800 x2
工厂1
500 200 工厂2
700
x1 1 0.8 x x 1.6 1 2 s.t x1 2 x2 1.4 x1 , x2 0
6、投资决策问题:
公司拟在某市东、南、西三区建立连锁店, 拟议中有7个位置Ai(i=1,2,…,7)可供选择, 规定东区在A1,A2,A3中至多选2个,西区在 A4,A5中至少选1个,南区在A6,A7中至少选 1个,并选用Ai点,投资bi元,估计每年获 利ci元,但投资总额不得超过B元。问应如 何选址,可使每年利润最大?
请同学们考虑:如何裁,才能使浪费(料头) 最少。
一般的合理下料问题可叙述为:
要利用某类钢材下A1,A2,…,Am一共m种零件 毛料,根据省料原则,在一块钢材上设计出 n种不同的下料方式,设在第j种下料方式中, 可得Ai种零件aij个,设第i种零件的需求量为 bi(如表).问应采取什么方式,使既满足问 题需要,又使所用钢材最少?
方式 1 … n 需求量
A1
… Am
a11
… Am1

… …
a1n
… Amn
b1
… bm
设xj为用第j种方式下料所用钢材数 模型为:
min Z X j
j 1
n
n i 1, m aij X j bi s.t j 1 x 0 j 1, n j
5、指派问题:
一公司饲养动物生长对饲料中三种营养成 分:蛋白质、矿物质、维生素特别敏感, 每个动物每天至少需要蛋白质70g、矿物质 3g、维生素10mg,该公司买到五种不同的 饲料,每种饲料1㎏所含营养成分如表

运输问题数学建模

运输问题数学建模

该系数矩阵中每列只有两个元素为1,其余的都为零。
2.m+n个约束中有一个是多余的(因为其间含有一个平衡关系 式 ) ai bj 所以R(A)=m+n-1,即解的mn个变量中基变量为m+n-1个。
二、 表上作业法
运输问题仍然是线性规划问题,可以用线性规划 法中的单纯形法来解决。但是:
1. 运输问题所涉及的变量多,造成单纯形表太大;
例3.1
某公司从三个产地A1、A2、A3 将物品运往四个
销地B1、B2、B3、B4,各产地的产量、各销地的销量和各产 地运往各销地每件物品的运费如下表3-4所示
销地 产地 A1 A2 A3 销量 B1 3 1 7 3 B2 11 9 4 6 B3 3 2 10 5 B4 10 8 5 6 产量 7 4 9 20(产销平 衡)
销量,这样的运输问题称为产销平衡的运输问题。 (2)
a b
i 1 i j 1
m
n
j
。即运输问题的总产量不等于总
销量,这样的运输问题的数学模型
若用xij表示从Ai到Bj的运量,那么在产销平衡的条件下, 要求得总运费最小的调运方案,数学模型为:
m in z cij x ij
教学要求:
1 .掌握运输问题的数学模型、系数矩阵特殊形 式 2 .掌握用西北角法、最小元素法求初始基可行 解 3 .掌握回路、位势法求解过程和表上作业法求 解运输问题过程
一、 运输问题及其数学模型
问题的提出:
在经济建设中,经常碰到物资调拨中的运输问题。 例如 煤、钢材、粮食、木材等物资,在全国都有若干 生产基地,分别将这些物资调到各消费基地去,应如 何制定调运方案,使总的运输费用最少?
A2

数学建模运输规划问题

数学建模运输规划问题

T3
4 --- 2 3 1
21 8 2 4
T4
32321 2
1 --- 2 6
B1
31724 1 1
142
B2
11 9 4 8 5 8 --- 1
21
B3
3 2 10 4 2 2 2 4 2
3
B4
10 8 5 6 7 4 6 2 1 3
2021/10/10
2868
解:把此转运问题转化为一般运输问题: 1、把所有产地、销地、转运站都同时看作产地和 销地;
0
100
5’
M M M M 14.0 14.3
0
40
6
M M M M M 13.5.5
0
销2量021/10/10104 75 115 160 103 150
36
80 40
------------------------3
例3 仪器公司在大连和广州有两个分厂生产同一种仪器,大连分厂 每月生产450台,广州分厂每月生产600台。公司在上海和天津有两 个销售公司负责对南京、济南、南昌、青岛四个城市的仪器供应。 因为大连距离青岛较近,公司同意大连分厂向青岛直接供货,运输 费用如下图。应该如何调运仪器,可使总运输费用最低?
0
50
2’
M 15 15.3 15.5 15.7 15.9
0
10
3
M M 13.5 13.8 14.0 14.2
0
90
3’
M M 14.5 14.8 15.0 15.2
0
20
4
M M M 13.0 13.3 13.5
0
100
4’
M M M 14.0 14.3 14.5

线性规划在运输问题中的应用

线性规划在运输问题中的应用

线性规划在运输问题中的应用一、介绍线性规划是优化方法中的一种常见方法,它主要是指寻求在满足一系列约束条件的情况下最大限度地提高某种目标函数的值。

在对各种运输问题进行建模时,线性规划也广泛应用。

在本文中,我们将着重探讨线性规划在运输问题中的应用。

二、定义运输问题在了解线性规划如何应用于运输问题之前,我们需要了解运输问题是什么。

运输问题一般涉及将商品从一个地方运送到另一个地方,并需要最小化或最大化成本或利润等目标。

该问题可以表示为一个线性规划模型,其中各种变量和约束条件可以很好地描述该问题。

三、线性规划模型对于一个标准的运输问题,我们所需要的是一个线性规划模型。

根据这个模型,我们可以了解如何在运输问题中使用线性规划。

如果我们将一个运输问题表示为线性规划模型,我们可以得到以下组成部分:1. 目标函数:可以是最小化或最大化。

2. 变量:这是我们需要确定的变量,例如商品的数量,货物的运输费用等。

3. 约束条件:这些是约束条件,需要满足的条件,例如运输货物的容量限制,客户需求等。

4. 非负约束:这是一个常数,它有助于确保变量始终为正。

通过深入分析运输问题,我们可以确保我们将所有变量和约束条件插入正确的目标函数。

在这里,目标函数是最小化或最大化,而变量和约束条件则会影响该函数的结果。

四、线性规划解决运输问题通过了解运输问题的不同参数,我们可以使用线性规划快速解决运输问题。

我们可以运用简单的算法来求解问题,包括单纯形法、内点法等。

例如,在运输问题中,我们经常利用单纯形法来确定目标函数的最优解。

通过单纯形法,我们可以找到目标函数的最佳解,并确定每个变量的最佳值。

然后,我们可以使用这些值来确定问题的解决方案,以实现最小化或最大化我们的目标函数。

五、实际应用线性规划在运输问题中的实际应用是广泛的。

例如,在制造业中,线性规划可用于优化生产线,减少运输成本,以及减少生产时间,提高生产效率等方面中。

类似地,在供应链管理方面,线性规划是一个重要的工具,可以用来优化存储、运输,以及供应等方面的成本。

数学建模 运筹学模型(一)汇总

数学建模 运筹学模型(一)汇总

运筹学模型(一)本章重点:线性规划基础模型、目标规划模型、运输模型及其应用、图论模型、最小树问题、最短路问题复习要求:1. 进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵.2. 进一步理解数学模型的作用与特点.本章复习重点是线性规划基础模型、运输问题模型和目标规划模型. 具体说来,要求大家会建立简单的线性规划模型,把实际问题转化为线性规划模型的方法要掌握,当然比较简单. 运输问题模型主要要求善于将非线性规划模型转化为运输规化模型,这种转化后求解相当简单. 你至少把一个很实际的问题转化为用表格形式写出的模型,至于求解是另外一回事,一般不要求. 目标模型一般是比较简单的线性规模模型在提出新的要求之后转化为目标规划模型. 另外,关于图论模型的问题涉及到最短路问题,具体说来用双标号法来求解一个最短路模型. 这之前恐怕要善于将一个实际问题转化为图论模型. 还有一个最小数的问题,该如何把一个网络中的最小数找到. 另外在个别场合可能会涉及一笔划问题.1. 营养配餐问题的数学模型m i Z n =C 1x 1+C 2x + C n x n⎧a 11x 1+a 12x 2+ +a 1n x n ≥b 1, ⎪⎪a 21x 1+a 22x 2+ +a 2n x n ≥b 2, ⎪ s ⋅t⋅⎨⎪a x +a x + +a x ≥b , m 22mn n m ⎪m 11⎪⎩x j ≥0(j =1, 2, , n或更简洁地表为m i Z n =∑C x jj =1n j⎧n ⎪∑a ij x j ≥b i ⎪j =1s ⋅t ⋅⎨⎪x ≥0(i =1, 2, , m j ⎪j =1, 2, , n ⎩其中的常数C j 表示第j 种食品的市场价格,a ij 表示第j 种食品含第i 种营养的数量,b i 表示人或动物对第i 种营养的最低需求量.2. 合理配料问题的数学模型有m 种资源B 1,B 2,…,B m ,可用于生产n 种代号为A 1,A 2,…,A n 的产品. 单位产品A j 需用资源B i 的数量为a ij ,获利为C j 单位,第i 种资源可供给总量为b i 个单位. 问如何安排生产,使总利润达到最大?设生产第j 种产品x j 个单位(j =1,2,…,n ),则有m a Z x =C 1x 1+C 2x 2+ +C n x n⎧a 11x 1+a 12x 2+ +a 1n x n ≤b 1, ⎪⎪a 21x 1+a 22x 2+ +a 2n x n ≤b l , ⎪ s ⋅t⋅⎨⎪a x +a x + +a x ≤b , m 22mn n m ⎪m 11⎪⎩x j ≥0(j =1, 2, , n或更简单地写为m a z x =∑Cj =1n j x j⎧n ⎪∑a ij x j ≤b i ⎪j =1 s ⋅t ⋅⎨i =1, 2, , m ⎛⎫⎪x ≥0 j =1, 2, , n ⎪⎪⎪j ⎝⎭⎩3. 运输问题模型运输问题也是一种线性规划问题,只是决策变量设置为双下标变量. 假如问题具有m 个产地和n 个销地,第i 个产地用A i 表示,其产量为a i (i =1,2,…,m ),第j 个销地用B j 表示,其销量为b j (j =1,2,…,n ),从A i 运往B j 的运价为c ij ,而写成为∑a i =1m i =∑b j =1n j 表示产销平衡. 那么产销平衡运输问题的一般模型可以min Z =∑∑c ij x iji =1j =1m n⎧n ⎪∑x ij =a i ⎪j =1⎪⎪m s ⋅t ⋅⎨∑x ij =b j ⎪i =1⎪⎛i =1, 2, , m ⎫⎪x ij ≥0 j =1, 2, , n ⎪⎪⎪⎝⎭⎩4. 目标规划模型某工厂生产代号为Ⅰ、Ⅱ的两种产品,这两种产品都要经甲、乙两个车间加工,并经检验与销售两部门处理. 已知甲、乙两车间每月可用生产工时分别为120小时和150小时,每小时费用分别为80元和20元,其它数据如下表表4-1工厂领导希望给出一个可行性生产方案,使生产销售及检验等方面都能达标.问题分析与模型假设经与工厂总经理交谈,确定下列几条:p 1:检验和销售费每月不超过4600元;p 2:每月售出产品I 不少于50件;p 3:两车间的生产工时充分利用(重要性权系数按两车间每小时费用比确定);p 4:甲车间加班不超过20小时;p 5:每月售出产品Ⅱ不少于80件;p 6:两车间加班总时数要有控制(对权系数分配参照第三优先级).模型建立设x 1,x 2分别为产品Ⅰ和Ⅱ的月产量,先建立一般约束条件组,依题设50x 1+30x 2≤4600x 1≥50 售出量x 2≥80 2x 1+x 2≤120 两车间总工时x 1+3x 2≤150+ 设d 1表检验销售费偏差,则希望d 1达最小,有p 1d 1+, 相应的目标约束为 5x 1+30x 2+d 1--d 1+ = 4600; --达最小,有p 2d 2, 相应的目标约束 d 2表产品I 售量偏差,则希望d 2-+x 1+d 2-d 2=50,以d 3、d 4表两车间生产工时偏差,则由于充分利用,故希望d 320=4:1,有--p 3(4d 3+d 4 . 相应的目标约束应为 --达最小,考虑到费用比例为80:, d 4-+-+=150, -d 42x 1+x 2+d 3-d 3=120和x 1+3x 2+d 4以d 5表甲车间加班偏差,则有+-+d 3+d 5-d 5=20, p 4d 5+, 相应目标约束为以d 6表产品Ⅱ售量偏差,则希望d 6达最小,有相应约束为-+x 2+d 6-d 6=80.++++表示,考虑到权系数,有p6(4d 3+d 4, 其目标约束由于利用超生+d 4- 最后优先级p 6可利用d 3产工时,已在工时限制中体现,于是得到该问题的目标规划模型为---+-++m i z n =p 1d 1++p 2d 2+p 3(4d 3+d 4 +p 4d 5+p 5d 6+p 6(4d 3+d 4 ⎧50x 1+30x 2+d 1--d 1+⎪-+x 1+d 2-d 2⎪⎪-+2x +x +d -d 1233⎪⎪-+s ⋅t ⋅⎨x 1+3x 2+d 4-d 4⎪+-+d +d -d 355⎪⎪x 2+d 6--d 6+⎪-+⎪⎩x 1, x 2≥0, d l , d l≥0=4600=50=120=150=20=80(l =1, 2, , 65. 最小树问题一个图中若有几个顶点及其边的交替序列形成闭回路,我们就说这个图有圈;若图中所有连顶点间都有边相接,就称该图是连通的;若两个顶点间有不止一条边连接,则称该图具有多重边. 一个图被称为是树意味着该图是连通的无圈的简单图. .在具有相同顶点的树中,总赋权数最小的树称为最小树.最小树的求法有两种,一种称为“避圈法”,一种是“破圈法”,两法各具优缺点,它们具有共同的特征——去掉图中的圈并且每次都是去掉圈中边权较大的边.6. 最短路问题的数学模型最短路问题一般描述如下:在一个图(或者说网络)中,给定一个始点v s 和一个终点v t ,求v s 到v t 的一条路,使路长最短(即路的各边权数之和最小).狄克斯屈(E.D.Dijkstra )双标号法该法亦称双标号法,适用于所有权数均为非负(即一切w ij ≥0 w ij 表示顶点v i 与v j 的边的权数)的网络,能够求出网络的任一点v s 到其它各点的最短路,为目前求这类网络最短路的最好算法.该法在施行中,对每一个点v j 都要赋予一个标号,并分为固定标号P (v j )和临时标号T (v j )两种,其含义如下:P (v j )——从始点v s 到v j 的最短路长;T (v j )——从始点v s 到v j 的最短路长上界.一个点v j 的标号只能是上述两种标号之一. 若为T 标号,则需视情况修改,而一旦成为P 标号,就固定不变了.开始先给始点v s 标上P 标号0,然后检查点v s ,对其一切关联边(v s ,vj )的终点v j ,给出v j 的T 标号w ij ;再在网络的已有T 标号中选取最小者,把它改为P 标号. 以后每次都检查刚得到P 标号那点,按一定规则修改其一切关联边终点的T 标号,再在网络的所有T 标号中选取最小者并把它改为P 标号. 这样,每次都把一个T 标号点改为P 标号点,因为网络中总共有n 个结点,故最多只需n -1次就能把终点v t 改为P 标号. 这意味着已求得了v s 到v t 的最短路.狄克斯屈标号法的计算步骤如下:1°令S ={v s }为固定标号点集,=V \{v s }为临时标号点集,再令P (v i =0,v t ∈S ; 2°检查点v i ,对其一切关联边(v i , vj )的终点v j∈,计算并令 min{T (v j , P (v i +w ij }⇒T (v j3°从一切v j∈中选取并令 min{T (v j }=T (v r ⇒T (v r 选取相应的弧(v i , vr ). 再令 S {v r }⇒S , \{v r }⇒=∅,则停止,P (v j 即v s 到v j 的最短路长,特别P (v t 即v s 到v t 的最短路长,而已选出 4°若的弧即给出v s 到各点的最短路;否则令v r ⇒v i ,返2°. 注意:若只要求v s 到某一点v t 的最短路,而没要求v s 到其他各点的最短路,则上述步骤4°可改为 4°若r = t 则结束,P (v r 即为所求最短路长;否则令v r ⇒v i ,返2°.。

线性规划的运输问题

线性规划的运输问题


3 B3=5
4 B4=6
. #;
解:从表中可知:总产量 = 总销量。这是一个产销平衡的
运输问题。假设 xij 表示从产地 i 运往销地 j 的产
品数量,i 1,2,3; j 1,2,3,4. 建立如下表格:
销地 运费单价
B1
产地
A1 A2 A3
3 x11 1 x21 7 x31
销量(吨) 3
为了直观起见,运输问题常用表格来表示,常用有三种表格:
. #;
1、产销平衡表
m
n
ai b j
i1
j1
10
. #;
2、单位运价表
单位 运价 销 或运距 地
产地
A1 A2 ┆ Am
B1 B2 … Bn
c11 c12 … c1 n c21 c22 … c2n
… …… cm1 cm2 … cm n
2、在该模型的系数矩阵中,每列有两个元素是1,其 余为0。(2mn个元素不为0)
3、在目标函数中,由于系数≥0,且目标为最小,因此 目标函数有下界(不会是无界解),又由于约束方程组 一定有可行解(可以证明),故运输问题一定有最优 解。
. #;
运输问题是一种特殊的线性规划问题,理 论上,我们可以用单纯形法来求解运输问题的 解, 如果用单纯形法求解,先得在各约束条件 上加入一个人工变量(以便求出初始基可行解)。 因此,即使是 m = 3, n = 4 这样的简单问 题, 变量数就有19个之多,计算起来非常复杂。 但由于运输问题自身的特殊性,我们使用单纯 形原理,但不用单纯形法。人们在分析运输规 划系数矩阵特征的基础上建立了针对运输问题 的表上作业法。
. #;
的产品已分配完毕。 第三步: 从上述第二步所得的单位运价表未划去的元素中 找出最小元素为 3。这表示将 A1 的产品供应 B3 , A1 每 天生产7 吨,B3 尚缺 4 吨,因此在产销平衡表的(A1 , B3) 交叉处填上 4,由于B3 的需求已满足,将第二步的单位 运价表中的 B3 这一列运价划去。

第二章 线性规划模型(中 运输问题)08-3

第二章 线性规划模型(中 运输问题)08-3
11 9 7 2
11 9 7 4
3 10 4 1
3 10 4 1
3 10 4 1
6 2 1 1
6 2 1 1
6 2 1 5
3 3 3 3 3
3 7 3 3 3
3 7 3 3 3 3 12 7 5 12
5 10 15 3 12 12
5 7 3 12 12
5 10 15
分 配 表{x i j }
5 18 13
2、迭代过程中出现退化


闭合回路中标有“”的基变量同时有多个达到最小 变换后,有多个原基变量变为 0,选运费最大者为换出变量, 其余保留在新的基解中 退化较严重时,可能会出现多次迭代只有值为 0 的基变量在 转移。此时,一要耐心,二要正确选择换出变量
踏石法迭代中需注意的问题:
1、错误地将分配表中基变量的解代入到运费表中 2、不能正确画闭合回路 3、初始解退化,未能补足基变量的个数。因此在位势法中 多次令某个ui或 vj为 0; 4、在位势法中只能令一个 ui 或 vj 为 0;若不能求出全部 ui 和 vj ,说明基变量未选够数或未选对
III
5
4 / 18
vj
4
7 7
4 4
2 1 1
1 1 0
5 3 3 3 3 7 12 7 5 12
5 10 15
答:最优解如上分配表,OBJ=98 13
2.5.3 运输问题迭代中的一些具体问题
2.5.3.1 闭合回路的画法


从入变量xij出发,遇到某个基变量则选一个方向拐角,若不能再 遇到其它基变量,则返回上一拐角,换一个方向走 闭合回路不一定是矩形 供过于求,即 ai > bj ,增加一个虚收点Dn+1,bn+1= ai - bj , 令 wi,n+1=0, i=1,2,…,m 供小于求,即 ai < bj ,增加一个虚发点Wm+1,am+1= bj - ai , 令 wm+1,j=0, j=1,2,…,n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

决策变量 水库i 向j 区的日供水量为 xij(x34=0)
目标 函数
约束 条件
MZ i 1 nx 6 1 1 1 0x 3 1 22 0x 2 1 3 1 0x 7 140
1x 4 2 1 1 0x 3 2 2 1 0x 9 2 3 1 0x 5 2 4 1 0x 9 3 1 2 0x 0 3 22 0x 3 3
X2 168.000000 -3.000000
X3
0.000000 -4.000000
IP 的最优解x1=64,x2=168,x3=0,则至少生产80辆,求生产计划。
Mza 2 x 1 3 x 2 4 x 3
x10,x20,x380
s.t. 1.5x13x25x3600 x10,x28,0 x30
28x1 025x2 040x30 600x0 10 0,x28,0 x380
x1,x2,, x3=0 或 80
x18,0 x20,x30
方法1:分解为8个LP子模型
x18,0 x28,0 x30
其中3个子模型应去掉,然后 x18,0 x20,x380
逐一求解,比较目标函数值, x18,0 x28,0 x380
模型求解 整数规划(Integer Programming,简记IP)
Mza 2 x 1 3 x 2 4 x 3
IP可用LINGO直接求解
s.t. 1.5x13x25x3600
Max=2*x1+3*x2+4*x3;
28x1 025x2 040x30 600010 .5*x1+3*x2+5*x3<600;
结果为小数, 怎么办?
OBJECTIVE FUNCTION VALUE
1) 632.2581
VARIABLE VALUE
REDUCED COST
X1 64.516129
0.000000
X2 167.741928
0.000000
X3 0.000000
0.946237
ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000
0.731183
3) 0.000000
0.003226
1)舍去小数:取x1=64,x2=167,算出目标函数值z=629,与 LP最优值632.2581相差不大。
2)试探:如取x1=65,x2=167;x1=64,x2=168等,计算函数 值z,通过比较可能得到更优的解。
• 但必须检验它们是否满足约束条件。为什么? 3) 模型中增加条件:x1, x2, x3 均为整数,重新求解。
数学建模讲义
第4章 线性规划模型
--运输问题等
dx rx dt
1 运输问题:自来水输送(§4.2) 小 小
水 库
A:50

水 量
B:60
千 吨
C:50
(以天计)
甲:30;50 乙:70;70 丙:10;20 丁:10;40
区区 基额 本外 用用 水水 量量 千千 吨吨
() ()
()
收入:900元/千吨
x1, x2, x3为非负整数
280*x1+250*x2+400*x3<60 000;
IP 结果输出
gin(x1);
OBJECTIVE FUNCTION VALUE 1) 632.0000
gin(x2); gin(x3);
VARIABLE VALUE REDUCED COST
X1 64.000000 -2.000000
甲:30;50 乙:70;70 丙:10;20 丁:10;40
< 总需求量:120+180=300
收入:900元/千吨 总收入900160=144,000(元)
支出 引水管理费
其他费用:450元/千吨 其他支出450160=72,000(元)
确定送水方案使利润最大
使引水管理费最小
模型建立 确定3个水库向4个小区的供水量
元/千吨 甲 乙 丙 丁
支出 引水管理费
A
160 130 220 170
B
140 130 190 150
其他费用:450元/千吨
C
190 200 230 /
• 应如何分配水库供水量,公司才能获利最多?
• 若水库供水量都提高一倍,公司利润可增加到多少?
问题 分析
A:50 B:60
C:50
总供水量:160
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
Mza 2 x 1 3 x 2 4 x 3
s.t. 1.5x13x25x3600
线性 规划
28x1 025x20 40x30 6000模0型
x1,x2,x3 0
(LP)
模型 求解
模型求解
OBJECTIVE FUNCTION VALUE
A(50) B(60)
50 40 甲(30;50)
50
乙(70;70)
10 丙(10;20)
1) 24400.00
VARIABLE VALUE REDUCED COST
X11 0.000000 30.000000
X12 50.000000
0.000000
X23 0.000000 X24 10.000000 X31 40.000000 X32 0.000000
20.000000 0.000000 0.000000 10.000000
= 47600(元)
X33 10.000000 0.000000
2 0-1规划:汽车厂生产计划(§4.3)
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
C(50)
10 丁(10;40)
X13 0.000000 50.000000 X14 0.000000 20.000000
引水管理费 24400(元)
X21 0.000000 X22 50.000000
10.000000 0.000000
利润=总收入-其它费 用-引水管理费 =144000-72000-24400
供应 限制
x 11 x 12 x 13 x 14 50
x21x22x23x2460
x31x32x33
50 线性
规划
需求 限制
3 0x11 x21 x31 80模型 70 x12 x22 x32 140(LP) 1 0x13 x23 x33 30
1 0x 14 x 24 50
相关文档
最新文档