初中数学几何题教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学几何题教案
一【教学内容】
1.复习相似三角形的定义与性质,了解平行截割定理,证明直角三角形射影定理。
2.证明圆周角定理、圆的切线的判定定理及性质定理。
3.证明相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理。
二【教学重点、难点】
1.理解相似三角形的定义与性质定理.
2.掌握以下定理的证明:(1)直角三角形射影定理;(2)圆周角定理;(3)圆的切线判定定理与性质定理;(4)相交弦定理;(5)圆内接四
边形的性质定理与判定定理(6)切割线定理
三【教学过程】
第一讲相似三角形的判定及有关性质
以“平行线分线段成比例定理”为起点,给出相似三角形定义后,逐步讨论相似三角形的判定定理、性质定理等等,其中,基本数学
思想是比例及其性质的应用;
第1课时.基础知识:
平行线等分线段定理:如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段_________.
推论1:经过三角形一边的中点与另一边平行的直线必
______________。
推论2:经过梯形一腰的中点,且与底边平行的直线
________________。
例题选讲:
例1已知:线段AB
求作:线段AB的三等分点
作法:1、作射线AC
2、在射线AC上顺次截取AD=DE=EF
3、连结BF
4、过点D、E分别作BF的平行线分别交AB于点L、K
点L、K为所求的三等分点
作业练习:课本P5习题1.1
第2课时.基础知识:
平行线分线段成比例定理:三条平行线截两条直线,所得的
________________成比例。
推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段____________。
例题选讲:
例1如图D在AB上,DE∥BC,DF∥AC,AE=4,EC=2,BC=8.求BF 和CF的长.
例2、如图,已知DE//BC,EF//CD,求AD是AB和AF的比例中项。
例3平行于三角形一边且和其他两边相交的直线截三角形,所截得的三角形的三边与原三角形的三边对应成比例。
作业练习:课本P9-10习题1.2
第3、4课时.
[复习提问]
1.什么叫相似三角形?什么叫相似比?
定义:对应角相等,对应边成比例的三角形,叫做相似三角形.
几何图形
教学目标:
知识与技能:通过实物,经历探索物体与图形的形状、大小、位置关系的过程,能认识常见的几何图形,并能用自己的语言描述常
见几何图形的特征。
过程与方法:在探索几何图形的形状、位置和大小的过程中,建立空间观念,发展几何直觉,能从实物中抽象出几何体。
情感态度与价值观:体验在实际生活中几何图形的广泛存在与应用;认识几何图形与生活的紧密联系。
教学重点:认识几何图形。
教学难点:从具体事物中抽象出几何体。
教材分析:本节课是七年级第一节课,所涉及到的几何图形是以后继续学习的基础,为进一步学习圈定了范围。由于学生的头脑中,实物与几何图形是两种割裂开的信息,所以在教学中,应建立好两
者之间的联系,并进而发展几何直觉。
教学方法:引导发现,师生互动。
教学准备:多媒体课件、学生身边的实物。
课时安排:1课时
环节教师活动学生活动设计意图
引入新课导语:(略)
提出要求:
1、请大家看章前页,看谁能画出北京天坛主体建筑物的图画?
2、感到无从下手的同学,看一下虚景图形,它们是你小学学过
的哪种图形?
教师先引导会画的学生口述画法,之后,用多媒体课件展示,把建筑物的各部分分割成小学学过的几何图形:圆锥、圆柱、三角形、长方形等。
学生动手画图。
分层教学
学生从多渠道增加感知。
激情导入,激发学生求知欲。
体会客观事物与数学知识间的关系。
一1、上面各实物图片中,有多少个物体?
2、这些物体的哪些形状类似?属于哪种几何体?你能说出理由吗?
3、你能说出现实生活中还有哪些实物具有上面几何体的特征?
教师归纳:
对于各种物体,如果不考虑它们的颜色、材料、质量等,而只注意它们的形状(如方的、圆的)、大小(如长度、面积、体积等)和位
置(如平行、相交、垂直等),就得到我们今后要学习的几何图形。
把下面的实物与相应的几何体用线连接起来:
学生思考,小组交流,讨论完成三个题目。
独立完成,
动手操作。
从学生生活中的实物入手,充分利用学生的知识经验。
把数学知识具体化为生活实物,使学生展开联想。
新课探究
二1、各组讨论,上边练习中的六种几何体可以分哪几类?
2、总结出这样分类的理由。
引导学生分两类:一类是长方体、棱柱、立方体;另一类是球体、圆柱、圆锥。
分类依据:第一类表面都是平面,第二类表面有曲面。(用课件
展示平面与曲面)分组讨论,组内选一名代表回答,各组在全班交流
结果。使学生接触分类思想,加深学生对几何体认识。
新课探究
三1、把下面几何图形分成几类?
2、说出分类理由:
用课件展示几何图形:
归纳:几何图形包括立体图形和平面图形。有些立体图形中含有平面图形,有些立体图形不含平面图形。
你能用六根火柴和小量橡皮泥组成4个三角形吗?能组成4个正
方形吗?学生主动思考,踊跃作答。
学生总结
学生们积极思考,来回答这一具有挑战性的问题。便于学生主动学习。
使学生交流各自学习结果。
加强知识间联系。
激励学生学习。
课堂总结1、怎样从实物抽象出几何图形?
2、几何图形可分为哪两类?