2020高三理科数学模拟试卷
2020年高考理科数学模拟试题及答案(解析版) (14)
A. 3
B. 4
C. 5
D. 6
【答案】B
【解析】 【分析】 结合图形,利用异面直线所成的角的概念,把与 A1B 成 60°角的异面直线一一列出,即得答案. 【详解】在正方体 ABCD﹣A1B1C1D1 的八个顶点中任取两个点作直线, 与直线 A1B 异面且夹角成 60°的直线有: AD1,AC,D1B1,B1C,共 4 条. 故选 B.
3
2
故选 D.
【点睛】本题考查数量积的运算,属于基础题.
4.魏晋时期数学家刘徽在他的著作《 九章算术注》 中,称一个正方体内两个互相垂直的内切圆柱所围成的几
何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为 π : 4 . 若正
方体的棱长为 2,则“牟合方盖”的体积为 (
7
10.设△ABC 的内角 A,B,C 的对边分别为 a,b,c,(a+b+c)(a-b+c)=ac,sinAsinC= 3 -1 ,则角 C= 4
()
A. C=15°或 C=45°
B. C=15°或 C=30°
C. C=60°或 C=45°
D. C=30°或 C=60°
【答案】A
【解析】 【分析】 直接利用关系式的恒等变换,把关系式变形成余弦定理的形式,求出 B 的值.
【详解】二项式( x
1 x
)n
的通项为
T r 1 C n rx ( r 1 x) n r C n rx2 r ( n0 r n )
( x 1 )n 的二项展开式中存在常数项 n2r n为正偶数 x
n4 n为正偶数,
n 为正偶数推不出 n 4 ∴ n 4 是( x 1 )n 的二项展开式中存在常数项的充分不必要条件.
2020年高考_理科数学模拟试卷(含答案和解析)
【高仿咫卷•理科数学 笫1页(共4页)】2020年普通高等学校招生全国统一考试高仿密卷理科数学注意事项:L 本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号 厦写在试题卷和答题卡上,并将准考证号条影码粘贴在答勉卡上的曲 定位JL 。
2.选择题的作答:每小题选出答案后•用2B 铅爸把答题卡上对应题目的答案 标号涂浜,写在试晦卷、草稿纭和答题卡上的非答题区域均无殁°3,非选释题的作答:用签字名直报答在卷麴卡上对应的答意区域内。
客在试 场卷、草稿纸和答邈卡上的非答邈.区域均无效。
4.选考题的作冬:先把所选题目的期号在笔超卡上指定的位置用2B 铅笔涂耍.至案写在答题卡上 对应的冬题区域内,写在试题卷、草稿纸和答题卡上的非答麴区域均无效. 5,考试结束后,请将本试四卷和答题于一并上交,一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要 求的61.已知复数2=~<i 为虚数单位八则|片十2| = £ 1 A.ZB.75D.HH IgGr-DV1卜廿二《衣|2炉一9父+4t0},则AD 《C RB>=A. (1,4)B. (y.4)C. (4J + /I^)D. (1,14-710)2 .已知集合A={3 .已知向量:%。
则“E| =㈤"是口一2川=12。
一加”的 A.充分不必要条件 C,充要条件B.必鬟不充分条件 口既不充分也不必要条件4 .我国古代名著仪孙子算经》中有如卜有趣的问题广今有三女,长女五日一归,中女四日一归•少女三日一归.问三女何n 相会之意思是「一家有三个女儿郴已出嫁.大女儿五天回一次娘家9二女儿四天回一 次娘家,小女儿三天回一次娘家,三个女儿从娘冢同一天走后•至少再隔多少天三人可以再次在娘家相 会?:三人再次在娘家相会■则要隔的天数可以为A. 90 天C. 270 天S.执行如图所示的程序框图,则输出S 的值为B. 180天B. 2 020 *2 019 2Q21 '2 020n 2 020I I ------- 276.已知等差数列{。
2020届高三理科数学模拟试卷(解析版)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|1}A x x =<,2{|log 1}B x x =<,则( )A .{|1}AB x x =<U B .{|2}A B x x =<UC .{|1}A B x x =<ID .{|2}A B x x =<I 【答案】B {|1}A x x =<,{|02}B x x =<<,{|01}A B x x =<<I ,{|2}A B x x =<U . 2.i 是虚数单位,4i1iz =-,则||z =( ) A .2 B .22 C .4 D .42 【答案】B 由题意得4i 4i(1i)2i(1i)22i 1i (1i)(1i)z +===+=-+--+,∴22||(2)222z =-+=.故选B . 3.已知某公司按照工作年限发放年终奖金并且进行年终表彰.若该公司有工作10年以上的员工100人,工作510:年的员工400人,工作05:年的员工200人,现按照工作年限进行分层抽样,在公司的所有员工中抽取28人作为员工代表上台接受表彰,则工作510:年的员工代表有( ) A .8人 B .16人 C .4人 D .24人【答案】B 依题意知,该公司的所有员工中工作10年以上、工作510:年、工作05:年的员工人数比例为1:4:2, 所以工作510:年的员工代表有428167⨯=. 4.已知向量||2=a ,||1=b ,(2)2⋅-=a a b ,则a 与b 的夹角为( ) A .30︒ B .60︒ C .90︒ D .150︒【答案】B ∵2(2)2422⋅-=-⋅=-⋅=a a b a a b a b ,∴1⋅=a b .设a 与b 的夹角为θ,则1cos ||||2θ⋅==a b a b ,又0180θ︒≤≤︒,∴60θ=︒,即a 与b 的夹角为60︒.5.长方体1111ABCD A B C D -,1AB =,2AD =,13AA =,则异面直线11A B 与1AC 所成角的余弦值为( ) A .1414 B .8314 C .1313D .13【答案】A【解析】∵1111C D A B ∥,∴异面直线11A B 与1AC 所成的角即为11C D 与1AC 所成的角11AC D ∠, 在11AC D Rt △中,111C D =,222112314AC =++=,∴11111114cos 1414C D AC D AC ∠===,故选A . 6.执行下图的程序框图,若输出的结果为10,则判断框中的条件是( )A .4?i <B .5?i <C .6?i <D .7?i < 【答案】B【解析】由程序框图可知,该程序框图的功能是计算(1)1232i i S i +=++++=L 的值, 又10S =,所以4i =,当15i +=时退出循环,结合选项可知,应填5?i <.6题 7题7.函数()sin()f x A x ωϕ=+(其中0A >,0ω>)的部分图象如图所示,将函数()f x 的图象 向左平移π6个单位长度,得到()y g x =的图象,则下列说法不正确的是( ) A .函数()g x 为奇函数 B .函数()g x 的最大值为3 C .函数()g x 的最小正周期为π D .函数()g x 在π(0,)3上单调递增【答案】D 由图可知3A =,35ππ3π()41234T =--=,∴πT =,2ω=, 将点5π(,3)12代入3sin(2)y x ϕ=+,得π2π3k ϕ=-+()k ∈Z ,故π()3sin(2)3f x x =-,向左平移π6个单位长度得ππ()3sin[2()]3sin 263y g x x x ==+-=,故A ,B ,C 正确,故选D .8.随机设置某交通路口亮红绿灯的时间,通过对路口交通情况的调查,确定相邻两次亮红灯与亮绿灯的时间之和为90秒,且一次亮红灯的时间不超过60秒,一次亮绿灯的时间不超过50秒,则亮绿灯的时间不小于亮红灯的时间的概率为( )A .14 B .19 C .59 D .511【答案】A 设亮绿灯的时间随机设置为t 秒,则50t ≤,亮红灯的时间为9060t -≤,所以3050t ≤≤, 亮绿灯的时间不小于亮红灯的时间即为45t ≥,由几何概型的概率公式知:P =50−4550−30=14. 9.已知函数1()1ln f x x x=--,则()y f x =的图象大致为( )A .B .C .D .【答案】A ∵1()1ln f x x x=--,∴1ln 0x x --≠,令()1ln g x x x =--,∵(1)0g =,∴函数的定义域为(0,1)(1,)+∞U ,可得211()(1ln )x f x x x x -'=-⋅--, 当(0,1)x ∈时,()0f x '>,函数单调递增;当(1,)x ∈+∞时,()0f x '<,函数单调递减,∴A 选项图象符合题意10.已知圆222x y r +=(0)r >与抛物线22y x =交于A ,B 两点,与抛物线的准线交C ,D 两点,若四边形ABCD 是矩形,则r 等于( ) A .22B .2C .52 D .5 【答案】C 由题意可得,抛物线的准线方程为12x =-,画出图形如图所示:在222x y r +=(0)r >中,当12x =-时,则有2214y r =-.① 由22y x =,得22y x =,代入222x y r +=,消去x 整理得422440y y r +-=.②结合题意可得点A ,D 的纵坐标相等,故①②中的y 相等, 由①②两式消去2y ,得222211()4()4044r r r -+--=, 整理得42168150r r --=,解得254r =或234r =-(舍去),∴52r =,故选C . 11.在ABC △中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知5a =,2534ABC S =△,且2222cos cos b c a ac C c A +-=⋅+⋅,则sin sin B C +=( )A .3B . 9√32C .3D .33【答案】C 在ABC △中,由余弦定理得22222222cos cos 22a b c b c a ac C c A ac c bc ab bc+-+-⋅+⋅=⋅+⋅=,∵2222cos cos b c a ac C c A +-=⋅+⋅,∴222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,∵0πA <<,∴π3A =,∵2534ABC S =△,∴13253sin 244bc A bc ==,∴25bc =,即22225b c a +-=, ∵5a =,∴2250b c +=,由222550bc b c =⎧⎨+=⎩,解得5b c ==,∴a b c ==,∴π3B C A ===, ∴π3sin sin 2sin2332B C +==⨯=.12.已知函数24,0(),0x x x x f x e x x⎧+≤⎪=⎨>⎪⎩,()()g x f x ax =-,若()g x 有4个零点,则a 的取值范围为( )A .2(,4)4eB .(,4)4eC .(,)4e +∞D .2(,)4e +∞【答案】A 因为()()g x f x ax =-有4个零点,即函数()y f x =与y ax =有4个交点,当0x >时,2(1)()xx ef x x-'=, 所以(0,1)x ∈时,()0f x '<,()f x 单调递减;(1,)x ∈+∞时,()0f x '>,()f x 单调递增, 画出()f x 的图象如图所示,求出()f x 的过原点的切线,()f x 在0x =处的切线1l 的斜率为2100(4)|(24)|4x x k x x x =='=+=+=, 设()f x 的过原点的切线2l 的切点为000(,)x e P x x 0(0)x ≠,切线2l 的斜率为2k ,又2(1)()x x e x e x x -'=,故000220020(1)x x x e k x e x k x ⎧-=⎪⎪⎪⎨⎪⎪=⎪⎩,解得02x =,224e k =, 由图可知()y f x =与y ax =有4个交点,则21k a k <<,所以244ea <<.二、填空题:本大题共4小题,每小题5分,共20分. 13.若5(2)()ax x x+-展开式的常数项等于80,则a = . 【答案】2【解析】5()a x x -的通项公式为55525155C (1)(1)C r r r r r r r r r r T a x x a x ----+=⋅⋅⋅-⋅=-⋅,∴5(2)()a x x x+-展开式中的常数项为235C 80a =,∴2a =.14.设x ,y 满足约束条件10103x y x y x -+≥⎧⎪++≥⎨⎪≤⎩,则23z x y =-的最小值是 .【答案】-6【解析】根据题意,画出可行域与目标函数线如图所示,由103x y x -+=⎧⎨=⎩,得34x y =⎧⎨=⎩,由图可知目标函数在点(3,4)A 取最小值23346z =⨯-⨯=-.15.已知双曲线22:13y C x -=的左右焦点分别为1F 、2F ,点A 在双曲线上,点M 的坐标为2(,0)3,且M 到直线1AF ,2AF 的距离相等,则1||AF = .【答案】4【解析】由题意得1(2,0)F -,2(2,0)F ,点A 在双曲线的右支上,又点M 的坐标为2(,0)3, ∴128||233F M =+=,224||233MF =-=. 画出图形如图所示,1MP AF ⊥,2MQ AF ⊥,垂足分别为P ,Q ,由题意得||||MP MQ =,∴AM 为12F AF ∠的平分线,∴1122||||2||||AF F M AF MF ==,即12||2||AF AF =, 又12||||2AF AF -=,∴1||4AF =,2||2AF =.故答案为4.16.在平面直角坐标系xOy 中,已知圆22:1O x y +=,直线:l y x a =+,过直线l 上点P 作圆O 的切线PA ,PB ,切点分别为A ,B ,若存在点P 使得32PA PB PO +=u u u r u u u r u u u r,则实数a 的取值范围是 .【答案】[−2√2,2√2]【解析】取AB 中点H ,OH AB ⊥,∵PA PB =,H 为AB 中点,∴90AHP ∠=︒,∴O ,H ,P 三点在一条直线上,2PA PB PH +=u u u r u u u r u u u r,322PH PO =u u u r u u u r ,34PH PO =u u u r u u u r ,设||3PH x =u u u r ,∴||4PO x =uuu r,∴OH x =,在AHO Rt △中,得222r OH AH -=,221AH x =-,①,在OAP 中运用射影定理得2AH OH PH =⋅,2233AH x x x =⋅=,②, 联立①②,2231x x =-,214x =,12x =,||42OP x ==, ∴P 点以O 为圆心,2r =的圆上,P 轨迹224x y +=, 又∵P 在y x a =+上,直线与圆有交点,∴||211a d =≤+,∴2222a -≤≤. 三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知数列{}n a 满足132********n n n a a a a +-++++=-L ()n ∈*N ,4log n n b a =. (1)求数列{}n a 的通项公式; (2)求数列11{}n n b b +⋅的前n 项和n T .【解析】(1)∵132********n n n a a a a +-++++=-L ,∴31212222222nn n a a a a --++++=-L (2)n ≥, 两式相减得112222n n n nn a +-=-=,∴212n n a -=(2)n ≥. 又当1n =时,12a =满足上式,∴212n n a -=()n ∈*N . ∴数列{}n a 的通项公式212n n a -=. (2)由(1)得21421log 22n n n b --==, ∴114112()(21)(21)2121n n b b n n n n +==-⋅-+-+, ∴12231111111112[(1)()()]3352121n n n T b b b b b b n n +=+++=-+-++-⋅⋅-+L L 142(1)2121nn n =-=++.18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,22AD BC ==,90BAD ABC ∠=∠=︒.(1)证明:PC BC ⊥;(2)若直线PC 与平面PAD 所成角为30︒,求二面角B PC D --的余弦值. 【解析】(1)取AD 的中点为O ,连接PO ,CO , ∵PAD △为等边三角形,∴PO AD ⊥.底面ABCD 中,可得四边形ABCO 为矩形,∴CO AD ⊥,∵0PO CO =I ,∴AD ⊥平面POC ,PC ⊂平面POC ,AD PC ⊥. 又AD BC ∥,所以PC BC ⊥.(2)由面PAD ⊥面ABCD ,PO AD ⊥知,∴PO ⊥平面ABCD ,OP ,OD ,OC 两两垂直,直线PC 与平面PAD 所成角为30︒, 即30CPO ∠=︒,由2AD =,知3PO =,得1CO =.分别以OC u u u r ,OD u u u r ,OP uuu r的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O xyz -,则(0,0,3)P ,(0,1,0)D ,(1,0,0)C ,(1,1,0)B -,(0,1,0)BC =u u u r ,(1,0,3)PC =-u u u r ,(1,1,0)CD =-u u u r,设平面PBC 的法向量为(,,)x y z =n ,∴030y x z =⎧⎪⎨-=⎪⎩,则(3,0,1)=n .设平面PDC 的法向量为(,,)x y z =m ,∴030x y x z -=⎧⎪⎨-=⎪⎩,则(3,3,1)=m .427|cos ,|||||727⋅<>===m n m n m n , ∴二面角B PC D --的余弦值为277-.19.(12分)某学校共有1000名学生,其中男生400人,为了解该校学生在学校的月消费情况, 采取分层抽样随机抽取了100名学生进行调查,月消费金额分布在450~950之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示:将月消费金额不低于元的学生称为“高消费群”.(1)求a 的值,并估计该校学生月消费金额的平均数(同一组中的数据用该组区间的中点值作代表);(2)现采用分层抽样的方式从月消费金额落在[550,650),[750,850)内的两组学生中抽取10人,再从这10人中随机抽取3人,记被抽取的3名学生中属于“高消费群”的学生人数为随机变量X ,求X 的分布列及数学期望;(3)若样本中属于“高消费群”的女生有10人,完成下列22⨯列联表,并判断是否有97.5%的把握认为该校学生属于“高消费群”与“性别”有关?(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)解:(1)由题意知100(0.00150.00250.00150.001)1a ++++=,解得0.0035a =,样本的平均数为:5000.156000.357000.258000.159000.10670x =⨯+⨯+⨯+⨯+⨯=(元), 所以估计该校学生月消费金额的平均数为670元.(2)由题意,从[550,650)中抽取7人,从[750,850)中抽取3人.随机变量X 的所有可能取值有0,1,2,3,337310C C ()C k k P X k -==(0,1,2,3)k =,所以,随机变量X 的分布列为随机变量X 的数学期望35632119()012312012012012010E X =⨯+⨯+⨯+⨯=. (3)由题可知,样本中男生40人,女生60人,属于“高消费群”的25人,其中女生10人; 得出以下22⨯列联表:750222()100(10251550)505.556 5.024()()()()406025759n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有97.5%的把握认为该校学生属于“高消费群”与“性别”有关.20.(12分)已知椭圆22221x y a b +=(0)a b >>的右焦点F 与抛物线28y x =的焦点重合,且椭圆的离心率为63,过x 轴正半轴一点(,0)m 且斜率为33-的直线l 交椭圆于A ,B 两点.(1)求椭圆的标准方程;(2)是否存在实数m 使以线段AB 为直径的圆经过点F ,若存在,求出实数m 的值;若不存在说明理由. 解:(1)∵抛物线28y x =的焦点是(2,0),∴(2,0)F ,∴2c =,又∵椭圆的离心率为63,即63c a =,∴6a =,26a =,则2222b a c =-=,故椭圆的方程为22162x y +=.(2)由题意得直线l 的方程为3()3y x m =--(0)m >, 由221623()3x y y x m ⎧+=⎪⎪⎨⎪=--⎪⎩,消去y 得222260x mx m -+-=, 由2248(6)0Δm m =-->,解得2323m -<<,又0m >,∴023m <<,设11(,)A x y ,22(,)B x y ,则12x x m +=,21262m x x -=,∴212121212331[()][()]()33333m m y y x m x m x x x x =--⋅--=-++. ∵11(2,)FA x y =-u u u r ,22(2,)FB x y =-u u u r,∴212121212462(3)(2)(2)()43333m m m m FA FB x x y y x x x x +-⋅=--+=-+++=u u u r u u u r , 若存在m 使以线段AB 为直径的圆经过点F ,则必有0FA FB ⋅=u u u r u u u r, 即2(3)03m m -=,解得0m =或3m =. 又023m <<,∴3m =,即存在3m =使以线段AB 为直径的圆经过点.21.(12分)已知函数1()ln 12m f x x x =+-()m ∈R 的两个零点为1x ,2x 12()x x <.(1)求实数m 的取值范围;(2)求证:12112x x e+>. 解:(1)2212()22m x mf x x x x -'=-+=, 当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,不可能有两个零点; 当0m >时,由()0f x '>,可解得2x m >;由()0f x '<,可解得02x m <<, ∴()f x 在(0,2)m 上单调递减,在(2,)m +∞上单调递增,∴min 1()(2)ln 2122m f x f m m m ==+-, 要使得()f x 在(0,)+∞上有两个零点,则11ln 21022m +-<,解得02e m <<,则m 的取值范围为(0,)2e . (2)令1t x=,则1111()ln()1ln 122f x m mt t x x =--=--,由题意知方程1ln 102mt t --=有两个根,即方程ln 22t m t+=有两个根,不妨设111t x =,221t x =,令ln 2()2t h t t+=,则当1(0,)t e ∈时,()h t 单调递增,1(,)t e∈+∞时,()h t 单调递减,综上可知,1210t t e >>>, 令2()()()x h x h x e ϕ=--,下面证()0x ϕ<对任意的1(0,)x e∈恒成立,2221ln()21ln ()()()222()x x e x h x h x e x x eϕ-----'''=+-=+-, ∵1(0,)x e ∈,∴ln 10x -->,222()x x e<-,∴222221ln()2ln ()1ln ()2222()2()2()x x x x e e x x x x e e eϕ--------'>+=---, 又∵1(0,)x e∈,∴22221()()2x xe x x e e +--≤=, ∴()0x ϕ'>,则()x ϕ在1(0,)e 单调递增,∴1()()0x eϕϕ<=,∵2222()()()0t h t h t e ϕ=--<,∴222()()h t h t e<-,又∵12()()h t h t =,∴122()()h t h t e<-,∴122t t e >-,∴122t t e +>,即12112x x e +>.2020届尼尔基一中高三理科数学模拟试卷7(教师版)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】平面直角坐标系中,直线l 的参数方程为131x t y t =+⎧⎪⎨=+⎪⎩(t 为参数),以原点为极点,x 轴正半轴为 极轴建立极坐标系,曲线C 的极坐标方程为22cos 1cos θρθ=-. (1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)已知与直线l 平行的直线l '过点(2,0)M ,且与曲线C 交于A ,B 两点,试求||||MA MB ⋅.【解析】(1)把直线l 的参数方程化为普通方程为3(1)1y x =-+,即3130x y -+-=. 由22cos 1cos θρθ=-,可得22(1cos )2cos ρθρθ-=,∴曲线C 的直角坐标方程为22y x =. (2)直线l 的倾斜角为π3,∴直线l '的倾斜角也为π3, 又直线l '过点(2,0)M ,∴直线l '的参数方程为12232x t y t ⎧'=+⎪⎪⎨⎪'=⎪⎩(t '为参数),将其代入曲线C 的直角坐标方程可得234160t t ''--=,设点A ,B 对应的参数分别为1t ',2t ', 由一元二次方程的根与系数的关系知12163t t ''=-,1243t t ''+=,∴16||||3MA MB ⋅=. 23.(10分)【选修4-5:不等式选讲】设函数()|||2|([0,2])f x x a x a a =+---∈.(1)当1a =时,解不等式()1f x ≥;(2)求证:()2f x ≤.【解析】(1)当1a =时,解不等式()1f x ≥等价于|1||1|1x x +--≥,①当1x ≤-时,不等式化为111x x --+-≥,原不等式无实数解;②当11x -<<时,不等式化为111x x ++-≥,解得112x ≤<; ③当1x ≥时,不等式化为111x x +-+≥,解得1x ≥,综上所述,不等式()1f x ≥的解集为1[,)2+∞.(2)()|()(2)|2f x x a x a a a ≤+---=+-,∵[0,2]a ∈,∴(2)2(2)a a a a +-≥-,∴22[(2)](2)a a a a +-≥+-, ∴2(2)4a a +-≤,22a a +-≤,∴()2f x ≤.。
2020年高考理科数学模拟卷及答案详细解析
日平均睡眠时间分组
[4,5)
[5,6)
[6,7)
[7,8)
[8,9)
[9,10]
频数
13
28
49
56
42
12
(1)填写下面的列联表,并根据列联表判断是否有99%的把握认为给市20岁至60岁市民的日平均睡眠时间与年龄有关;
年龄在区间[20,40)
绝密★启用前
2020年高考理科数学模拟卷及答案解析
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一.选择题(共12小题)
1.已知集合A={x|x2﹣4x+3≤0},B={x∈N|﹣1<x<3},则A∩B中的元素个数为( )
A.1B.2C.3D.4
2.已知复数1+i是关于x的方程x2+mx+2的一个根,则实数m的值为( )
A.﹣2B.2C.﹣4D.4
3.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )
(1)证明:平面ABB1A1⊥平面ACC1A1;
(2)求平面AB1C1与平面ADE所成角二面角的余弦值.
2020高考模拟考试试卷数学理科数学含答案
a为.y y⎪数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两分部.共 150 分,考试时间 120 分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若 z = 2 - bi (b ∈R )为纯虚数,则 b 的值为.2 + iA .- 1B .1C .- 2D .4 2. 在等差数列 { }中, a + a = 16, a = 1 ,则 a 的值是. n5739A .15B .30C . - 31D .643.给出下列命题:① 若平面 α 内的直线 l 垂直于平面 β 内的任意直线,则α ⊥ β ; ② 若平面 α 内的任一直线都平行于平面 β ,则 α // β ; ③ 若平面 α 垂直于平面 β ,直线 l 在平面内 α ,则 l ⊥ β ; ④ 若平面 α 平行于平面 β ,直线 l 在平面内 α ,则 l // β .其中正确命题的个数是.A .4B .3C .2D .14.已知函数 f ( x ) = ⎛ 1 ⎫ x -1 - 1 ,则 f ( x ) 的反函数 f -1 ( x ) 的图像大致 ⎝ 2 ⎭y y-1ox -1 ox -1 ox -1oxABCD5.定义集合 M 与 N 的运算: M * N = {x x ∈ M 或x ∈ N , 且x ∉ M I N } ,⎪4C . π - αD . 3π - α4 B . α +π则 (M * N ) * M = A . M I NB . M Y NC . MD . N6.已知 cos(α + π ) = 1 ,其中 α ∈ (0, π ) ,则 sin α 的值为.432A . 4 - 2B . 4 + 2C . 2 2 - 1D . 2 2 - 166 6 37.已 知 平 面 上 不 同 的 四 点 A 、 B 、 C 、 D , 若DB ·DC + CD ·DC + DA ·BC = 0 ,则三角形 ABC 一定是.A .直角或等腰三角形B .等腰三角形C .等腰三角形但不一定是直角三角形D .直角三角形但不一定是等腰三角形8.直线: x + y + 1 = 0 与直线: x sin α + y cos α - 2 = 0⎛ π < α < π ⎫ 的夹⎝ 4 2 ⎭角为.A . α - π4 49.设函数 f ( x ) 是定义在 R 上的以 5 为周期的奇函数,若f (2) > 1, f (3) = a 2 + a + 3,则 a 的取值范围是.a - 3A . (-∞,-2) Y (0,3)B . (-2,0) Y (3,+∞)C . (-∞,-2) Y (0,+∞)D . (-∞,0) Y (3,+∞)10. 若 log x = log x = log 21a2a系为.(a +1)x > 0 (0 < a < 1) ,则 x 、x 、x 的大小关3 1 2 3A . x < x < x32 1D . x < x < x231B . x < x < x2 13C . x < x < x1 3211. 点 P 是双曲线 y 2 - x 2 = 1 的上支上一点,F 1、F 2 分别为双曲线9 16的上、下焦点,则∆PF F 的内切圆圆心 M 的坐标一定适合的方程是.1 2A . y = -3B . y = 3C . x 2 + y 2 = 5D . y = 3x 2 - 212. 一个三棱椎的四个顶点均在直径为 6 的球面上,它的三条侧棱两两垂直,若其中一条⎨ ⎪5 - bx, x > 1.侧棱长是另一条侧棱长的 2 倍,则这三条侧棱长之和的最大值为.A .3B . 4 3C . 2 105D . 2 21555第Ⅱ卷(非选择题,共 90 分)二、填空题:本大题共四小题,每小题4 分,共 16 分,把答案填在题中横线上.⎧2 x , 13 .设函数 f ( x ) = ⎪a,x < 1,x = 1, 在 x = 1 处连续,则实数 a, b 的值分别⎩为.14.以椭圆 x 2 + y 2 = 1 的右焦点为焦点,左准线为准线的抛物线方程 5 4为.15.如图,路灯距地面 8m ,一个身高 1.6m过路A的人沿穿灯的直路以 84m/min 的速度行走,人影1.6O NC M B长度变化速率是m/min .16.在直三棱柱 ABC - A B C 中,有下列三个条件:1 1 1① A B ⊥ AC ;② A B ⊥ B C ;③ B C = A C .11111 11 1以其中的两个为条件,其余一个为结论,可以构成的真命题是(填上所有成立的真命题,用条件的序号表示即可).三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分 12 分)已知函数 f ( x ) = cos x( 3 sin x - cos x), x ∈ R . (Ⅰ)求函数 f ( x ) 的最大值;(Ⅱ)试说明该函数的图像经过怎样的平移和伸缩变换,可以得到y=sin x,x∈R的图像?18.(本小题满分12分)已知数列{a}的首项a=2,且2a=a+1(n∈N*).n1n+1n(Ⅰ)设b=na,求数列{b}的前n项和T;n n n n(Ⅱ)求使不等式a-a<10-9成立的最小正整数n.(已知n+1nlg2=0.3010)19.(本小题满分12分)甲、乙两人进行投篮比赛,每人投三次,规定:投中次数多者获胜,投中次数相同则成平局.若甲、乙两人的投篮命中的概率分别为2和1,且两人每次投篮是否命中是相互独立的.32(Ⅰ)求甲、乙成平局的概率;P(Ⅱ)求甲获胜的概率.D C 20.(本小题满分12分)A B如图,四棱锥P—ABCD中,底面ABCD为直角梯形,且AB//CD,AB⊥AD,AD=CD=2A B=2,侧面∆APD为等边三角形,且平面APD⊥平面ABCD.(Ⅰ)若M为PC上一动点,当M在何位置时,PC⊥平面MDB,并证明之;(Ⅱ)求直线AB到平面PDC的距离;(Ⅲ)若点G为∆PBC的重心,求二面角G-BD-C的大小.21.(本小题满分12分)y M B 1A 1o A2xB2如图,已知 A 1、A 2 为双曲线 C : x 2 - y 2 = 1(a > 0, b > 0) a 2b 2的两个顶点,过双曲线上一点 B 1 作 x 轴的垂线,交双 曲线于另一点 B 2,直线 A 1B 1、A 2B 2 相交于点 M . (Ⅰ)求点 M 的轨迹 E 的方程;(Ⅱ)若 P 、Q 分别为双曲线 C 与曲线 E 上不同于A 1、A 2 的动点,且 A P + A P = m ( A Q + A Q ) ( m ∈ R ,且 m > 1),1212设直线 A 1P 、A 2P 、A 1Q 、A 2Q 的斜率分别为 k 1、k 2、k 3、k 4, 试问 k 1+k 2+k 3+k 4 是否为定值?说明理由.22.(本小题满分 14 分)已知函数 f ( x ) = 1 x 3 + ax 2 - bx + 1 ( x ∈ R, a ,b 为实数)有极值,且3x = 1 在处的切线与直线 x - y + 1 = 0 平行.(Ⅰ)求实数 a 的取值范围;(Ⅱ)是否存在实数 a ,使得函数 f ( x ) 的极小值为 1,若存在,求出实数 a 的值;若不存在,请说明理由;(Ⅲ)设 a = 1 , f ( x ) 的导数为 f '( x ) ,令 g ( x ) = f '( x + 1) - 3, x ∈ (0,+∞) ,2 x求证:g n ( x ) - x n- 1≥ 2 n - 2 (n ∈ N * ) .x n=3sin2x-………………………………………(2=sin(2x-)-…………………………………………(46)有最大值1.此时函数f(x)的值最大,最大值为数学(理科)参考答案一、选择题:DABCD ADAAD BC二、填空题:13.a=2,b=3;14.y2=12(x+2);15.21;16.①②⇒③;①③⇒②;②③⇒①.三、解答题:17.(Ⅰ)f(x)=3sin x cos x-cos2x1+cos2x22分)π162分)当2x-π=2kπ+π,(k∈Z),即x=kπ+π,(k∈Z)时,623sin(2x-π1.……(6分)2(Ⅱ)将y=sin(2x-π)-1的图像依次进行如下变换:62①把函数y=sin(2x-π)-1的图像向上平移1个单位长度,得到622函数y=sin(2x-π6)的图像;…………………………………………(8分)②把得到的函数图像上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数y=sin(x-π)6的图像;…………………………………………(10分)③将函数y=sin(x-π)的图像向左平移π个单位长度,就得到66函数y=sin x的图2 ∴ a = ⎪⎝2⎭⎝ 2 ⎭ ⎪ ∴T = 1· ⎪ + 2· ⎪ + 3· ⎪ + Λ + n · ⎪⎝2⎭ ⎝2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭∴ T = 1· ⎪ + 2· ⎪ + Λ + (n - 1) ⎪ 1 n (n + 1) ………+ n · ⎪ + ·T = 4 - (4 + 2n) ⎪ + ⎝ 2 ⎭ - a = ⎪ < 10 -9⎝2⎭C ⨯ ⎪ ⨯ ⨯ C 2 ⨯ ⎪ =⎝3⎭ 3⎝ 2 ⎭像.…………………………………………(12 分)(注:如考生按向量进行变换,或改变变换顺序,只要正确,可给相应分数)18.(Ⅰ)由 2an +1= a + 1得 ann +1 - 1 = 1 2(a - 1) n可知数列{a - 1} 是以 a - 1 = 1 为首项,公比为 1 的等比数列. n 1n⎛ 1 ⎫ n -1+ 1 (n ∈ N * ) . …………………………………………(4分)从而有 b = na = n ·⎛ 1 ⎫n -1+ n .n nT = b + b +Λ + b n 1 2n n⎛ 1 ⎫ 0 ⎛ 1 ⎫1 ⎛ 1 ⎫ 2 ⎛ 1 ⎫ n -1 + (1 + 2 + Λ + n) ………①1 ⎛ 1 ⎫1 ⎛ 1 ⎫2 ⎛ 1 ⎫ n -12 n ⎝ 2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭ ⎛ 1 ⎫ n⎝ 2 ⎭ 2 2②n ①⎛1⎫ n- ② 并 整 理 得n(n + 1) . ………………(8 分)2(Ⅱ) a n +1n⎛ 1 ⎫ n两边取常用对数得: n > 9 ≈ 29.9lg 2∴ 使 不 等 式 成 立 的 最 小 正 整 数30. ………………………………(12 分)19.(Ⅰ) 甲、乙各投中三次的概率:n 为⎛ 2 ⎫ 3 ⎛ 1 ⎫ 3 ⎪ ⨯ ⎪ =⎝ 3 ⎭ ⎝ 2 ⎭ 1 , …………………………………………(1 分) 27甲、 乙各投中两次的概率:23 3 ⎛ 2 ⎫ 2 1 ⎛ 1 ⎫ 3 1 , …………………………………( 2 61 ,…………………………( 3C 1 ⨯ ⎪ ⨯ ⎪ ⨯ C 1 ⨯ ⎪ = ⎝ 3 ⎭ ⎝ 3 ⎭ ⎝ 2 ⎭ 12⎪ ⨯ 1 - ⎪ =2 ,………( 9C ⨯ ⎪ ⨯ ⨯ ⎢C 0 ⨯ ⎪ + C 1 ⨯ ⎪ ⎥=⎝ 3 ⎭ 3 ⎢ 3 ⎝ 2 ⎭ ⎝ 2 ⎭ ⎥ 9C 1 ⨯ ⎪ ⨯ ⎪ ⨯ ⎪ = ⎝ 3 ⎭ ⎝ 3 ⎭ ⎝ 2 ⎭分)甲、 乙各投中一次的概率:⎛ 2 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ 333 分)甲、 乙两人均投三次,三次都不中的概率:⎛ 1 ⎫ 3 ⎛ 1 ⎫ 3⎪ ⨯ ⎪ =⎝ 3 ⎭ ⎝ 2 ⎭ 1 , …………………………………………(4 216分)∴甲、乙平局的概率是: 1 + 1 + 1 + 1 = 7 . ……………27 6 12 216 24(6 分)(Ⅱ) 甲投中三球获胜的概率:⎛ 2 ⎫ 3 ⎛ 1 ⎫ 7 , …………………………………⎝ 3 ⎭ ⎝ 8 ⎭ 27(8 分)甲投中两球获胜的概率:⎛ 2 ⎫ 2 1 ⎡ ⎛ 1 ⎫ 3 ⎛ 1 ⎫ 3 ⎤ 2 3 3分)甲投中一球获胜的概率:3⎛ 2 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ 31 , (36)(10 分)甲获胜的概率为: 7 + 2 + 1 = 55 .………………………27 9 36 108(12 分)20.(Ⅰ) 当 M 在中点时,PC ⊥ 平面 MDB ………………………………(1 分)连结 BM 、DM ,取 AD 的中点 N ,连结 PN 、NB . ∵ PN ⊥ AD 且面 P AD ⊥ 面 ABCD , ∴ PN ⊥ 面 ABCD . 在 Rt ∆PNB 中, PN = 3, NB = 2, ∴ PB = 5,CM =又 BC = 5 . ∴ BM ⊥ PC……………………………………(3分)又 PD = DC = 2, 又 DM I BM = M ,∴ DM ⊥ PC ,∴ PC ⊥ 面 MDB . ……………………(4分)(Ⅱ) AB // CD, C D ⊂ 面 PDC , AB ⊄ 面 PDC ,∴ AB // 面 PDC .∴AB 到面 PDC 的距离即 A 到面 PDC 的距离. ………………(6 分)Θ CD ⊥ DA, C D ⊥ PN , DA I PN = N , ∴ CD ⊥ 面 PAD ,又 DC ⊂ 面 PDC ,∴面 P AD ⊥ 面 PDC .作 AE ⊥ PD ,AE 就是 A 到面 PDC 的距离,∴ AE = 3 , 即 AB 到平面 PDC 的距离为 3 .………………(8 分)(Ⅲ)过 M 作 MF ⊥ BD 于 F ,连结 CF .Θ PC ⊥ 面 MBD ,∴ ∠MFC 就是二面角 G - BD - C 的平面角. ………………(10分)在 ∆BDC 中, BD = 5, DC = 2, BC = 5,∴ CF = 4 5, 又 CM = 2,5∴ s in ∠MFC = 10 . CF 4即二面角 G - BD - C 的大小是 arcsin 10 .4……………(12分)21.(Ⅰ) 设 B ( x , y ) 、 B ( x ,- y ) 且 y ≠ 0 ,由题意 A (-a,0) 、 A (a,0) ,1212则直线 A 1B 1 的方程为: y = x + a ………①y x + a0 0直线 A 2B 2 的方程为: - y = x - a ………②…………(2y x - a0 0分)x , 由①、②可得 ⎪⎪⎨ 0⎩a 2 b 2b 2 x + a x - a x 2 - a 2 a 2 y a 2 y∴O 、P 、Q 三点共线,………………………………yy⎧ a 2 x = ⎪ y = ay . ⎪ 0 x………………………………( 4分)a 4 a 2 y 2又点 B ( x , y ) 在双曲线上,所以有 x 2 - x 2 = 1 ,1 0 0 整理得 x2 + y 2 = 1 ,a 2b 2所以点 M 的轨迹 E 的方程为 x 2 + y 2 = 1( x ≠ 0 且 y ≠ 0 ).……a 2b 2(6 分)(Ⅱ) k 1+k 2+k 3+k 4 为定值.设 P ( x , y ) ,则 x 2 - a 2 = a 2 y 12 ,1 1 1分)则 k + k = y 1 + y 1 = 2 x 1 y 1 = 2b 2 · x 1 ……③ 1 2 1 1 1 1设 Q ( x , y ) ,则同理可得 k + k = - 2b 2 · x 2 ……④ ………(82 234 2设 O 为原点,则 A P + A P = 2OP , A Q + A Q = 2OQ .1212Θ A P + A P = m ( A Q + A Q)∴ O P = mOQ1 212(10 分)∴ x 1 = x 2 , 再由③、④可得,k 1+k 2+k 3+k 4 = 0 yy12∴k 1+k 2+k 3+k 4 为定值 0.………………………………(12 分)另解:由 A P + A P = m ( A Q + A Q ) ,1212得 ( x + a , y ) + ( x - a , y ) = m [( x + a , y ) + ( x - a , y )] 111122 2 2即 ( x , y ) = m ( x , y )∴ x1 = x2 ,112212再由③、④可得,k 1+k 2+k 3+k 4 = 022.(Ⅰ) ∵ f ( x ) = 1 x 3 + ax 2 - bx + 13xx 10 0 3∴ -a + a 2 + 2a = 4∴ a = - < -2 ,- 3 = x 2 + 1= x +∴ f '( x ) = x 2 + 2ax - b由题意 f '(1) = 1 + 2a - b = 1∴ b = 2a……①………………………………………(2 分)∵ f ( x ) 有极值,∴方程 f '( x ) = x 2 + 2ax - b = 0 有两个不等实根.∴ ∆ = 4a 2 + 4b > 0∴ a 2 + b > 0 ……②由①、②可得, a 2 + 2a > 0∴ a < -2 或a > 0 .故实数 a 的取值范围是 a ∈ (-∞,-2) Y (0,+∞)…………(4 分)(Ⅱ)存在 a = - 8 ,………………………………………(5 分)3由(Ⅰ)可知 f '( x ) = x 2 + 2ax - b ,令 f '( x ) = 0 ,∴ x = -a + a 2 + 2a , x = -a - a 2 + 2a12(-∞, x )( x , x )1 12x 2( x ,+∞)2f '( x )f ( x )+ - +单调增 极大值 单调减 极小值 单调增(7 分)(8 分)∴ x = x 时, f ( x ) 取极小值, ………………………………………2则 f ( x ) = 1 x 3 + ax 2 - 2ax + 1 = 1, ∴ x = 0 或 x 2 + 3ax - 6a = 0 , 2 2 2 2 2 2若 x = 0 ,即 - a + a 2 + 2a = 0 ,则 a = 0 (舍) ………………2若 x 2 + 3ax - 6a = 0 ,又 f '( x ) = 0 ,∴ x 2 + 2ax - 2a = 0 ,22222∴ ax - 4a = 0 ,Θ a ≠ 0∴ x = 4 , 2283∴存在实数 a = - 8 , 使 得 函 数 f ( x ) 的 极 小 值 为31.…………(9 分)(Ⅲ) Θ a = 1 , f '( x ) = x 2 + x - 12 ∴ f '( x + 1) = x 2 + 3x + 1 ,∴ f '( x + 1)1 , x x x∴ g ( x ) = x + ,x ∈ (0,+∞) .…………………………………( 10= x + ⎪ - x n - = C x ⎪+ C2 x n -2 ⎪ +Λ + C n -2 x 2 ⎪ + C n -1 x ⎪ x ⎭ ⎝ x ⎭ ⎝ x ⎭ ⎝ x ⎭ ⎝ 2 ⎢⎣ n ⎝ x n -2 ⎭ ⎝ ⎝ x n -2 + x n -2 ⎪⎥ 2 ⎣ x n -2 x n -4⎢1 x分)g n ( x ) - x n -1 ⎛ 1 ⎫ nx n ⎝ x ⎭ 1 x n⎛ 1 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ n -2 ⎛ 1 ⎫ n -1 1 n -1 n n n n= 1 ⎡ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 C 1 x n -2 + ⎪ + C 2 x n -4 + ⎪ + Λ + C n -1 n n ⎫⎤ ⎭⎦≥ 1 ⎡C 1 2 x n -2 · 1 + C 2 2 x n -4 · 1 + Λ + C n -1 2 n n n 1 x n -2 ⎤·x n -2 ⎥ ⎦= C 1 + C 2 + Λ + C n -1 = 2 n - 2n n n∴其中等号成立的条件为 x = 1 .…………………………………(13 分)∴ g n ( x ) - x n - 1 ≥ 2 n - 2 (n ∈ N * )…………………………( 14x n分)。
2020年高三年级模拟考试理科数学试卷
2020年高三年级模拟考试理科数学试卷(满分:150分,考试时间:120分钟。
请将答案填写在答题卡上)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
) 1.已知集合{}{}=⋂<+-==B A x x x A ,则,,,0)1)(2(B 321 A.φ B.{1} C.{1,2} D.{1,2,3}2. 已知复数z=m+(m-1)i 在复平面所对应的点在第四象限,则实数m 的取值范围 A.(0,1) B.()0,∞- C.()1,∞- D.()∞+,13.如图,长方体1111ABCD A B C D -中,12AA AB ==,1AD =,点,,E F G 分别是1DD , AB ,1CC 的中点,则异面直线1A E 与GF 所成的角是A .90B .60C .45D .304.==+απα2sin ,21)4tan(则 A.54- B.54 C.53- D.535.若,x y 满足约束条件02636x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最大值为A .10B .8C .5D .36.已知ABC ,则“sin cos A B =”是“ABC 是直角三角形”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.某几何体的三视图如图所示,则该几何体的表面积为 A .32413+ B .32213+ C .22221413++ D .22221213++8.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P 表示π的近似值),若输入10n =,则输出的结果是A .11114(1)35717P =-+-+⋅⋅⋅+ B .11114(1)35719P =-+-+⋅⋅⋅- C .11114(1)35721P =-+-+⋅⋅⋅+D .11114(1)35721P =-+-+⋅⋅⋅-9.已知函数f(x)=x 2e x ,当x ∈[-1,1]时,不等式f(x)<m 恒成立,则实数m 的取值范围为 A .[,+∞) B .(,+∞) C .[e ,+∞) D .(e ,+∞)10.已知奇函数()f x 是R 上增函数,()()g x xf x =则A .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11.若33log (2)1log a b ab +=+,则42a b +的最小值为( )A .6B .83C .163D .17312.已知函数3ln ()3ln x a xf x a x x=-+-在区间()1,+∞上恰有四个不同的零点,则实数a 的取值范围是( ) A .(,3)(3,)e +∞ B .[)0,eC .()2,e +∞D .(,){3}e -∞二、填空题(本题共4小题,每小题5分,共20分。
2020年高考理科数学模拟试题含答案及解析5套)
绝密★启用前2020年高考模拟试题(一)理科数学时间:120分钟分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b >”是“22a b >”的() A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.抛物线22(0)x py p =>的焦点坐标为()A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭3.十字路口来往的车辆,如果不允许掉头,则行车路线共有()A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为()A .4-B .2-C .0D .2 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为() A .5 B .34C .41D .526.()()()()sin ,00,xf x x x=∈-ππ大致的图象是()A .B .C .D .此卷只装订不密封级 姓名 准考证号 考场号 座位号7.函数()sin cos (0)f x x x ωωω=->ω的取值不可能为() A .14B .15 C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ay x =,()0,x ∈+∞是增函数的概率为() A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是() A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==,则四面体ABCD 的外接球的表面积为() A .2π B .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b bb b ⎡⎤+++⎢⎥⎣⎦=()A .2017B .2018C .2019D .202012[]0,1上单调递增,则实数a 的取值范围() A .()1,1- B .()1,-+∞C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF =,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos2cos0222xxxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。
2020年高考理科数学模拟试卷(含答案解析)
2020年高考理科数学模拟试卷一、选择题1.已知实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,若z=a+bi﹣4,则在复平面内,复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|5x2+x﹣4<0},B=,则A∩(∁R B)=()A.B.C.D.3.已知实数a,b满足,则()A.B.log2a>log2bC.D.sin a>sin b4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.5.下列函数中,既是奇函数,又在(1,+∞)上单调递减的是()A.f(x)=x B.C.D.f(x)=x3﹣6x 6.已知正方形ABCD内接于圆O,点E是AD的中点,点F是BC边上靠近B的四等分点,则往圆O内投掷一点,该点落在△CEF内的概率为()A.B.C.D.7.伟大的法国数学家笛卡儿(Descartes1596~1650)创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点,因此直角坐标系又被称为“笛卡尔系”;直角坐标系的引入,将诸多的几何学的问题归结成代数形式的问题,大大降低了问题的难度,而直角坐标系,在平面向量中也有着重要的作用;已知直角梯形ABCD中,AB∥CD,∠BAD=90°,∠BCD=60°,E是线段AD上靠近A的三等分点,F是线段DC的中点,若,则=()A.B.C.D.8.已知函数f(x)=4sin x cos x+4sin x﹣2,则下列说法错误的是()A.函数f(x)的周期为B.函数f(x)的一条对称轴为x=﹣C.函数f(x)在[﹣,﹣π]上单调递增D.函数f(x)的最小值为﹣49.已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.B.C.D.10.执行如图所示的程序框图,若输出的S的值为365,则判断框中可以填()A.i>4B.i>5C.i>6D.i>711.过双曲线E:的右顶点A作斜率为﹣1的直线,该直线与E 的渐近线交于B,C两点,若=,则双曲线E的渐近线方程为()A.y=±x B.y=±4x C.y=±x D.y=±2x12.已知数列{a n}满足.令T n=|a n+a n+1+…+a n+5|(n∈N*),则T n的最小值为()A.20B.15C.25D.30二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.二项式的常数项为a,则=.14.已知点(x,y)满足,则的取值范围为.15.已知A,B两点分别为椭圆的左焦点与上顶点,C为椭圆上的动点,则△ABC面积的最大值为.16.已知∃x0∈R,使得不等式能成立,则实数m的取值范围为.三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C的对边分别为a,b,c,且=a.(1)求A的大小;(2)若a=,b+c=3+,求△ABC的面积.18.在一次体质健康测试中,某辅导员随机抽取了12名学生的体质健康测试成绩做分析,得到这12名学生的测试成绩分别为87,87,98,86,78,86,88,52,86,90,65,72.(1)请绘制这12名学生体质健康测试成绩的茎叶图,并指出该组数据的中位数;(2)从抽取的12人中随机选取3人,记ξ表示成绩不低于76分的学生人数,求ξ的分布列及期望.19.已知三棱柱ABC﹣A1B1C1中,AA1=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.(1)求证:AB⊥平面AB1C;(2)若B1C=AA1,求平面AB1C1与平面BCB1所成二面角的余弦值.20.已知椭圆O:+=1(a>b>0)过点(,﹣),A(x0,y0)(x0y0≠0),其上顶点到直线x+y+3=0的距离为2,过点A的直线l与x,y轴的交点分别为M、N,且=2.(1)证明:|MN|为定值;(2)如图所示,若A,C关于原点对称,B,D关于原点对称,且=λ,求四边形ABCD面积的最大值.21.已知函数f(x)=alnx﹣x,且函数f(x)在x=1处取到极值.(1)求曲线y=f(x)在(1,f(1))处的切线方程;(2)若函数,且函数g(x)有3个极值点x1,x2,x3(x1<x2<x3),证明:ln()>﹣.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在极坐标系中,曲线C的极坐标方程为ρ=4(2cosθ+sinθ).现以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(1)求曲线C的直角坐标系方程和直线l的普通方程;(2)求曲线C关于直线l对称曲线的参数方程.[选修4-5不等式选讲]23.已知定义在R上的函数f(x)=|x|.(1)求f(x+1)+f(2x﹣4)的最小值M;(2)若a,b>0且a+2b=M,求+的最小值.参考答案一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,若z=a+bi﹣4,则在复平面内,复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的运算法则、复数相等、几何意义即可得出.解:实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,∴a﹣b+(a+b)i=4i,可得a﹣b=0,a+b=4,解得a=b=2.若z=a+bi﹣4,=﹣2+2i,则在复平面内,复数z所对应的点(﹣2,2)位于第二象限.故选:B.2.已知集合A={x|5x2+x﹣4<0},B=,则A∩(∁R B)=()A.B.C.D.【分析】求出集合A,B的补集,再计算即可.解:A={x|5x2+x﹣4<0}=(﹣1,),B=,∁R B=(),则A∩(∁R B)=[),故选:B.3.已知实数a,b满足,则()A.B.log2a>log2bC.D.sin a>sin b【分析】首先利用指数函数的性质得到a,b的范围,然后逐一考查所给的不等式即可求得最终结果.解:由指数函数的单调性可得:a>b>0,则:,sin a与sin b的大小无法确定.故选:B.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.【分析】由三视图可知:该几何体由三部分组成:最上面是一个圆锥,中间是一个圆柱,最下面是一个长方体.利用表面积计算公式即可得出.解:由三视图可知:该几何体由三部分组成:最上面是一个圆锥,中间是一个圆柱,最下面是一个长方体.∴该几何体的表面积=+2π×1×1+42×6﹣π×12=()π+96.故选:D.5.下列函数中,既是奇函数,又在(1,+∞)上单调递减的是()A.f(x)=x B.C.D.f(x)=x3﹣6x 【分析】根据题意,逐项判断即可.解:对于A,其在定义域上为增函数,不符合题意,舍去;对于B,其在定义域上为偶函数,不符合题意,舍去;对于C,其是奇函数,又在(1,+∞)上单调递减,符合题意;对于D,f(2)=﹣4,f(3)=33﹣18=9,其在(1,+∞)上不为减函数,不符合题意,舍去.故选:C.6.已知正方形ABCD内接于圆O,点E是AD的中点,点F是BC边上靠近B的四等分点,则往圆O内投掷一点,该点落在△CEF内的概率为()A.B.C.D.【分析】根据已知可分别求解圆的面积及△CEF内解:设正方形的边长为4,则正方形的面积为4×4=16的面积,然后根据几何概率求解公式即可.△CEF的面积为16﹣=7,因为圆的直径2R=即R=2,圆的面积为8π,根据几何概率的公式可得P=.故选:C.7.伟大的法国数学家笛卡儿(Descartes1596~1650)创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点,因此直角坐标系又被称为“笛卡尔系”;直角坐标系的引入,将诸多的几何学的问题归结成代数形式的问题,大大降低了问题的难度,而直角坐标系,在平面向量中也有着重要的作用;已知直角梯形ABCD中,AB∥CD,∠BAD=90°,∠BCD=60°,E是线段AD上靠近A的三等分点,F是线段DC的中点,若,则=()A.B.C.D.【分析】过B作BM⊥DC于M,根据向量的加减的几何意义和向量的数量积公式计算即可.解:过B作BM⊥DC于M,故AB=DM=2,因为BM=AD=,∠BCD=60°,故CM=1,则DF=则=(+)(+)=•+•=××(﹣1)+2×=故选:A.8.已知函数f(x)=4sin x cos x+4sin x﹣2,则下列说法错误的是()A.函数f(x)的周期为B.函数f(x)的一条对称轴为x=﹣C.函数f(x)在[﹣,﹣π]上单调递增D.函数f(x)的最小值为﹣4【分析】化简函数f(x),根据三角函数的图象和性质,判断即可.解:f(x)=4sin x cos x+4sin x﹣2=2=2=4(=4sin(3x﹣),周期为,x=﹣时,sin(3x﹣)=﹣1,故A,B成立,最小值为﹣4,成立,故D成立,x∈[﹣,﹣π]时,3x﹣∈[﹣,]=[﹣4π+,﹣4π+],f(x)递减,故选:C.9.已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.B.C.D.【分析】由排除法求解即可.解:由图象可知,函数的定义域中不含0,故排除D;若,则当x→0时,f(x)→+∞,故排除C;若,则,不符合题意,故排除A;故选:B.10.执行如图所示的程序框图,若输出的S的值为365,则判断框中可以填()A.i>4B.i>5C.i>6D.i>7【分析】根据条件进行模拟运算,寻找成立的条件进行判断即可.解:模拟程序的运行,可得S=0,i=1执行循环体,S=302.5,i=2,不满足判断框内的条件,执行循环体,S=315,i=3不满足判断框内的条件,执行循环体,S=327.5,i=4不满足判断框内的条件,执行循环体,S=340,i=5不满足判断框内的条件,执行循环体,S=352.5,i=6不满足判断框内的条件,执行循环体,S=365,i=7此时,应该满足判断框内的条件,退出循环,输出S的值为365.则判断框内的件为i>6?,故选:C.11.过双曲线E:的右顶点A作斜率为﹣1的直线,该直线与E的渐近线交于B,C两点,若=,则双曲线E的渐近线方程为()A.y=±x B.y=±4x C.y=±x D.y=±2x【分析】分别表示出直线l和两个渐近线的交点,利用=,=3,求得a 和b的关系,可得双曲线E的渐近线方程.解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,﹣),A(a,0),∵=,∴=3∴﹣a=3(﹣a),∴b=2a,∴双曲线E的渐近线方程为y=±2x.故选:D.12.已知数列{a n}满足.令T n=|a n+a n+1+…+a n+5|(n∈N*),则T n的最小值为()A.20B.15C.25D.30【分析】本题先设数列{a n}的前n项和为S n,则可计算出S n=﹣.然后应用公式a n=即可计算出数列{a n}的通项公式,可发现数列{a n}是一个等差数列.然后应用等差数列的性质化简整理T n=|a n+a n+1+…+a n+5|,再根据绝对值的特点可得T n的最小值.解:依题意,由,可得:=.设数列{a n}的前n项和为S n,则S n=﹣.当n=1时,a1=S1=﹣=35.当n≥2时,a n=S n﹣S n﹣1=﹣﹣[﹣]=40﹣5n.n=1也满足上式,故a n=40﹣5n,n∈N*.很明显数列{a n}是以35为首项,﹣5为公差的等差数列.∴T n=|a n+a n+1+a n+2+a n+3+a n+4+a n+5|=|5a n+2+a n+5|=|5[40﹣5(n+2)]+40﹣5(n+5)|=|165﹣30n|∴当n=5或n=6时,T n取得最小值T5=T6=15.故选:B.二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.二项式的常数项为a,则=.【分析】利用二项式定理的通项公式可得a,再利用微积分基本定理及其性质即可得出.解:T k+1=(2x)6﹣k=26﹣k,令6﹣=0,解得k=4.∴T5==a.∴=dx=+dx=0+=.故答案为:.14.已知点(x,y)满足,则的取值范围为[﹣2,1].【分析】首先画出可行域,利用z的几何意义:区域内的点与(﹣1,1)连接直线的斜率,因此求最值即可.解:由已知得到平面区域如图:z=表示区域内的点与原点连接的直线斜率,由解得A(2,2),由解得B(1,﹣2)当与A(2,2)连接时直线斜率最大为1,与B(1,﹣2)连接时直线斜率最小为﹣2,所以的取值范围为[﹣2,1];故答案为:[﹣2,1].15.已知A,B两点分别为椭圆的左焦点与上顶点,C为椭圆上的动点,则△ABC面积的最大值为2().【分析】由椭圆的方程可得A,B的坐标,进而求出直线AB的方程,及|AB|的长度,当三角形ABC的面积最大时为过C点的直线与直线AB平行且与椭圆相切时面积最大,设过C的直线方程与椭圆联立,由判别式等于0可得参数的值求出两条平行线的距离的最大值,代入面积公式可得面积的最大值.解:由椭圆方程可得A(﹣2,0),B(0,2)所以直线AB的方程为:x﹣y+2=0,且:|AB|=2,由题意可得当过C的直线与直线AB平行且与椭圆相切时,两条平行线间的距离最大时,三角形ABC的面积最大,设过C点与AB平行的切线方程l为:x﹣y+m=0,直线l与直线AB的距离为d=,联立直线l与椭圆的方程可得:,整理可得:3y2﹣2my+m2﹣8=0,△=4m2﹣12(m2﹣8)=0,可得m2=12,解得m=,所以当m=﹣2时d==2+最大,这时S△ABC的最大值为:==2(),故答案为:2().16.已知∃x0∈R,使得不等式能成立,则实数m的取值范围为m <1或m>4e.【分析】由题意可得m(x0﹣1)>e x0(2x0﹣1),分别x0=1,x0>1,x0<1,运用参数分离和构造函数,求得导数和单调性、最值,结合能成立思想可得所求范围.解:不等式,即为m(x0﹣1)>e x0(2x0﹣1),若x0=1则不等式显然不成立;当x0>1时,可得m>,设f(x)=,f′(x)=,则f(x)在(1,)时递减,在(,+∞)递增,即有f(x)在x=处取得最小值4e,由题意可得m>4e,又当x0<1时,可得m<,设f(x)=,f′(x)=,则f(x)在(0,1)时递减,在(﹣∞,0)递增,即有f(x)在x=0处取得最大值1,由题意可得m<1,综上可得m的范围是m<1或m>4e,故答案为:m<1或m>4e.三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C的对边分别为a,b,c,且=a.(1)求A的大小;(2)若a=,b+c=3+,求△ABC的面积.【分析】(1)由已知结合正弦定理及和差角公式进行化简可得B+C=2A,然后结合三角形的内角和定理即可求解;(2)由已知结合余弦定理可求bc,然后结合三角形的面积公式即可求解.解:(1)∵=a.∴(b+c)cos A=a cos B+a cos C,由正弦定理可得sin B cos A+sin C cos A=sin A cos B+sin A cos C,即sin(B﹣A)=sin(A﹣C),所以B﹣A=A﹣C,即B+C=2A,又因为A+B+C=π,故A=,(2)由余弦定理可得,==,∴bc=2,S△ABC===.18.在一次体质健康测试中,某辅导员随机抽取了12名学生的体质健康测试成绩做分析,得到这12名学生的测试成绩分别为87,87,98,86,78,86,88,52,86,90,65,72.(1)请绘制这12名学生体质健康测试成绩的茎叶图,并指出该组数据的中位数;(2)从抽取的12人中随机选取3人,记ξ表示成绩不低于76分的学生人数,求ξ的分布列及期望.【分析】(1)由这12名学生的测试成绩能绘制这12名学生体质健康测试成绩的茎叶图,并求出该组数据的中位数.(2)ξ的可能取值为0,1,2,3,分虽求出相应的概率,由此能求出ξ的分布列和数学期望E(ξ).解:(1)绘制这12名学生体质健康测试成绩的茎叶图,如下:该组数据的中位数为:=86.(2)抽取的12人中,成绩不低于76分的有9人,从抽取的12人中随机选取3人,记ξ表示成绩不低于76分的学生人数,则ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.P(ξ=3)==,∴ξ的分布列为:ξ0123P数学期望E(ξ)==.19.已知三棱柱ABC﹣A1B1C1中,AA1=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.(1)求证:AB⊥平面AB1C;(2)若B1C=AA1,求平面AB1C1与平面BCB1所成二面角的余弦值.【分析】(1)求出B₁A⊥AB,又AB⊥AC,利用线面垂直的判定定理求出即可;(2)根据题意,以A为原点,以AB,AC,AB₁分别为x,y,z轴建立空间直角坐标系,求出平面AB1C1与平面BCB1的法向量,利用夹角公式求出即可.解:(1)在三角形BB₁A中,∠BAA1=120°,得∠B₁BA=60°,由AB₁2=22+12﹣2×1×2×cos60°=3,所以BB₁2=AB2+AB₁2,B₁A⊥AB又∠BAC=90°,AB⊥AC,AC∩AB₁=A,故AB⊥平面AB1C;(2)根据题意,以A为原点,以AB,AC,AB₁分别为x,y,z轴建立空间直角坐标系,A(0,0,0),B(1,0,0),C(0,1,0),B₁(0,0,),,,设平面AB1C1的法向量为,由,,得,设平面BCB1的法向量为,由,得,由cos<>=,故平面AB1C1与平面BCB1所成二面角的余弦值20.已知椭圆O:+=1(a>b>0)过点(,﹣),A(x0,y0)(x0y0≠0),其上顶点到直线x+y+3=0的距离为2,过点A的直线l与x,y轴的交点分别为M、N,且=2.(1)证明:|MN|为定值;(2)如图所示,若A,C关于原点对称,B,D关于原点对称,且=λ,求四边形ABCD面积的最大值.【分析】(1)其上顶点(0,b)到直线x+y+3=0的距离为2,利用点到直线的距离公式可得,根据椭圆O:+=1(a>b>0)过点(,﹣),解得a2.可得椭圆的标准方程为:=1.设经过点A的直线方程为:y﹣y0=k(x﹣x0),可得M,N(0,y0﹣kx0).利用=2,可得k=﹣.利用两点之间的距离公式可得|MN|.(2)设∠AOD=α.由=λ,可得2|OD|=3λ.由题意可得:S四边形ABCD==2×|OA|•sinα,即可得出.【解答】(1)证明:其上顶点(0,b)到直线x+y+3=0的距离为2,∴,解得b=1.又椭圆O:+=1(a>b>0)过点(,﹣),∴=1,解得a2=4.∴椭圆的标准方程为:=1.点A在椭圆上,∴=1.设经过点A的直线方程为:y﹣y0=k(x﹣x0),可得M,N(0,y0﹣kx0).∵=2,∴﹣x0=,即k=﹣.∴|MN|===3为定值.(2)解:设∠AOD=α.∵=λ,∴2|OD|=3λ.由题意可得:S四边形ABCD==2×|OA|•sinα≤3λ|OA|.21.已知函数f(x)=alnx﹣x,且函数f(x)在x=1处取到极值.(1)求曲线y=f(x)在(1,f(1))处的切线方程;(2)若函数,且函数g(x)有3个极值点x1,x2,x3(x1<x2<x3),证明:ln()>﹣.【分析】(1)求出原函数的导函数,由f′(1)=0求解a值,则曲线y=f(x)在(1,f(1))处的切线方程可求;(2)求出函数g(x)的解析式,由g′(x)=0,构造函数h(x)=2lnx+﹣1,根据零点存在定理,可知函数的一个零点x0∈(1,2),则x0>m,再根据导数和函数的极值的关系即可证明x=m是f(x)极大值点,h()是h(x)的最小值;由g(x)有三个极值点x1<x2<x3,得h()=2ln+1<0,得m<,则m的取值范围为(0,),当0<m<时,h(m)=2lnm<0,h(1)=m﹣1<0,得x2=m,即x1,x3是函数h(x)的两个零点.构造函数φ(x)=2xlnx﹣x,求导可得φ(x)在(0,)上递减,在(,+∞)上递增,把证明ln()>﹣转化为证明φ(x3)>φ(﹣x1)即可.解:(1)f(x)=alnx﹣x,f′(x)=,∵函数f(x)在x=1处取到极值,∴f′(1)=a﹣1=0,即a=1.则f(x)=lnx﹣x,f(1)=﹣1,∴曲线y=f(x)在(1,f(1))处的切线方程为y=﹣1;(2)g(x)=(0<m<1),函数的定义域为(0,+∞)且x≠1,∴g′(x)==,令h(x)=2lnx+,∴h′(x)=,h(x)在(0,)上单调递减,在(,+∞)上单调递增;∵h(1)=m﹣1<0,h(2)=2ln2+﹣1=ln+>0,∴h(x)在(1,2)内存在零点,设h(x0)=0,∴x0>m,当g′(x)>0时,即0<x<m,或x>x0,函数单调递增,当g′(x)<0时,即m<x<x0,函数单调递减,∴当x=m时,函数有极大值,∴当0<m<1时,x=m是f(x)极大值点;h()是h(x)的最小值;∵g(x)有三个极值点x1<x2<x3,∴h()=2ln+1<0,得m<.∴m的取值范围为(0,),当0<m<时,h(m)=2lnm<0,h(1)=m﹣1<0,∴x2=m;即x1,x3是函数h(x)的两个零点.∴,消去m得2x1lnx1﹣x1=2x3lnx3﹣x3;令φ(x)=2xlnx﹣x,φ′(x)=2lnx+1,φ′(x)的零点为x=,且x1<<x3.∴φ(x)在(0,)上递减,在(,+∞)上递增.要证明ln()>﹣,即证x1+x3>,等价于证明x3>﹣x1,即φ(x3)>φ(﹣x1).∵φ(x1)=φ(x3),∴即证φ(x1)>φ(﹣x1).构造函数F(x)=φ(x)﹣φ(﹣x),则F()=0;∴只要证明在(0,]上F(x)单调递减,函数φ(x)在(0,]单调递减;∵x增大时,﹣x减小,φ(﹣x)增大,﹣φ(﹣x)减小,∴﹣φ(﹣x)在(0,]上是减函数.∴φ(x)﹣φ(﹣x)在(0,]上是减函数.∴当0<a<时,x1+x3>.即ln()>﹣.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在极坐标系中,曲线C的极坐标方程为ρ=4(2cosθ+sinθ).现以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(1)求曲线C的直角坐标系方程和直线l的普通方程;(2)求曲线C关于直线l对称曲线的参数方程.【分析】(1)由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,可得曲线C的直角坐标方程;由代入法可得直线l的普通方程;(2)由圆关于直线的对称为半径相等的圆,由点关于直线对称的特点,解方程可得所求曲线的方程.解:(1)由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,可得曲线C的极坐标方程ρ=4(2cosθ+sinθ)的直角坐标方程为x2+y2=8x+4y,即为(x﹣4)2+(y﹣2)2=20;直线l的参数方程为(t为参数),消去t,可得2x﹣y+4=0;(2)可设曲线C:(x﹣4)2+(y﹣2)2=20关于直线l:2x﹣y+4=0对称曲线为圆(x ﹣a)2+(y﹣b)2=20,由可得,则曲线C关于直线l对称曲线的直角坐标方程为(x+4)2+(y﹣6)2=20,其参数方程为(θ为参数).[选修4-5不等式选讲]23.已知定义在R上的函数f(x)=|x|.(1)求f(x+1)+f(2x﹣4)的最小值M;(2)若a,b>0且a+2b=M,求+的最小值.【分析】(1)先对函数化简,然后结合函数的单调性即可求解函数的最值,(2)结合基本不等式及二次函数的性质可求.解:(1)因为f(x)=|x|.所以f(x+1)+f(2x﹣4)=|x+1|+|2x﹣4|,当x≤﹣1时,f(x)=3﹣3x单调递减,当﹣1<x<2时,f(x)=﹣x+5单调递减,当x≥2时,f(x)=3x﹣3单调递增,故当x=2时,函数取得最小值M=3;(2)若a,b>0且a+2b=3,∴即ab,当且仅当a=2b即a=,b=时取等号,则+===,令t=,t,而y=的开口向上,对存在t=,在[)上单调递增,结合二次函数的性质可知,当t=,取得最小值.。
2020年高考理科数学模拟试题
2020年高考理科数学模拟试题作者:许少华来源:《广东教育·高中》2020年第04期一、選择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合A= {x│-2A. (0, 2)B. (-2, 4)C. (-2, 0)∪(2, 4)D. (-2, 0]∪[2, 4)2. 已知复数z1=2+i, z1·z2 =2-i,则复数z2的共轭复数为()A. ■+■iB. -■-■iC. ■-■iD. -■+■i3. 设f(x)为定义在R上的奇函数,当x≤0时,f(x)=2x+log2(x2+1)+a (a为常数),则f(1)=()A. ■B. 1C. -1D. -■4. 据统计中国人民政治协商会议第十二届全国委员会到会委员有1500名,从中抽取150名对他们的年龄进行统计,其频率分布直方图如图,其中年龄在[30,40)的委员人数为30人,则估计年龄在[60,80)之间的委员人数为()A. 150B. 200C. 225D. 2505. 已知双曲线C ∶ ■-■=1(a>0,b>0)的焦距为2c,焦点到双曲线的渐近线的距离为■,则双曲线C的离心率为()A. 2B. 3C. ■D. ■6. 若?琢为锐角,且cos(+■)=■,则sin(+■)=()A. ■B. ■C. ■D. ■7. 如图所示,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是()A. 点H是△A1BD的垂心B. AH垂直于平面CB1D1C. AH的延长线经过点C1D. 直线AH和BB1所成角为45°8. 若△ABC的三边长a,b,c满足a=4sinB,sin2AsinC=■且,则△ABC的面积为()A. ■B. ■C. 25D. 249. 如图,ABCD为等腰梯形,若CD=■AB=4,且梯形面积为20,当E为BC中点,F,G 分别为DA的三等分点时,■·■ 的值为()A. -■B. -■C. -■D. -■10. 已知函数f(x)=Asin(x+)(A>0,>0,A. (0,■)B. (■,■)C. (-■,■)D.(-■,■)11. 抛物线y=2x2一条弦的垂直平分线l的斜率为2,则l在y轴上截距的取值范围为()A. (■,+∞)B.(■,+∞)C. (■,+∞)D.(■,+∞)12. 若函数f(x)=(cosx-sinx)(cosx+sinx)+3a(sinx-cosx)+(2a+1)x在(-■,0)上单调递增,则a的取值范围为()A. [-1,■]B. [-1,■]C. [-1,■]D. [-■,1]二、填空题:本大题共4小题,每小题5分.13.(1+x)3(1+■)3的展开式中,含■的项的系数是_______.14. 设点P(x, y)满足:x+y-3≤0,x-y+1≥0,x≥1,y≥1,则■的取值范围是_______.15. 已知A、B、C、D四点在半径为■的球面上,且AC=BD=5,AD=BC=■,AB=CD,则三棱锥D-ABC的体积是_______.16. 点P(2,2),圆C ∶ x2+y2-8y=0,过点P的动直线l与圆C交于A, B两点,线段AB的中点为M,O为坐标原点. 若OP=OM,则△POM的面积为_______.三、解答题:共70分. 解答应写出文字说明、证明过程或演算步骤. 第17-21题为必考题,每个试题考生都必须作答. 第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知公比不为1的等比数列{an}的前 n项和为Sn,满足S6=■且a2, a4, a3成等差数列.(1)求等比数列 {an} 的通项公式.(2)设数列{bn}满足bn=nan,求数列{bn}的前n项和为Tn .18.(本小题满分12分)在三棱锥A-BCD中,AB=AD=BD=2,BC=DC=■,AC=2.(1)求证:面ABD⊥面BCD;(2)点P 在AC上,若二面角P-BD-A为60°,求■的值.19.(本小题满分12分)张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1, L2两条路线(如图),L1 路线上有A1, A2, A3三个路口,各路口遇到红灯的概率均为■;L2路线上有B1, B2两个路口,各路口遇到红灯的概率依次为■,■.(1)若走L1 路线,求最多遇到1次红灯的概率;(2)若走L2 路线,求遇到红灯次数X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.20.(本小题满分12分)已知■+■=1(a>b>0)的左、右焦点分别为F1,F2,F1F2=2■,点P在椭圆上,tan∠PF2F1 =2且△PF1F2的面积为4.(1)求椭圆的方程.(2)点B(1,■)是椭圆上的一定点,B1, B2是椭圆上的两动点,且直线BB1与BB2关于直线x=1对称,试证:直线B1B2的斜率为定值.21.(本小题满分12分)函数f(x)=a·ex,g(x)=lnx-lna,其中a为常数,且函数y=f (x)和y=g(x)的图像在其与坐标轴的交点处的切线互相平行.(1)求此平行线的距离;(2)若存在x使不等式■>■成立,求实数m的取值范围;(3)对于函数y=f(x)和y=g(x)公共定义域中的任意实数x0,我们把f(x0)-g(x0)的值称为两函数在x0处的偏差. 求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.(二)选考题:共10分. 请考生在第22、23题中任选一题作答. 如果多做,则按所做的第一题计分.22.(本题满分10分)选修4-4:坐标系与参数方程已知曲线C1:x=cos?兹,y=sin?兹(?兹为参数),曲线C2:x=■t-■,y=■(t为参数).(Ⅰ)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(Ⅱ)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′,C2′. 写出C1′,C2′的参数方程. C1′与C2′公共点的个数和C1与C2公共点的个数是否相同?说明你的理由.23. 选修4-5:不等式选讲对于函数f(x)= ax2+bx+c(1)若f(x)>0的解集为{x│10的解集.(2)若在x=-1, 0, 1三点处的函数值的绝对值均不大于1,则x∈[-1, 1]时,求证:ax+b≤2.2020年全国高考理科数学模拟试题参考答案一、选择题1. D. A={x│-22. A. 由z1=2+i,z1·z2=2-i?圯z2=■=■-■i所以,复数z2的共轭复数为■+■i .3. D. 由f(x)为定义在R上的奇函数,可知f(0)=1+a = 0,∴ a=-1. 于是f(-1)=■+1-1=■,∴ f(1)=-■.4. C. 年龄在[30,40)的委员人数为30人,所占频率为■=10b,所以b=0.02,根据频率分布直方图知(0.005+2a+0.015+0.02+0.04)×10=1,解得a=0.01,所以年龄在[60,80]之间的频率为(0.01+0.005)×10=0.15,估计年龄在[60,80]之间的委员人数为1500×0.15=225.5. B. 不妨设右焦点F2(c,0),渐进线方程为l ∶ bx-ay=0,则点F2(c, 0)到l ∶ bx-ay=0的距离为■=b,则b=■?圯9b2=8c2?圯e=3.6. A. 由cos(+■)=■?sin(+■)=■.于是sin(+■)=2sin(+■)cos(+■)=2×■×■=■.cos(+■)= cos2(+■)-sin2(+■)=■,sin(+■)=sin[(+■)-■]=sin(+■)cos■-cos(+■)sin■=■.7. C. 在A中,△A1BD为等边三角形,所以三心合一.∵AB=AA1=AD,∴ H到△A1BD 各顶点的距离相等,即H为外心垂心,∴ A正确;∵CD1∥BA1 ,CB1∥DA1,CD1∩CB1=C,∴平面CD1B1∥平面A1BD. ∴ AH⊥平面CB1D1,∴ B正确;连AC1,则AC1⊥B1D1,∵B1D1∥BD,∴ AC1⊥BD同理AC1⊥BA1. ∴ AC1⊥平面A1BD. ∴ A、H、C1三点共线,∴ C正确.8. B. 由a2=abcos C+bccosA?圯a2=ab·■+bc·■,得a=b?圯sinA=sinB.由a=4sinB 2RsinA=4sinB 2RsinA=4sinA R=2.sin2AsinC=■ sinAsinBsinC=■.那么△ABC的面积S=■absinC=■(2RsinA)(2RsinB)sinC=2×22×■=■.9. C. 由CD=■AB=4及面积为20可得梯形的高为4. 以AB为x轴,AB的中垂线为y建立直角坐标系,则A(-3, 0),B(3, 0),E(■, 2),G(-■,■),F(-■,■).那么■=(-■,■),■=(■,■),于是■·■=-■×■+■×■=-■.10. C. 由图像知A=2,T= 4[■-(-■)]=4 ,那么■= 4 ,=■,所以f(x)=2sin(■+ ).又由f(-■)=0,即2sin(-■+ )=0結合(1)若走L1 路线,求最多遇到1次红灯的概率;(2)若走L2 路线,求遇到红灯次数X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.20.(本小题满分12分)已知■+■=1(a>b>0)的左、右焦点分别为F1,F2,F1F2=2■,点P在椭圆上,tan∠PF2F1 =2且△PF1F2的面积为4.(1)求椭圆的方程.(2)点B(1,■)是椭圆上的一定点,B1, B2是椭圆上的两动点,且直线BB1与BB2关于直线x=1对称,试证:直线B1B2的斜率为定值.21.(本小题满分12分)函数f(x)=a·ex,g(x)=lnx-lna,其中a为常数,且函数y=f (x)和y=g(x)的图像在其与坐标轴的交点处的切线互相平行.(1)求此平行线的距离;(2)若存在x使不等式■>■成立,求实数m的取值范围;(3)对于函数y=f(x)和y=g(x)公共定义域中的任意实数x0,我们把f(x0)-g(x0)的值称为两函数在x0处的偏差. 求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.(二)选考题:共10分. 请考生在第22、23题中任选一题作答. 如果多做,则按所做的第一题计分.22.(本题满分10分)选修4-4:坐标系与参数方程已知曲线C1:x=cos?兹,y=sin?兹(?兹为参数),曲线C2:x=■t-■,y=■(t为参数).(Ⅰ)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(Ⅱ)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′,C2′. 写出C1′,C2′的参数方程. C1′与C2′公共点的个数和C1与C2公共点的个数是否相同?说明你的理由.23. 选修4-5:不等式选讲对于函数f(x)= ax2+bx+c(1)若f(x)>0的解集为{x│10的解集.(2)若在x=-1, 0, 1三点处的函数值的绝对值均不大于1,则x∈[-1, 1]时,求证:ax+b≤2.2020年全国高考理科数学模拟试题参考答案一、选择题1. D. A={x│-22. A. 由z1=2+i,z1·z2=2-i?圯z2=■=■-■i所以,复数z2的共轭复数为■+■i .3. D. 由f(x)为定义在R上的奇函数,可知f(0)=1+a = 0,∴ a=-1. 于是f(-1)=■+1-1=■,∴ f(1)=-■.4. C. 年龄在[30,40)的委员人数为30人,所占频率为■=10b,所以b=0.02,根據频率分布直方图知(0.005+2a+0.015+0.02+0.04)×10=1,解得a=0.01,所以年龄在[60,80]之间的频率为(0.01+0.005)×10=0.15,估计年龄在[60,80]之间的委员人数为1500×0.15=225.5. B. 不妨设右焦点F2(c,0),渐进线方程为l ∶ bx-ay=0,则点F2(c, 0)到l ∶ bx-ay=0的距离为■=b,则b=■?圯9b2=8c2?圯e=3.6. A. 由cos(+■)=■?sin(+■)=■.于是sin(+■)=2sin(+■)cos(+■)=2×■×■=■.cos(+■)= cos2(+■)-sin2(+■)=■,sin(+■)=sin[(+■)-■]=sin(+■)co s■-cos(+■)sin■=■.7. C. 在A中,△A1BD为等边三角形,所以三心合一.∵AB=AA1=AD,∴ H到△A1BD 各顶点的距离相等,即H为外心垂心,∴ A正确;∵CD1∥BA1 ,CB1∥DA1,CD1∩CB1=C,∴平面CD1B1∥平面A1BD. ∴ AH⊥平面CB1D1,∴ B正确;连AC1,则AC1⊥B1D1,∵B1D1∥BD,∴ AC1⊥BD同理AC1⊥BA1. ∴ AC1⊥平面A1BD. ∴ A、H、C1三点共线,∴ C正确.8. B. 由a2=abcos C+bccosA?圯a2=ab·■+bc·■,得a=b?圯sinA=sinB.由a=4sinB 2RsinA=4sinB 2RsinA=4sinA R=2.sin2AsinC=■ sinAsinBsinC=■.那么△ABC的面积S=■absinC=■(2RsinA)(2RsinB)sinC=2×22×■=■.9. C. 由CD=■AB=4及面积为20可得梯形的高为4. 以AB为x轴,AB的中垂线为y建立直角坐标系,则A(-3, 0),B(3, 0),E(■, 2),G(-■,■),F(-■,■).那么■=(-■,■),■=(■,■),于是■·■=-■×■+■×■=-■.10. C. 由图像知A=2,T= 4[■-(-■)]=4 ,那么■= 4 ,=■,所以f(x)=2sin(■+ ).又由f(-■)=0,即2sin(-■+ )=0结合(1)若走L1 路线,求最多遇到1次红灯的概率;(2)若走L2 路线,求遇到红灯次數X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.20.(本小题满分12分)已知■+■=1(a>b>0)的左、右焦点分别为F1,F2,F1F2=2■,点P在椭圆上,tan∠PF2F1 =2且△PF1F2的面积为4.(1)求椭圆的方程.(2)点B(1,■)是椭圆上的一定点,B1, B2是椭圆上的两动点,且直线BB1与BB2关于直线x=1对称,试证:直线B1B2的斜率为定值.21.(本小题满分12分)函数f(x)=a·ex,g(x)=lnx-lna,其中a为常数,且函数y=f (x)和y=g(x)的图像在其与坐标轴的交点处的切线互相平行.(1)求此平行线的距离;(2)若存在x使不等式■>■成立,求实数m的取值范围;(3)对于函数y=f(x)和y=g(x)公共定义域中的任意实数x0,我们把f(x0)-g(x0)的值称为两函数在x0处的偏差. 求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.(二)选考题:共10分. 请考生在第22、23题中任选一题作答. 如果多做,则按所做的第一题计分.22.(本题满分10分)选修4-4:坐标系与参数方程已知曲线C1:x=cos?兹,y=sin?兹(?兹为参数),曲线C2:x=■t-■,y=■(t为参数).(Ⅰ)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(Ⅱ)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′,C2′. 写出C1′,C2′的参数方程. C1′与C2′公共点的个数和C1与C2公共点的个数是否相同?说明你的理由.23. 选修4-5:不等式选讲对于函数f(x)= ax2+bx+c(1)若f(x)>0的解集为{x│10的解集.(2)若在x=-1, 0, 1三点处的函数值的绝对值均不大于1,则x∈[-1, 1]时,求证:ax+b≤2.2020年全国高考理科数学模拟试题参考答案一、选择题1. D. A={x│-22. A. 由z1=2+i,z1·z2=2-i?圯z2=■=■-■i所以,复数z2的共轭复数为■+■i .3. D. 由f(x)为定义在R上的奇函数,可知f(0)=1+a = 0,∴ a=-1. 于是f(-1)=■+1-1=■,∴ f(1)=-■.4. C. 年龄在[30,40)的委员人数为30人,所占频率为■=10b,所以b=0.02,根据频率分布直方图知(0.005+2a+0.015+0.02+0.04)×10=1,解得a=0.01,所以年龄在[60,80]之间的频率为(0.01+0.005)×10=0.15,估计年龄在[60,80]之间的委员人数为1500×0.15=225.5. B. 不妨设右焦点F2(c,0),渐进线方程为l ∶ bx-ay=0,则点F2(c, 0)到l ∶ bx-ay=0的距离为■=b,则b=■?圯9b2=8c2?圯e=3.6. A. 由cos(+■)=■?sin(+■)=■.于是sin(+■)=2sin(+■)cos(+■)=2×■×■=■.cos(+■)= cos2(+■)-sin2(+■)=■,sin(+■)=sin[(+■)-■]=sin(+■)cos■-cos(+■)sin■=■.7. C. 在A中,△A1BD为等边三角形,所以三心合一.∵AB=AA1=AD,∴ H到△A1BD 各顶点的距离相等,即H为外心垂心,∴ A正确;∵CD1∥BA1 ,CB1∥DA1,CD1∩CB1=C,∴平面CD1B1∥平面A1BD. ∴ AH⊥平面CB1D1,∴ B正确;连AC1,则AC1⊥B1D1,∵B1D1∥BD,∴ AC1⊥BD同理AC1⊥BA1. ∴ AC1⊥平面A1BD. ∴ A、H、C1三点共线,∴ C正确.8. B. 由a2=abcos C+bccosA?圯a2=ab·■+bc·■,得a=b?圯sinA=sinB.由a=4sinB 2RsinA=4sinB 2RsinA=4sinA R=2.sin2AsinC=■ sinAsinBsinC=■.那么△ABC的面积S=■absinC=■(2RsinA)(2RsinB)sinC=2×22×■=■.9. C. 由CD=■AB=4及面积为20可得梯形的高为4. 以AB为x轴,AB的中垂线为y建立直角坐标系,则A(-3, 0),B(3, 0),E(■, 2),G(-■,■),F(-■,■).那么■=(-■,■),■=(■,■),于是■·■=-■×■+■×■=-■.10. C. 由图像知A=2,T= 4[■-(-■)]=4 ,那么■= 4 ,=■,所以f(x)=2sin(■+ ).又由f(-■)=0,即2sin(-■+ )=0结合。
2020届高考高三第三次模拟考试卷 理科数学(一) 含答案解析
2020届高三第三次模拟考试卷 理 科 数 学(一) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知集合{0,1}A =,{0,1,2}B =,则满足A C B =U 的集合C 的个数为( )A .4B .3C .2D .12.已知i 为虚数单位,复数93i2i 1i z -=++,则||z =( )A .235+B .2022 C .5 D .253.抛物线22y x =的通径长为( )A .4B .2C .1D .124.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:则下列结论正确的是( )A .与2015年相比,2018年一本达线人数减少B .与2015年相比,2018年二本达线人数增加了0.5倍C .2015年与2018年艺体达线人数相同D .与2015年相比,2018年不上线的人数有所增加 5.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,,9L 填入33⨯的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数21,2,3,,n L 填入n n ⨯个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方记(3)n n ≥阶幻方的对角线上的数字之和为n N ,如图三阶幻方的315N =,那么8N 的值为( ) A .260 B .369 C .400 D .420 6.根据如下样本数据 得到的回归方程为ˆˆˆy bx a =+,则( ) A .0a >,0b < B .0a >,0b > C .0a <,0b < D .0a <,0b > 7.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为n S ,2n S ,3n S ,则下列等式中恒成立的是( ) A .322n n n S S S += B .2233()()n n n n n n S S S S S S -=- C .223n n n S S S = D .223()()n n n n n n S S S S S S -=- 8.设2019log 2020a =,2020log 2019b =,120202019c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 9.已知函数()sin()(0,π0)f x x ωϕωϕ=+>-<<的最小正周期是π,将函数()f x 的图象向左平移π3个单位长度后所得的函数图象过点(0,1)P ,则下列结论中正确的是( ) A .()f x 的最大值为2 B .()f x 在区间ππ(,)63-上单调递增 C .()f x 的图像关于直线π12x =对称 D .()f x 的图像关于点π(,0)3对称 10.过正方体1111ABCD A B C D -的顶点A 作平面α,使得正方体的各棱与平面α所成的角都相等,此卷只装订不密封 班级姓名准考证号考场号座位号则满足条件的平面α的个数为( )A .1B .3C .4D .611.椭圆与双曲线共焦点1F ,2F ,它们在第一象限的交点为P ,设122F PF θ∠=,椭圆与双曲线的离心率分别为1e ,2e ,则( )A .222212cos sin 1e e θθ+= B .222212sin cos 1e e θθ+=C .2212221cos sin e e θθ+= D .2212221sin cos e e θθ+=12.已知正方形ABCD 的边长为1,M 为ABC △内一点,满足10MDB MBC ∠=∠=︒, 则MAD ∠=( )A .45︒B .50︒C .60︒D .70︒第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.26(32)x x ++展开式中x 的系数为 .14.设实数x ,y 满足不等式211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,当3z x y =+时取得最小值时,直线3z x y =+与以(1,1)为圆心的圆相切,则圆的面积为 .15.已知等差数列{}n a 的公差(0,π)d ∈,1π2a =,则使得集合{|sin(),}n M x x a n *==∈N ,恰好有两个元素的d 的值为 .16.在三棱锥P ABC -中,2PA PC ==,1BA BC ==,90ABC ∠=︒,若PA 与底面ABC 所成的角为60︒,则点P 到底面ABC 的距离是 ;三棱锥P ABC -的外接球的表面积是 .三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知A 、B 分别在射线CM 、CN (不含端点C )上运动,2π3MCN ∠=,在ABC △中,角A 、B 、C 所对的边分别是a ,b ,c . (1)若a ,b ,c 依次成等差数列,且公差为2,求c 的值; (2)若c =ABC θ∠=,试用θ表示ABC △的周长,并求周长的最大值. 18.(12分)如图,在三棱锥P ABC -中,底面是边长为4的正三角形,2PA =,PA ⊥底面ABC ,点E ,F 分别为AC ,PC 的中点. (1)求证:平面BEF ⊥平面PAC ; (2)在线段PB 上是否存在点G ,使得直线AG 与平面PBC所成的角的正弦值为5?若存在,确定点G 的位置;若不存在,请说明理由.19.(12分)已知(1,0)A -,(1,0)B ,AP AB AC =+u u u r u u u r u u u r ,||||4AP AC +=u u u r u u u r .(1)求P 的轨迹E ; (2)过轨迹E 上任意一点P 作圆22:3O x y +=的切线1l ,2l ,设直线OP ,1l ,2l 的斜率分别是0k ,1k ,2k ,试问在三个斜率都存在且不为0的条件下,012111()k k k +时候是定值,请说明理由,并加以证明. 20.(12分)已知函数242()x x x f x e ++=.(1)求函数()f x的单调区间;(2)若对任意的(2,0]x∈-,不等式2(1)()m x f x+>恒成立,求实数m的取值范围.21.(12分)2019年3月5日,国务院总理李克强在做政府工作报告时说,打好精准脱贫攻坚战.江西省贫困县脱贫摘帽取得突破性进展:20192020-年,稳定实现扶贫对象“两不愁、三保障”,贫困县全部退出.围绕这个目标,江西正着力加快增收步伐,提高救助水平,改善生活条件,打好产业扶贫、保障扶贫、安居扶贫三场攻坚战.为响应国家政策,老张自力更生开了一间小型杂货店.据长期统计分析,老张的杂货店中某货物每天的需求量()m m*∈N在17与26之间,日需求量m(件)的频率()P m分布如下表所示:己知其成本为每件5元,售价为每件10元若供大于求,则每件需降价处理,处理价每件2元.(1)设每天的进货量为(16,1,2,,10)n nX X n n=+=L,视日需求量(16,1,2,,10)i iY Y i i=+=L的频率为概率(1,2,,10)iP i=L,求在每天进货量为nX的条件下,日销售量nZ的期望值()nE Z(用iP表示);(2)在(1)的条件下,写出()nE Z和1()nE Z+的关系式,并判断X为何值时,日利润的均值最大.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线l的参数方程为31x ty t=-⎧⎨=+⎩(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线π:)4C ρθ=-. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)求曲线C 上的点到直线l 的距离的最大值.23.(10分)【选修4-5:不等式选讲】设0a >,0b >,且a b ab +=.(1)若不等式2x x a b +-≤+恒成立,求实数x 的取值范围;(2)是否存在实数a ,b ,使得48a b +=?并说明理由.2020届好教育云平台高三第三次模拟考试卷理 科 数 学(一)答 案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.【答案】A【解析】由A C B =U 可知集合C 中一定有元素2,所以符合要求的集合C 有{2},{2,0},{2,1},{2,0,1}共4种情况.2.【答案】C【解析】对复数z 进行化简:93i (93i)(1i)2i 2i 34i 1i 2z ---=+=+=-+,所以5z ==.3.【答案】D【解析】标准化212x y =,通径122p =.4.【答案】D【解析】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S .对于选项A ,2015年一本达线人数为0.28S ,2018年一本达线人数为0.24 1.50.36S S ⨯=, 可见一本达线人数增加了,故选项A 错误;对于选项B ,2015年二本达线人数为0.32S ,2018年二本达线人数为0.4 1.50.6S S ⨯=, 显然2018年二本达线人数不是增加了0.5倍,故选项B 错误;对于选项C ,2015年和2018年,艺体达线率没变,但是人数是不相同的,故选项C 错误; 对于选项D ,2015年不上线人数为0.32S ,2018年不上线人数为0.28 1.50.42S S ⨯=, 不达线人数有所增加.5.【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,31(123456789)153N =++++++++=,41(12345678910111213141516)344N =+++++++++++++++=,51(125N =+345678910111213141516171819+++++++++++++++++202122232425)65++++++=,…, ∴222211(1)(1)(12345)22n n n n n N n n n ++=++++++=⨯=L , ∴288(81)2602N +==. 6.【答案】A 【解析】画出散点图知0a >,0b <,故选A . 7.【答案】D 【解析】由等比数列的性质得n S ,2n n S S -,32n n S S -成等比数列,2232()()n n n n n S S S S S -=-,化简得223()()n n n n n n S S S S S S -=-. 8.【答案】C 【解析】220192019201920191111log 2019log log 2020log 201912222a =<==<=,2020202020201110log log 2019log 2020222b <==<=,1202020191c =>. 9.【答案】B 【解析】由条件知π()sin(2)6f x x =-,结合图像得B . 10.【答案】C 【解析】在正方体1111ABCD A B C D -中,四面体11A B D C -的四面与12条棱所成的角相等, ∴正方体的12条棱所在的直线所成的角均相等的平面有4个. 11.【答案】B 【解析】设椭圆的长轴长为12a ,双曲线的实轴长为22a , 交点P 到两焦点的距离分别为,(0)m n m n >>,焦距为2c , 则2222cos 2(2)m n mn c θ+-=, 又12m n a +=,22m n a -=,故12m a a =+,12n a a =-,2222222221212222212sin cos sin cos (1cos 2)(1cos 2)211a a a a c c c e e θθθθθθ-++=⇒+=⇒+=. 12.【答案】D 【解析】设正方形ABCD 的边长为1, 在BMD △中,由正弦定理得2sin 35sin 35sin135DM DB DM =⇒=︒︒︒,在AMD △中,由余弦定理得2214sin 354sin35cos551AM =+︒-︒︒=,∴AMD △为等腰三角形,70MAD ∠=︒.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.【答案】576【解析】26(32)x x ++展开式中含x 的项为15565C (3)C 26332576x x x ⋅⋅=⨯⨯=,即x 的系数为576.14.【答案】5π2 【解析】当直线过点(1,2)-时,3z x y =+取得最小值1-,故1010r d ===,从而圆的面积为5π2.15.【答案】2π3【解析】要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,此时2π3d =.16.【答案】3;5π【解析】将三棱锥P ABC -置于长方体中,其中1PP ⊥平面ABC ,由PA 与底面ABC 所成的角为60︒,可得13PP =,即为点P 到底面ABC 的距离, 由11PP A PPC ≌△△,得111P A PC ==,如图,PB 就是长方体(三条棱长分别为1,1,3)外接球的直径,也是三棱锥P ABC -外接球的直径,即5PB =, 所以球的表面积为254π()5π=.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)7;(2)周长π()2sin()33f θθ=+,π6θ=时,()f θ取得最大值为23. 【解析】(1)a ,b ,c 成等差数列,且公差为2,∴4a c =-,2b c =-, 又2π3MCN ∠=,1cos 2C =-,∴222(4)(2)12(4)(2)2c c c c c -+--=---, 恒等变形得29140c c -+=,解得7c =或2c =, 又∵4c >,∴7c =. (2)在ABC △中,sin sin sin AC BC AB ABC BAC ACB ==∠∠∠, ∴32πsin sin()sin 33AC BC θθ===-,2sin AC θ=,π2sin()3BC θ=-, ∴ABC △的周长π()||||||2sin 2sin()33f AC BC AB θθθ=++=+-+13π2[sin ]32sin()323θθθ=++=++, 又∵π(0,)3θ∈,∴ππ2π333θ<+<, 当ππ32θ+=,即π6θ=时,()f θ取得最大值23. 18.【答案】(1)证明见解析;(2)存在,G 为线段PB 的中点. 【解析】(1)证明:∵AB BC =,E 为AC 的中点,∴BE AC ⊥, 又PA ⊥平面ABCP ,BE ⊂平面ABC ,∴PA BE ⊥, ∵PA AC A =I ,∴BE ⊥平面PAC , ∵BE ⊂平面BEF ,∴平面BEF ⊥平面PAC . (2)如图,由(1)知,PA BE ⊥,PA AC ⊥,点E ,F 分别为AC ,PC 的中点,∴EF PA ∥,∴EF BE ⊥,EF AC ⊥, 又BE AC ⊥,∴EB ,EC ,EF 两两垂直, 分别以EB u u u r ,EC uuu r ,EF u u u r 方向为x ,y ,z 轴建立坐标系,则(0,2,0)A -,(0,2,2)P -,(23,0,0)B ,(0,2,0)C ,设(23,2,2)BG BP λλλλ==--u u u r u u u r ,[0,1]λ∈, 所以(23(1),2(1),2)AG AB BG λλλ=+=--u u u r u u u r u u u r ,(23,2,0)BC =-u u u r ,(0,4,2)PC -u u u r ,设平面PBC 的法向量为(,,)x y z =n ,则023204200BC x y y z PC ⎧⎧⋅=-+=⎪⎪⇒⎨⎨-=⎪⋅=⎪⎩⎩u u ur u u u r n n ,令1x =,则3y =,23z =,∴(1,3,23)=n ,由已知221515431552||||416(1)4AG AG λλλ⋅=⇒=⇒=⋅-+uu u ru u u r n n 或1110(舍去), 故12λ=,故线段PB 上存在点G ,使得直线AG 与平面PBG 所成的角的正弦值为155,此时G 为线段PB 的中点.19.【答案】(1)22:143x y E +=;(2)为定值,详见解析.【解析】(1)方法一:如图因为AP AB AC =+u u u r u u u r u u u r ,所以四边形ACPB 是平行四边形, 所以||||BP AC =u u u r u u u r ,由||||4AP AC +=u u u r u u u r ,得||||4AP BP +=u u u r u u u r ,所以P 的轨迹以A ,B 为焦点的椭圆易知24a =,1c =,所以方程E 为22143x y +=.方法二:设(,)P x y ,由AP AB AC =+u u u r u u u r u u u r ,得(1,)AC AP AB BP x y =-==-u u u r u u u r u u u r u u u r ,再||||4AP AC +=u u u r u u u r ,得2222(1)(1)4x y x y +++-+=, 移项2222(1)4(1)x y x y ++=--+,平方化简得22143x y +=. (从2222(1)(1)4x y x y +++-+=发现是椭圆方程也可以直接得24a =,1c =). (2)设00(,)P x y ,过P 的斜率为k 的直线为00()y y k x x -=-, 由直线与圆O 相切可得0231k =+,即2220000(3)230x k x y k y --+-=, 由已知可得1k ,2k 是方程(关于k )2220000(3)230x k x y k y --+-=的两个根, 所以由韦达定理:0012202012202333x y k k x y k k x ⎧+=⎪-⎪⎨-⎪=⎪-⎩,两式相除0012212023x y k k k k y +=⋅-, 又因为2200143x y +=,所以2200334y x -=-, 代入上式可得01212083y k k k k x +=-⋅,即0121118()3k k k +=-为定值. 20.【答案】(1)见解析;(2)2(1,]e . 【解析】(1)2(22)()x x x f x e -+-'=,记2()22g x x x =--+, 令()0g x >,得1313x -<<-,函数()f x 在(13,13)--上单调递增;()0g x <,得13x <-13x >-+()f x 在(,13)-∞--或(13,)-++∞上单调递减.(2)记2()2(1)42x h x me x x x =+---,由(0)0221h m m >⇒>⇒>,()0h x '=,得2x =-或ln x m =-,∵(2,0]x ∈-,所以2(2)0x +>.①当21m e <<时,ln (2,0)m -∈-,且(2,ln )x m ∈--时,()0h x '<; (ln ,0)x m ∈-时,()0h x '>,所以min ()(ln )ln (2ln )0h x h m m m =-=⋅->,∴(2,0]x ∈-时,()0h x >恒成立;②当2m e =时,2()2(2)(1)x h x x e +'=+-,因为(2,0]x ∈-,所以()0h x '>,此时()h x 单调递增,且22(2)2(1)4820h e e --=--+-=,所以(2,0]x ∈-,()(2)0h x h >-=成立; ③当2m e >时,2(2)220mh e -=-+<,(0)220h m =->,所以存在0(2,0)x ∈-使得0()0h x =,因此()0h x >不恒成立,综上,m 的取值范围是2(1,]e .21.【答案】(1)见解析;(2)20件.【解析】(1)当日需求量n m X ≤时,日销售量n Z 为m ;日需求量n m X >时,日销售量n Z 为n X ,故日销售量n Z 的期望()n E Z 为:当19n ≤≤时,1011()(16)(16)n n i i i i n E Z i P n P ==+=+++∑∑;当10n =时,10101()(16)i i E Z i P ==+∑.(2)1101010112111()(16)(161)(16)(161)()n n n i i i i n i i i n i i n i n E Z i P n P i P n P E Z P ++==+==+=+=++++=++++=+∑∑∑∑∑, 设每天进货量为n X ,日利润为n ξ,则()5()3[(16)()]8()3(16)n n n n E E Z n E Z E Z n ξ=-+-=-+,111210()()8[()()]38()3n n n n n n E E E Z E Z P P P ξξ++++-=--=+++-L , 由1125()()08n n n E E P P P ξξ+-≥⇒+++≤L , 又∵123450.668P P P P +++=>,12350.538P P P ++=<, ∴4()E ξ最大,所以应进货20件时,日利润均值最大. 22.【答案】(1):40l x y +-=,22:(1)(1)2C x y -+-=;(2). 【解析】(1)由31x t y t =-⎧⎨=+⎩,消去t ,得40x y +-=, 所以直线l 的普通方程为40x y +-=,由πππ)cos sin sin )2cos 2sin 444ρθθθθθ=-=+=+, 得22cos 2sin ρρθρθ=+, 将222x y ρ=+,cos x ρθ=,sin y ρθ=代入上式, 得曲线C 的直角坐标方程为2222x y x y +=+,即22(1)(1)2x y -+-=. (2)设曲线C上的点为(1,1)P αα++, 则点P 到直线l的距离d ==π|2sin()2|α+-= 当πsin()14α+=-时,max d = 所以曲线C 上的点到直线l的距离的最大值为 23.【答案】(1)[]1,3-;(2)不存在,详见解析. 【解析】(1)由a b ab +=,得111a b +=,11()()4a b a b a b +=++≥=, 当且仅当2a b ==时""=成立.不等式2x x a b +-≤+,即为24x x +-≤,当0x <时,不等式为224x -+≤,此时10x -≤<; 当02x ≤≤时,不等式24≤成立,此时02x ≤≤; 当2x >时,不等式为224x -≤,此时23x <≤, 综上,实数x 的取值范围是[]1,3-.(2)由于0a >,0b >, 则1144(4)()5b a a b a b a b a b +=++=++59≥+=, 当且仅当4b a a b a b ab⎧=⎪⎨⎪+=⎩,即32a =,3b =时,4a b +取得最小值9, 所以不存在实数a ,b ,使得48a b +=成立.。
2020届高考理科数学(理数)高三模拟试卷(全国1卷)pdf参考答案
理科数学答案全解全析一、选择题1. 【答案】D【解析】集合 A 满足: x2 3x 4 0 ,( x 4)( x 1) 0 , x 4 或x 1 , A {x | x 4 或 x 1} , CU A={x | 1 x 4} , y 2x 2 2 , B {y | y 2} ,可知 (CU A) B {x | 2 x 4} .故选 D. 2. 【答案】A【解析】 z 1 i (1 i)(1 2i) 1 3i ,复数 z 的虚部为 3 ,1 2i555故错误;② | z | ( 1)2 ( 3)2 10 ,故错误;③复数 z 对应的555点为 ( 1 , 3) 为第三象限内的点,故正确;④复数不能比较大小, 55故错误.故选 A.3. 【答案】C【解析】 Sn 2an 4 ,可得当 n 1 时, a1 2a1 4 , a1 4 ,当n 2时,S n 12 an 14与已知相减可得an an 12,可知数列{ an } 是首项为 4,公比为 2 的等比数列, a5 4 24 64 .故选 C.4. 【答案】D【解析】可知降落的概率为pA22 A55 A661 3.故选D.5. 【答案】C【解析】函数 f (x) 2 020x sin 2x 满足 f (x) 2 020x sin 2x f (x) ,且 f (x) 2 020 2cos 2x 0 ,可知函数 f (x) 为单调递增的奇函数, f (x2 x) f (1 t) 0 可以变为 f (x2 x) f (1 t) f (t 1) ,可知 x2 x t 1 ,t x2 x 1 ,x2 x 1 (x 1)2 2 3 3 ,可知实数 t 3 ,故实数 t 的取值范围为 (∞,3] .故选 C.44446. 【答案】A【解析】双曲线的渐近线方程为 y 3x ,可得双曲线的方程为x2 y2 ,把点 P(2,3) 代入可得 4 3= , 1 ,双曲线的 3方程为 x2 y2 1,c2 1 3 4,c 2,F(2,0) ,可得 A(2,2 3) , 3B(2, 23),可得SAOB1 224343 .故选 A.7. 【答案】B【解析】 f (x) sin(x π )sin x cos2 x3 (sin x cos π cos x sin π )sin x 1 cos 2x332 3 sin 2x 1 cos 2x 3 1 ( 3 sin 2x 1 cos 2x) 3444 2224 1 sin(2x π ) 3264把函数 f (x) 的图象向右平移 π 单位,再把横坐标缩小到原来的一 6半,得到函数 g(x) ,可得 g (x) 1 sin(4x π ) 3 ,最小正周期为2642π π ,故选项 A 错误; x π , 4x π 4 π π π ,故选426666 2项 B 正确;最大值为 1 3 5 ,故选项 C 错误;对称中心的方程 244为 (kπ π ,3)(k Z) ,故选项 D 错误.故选 B. 4 24 48. 【答案】D【解析】可知 BDC 120°,且 AD 3 ,BD DC 1 ,在 BDC中,根据余弦定理可得 BC 2 1 1 2 11 cos120° 3, BC 3 ,据正弦定理可得 BC 2r , sin120°3 32r,r 1 , O1 为 BDC2的外心,过点 O1 作 O1O 平面 BDC , O 为三棱锥 A BCD 的外 接球的球心,过点 O 作 OK AD , K 为 AD 的中点,连接 OD 即为外接球的半径 R 12 ( 3 )2 7 ,可得外接球的表面积为22S 4πR2 4π ( 7 )2 7π .故选 D. 29. 【答案】C【解析】二项式 (x y)n 的展开式的二项式项的系数和为 64 ,可得 2n 64 ,n 6 ,(2x 3)n (2x 3)6 ,设 x 1 t ,2x 3 2t 1 ,(2x 3)n (2x 3)6 (2t 1)6 a 0 a1t a 2t 2 a 6t 6 ,可得 Tr1 C64 (2t)6414 C64 22t 2 60t 2 ,可知 a2 60 .故选 C. 10.【答案】A【解析】设点 P(x0 ,y0) ,则 x0 y0 6 0 ,则过点 P 向圆 C 作切 线,切点为 A,B ,连接 AB ,则直线 AB 的方程为 xx0 yy0 4 ,可得y0x06,代入可得(xy) x06y40,满足 x y 0 6y 4 0 x 2 3,故过定点为M(2,2).故选A. y2 33311.【答案】B【解析】f (x) log2 (x2 e|x|) ,定义域为 R ,且满足 f ( x) f (| x |) ,当 x 0 时,单调递增,而 (5)0.2 1 , 0 (1)0.3 1 , b a ,42cf(log 125) 4f( log25) 4f(log25 4),而0log25 4 log221, 2( 1 )0.3 21 2, log 25 4 (1)0.3 , 2f(log25) 4f(( 1 )0.3 ) 2,故 c a,故 c a b .故选 B.12.【答案】D【解析】f (x1) f (x2 ) x1 x21 x1x2,不妨设 x1x2 ,则f( x1) f (x2 ) 1 x21 x1,整理可得f (x1) 1 x1f (x2 ) 1 x2,设函数 h(x) f (x) 1 xa ln xx1 x在[e2 ,e4 ]上单调递减,可知 h'(x)a(1 ln x2x)1 x20,可知 a 1 1 lnx,而函数F ( x)1 1 lnx在[e2,e4 ]单调递增,F (x)maxF (4)11 41 3,可知实数a 1 3.故选D.二、填空题13.【答案】 9 5 5【解析】向量 a b在 a上的投影为| a b|cos (a b) a|a| (1,5) (1,2) 9 5 .5514.【答案】 5 2 6【解析】首先作出可行域,把 z ax by(a 0,b 0) 变形为 y a x z ,根据图象可知当目标函数过点 A 时,取最大值为 1, bb理科数学答案第 1 页(共 4 页) x 2x y 1 0 y40A(3,2),代入可得3a2b1,则1 a1 b3a a2b 3a 2b 3 2b 3a 2 5 2 2b 3a 5 2 6 ,当且仅当bababb 6 a 取等号,可知最小值为 5 2 6 .故选 C. 215.【答案】 4 3【解析】 cos A cos B 2 3 sin C ,根据正弦定理 sin B cos A ab3asin Acos B 2 3 sin B sin C ,可知 sin( A B) 2 3 sin B sin C ,33sin C 2 3 sin B sin C ,sin B 3 ,在 ABC 内,可知 B π 或3232π ,因为锐角 ABC ,可知 B π ,利用余弦定理可得 b2 a2 c2 332ac cos B a2 c2 ac 2ac ac ac ,可知 ac 16 ,则 ABC 的面积的最大值 1 ac sin B 1 16 3 4 3 ,当且仅当 a c 时,取222等号,故面积的最大值为 4 3 .16.【答案】 4 5【解析】抛物线 C :y2 2 px( p 0) 的准线方程为 x 2 ,可知抛物线 C 的方程为:y2 8x ,设点 A(x1 ,y1) ,B(x2 ,y2 ) ,AB 的中点为 M (x0 ,y0 ) ,则 y12 8x1 ,y22 8x2 两式相减可得 ( y1 y2 )( y1 y2 ) 8(x1 x2 ),y1 y2 x1 x2 8 y1 y2 ,可知 8 (1) 1 2 y0 x0 y0 6 0,解得 x0 y02 4,可得 M(2,4),则 OA OB 2OM 2(2,4) (4,8) ,可得 | OA OB | | (4,8) | 42 82 4 5 .三、解答题17.【解析】(1) a1 1,an1 2an 1 ,可得 an1 1 2(an 1) ,{an 1} 是首项为 2,公比为 2 的等比数列.--------------- 2 分 an 1 2 2n1 2n , an 2n 1 .即数列 { an } 的通项公式 an 2n 1 .--------------- 4 分数列 { bn } 的前 n 项的和为 Sn n2 ,可得 b1 S1 1 ,当 n 2 时, bn Sn Sn1 n2 (n 1)2 2n 1 ,故数列 { bn } 的通项公式为 bn 2n 1 .--------------- 6 分(2)可知 cn bn an (2n 1) (2n 1) (2n 1) 2n (2n 1) --------------- 7 分设 An 1 2 3 22 5 23 (2n 1) 2 n , 2 An 1 22 3 23 (2n 3) 2 n (2n 1) 2 n 1 , 两式相减可得 An 2 2(22 23 2 n) (2n 1) 2 n 1 ,可得 An 6 (2n 1) 2n1 2n2 ,--------------- 10 分而数列 {2n 1}的前n项的和为Bn(1 2n 1) 2nn2,所以 Tn 6 (2n 1) 2n1 2n2 n2 .--------------- 12 分 18.【解析】(1)证明: PD 面 ABCD , PD BC ,在梯形 ABCD 中,过 B 作 BH DC 交 DC 于 H , BH 1 ,BD DH 2 BH 2 1 1 2 ,BC 2 ,( 2)2 ( 2)2 22 ,即 DB2 BC 2 DC 2 ,即 BC DB .--------------- 2 分 BC DB , PD BD D , BC 平面 PDB , BC 平面 EBC 平面 PBC 平面 PDB .--------------- 4 分 (2)连接 PH , BH 面 PDC ,BPH 为 PB 与面 PDC 所成的角, tan BPH BH 1 , BH 1 , PH 2 , PH 2 PD2 DH 2 PH 2 , PD2 1 2 , PD 1 ,--------------- 6 分以 D 为原点,分别以 DA , DC 与 PD 为 x ,y ,z 轴,建立如图所示的E(空0间,2直,角12)坐,标可系知,则PBP(0(1,,01,,1) ,1)A,(A1,B0,(00),,1B,(01),1,,0) ,C (0,2,0) ,设平面PAB 可知 PB a AB a 设平面 PEB的法向量为 a (x,y,z) , 0 0 xy y z 00,可取 a(1,0,1),-----------的法向量为 b(x,y ,z ) ,BE(1,1,1),8分2可知 PB BE b b 0 0 x x y y z 1 2 z0 0 ,可取 b(3,1,4),-----10分可知两向量的夹角的余弦值为 cos a b 1 3 0 11 4| a || b | 1 1 32 1 42 7 13 ,可知两平面所成的角为钝角,可知两平面所成角的余弦 26值为 7 13 .--------------- 12 分 2619.【解析】(1)完成 2 2 列联表, 满意 不满意总计男生302555女生50合计80156540120 ----------- 4 分根据列联表中的数据,得到 K 2 120 (30 15 25 50)2 55 65 80 40 960 6.713 6.635 ,所以有 99% 的把握认为对“线上教育是否 143满意与性别有关”.--------------- 6 分(2)由(1)可知男生抽 3 人,女生抽 5 人, 0,1,2,3 .P(0)C53 C835 ,P( 28 1)C52C31 C8315 28,P(2)C51C32 C8315 ,P( 563)C33 C831 56.---------------8分可得分布列为0123P515152828561------------ 10 分56可得 E( ) 0 5 1 15 2 15 3 1 9 .--------------- 12 分 28 28 56 56 820.【解析】(1)x2 4 y ,焦点 F (0 , 1) ,代入得 b 1,e c 2 , a2a2 b2 c2 ,解得 a2 2,b2 1 , x2 y2 1 ,-------------- 2 分 2 直线的斜率为 1,且经过 (1,0) ,则直线方程为 y x 1 ,联立 x2 2y2 1,解得y x 1,x y 0 1或 x y 4 3 1 3, ,C(0,1) ,D( 4 ,1) ,--------------- 4 分 33理科数学答案第 2 页(共 4 页)| CD | 4 2 ,又原点 O 到直线 y x 1 的距离 d 为 2 ,32 SCOD1 2| CD|d1 242 32 2 .--------------- 6 分 23(2)根据题意可知直线 m 的斜率存在,可设直线 m 的方程为: y kx t,ykxt,联立 x2 2y2 1,(2k 2 1)x24ktx2t 220,可得 (4kt)2 4(2k 2 1)(2t 2 2) 0 ,整理可得 t 2 2k 2 1 ,可知 F2 (1,0) , A(1,k t),B(2,2k t) ,--------------- 8 分则 | AF2 | (1 1)2 (k t 0)2 k 2 2kt t2| BF2 | (2 1)2 (2k t 0)2 1 (4k 2 4kt t2) k 2 2kt t2 2 为定值.--------------- 12 分 2k 2 4kt 2t 2 221.【解析】(1)函数 f (x) 的定义域为 (0, ∞) ,f (x) x a 1 x2 ax 1 ,设 h(x) x2 ax 1 ,xx函数 h(x) 在 (1,3) 内有且只有一个零点,满足 h(1) h(3) 0 ,可得 (1 a 1)(9 3a 1) 0 ,解得 2 a 10 , 3故实数 a 的取值范围为 (2,10) .--------------- 4 分3(2) 2 f (x) 2x 2 (a 1)x2 ,可以变形为 2ln x 2x 2 a(x22x),因为x0,可得a 2ln x x2 2x 2x2,--------------6分设g(x)2ln x 2x x2 2x2,g' ( x)2(x 1)(2ln x (x2 2x)2x).设 h(x) 2 ln x x ,h(x) 在 (0, ∞) 单调递增,h(1 ) 2ln 2 1 0 , h(1) 1 0 .22故存在一点 x0 (0.5,1) ,使得 h(x0 ) 0 ,--------------- 8 分当 0 x x0 时, h(x) 0,g'(x) 0 ,函数 g(x) 单调递增;当 x x0 时, h(x) 0,g'(x) 0 ,函数 g(x) 的最大值为 g(x0) ,且 2 ln x0 x0 0 ,--------------- 10 分g (x)max g(x0) 2ln x0 2x0 2 x02 2x01 x0,可知 a 1 x0,又1 x0 (1,2) ,可得整数 a 的最小值为 2.--------------- 12 分22.【解析】(1)由题可知:2 2 2 cos2 6 , 2(x2 y2 ) x2 6 ,曲线 C 的直角坐标方程为 y2 x2 1 , 32直线 l 的普通方程为 3x 4 y 4 3a 0 ,--------------- 3 分两方程联立可得 33x2 6 (4 3a)x (4 3a)2 48 0 ,可知 [6 (4 3a)]2 4 33 [(4 3a)2 48] 0 ,解得 a 66 4 或 a 66 4 .--------------- 6 分33(2)曲线 C 的方程y2x21,可设x 2 cos ,32 y 3 sin则 2x 3y 2 2 cos 3 3 sin (2 2)2 (3 3)2 sin( ) ,其中 tan 2 6 ,可知最大值为 9(2 2)2 (3 3)2 35 .--------------- 10 分 23.【解析】(1)当 a 1 时, f (x) | 3x 6 | | x 1 | x 10 ,当 x 1时, (3x 6) (x 1) x 10 ,解得 x 1 , 可得 x 1;--------------- 2 分 当 1 x 2 时, (3x 6) (x 1) x 10 ,解得 x 1 , 可得 x 1; 当 x 2 时, (3x 6) (x 1) x 10 ,解得 x 5 , 综上可得 {x | x 5或x 1} .--------------- 4 分 (2)由 f (x) 0 可知, f (x) | 3x 6 | | x 1| ax 0 , | 3x 6 | | x 1| ax ,设 g(x) | 3x 6 | | x 1| , h(x) ax , 同一坐标系中作出两函数的图象如图所示,--------------- 6 分 4x 5,x 1, g(x) 2x 7,1 x 2,可得 A(2,3) , 4x 5,x 2, 当函数 h(x) 与函数 g (x) 的图象有两个交点时,方程 f (x) 0 有两 个不同的实数根,--------------- 8 分由函数图象可知,当 3 a 4 时,有两个不同的解,故实数 a 的 2取值范围为 ( 3 ,4) .--------------- 10 分 2理科数学答案第 3 页(共 4 页)理科数学答案第 4 页(共 4 页)。
2020高考模拟数学试题(全国Ⅲ卷)-理科
绝密★启用前|铭师堂试题2020高考模拟数学试题(全国Ⅲ卷)—理科(考试时间:120分钟 试卷满分:150分)第I 卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={﹣2,﹣1,0,1,2,3},B ={x ∈Z |x 2﹣1<0},则A ∩(∁A B )=( ) A .{﹣2,-1,1,2,3} B .{﹣2,﹣1,0,1,2,3} C .{﹣2,2,3}D .{﹣1,0,1}2.若复数z 满足(1+i )z =|√3−i |,则z =( ) A .√2iB .−√2iC .1﹣iD .√2−√2i3.(1+2x 2)(x −1x )6的展开式中,含x 2的项的系数是( ) A .﹣40B .﹣25C .25D .554.在△ABC 中,B =2π3,AB =3,E 为AB 的中点,S △BCE =3√38,则AC 等于( ) A .√13 B .√10C .√7D .35.已知函数y =asinxx在点M (π,0)处的切线−1πx +b =y ,则( )A .a =﹣1,b =1B .a =﹣1,b =﹣1C .a =1,b =1D .a =1,b =﹣1 6.函数f(x)=2x 2+3xx的大致图象是( )A .B .C .D .7.已知函数f(x)=Asin(ωx +ϕ)(A >0,ω>0,|ϕ|<π)的部分图象如图所示,则下列判断正确的是( )A .函数的图象关于点(−π,0)对称 B .函数的图象关于直线x =−π6对称 C .函数f (2x )的最小正周期为π D .当π6≤x ≤7π6时,函数f (x )的图象与直线y =2围成的封闭图形面积为2π8.一位老师有两个推理能力很强的学生甲和乙,他告诉学生他手里拿着与以下扑克牌中的一张相同的牌:黑桃:3,5,Q ,K 红心:7,8,Q 梅花:3,8,J ,Q 方块:2,7,9老师只给甲同学说这张牌的数字(或字母),只给乙同学说这张牌的花色,接着老师让这两个同学猜这是张什么牌:甲同学说:我不知道这是张什么牌,乙同学说:我也不知道这是张什么牌. 甲同学说:现在我们知道了. 则这张牌是( ) A .梅花3B .方块7C .红心7D .黑桃Q9.已知三棱锥D ﹣ABC 的四个顶点在球O 的球面上,若AB =AC =BC =DB =DC =1,当三棱锥D ﹣ABC 的体积取到最大值时,球O 的表面积为( ) A .5π3B .2πC .5πD .20π310.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (2,0)处出发,河岸线所在直线方程为x +y =3,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ) A .√10−1 B .2√2−1 C .2√2 D .√1011.过双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点F 作双曲线的一条渐近线的垂线,垂足为A ,交另一条渐近线于B ,点Q 是圆x 2+y 2=a 2上的动点.若FB →=2FA →,|BQ |的最大值为9,则此双曲线的方程为( ) A .x 24−y 212=1 B .x 24−y 216=1 C .x 29−y 227=1D .x 29−y 236=112.已知函数f (x )={|log 2x|,x >0x 2+4x +1,x ≤0,若函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),则x 4x 3−x 1x 32+x 2x 324的取值范围是( )A .(2,+∞)B .[2,174)C .(2,174]D .[2,+∞)第II 卷二、非选择题:本卷包括填空题和解答题两部分。
普通高等学校招生全国统一考试2020届高三模拟考试数学(理)试题含解析
【解析】
【分析】
设 , ,根据中点坐标公式可得 坐标,利用 可得到 点坐标所满足的方程,结合直线斜率可求得 ,进而求得 ;将 点坐标代入双曲线方程,结合焦点坐标可求得 ,进而得到离心率。
【详解】 左焦点为 , 双曲线的半焦距 .
设 , , , ,
, ,即 , ,即 ,
又直线 斜率 ,即 , , ,
【答案】D
【解析】
【分析】
利用余弦定理角化边整理可得结果。
【详解】由余弦定理得: ,
整理可得: , .
故选: .
【点睛】本题考查余弦定理边角互化的应用,属于基础题。
7.已知 , , ,则( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据指数运算法则、指数函数函数和对数函数单调性,可通过临界值比较出大小关系。
【详解】取 中点 ,连接 ,
, ,即 。
, ,
,
则 .
故选: 。
【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解。
9。已知 是定义在 上的奇函数,且当 时, .若 ,则 的解集是( )
A. B.
C。 D.
【答案】B
【详解】取 中点 ,由 , 可知: ,
为三棱锥 外接球球心,
过 作 平面 ,交平面 于 ,连接 交 于 ,连接 , , ,
, , , 为 的中点
由球的性质可知: 平面 , ,且 .
设 ,
, ,
, 在 中, ,
即 ,解得: ,
三棱锥 的外接球的半径为: ,
三棱锥 外接球的表面积为 .
2020年高三理科数学模拟试卷
最新文档高三理科数学模拟试卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知复数,则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)设集合P={x||x|>3},Q={x|x2>4},则下列结论正确的是()A.Q⫋P B.P⫋Q C.P=Q D.P∪Q=R3.(5分)若,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.b<c<a4.(5分)若x,y 满足约束条件则z=x+2y的最大值为()A.10 B.8 C.5 D.35.(5分)“斗拱”是中国古代建筑中特有的构件,从最初的承重作用,到明清时期集承重与装饰作用于一体.在立柱顶、额枋和檐檩间或构架间,从枋上加的一层层探出成弓形的承重结构叫拱拱与拱之间垫的方形木块叫斗.如图所示,是“散斗”(又名“三才升”)的三视图(三视图中的单位:分米),现计划用一块长方体的海南黄花梨木料加工成该散斗,则长方体木料的最小体积为()立方分米.A.40 B .C.30 D .6.(5分)不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为()A .B .C .D .7.(5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,MF的延长线交y轴于点N .若,则|MF|的值为()A.8 B.6 C.4 D.28.(5分)某函数的部分图象如图,则下列函数中可以作为该函数的解析式的是()A.y B.yC.y D.y9.(5分)如图,某中学数学兴趣小组要测量底部不能到达的某铁塔AB的高度(如图),铁塔AB垂直于水平面,在塔的同一侧且与塔底部B在同一水平面上选择C,D两观测点,且在C,D两点测得塔顶的仰角分别为45°,30°并测得∠BCD=120°,C,D两地相距600m,则铁塔AB的高度是()A.300 m B.600 m C.300mD.60010.(5分)已知函数f(x)=2|cos x|sin x+sin2x,给出下列三个命题:①函数f(x )的图象关于直线对称;②函数f(x )在区间上单调递增;③函数f(x)的最小正周期为π.其中真命题的个数是()A.0 B.1 C.2 D.311.(5分)已知△ABC是由具有公共直角边的两块直角三角板(Rt△ACD与Rt△BCD)组成的三角形,如左图所示.其中,∠CAD=45°,∠BCD=60°现将Rt△ACD绕斜边AC旋转至△D1AC处(D1不在平面ABC上).若M为BC的中点,则在△ACD旋转过程中,直线AD1与DM所成角θ()A.θ∈(30°,60°)B.θ∈(0°,45°] C.θ∈(0°,60°] D.θ∈(0°,60°)12.(5分)设符号min{x,y,z}表示x,y,z中的最小者,已知函数f(x)=min{|x﹣2|,x2,|x+2|}则下列结论正确的是()A.∀x∈[0,+∞),f(x﹣2)>f(x)B.∀x∈[1,+∞),f(x﹣2)>f(x)C.∀x∈R,f(f(x))≤f(x)D.∀x∈R,f(f(x))>f(x)二、填空题:本大题共4小题,每小题5分,把答案填在答题卡中对应题号后的横线上.13.(5分)函数y=x+lnx在点(1,1)处的切线方程为.14.(5分)已知向量,满足||=2,||=1,若•()•()的最大值为1,则向量,的夹角θ的最小值为,|2|的取值范围为.15.(5分)飞镖锦标赛的赛制为投掷飞镖3次为一轮,一轮中投掷3次飞镖至少两次投中9环以上,则评定该轮投掷飞镖的成绩为优秀.某选手投掷飞镖每轮成绩为优秀的概率为,则该选手投掷飞镖共三轮,至少有一轮可以拿到优秀成绩的概率是16.(5分))有一凸透镜其剖面图(如图)是由椭圆1和双曲线1(a>m>0)的实线部分组成,已知两曲线有共同焦点M、N;A、B分别在左右两部分实线上运动,则△ANB周长的最小值为三、解答题:解答应写出文字说明、证明过程或演算步骤.(一)必考题:共60分.17.(12分)已知数列{a n}为等差数列,S n是数列{a n}的前n项和,且a2=2,S3=a6,数列{b n}满足:b2=2b1=4,当n≥3,n∈N*时,a1b1+a2b2+…+a n b n=(2n﹣2)b n+2.(1)求数列{a n},{b n}的通项公式;(2)令,证明:c1+c2+…+c n<2.最新文档18.(12分)如图,在四棱锥P﹣ABCD中,已知P A⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD,P A=AD=2,AB=BC=1,点M,E分别是P A,PD的中点.(1)求证:CE∥平面BMD;(2)点Q为线段BP中点,求直线P A与平面CEQ所成角的余弦值.19.(12分)已知椭圆)的左、右顶点分别为A、B,且|AB|=4,椭圆C 的离心率为.(1)求椭圆C的标准方程;(2)已知点M(1,m)(m≠0)在椭圆C内,直线AM与BM分别与椭圆C交于E、F两点,若△AMF面积是△BME面积的5倍,求m的值.20.(12分)BMI指数是用体重公斤数除以身高米数的平方得出的数值,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当BMI数值大于或等于20.5时,我们说体重较重,当BMI数值小于20.5时,我们说体重较轻,身高大于或等于170cm时,我们说身高较高,身高小于170cm时,我们说身高较矮.某中小学生成长与发展机构从某市的320名高中男体育特长生中随机选取8名,其身高和体重的数据如表所示:编号 1 2 3 4 5 6 7 8 身高(cm)x i166 167 160 173 178 169 158 173体重(kg)y i57 58 53 61 66 57 50 66(1)根据最小二乘法的思想与公式求得线性回归方程.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献值R2(保留两位有效数字);编号 1 2 3 4 5 6 7 8 身高(cm)x i166 167 160 173 178 169 158 173体重(kg)y i57 58 53 61 66 57 50 66残差0.1 0.3 0.9 ﹣1.5 ﹣0.5(2)通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58(kg).请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.参考公式:R2=1.,.i=y i x i.参考数据:x i y i=78880,x226112,168,58.5,(y i)2=226.21.(12分)已知函数f(x)=a x(a>0,a≠1).(1)当a=e(e为自然对数的底数)时,(i)若G(x)=f(x)﹣2x﹣m在[0,2]上恰有两个不同的零点,求实数m的取值范围;(ii )若,求T(x)在[0,1]上的最大值;(2)当,数列{b n}满足.求证:.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4--4:坐标系与参数方程]22.(10分)极坐标系于直角坐标系xOy有相同的长度单位,以原点O为极点,以x正半轴为极轴.已知曲线C1的极坐标方程为ρ=4cos(θ),曲线C2的极坐标方程为ρcos(θ)=a,射线θ=α,θ=α,θ=α,θ=α与曲线C1分别交异于极点O的四点A,B,C,D.(1)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和C2化成直角坐标方程;(2)设f(α)=|OA|•|OB|+|OC|•|OD|,当α时,求f(α)的值域.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|+|x﹣1|.(Ⅰ)求不等式f(x)≤4的解集;(Ⅱ)设函数f(x)的最小值为m,当a,b,c∈R+,且a+b+c=m 时,求的最大值.。
2020年高三理科数学精准模拟卷一(含详解答案)
绝密★启用前2020年高三理科数学精准模拟卷(一)本试卷共4页,23小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数y=的定义域A,函数y=ln(1-x)的定义域为B,则A B⋂= A.(1,2)B.(1,2] C.(-2,1)D.[-2,1)2.设i为虚数单位,321izi=+-,则||z=()A.1B C D.23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.年接待游客量逐年增加B .各年的月接待游客量高峰期大致在8月C .2017年1月至12月月接待游客量的中位数为30万人D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.下列命题,正确的是( )A .命题“0x R ∃∈,使得2010x -<”的否定是“x R ∀∈,均有210x ->”B .命题“存在四边相等的空间四边形不是正方形”,该命题是假命题C .命题“若22x y =,则x y =”的逆否命题是真命题D .命题“若3x =,则2230x x --=”的否命题是“若3x ≠,则2230x x --≠” 5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( )A .53B .103C .56D .1166.如图所示,ABC V 中,BD 2DC =u u u v u u u v ,点E 是线段AD 的中点,则AC (=u u u v)A .31AC AD BE 42=+u u u v u u u v u u u vB .3AC AD BE 4=+u u u vu u u v u u u v C .51AC AD BE 42=+u u u v u u u v u u u v D .5AC AD BE 4=+u u u v u u u v u u u v 7.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b+的最小值是( ) A .74 B .94 C .52 D .28.如图是某几何体的三视图,则它的表面积为( )。