平抛运动的特点和规律
第二讲:平抛运动

第二讲:平抛运动一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动; (2)竖直方向:自由落体运动. 4.基本规律如图,以抛出点O 为坐标原点,以初速度v 0方向(水平方向)为x 轴正方向,竖直向下为y 轴正方向.(1)位移关系(2)速度关系(3)轨迹方程:h =g2v 02x 25.基本应用例题、如图所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为(1)飞行时间由t =2hg知,时间取决于下落高度h ,与初速度v 0无关.(2)水平射程x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. (3)落地速度v =v x 2+v y 2=v 02+2gh ,以θ表示落地速度与水平正方向的夹角,有tan θ=v y v x=2ghv 0,落地速度与初速度v 0和下落高度h 有关. (4)速度改变量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图所示.(5)两个重要推论①做平抛运动的物体在任意时刻的瞬时速度的反向延长线一例题、如图甲所示是网球发球机,某次室内训练时将发球机放在距地面一定的高度,然后向竖直墙面发射网球.假定网球均水平射出,某两次射出的网球碰到墙面时速度与水平方向夹角分别为30°和60°,若不考虑空气阻力,则( )A.两次发射的初速度大小之比为3∶1定通过此时水平位移的中点,如图所示,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v yv 0=2y Ax A→x B=x A2①做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt 2v 0→tan θ=2tan α二、与斜面结合的平抛运动1.顺着斜面平抛(如图)方法:分解位移.x =v 0t ,y =12gt 2,tan θ=y x,可求得t =2v 0tan θg.2.对着斜面平抛(垂直打到斜面,如图) 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt,可求得t =v 0g tan θ.三、斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动.例题、某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0;做匀速直线运动,v 0x =v 0cos θ,x =v 0tcos θ. (2)竖直方向:v 0y =v 0sin θ,F 合y =mg .做竖直上抛运动,v 0y =v 0sin θ,y =v 0tsin θ-12gt2四、类平抛运动1.类平抛运动物体受到与初速度垂直的恒定的合外力作用时,其轨迹与平抛运动相似,称为类平抛运动.类平抛运动的受力特点是物体所受合力为恒力,且与初速度的方向垂直.2.类平抛运动问题的求解技巧(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性.(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向上列方程求解.针对训练题型1:平抛运动性质例题、如图所示的光滑斜面ABCD 是边长为l 的正方形,倾角为30°,一物块(视为质点)沿斜面左上方顶点A 以平行于AB 边的初速度v 0水平射入,到达底边CD 中点E ,则( )A .初速度2glB .初速度4glC .物块由A 点运动到E 点所用的时间2lt g= D .物块由A 点运动到E 点所用的时间lt g=1.关于平抛运动的性质,以下说法中正确的是()A.变加速运动B.匀变速运动C.匀速率曲线运动D.不可能是两个直线运动的合运动2.人站在平台上平抛一小球,球离手时的速度为v1,落地时速度为v2,不计空气阻力,下列图中能表示出速度矢量的演变过程的是()A.B.C.D.题型2:平抛运动规律3.如图所示,从A、B、C三个不同的位置向右分别以v A、v B、v C的水平初速度抛出三个小球A、B、C,其中A、B在同一竖直线上,B、C在同一水平线上,三个小球均同时落在地面上的D点,不计空气阻力。
(完整版)平抛运动的知识点

平抛运动的规律与典型例题分析一. 平抛运动的条件1.平抛运动的初始条件:物体拥有水平初速度 V 02.平抛运动的受力特色:只受重力:F=mg(实质问题中阻力远远小于重力,能够简化为只受重力)3.平抛运动的加快度: mg=mα,α=g,方向竖直向下,与质量没关,与初速度大小没关4.平抛运动的理论推理:水平方向—— x :物体不受外力,依据牛顿第必定律,水平方向的运动状态保持不变,水平方向应做匀速直线运动, V x=V0.竖直方向——y:初速度为 0,只受重力,加快度为g,做自由落体运动, V y=gt .二 . 平抛运动的规律如左图所示,以抛出点为坐标原点,沿初速度方向成立x 轴,竖直向下为y 轴.在时间t 时,加快度:α=g,方向竖直向下,与质量没关,与初速度大小没关;平抛运动速度规律:速度方向与水平方向成θ 角平抛运动位移规律:位移方向与水平方向成α 角平抛运动的轨迹方程:为抛物线平抛运动在空中飞翔时间:,与质量和初速度大小没关,只由高度决定平抛运动的水平最大射程:由初速度和高度决定,与质量没关三. 平抛运动的观察知识点与典型例题1.平抛运动定义的观察例题:飞机在高度为 0.8km 的上空,以 2.5 ×10 2 km/h 的速度水平匀速飞翔,为了使飞机上投下的炮弹落在指定的轰炸目标,应当在离轰炸目标的水平距离多远处投弹?分析:设炮弹走开飞机后做平抛运动,在空中飞翔时间为:,炮弹走开飞机后水平位移答案:炮弹走开飞机后要在空中水平飞翔0.9km ,因此要在离轰炸目标0.9km 处投弹问题睁开:轰炸定点目标;轰炸运动目标;飞车跨壕沟等问题研究方法同样2.平抛运动中模型规律观察例题:一架飞机水平匀速飞翔从飞机上每隔一秒开释一个炮弹,不计空气阻力在它们落地之前,炮弹()A、在空中任何时辰老是排成抛物线,它们的落地址是等间距的B、在空中任何时辰老是排成抛物线,它们的落地址是不等间距的C、在空中任何时辰老是在飞机的正下方排成竖直直线,它们的落地址是等间距的D、在空中任何时辰老是在飞机的正下方排成竖直直线,它们的落地址是不等间距的分析:炮弹走开飞机时,拥有和飞机共同的水平初速度,在空中做平抛运动.相关于地面,每一个炮弹在空中的轨迹为抛物线,但在空中的几个炮弹自己其实不排成抛物线.因为它们与飞机的水平速度同样,因此相关于飞机,它们都做自由落体运动,总在飞机的正下方,排成竖直直线.答案:C3.平抛运动试验的观察例题:如何用平抛运动知识丈量子弹的初速度?分析:子弹初速度相当大,水平射程相当远,假如丈量实质水平射程很不方便,且因为空气阻力影响,将出现较大的丈量偏差.能够记录子弹的初始地点,如右图所示,在离枪口必定的距离上,竖直放一块厚纸板,用枪将子弹水平射出,丈量枪口到地面的高度H、子弹在纸板上留下的弹孔到地面的距离h、枪口到纸板的水平距离x.将子弹在不太长时间内的运动当作是平抛运动.则子弹竖直方向的位移为H-h,由自由落体运动关系水平位移联立求解得:4.平抛运动中合速度与两个分速度的关系例题:一个物体以初速度V 0水平抛出,落地时速度的大小为V ,则运动时间为()分析:末速度与初速度不在同一个方向上,不可以用代数方法运算.物体在竖直方向做自由落体运动,在竖直方向的速度比重力加快度才是运动时间,不可以用末速度与重力加快度的比值求时间.由矢量的合成分解关系:如左图所示,竖直分速度答案:C。
平抛运动笔记知识点

平抛运动一.平抛运动性质(1)定义:以一定初速度水平抛出且只在重力作用下的运动叫平抛运动。
(2)理解:①物体只受重力,重力认为是恒力,方向竖直向下;②初速度不为零③抛体运动是一理想化模型,因为它忽略了实际运动中空气的阻力。
(3)方法:运动合成分解——正交分解以解决问题方便为原则,建立合适的坐标系,将曲线运动分解为两个方向的匀变速直线运动或者分解为一个方向的匀速直线运动和另一个方向的自由落体运动加以解决。
这也是匀变速曲线运动的处理方法,主要注意的是加速度是a 还是g二.平抛运动的规律1、运动性质水平:匀速直线运动竖直:自由落体运动2、平抛运动的规律(1)位移○1水平方向: x v t v v x ==00, ○2竖直方向: y gt v gt y ==122, ○3合位移:X 22y x S +=○4X 与水平方向夹角为02gt tan v θ= (2)速度○1水平方向:v t v v x ==00, ○2竖直方向:gt v gt y ==122, ○3合速度: 22y x v v v +=即v v gt =+022(),○4V 与水平方向夹角为0gt tan a v=(3)规律提炼 ○1θαtan tan 2= ,任意时刻速度偏转角的正切值是此时位移偏转角正切值的二倍。
○2任意时刻速度反向延长线过水平位移的中点,即过的OA 中点。
○3平抛运动在空中的飞行时间:由221gt y =可以得到时间gy t 2=,只与高度有关。
○4相等时间内速度变化量的大小方向相同。
三.斜抛运动1.性质水平方向:匀速直线运动竖直方向:先竖直上抛运动,再自由落体运动2.规律(1)位移水平:v t v x x αcos 0==竖直:2021gt t v y y -= (2)速度水平:αcos 0v v x =竖直:gt v v y y -=02、轨迹方程 :22202g y tan x x v cos αα=⋅-(3)时间与射程○1斜抛物体的飞行时间: 当物体落地时αsin 00v v v y y -=-=,由 gt v v y y -=0 知,飞行时间g v t αsin 20=○2斜抛物体的射程: 由轨迹方程22202g y tan x x v cos αα=⋅- 令y=0得落回抛出高度时的水平射程是gv x α2sin 20= ○3斜上抛运动的射高: 斜上抛的物体达到最大高度时00y y v v gt v sin gt α=-=-=0,此时0gv sin t α=代入2021gt t v y y -=即得g v y 2sin 220m ax α= 可以看出,当090=α时,射高最大g v H 220= (4)两条结论①当抛射角045=α时射程最远,20max v x g= ②初速度相同时,两个互余的抛射角具有相同的射程,例如300和600的两个抛射角在相同初速度的情况下射程是相等的。
总结平抛知识点

总结平抛知识点一、平抛的基本概念1. 平抛的定义平抛是指物体在一定速度的情况下,在重力的作用下做抛体运动。
在平抛运动中,物体在水平方向做匀速直线运动,在竖直方向上受重力作用而做加速直线运动。
2. 平抛的特点平抛运动具有以下特点:(1)水平速度恒定:物体在水平方向上的速度是恒定的,即物体做匀速直线运动。
(2)竖直加速度恒定:物体在竖直方向上受到重力的影响,因此有竖直方向上的加速度,且加速度大小是恒定的,即重力加速度。
(3)运动轨迹为抛物线:考虑到水平速度恒定、竖直加速度恒定的特点,平抛物体的运动轨迹为抛物线。
二、平抛的运动规律1. 平抛的运动方程在平抛运动中,物体的水平运动与竖直运动是相互独立的,因此可以分别考虑。
设物体水平方向上的速度为v0,竖直方向上的初速度为v0y,竖直方向上的加速度为-g(g为重力加速度),水平方向上的位移为x,竖直方向上的位移为y,则有以下运动方程:(1)水平方向运动方程:x = v0*t(2)竖直方向运动方程:y = v0y*t - 0.5*g*t^22. 平抛的运动参数在平抛运动中,有一些重要的运动参数需要了解:(1)飞行时间:物体在竖直方向上的运动时间,记为T。
当物体抛出后再次回到初始高度时,飞行时间为T。
(2)最大高度:物体在竖直方向上所达到的最大高度,记为H。
最大高度可以通过竖直方向的运动方程求得。
(3)飞行距离:物体在水平方向上的飞行距离,记为D。
飞行距离可以通过水平方向的运动方程求得。
三、平抛的受力分析1. 平抛物体的受力在平抛运动中,物体受到的受力主要包括重力和空气阻力。
(1)重力:重力是所有物体都会受到的作用力,它的大小与物体的质量成正比,与重力加速度g成正比。
(2)空气阻力:当物体在空气中运动时,会受到空气的阻力作用。
空气阻力的大小与物体的速度成正比,与物体的表面积和空气密度成正比。
2. 平抛物体的受力分析考虑到物体的水平运动与竖直运动是相互独立的,在受力分析中可以单独考虑水平方向和竖直方向的受力情况。
平抛运动的特点是什么

平抛运动的特点是什么
平抛运动的特点有平抛运动⽔平⽅向是匀速直线运动、竖直⽅向是⾃由落体运动。
平抛运动是曲线运动,平抛运动的时间仅与抛出点的竖直⾼度有关,物体落地的⽔平位移与时间及⽔平初速度有关。
1平抛运动
物体以⼀定的初速度沿⽔平⽅向抛出,如果物体仅受重⼒作⽤,这样的运动叫做平抛运动。
平抛运动可看作⽔平⽅向的匀速直线运动以及竖直⽅向的⾃由落体运动的合运动。
平抛运动的物体由于所受的合外⼒为恒⼒,所以平抛运动是匀变速曲线运动,平抛物体的运动轨迹为抛物线。
2平抛运动规律
1、运动时间只由⾼度决定。
2、⽔平位移和落地速度由⾼度和初速度决定。
3、在任意相等的时间⾥,速度的变化量相等,⽅向也相同。
是加速度⼤⼩、⽅向不变的曲线运动。
4、任意时刻,速度偏向⾓的正切等于位移偏向⾓正切的两倍。
5、任意时刻,速度⽮量的反向延长线必过⽔平位移的中点。
6、从斜⾯上沿⽔平⽅向抛出物体,若物体落在斜⾯上,物体与斜⾯接触时的速度⽅向与⽔平⽅向的夹⾓的正切是斜⾯倾⾓正切的⼆倍。
7、从斜⾯上⽔平抛出的物体,若物体落在斜⾯上,物体与斜⾯接触时速度⽅向和斜⾯形成的夹⾓与物体抛出时的初速度⽆关,只取决于斜⾯的倾⾓。
(完整版)平抛运动知识点

5.2 抛体运动的规律一、平抛运动:将物体以必定的初速度沿_水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动。
1、受力特色:只受重力,因此加快度为重力加快度,加速度方向竖直向下。
2、性质:是加快度为重力加快度的匀变速曲线曲线运动。
二、运动规律1、水平方向上受力为零, 因此做匀速直线运动运动。
故水均分速度 v xv 0 ,分位移 x v 0 t 。
2、竖直方向上只受重力,且初速度为零。
因此做自由落体运动运动。
故竖直分速度 v y gt ,分位移 y1 gt 223、合运动:速度大小v t2 2v 02(gt )2v y gt v xv y方向 tanv 0v 02 2212 2 y 1gt24、合位移大小 S2gtxy(v 0t )(gt )方向 tanv 0t 2v 02x三、平抛运动的几个结论1、运动时间h 1 gt 2 → t2h 落地时间由着落的高度h 决定 .2 g2、落地的水平距离 x v 0t v 0 2hv 0和 h 共同决定 .g 水平位移由3、落地时的速度 v t v x 2v y2v 02 2gh 落地速度由 v 0和 h 共同决定 .4、相等时间间隔t 内抛体运动的速度改变量同样 . v gt , 方向竖直向下 .5、速度方向偏转角与位移方向偏转角的关系v y gt1gt 2gttantan2 tan2 tanv xv 0v 0t2v 0PAPAAO 2 AOO ′是 AO 中点。
AO 2AO【切记】:速度方向的反向延伸线与X 轴的交点为水平位移的中点5.4 圆周运动1.描绘圆周运动的物理量( 1)线速度①线速度的大小:做圆周运动的物体经过的弧长与所用时间的比值叫线速度。
②物理意义:描绘质点沿圆周运动的快慢 .③线速度的大小计算公式v s ,则运动的弧长为2 R ,因此此假如时间是一个周期(一个圆周)2 R t时线速度的公式为 v。
T④线速度的方向:圆周上该点的切线方向,时辰与半径垂直。
第三章 第3节 平抛运动

第3节平抛运动一、平抛运动的认识 1.定义把物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动。
2.特点(1)受力特点:只受重力。
(2)运动特点:初速度水平,加速度为g ,方向竖直向下。
3.性质为匀变速曲线运动。
4.实验探究⎩⎪⎨⎪⎧水平方向:不受力,做匀速直线运动竖直方向:只受重力,做自由落体运动 二、平抛运动的规律 1.水平方向以初速度v 0做匀速直线运动,v x =v 0,x =v 0t 。
2.竖直方向做自由落体运动,v y =gt ,y =12gt 2。
下落时间:t =2yg ,t 只与下落高度y 有关,与其他因素无关。
1.物体以某一初速度水平抛出,不考虑空气阻力,物体只在重力作用下的运动叫平抛运动。
2.平抛运动是匀变速曲线运动,水平方向做匀速直线运动,x =v 0t ,竖直方向做自由落体运动,y =12gt 2。
3.平抛运动在空中运动时间由竖直高度决定,水平位移由竖直高度和水平初速度共同决定。
1.自主思考——判一判(1)平抛运动的速度、加速度都随时间增大。
(×)(2)平抛运动物体的速度均匀变化。
(√)(3)平抛运动不是匀变速曲线运动。
(×)(4)平抛物体的初速度越大,下落得越快。
(×)(5)平抛运动的初速度可以不沿水平方向。
(×)2.合作探究——议一议(1)体育运动中投掷的链球、铅球、铁饼、标枪等,都可以看成是抛体运动吗?都可以看成是平抛运动吗?图3-3-1提示:链球、铅球、铁饼、标枪等,若被抛出后所受空气阻力可忽略不计,可以看成是抛体运动。
它们的初速度不一定沿水平方向,所以它们不一定是平抛运动。
(2)两个小金属球同时从同一高度开始运动,不计空气阻力,A球自由落体,B球平抛运动,两球下落过程中的高度位置相同吗?为什么?提示:相同;A、B两球在竖直方向上的运动情况完全相同,从同一高度同时进行自由落体运动,因此,在下落过程中的高度位置始终相同。
抛体运动的规律

第五章抛体运动课时5.4抛体运动的规律1.知道抛体运动的运动性质和受力特点。
2.通过运动的合成与分解,分析平抛运动的规律,掌握分析方法。
3.能用平抛运动的规律解决相关问题。
4.知道斜抛运动,会用运动的合成和分解的方法分析一般的抛体运动。
一、平抛运动的规律1.平抛运动的特点物体做平抛运动时,在水平方向上不受力,有初速度,做匀速直线运动;在竖直方向上只受重力,无初速度,做自由落体运动。
2.平抛运动的速度(1)水平分速度:v x =v 0。
(2)竖直分速度:v y =gt 。
(3)合速度:v=22y x v v +,方向:tan θ=x y v v =0v gt(θ是合速度v 与水平方向的夹角)。
(4)速度变化量由Δv=g Δt 可知,任意两个相等的时间间隔内速度的变化量相同,方向竖直向下,如图所示。
3.平抛运动的位移(1)水平分位移:x=v 0t 。
(2)竖直分位移:y=21gt 2。
(3)合位移:s=22y x +,方向:tan α=x y =2v gt (α是合位移s 与水平方向的夹角)。
4.平抛运动的轨迹(1)运动位置:t 时刻的坐标为(v 0t ,21gt 2)。
(2)运动轨迹:轨迹表达式为y=02v gt x 2,平抛运动的轨迹为抛物线。
二、一般的抛体运动1.斜抛运动:物体被抛出时的速度v 0不沿水平方向,而是斜向上方或斜向下方。
2.受力分析:做斜抛运动的物体,在水平方向不受力,加速度是0;在竖直方向只受重力,加速度是g 。
3.运动特点(以初速度v 0斜向上方为例)(1)水平方向:以速度v 0x =v 0cos θ做匀速直线运动。
(2)竖直方向:以初速度v 0y =v 0sin θ做竖直上抛运动。
4.运动的性质由于斜抛运动的加速度是重力加速度,且与速度方向有夹角,因此,斜抛运动是匀变速曲线运动。
【题型1平抛中的对比问题】【例1】如图,质量相同的两小球a 、b 分别从斜面顶端A 和斜面中点B 沿水平方向被抛出,恰好均落在斜面底端,不计空气阻力,则以下说法正确的是()A .小球a 、b 离开斜面的最大距离之比为2∶1B .小球a 、b 沿水平方向抛出的初速度之比为2∶1C .小球a 、b 在空中飞行的时间之比为2∶1D .小球a 、b 到达斜面底端时速度与水平方向的夹角之比为2∶1【题型2落点在斜面上的平抛】【例2】如图所示,A 点为倾角为30°的斜面底部,在A 点的正上方某高度P 点以初速度v 0平抛一小球,小球打在斜面上B 点,C 为AB 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平抛运动的特点及规律
一、知识目标:
1、知道什么是平抛及物体做平抛运动的条件。
2、知道平抛运动的特点。
3、理解平抛运动的基本规律。
二、能力目标:
通过平抛运动的研究方法的学习,使学生能够综合运用已学知识,来探究新问题的研究方法。
三、德育目标:
通过平抛的理论推证和实验证明,渗透实践是检验真理的标准。
教学重点:
1、平抛运动的特点和规律
2、学习和借借鉴本节课的研究方法
教学难点:
平抛运动的规律
教学方法:
实验观察法、推理归纳法、讲练法
教学用具:
平抛运动演示仪、自制投影片、电脑、多媒体课件
教学步骤:
一、导入新课:
用枪水平地射出一颗子弹,子弹将做什么运动,这种运动具有什么特点,本节课我们就来学习这个问题。
二、新课教学
(一)用投影片出示本节课的学习目标
1、理解平抛运动的特点和规律
2、知道研究平抛运动的方法
3、能运用平抛运动的公式求解有关问题
(二)学习目标完成过程
1:平抛物体的运动
(1)简介平抛运动:
a:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动,叫平抛运动。
b:举例:用力打一下桌上的小球,使它以一定的水平初速度离开桌面,小球所做的就是平抛运动,并且我们看它做的是曲线运动。
c:分析说明平抛运动为什么是曲线运动?(因为物体受到与速度方向成角度的重力作用)
(2)巩固训练
a:物体做平抛运动的条件是什么?
b:举几个物体做平抛运动的实例
(3)a:分析说明:做平抛运动的物体;在水平方向上由于不受力,将做匀速直线运动b:在竖直方向上物体的初速度为0,且只受到重力作用,物体做自由落体运动。
c:实验验证:
1.用CAI课件模拟平抛运动,
2.模拟的同时,配音说明:
用小锤打击弹性金属片时,A球就向水平方向飞出,做平抛运动,而同时B球被松开,做自由落体运动。
3.实验现象:(学生先叙述,然后教师总结)
现象一:越用力打击金属片,A飞出水平距离就越远。
现象二:无论A球的初速度多大,它会与B球同时落地。
−→− 对现象进行分析:得到平抛运动在竖直方向上是自由落体运动,水平方向的速
..........................
度大小并不影响平抛物体在竖直方向上的运动。
.....................
4.在CAI 课件显示出在相等时间内水平方向前进的水平距离是相等的。
−→−得到平抛运动的水平分运动是匀速的,且不受竖直方向的运动的影响............................。
(4)针对训练:用多媒体出示
平抛运动是一种曲线运动,它的水平分运动是 ,竖直分运动是 。
2、平抛运动的规律
(1)平抛运动的物体在任一时刻的位置坐标的求解。
a :以抛点为坐标原点,水平方向为x 轴(正方向和初速度v 的方向相同),竖直方向为y 轴,正方向向下,则物体在任意时刻t 的位置坐标为
⎪⎩⎪⎨⎧==202
1gt y t
v x
b :运用该公式我们就可以求得物体在任意时刻的坐标找到物体所在的位置,用平滑曲线把这些点连起来,就得到平抛运动的轨迹→抛物线。
(2)平抛速度求解:
a :水平分速度0v v x
=
b :竖直分速度gt v y =
c :t 秒末的合速度2
2y
x t v v v +=
d :t v 的方向x
y v v =
θ
tan
(三)例题分析
1、用多媒体出示例题
一架老式飞机高处地面0.81km 的高度,以2.5×102km/h 的速度水平飞行,为了使飞机上投下的炸弹落在指定的目标,应该在与轰炸目标的水平距离为多远的地方投弹?不计空气阻力。
2、用电脑模拟题目所述的物理情景
3、在投影仪上出示下列思考题:
(1)从水平飞行的飞机上投下的炸弹,做什么运动?为什么? (2)炸弹的这种运动可分解为哪两个什么样的分运动?
(3)要想使炸弹投到指定的目标处,你认为炸弹落地前在水平方向通过的距离与投弹时飞机离目标的水平距离之间有什么关系? 4:解决上述问题,并让学生书写解题过程 5:在多媒体上投影解题过程:
解:因为2
2
1gt y =
所以g
y
t 2=
又在这段时间内炸弹通过的水平距离为g
y v t v x
20
0==
所以=x 0.89km
答:飞机应在离轰炸目标水平举例是0.89km 的地方投弹。
三、巩固训练 1、填空:
(1)物体做平抛运动的飞行时间由 决定。
(2)物体做平抛运动时,水平位移由 决定。
(3)平抛运动是一种 曲线运动。
2、从高空中水平方向飞行的飞机上,每隔1分钟投一包货物,则空中下落的许多包货物和飞机的连线是
A :倾斜直线
B :竖直直线
C :平滑直线
D :抛物线
3、平抛一物体,当抛出1秒后它的速度与水平方向成45o 角,落地时速度方向与水平方向成60o 角。
(1)求物体的初速度; (2)物体的落地速度。
四、小结
本节课我们学习了 1、什么是平抛运动
2、平抛运动是水平方向的匀速直线运动和竖直方向自由落体运动的合运动
3、平抛运动的规律 ⎪⎩⎪
⎨⎧==202
1)1(at y t v x
⎪⎪⎩
⎪
⎪⎨⎧
+===220)2(y x y x v v v gt v v v
平抛特点总结:
1.运动时间只由高度决定
设想在高度H 处以水平速度v o 将物体抛出,若不计空气阻力,则物体在竖直方向的运动是自由落体,由公式可得:
,由此式可以看出,物体的运动时间只与
平抛运动开始时的高度有关。
2.水平位移由高度和初速度决定
平抛物体水平方向的运动是匀速直线运动,其水平位移,将代入得:,由此是可以看出,水平位移是由初速度和平抛开始时的高度决定的。
例1如图1所示,在同一平面内,小球a、b从高度不同的两点,分别以初速度v a、v b沿水平方向抛出,经过时间t a、t b后落到与两抛出点水平距离相等的点。
若不计空气阻力,下列关系式正确的是()
A.t a>t b,v a<v b
B.t a>t b,v a>v b
C.t a<t b,v a<v b
D.t a<t b,v a>v b
分析与求解:由图可以看出小球a抛出时的高度大于小球b,由公式或“1”中结论可知,小球a运动时间大于小球b运动时间。
由题意知,两小球的水平位移相等,由公式s=vt或“2”中结论可知,小球a的初速度大于小球b的初速度。
因此,本题正确选项是A。
3.在任意相等的时间里,速度的变化量相等
由于平抛物体的运动是水平方向的匀速直线运动和竖直方向的自由落体运动的和合运动。
运动中,其水平运动的速度保持不变,时间里,水平方向的分速度的变化量为零,竖直方向的分速度的变化量为,而时间里合速度的变化量为两个方向速度变化量的矢量和,其大小为:,方向竖直向下。
由此可知,在相等的时间里,速度的变化量相等,由此也可以知道,在任意相等的时间里,动量的变化量相等。
4.任意时刻,速度偏向角的正切等于位移偏向角正切的两倍
如图2所示,物体被以水平初速度v o抛出后,t时刻其速度的偏向角为图中的α角,位移的偏向角为图中的β角,则:,,由此两式可知:。
5.任意时刻,速度矢量的反向延长线必过水平位移的中点
设平抛开时后,t时刻速度矢量的反向延长线与这段时间里水平位移矢量的交点为A,图3中的角α与图2中的α相同,即:,而。
6.从斜面上沿水平方向抛出物体,若物体落在斜面上,物体与斜面接触时的速度方向与水平方向的夹角的正切是斜面倾角正切的二倍
设物体被从倾角为θ的斜面上的O点以水平初速度v o抛出,t时刻落在斜面上距O点为L的A点,速度矢量v方向与水平方向的夹角为α。
则,物体O点运动到A点过程中在水平方向和竖直方向上分别有:,,由此三式可得:。
其实,从图4可以看出,物体落在斜面时的位移偏向角等于斜面的倾角θ,由结论“4”亦可得出此结论。
例2如图5所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上。
物体与斜面接触时速度与水平方向的夹角φ满足()
A.tanφ=sinθ
B.tanφ=cosθ
C.tanφ=tanθ
D.tanφ=2tanθ
分析与求解:由上述结论或证明过程可知,本题选D。
7.从斜面上水平抛出的物体,若物体落在斜面上,物体与斜面接触时速度方向与斜面的夹角与物体抛出时的初速度无关
由结论“6”的证明可知,物体落在斜面时的速度方向与斜面夹角为(α-θ),而
,由此式可以看出,物体落在斜面上时,速度方向与斜面的夹角与初速度无关,只取决于斜面的倾角。