一个可以从旋转角度(构造等边三角形)理解的好题及其解法(13)
三角形旋转问题解题法和理由
三角形旋转问题解题法和理由如下:
解题方法:
1.明确题目要求:首先需要明确题目要求,确定需要旋转的角度
和旋转中心,以及旋转后需要得到的图形或关系。
2.画出原始图形:根据题目描述,画出原始三角形,并标记好相
关的点和线段。
3.确定旋转中心和角度:根据题目要求,确定旋转的中心点和旋
转角度。
4.执行旋转操作:使用旋转工具或手动操作,将三角形绕旋转中
心按指定的角度旋转。
5.验证结果:旋转后,检查是否得到了题目要求的结果,并注意
验证角度、长度等是否符合题目要求。
理由:
1.旋转是几何变换中的基本变换,它可以通过改变图形的位置来
得到新的图形关系或结构。
2.通过旋转操作,可以揭示条件与结论之间的内在联系,找出证
题途径。
3.在三角形旋转问题中,通过旋转可以得到新的角度、长度等关
系,从而为解题提供新的思路和方法。
初中数学利用旋转巧解几何题学法指导
初中数学利用旋转巧解几何题将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的图形全等,对应点到旋转中心的连线所组成的夹角等于旋转角,利用其性质可以解一些几何题,对同学们在解此类问题时有所帮助,下面举例说明。
一、旋转在解三角形中的应用例1 如图1所示,P 是等边三角形ABC 内的一个点,PA=2,PB=32,PC=4,求△ABC 的边长。
图1 分析:PA 、PB 、PC 比较分散,可利用旋转将PA 、PB 、PC 放在一个三角形中,为此可将△BPA 绕B 点逆时针方向旋转60°可得△BHC 。
解:把△BPA 绕B 点逆时针方向旋转60°得到△BHC 。
因为BP=BH ,∠PBH=60°所以△BPH 是等边三角形所以∠BPH=60°,所以BP=PH 32=又因为HC=PA=2,PC=4所以222HC HP PC +=所以△HCP 是Rt △,所以∠CHP=90°又因为HC=2,PC=4所以∠HPC=30°又因为∠BPH=60°,所以∠CPB=90° 在Rt △BPC 中,222224)32(PC BP BC +=+==12+16=2872BC =,那么△ABC 的边长为72。
例2 如图2,O 是等边三角形ABC 内一点,已知:∠AOB=115°,∠BOC=125°,则以线段OA 、OB 、OC 为边构成三角形的各角度数是多少?图2解:可将△BOC 绕B 点按逆时针方向旋转60°可得△BMA 。
因为BO=BM ,∠MBO=60°所以△BOM 是等边三角形,所以∠1=∠2=60°又因为∠AOB=115°,所以∠MOA=55°又因为∠AMB=∠COB=125°所以∠AMO=65°又因为AM=OC ,MO=BO所以△AMO 正好是以AO 、OC 、BO 为边组成的三角形, 所以∠MAO=180°-(55°+65°)=180°-120°=60°即:以线段OA 、OB 、OC 为边构成三角形的各角的度数分别为55°、65°、60°。
旋转的证明与计算(等边三角形)
旋转的证明与计算模块一:旋转应用之等边旋转类型二:正方形中的旋转 例题1.正方形ABCD 内一点到三顶点距离分别是1,2,3,则正方形的面积等于考点:旋转的性质;正方形的性质分析:把△PAB 绕A 点逆时针旋转90°得△EAD ,把△CPB 绕C 点顺时针旋转90°得△CFD ,连PE ,PF ,则∠1=∠2,∠3=∠4,得到∠2+∠4=90°,∠EDF=180°,即E ,D ,F 共线,且ED=PB=2,DF=PB=2,△APE ,△CPF 均为等腰直角三角形,所以211121=⨯⨯=∆APE S ;293321=⨯⨯=∆CPF S ,再在△PEF 中,PE=2,PF=23,EF=4,利用勾股定理的逆定理得到△PEF 为直角三角形,∠PEF=90°,则22422121=⨯⨯=⨯⨯=∆EF EP S PEF 最后利用S 正方形A B C D =S 五边形A P C F E =S △P E F +S △A P E +S △C P F ,即可得到答案.跟踪训练:2,PC=4,则∠APC的大小是多1、如图点P是等边三角形ABC内部一点,且PA=2,PB=3少度?考点:旋转的性质;勾股定理的逆定理分析:由于△ABC为等边三角形,所以将△ABP绕A点逆时针旋转60°得△ACP′,根据旋转的性质得到AB与AC重合,∠PAP′=60°,2AP′=AP=2,P′C=PB=3,则△APP′是等边三角形,得到PP′=2;在△PPC中,利用勾股定理的逆定理可得到∠PP′C=90°,同时得到∠P′CP=30°,因此∠P′PC=60°,即可得APC=∠APP′+∠P′PC.2、把两块边长为4的等边三角板ABC和DEF先如图1放置,使三角板DEF的顶点D与三角板ABC的AC边的中点重合,DF经过点B,射线DE与射线AB相交于点M,接着把三角形板ABC 固定不动,将三角形板DEF由图11-1所示的位置绕点D按逆时针方向旋转,设旋转角为α.其中0°<α<90°,射线DF与线段BC相交于点N(如图2示).(1)当0°<α<60°时,求AM•CN的值;(2)当0°<α<60°时,设AM=x,两块三角形板重叠部分的面积为y,求y与x的函数解析式并求定义域;(3)当BM=2时,求两块三角形板重叠部分的面积.考点:相似三角形的判定与性质;三角形的面积;等边三角形的性质;旋转的性质分析:(1)根据等边三角形的性质得到∠A=∠C=∠EDF=60°,则∠AMD+∠ADM=120°,∠ADM+∠NDC=120°,可得∠AMD=∠NDC ,根据相似三角形的判定定理得到△AMD ∽△CDN ,有相似的性质得到AM :DC=AD :CN ,即AM •CN=DC •AD ,然后把DC=AD=2代入计算即可;(2)分别过D 点作DP ⊥AB 于P ,DQ ⊥BC 于Q ,连DB ,根据等边三角形的性质得∠A=∠C=60°,而DA=DC=2,根据含30°的直角三角形三边的关系得到AP=CQ=1,DP=DQ=3,由AM=x ,得CN=x 4,MB=4-x ,BN=x44 ,两块三角形板重叠部分为四边形DMBN ,则y=S △D B M +S △D B N ,然后根据三角形的面积公式计算即可,易得到当0°<α<60°时,x 的取值范围为1<x <4;(3)当M 在线段AB 上,BM=2时,x=4-2=2,把x=2代入(2)的关系式中计算即可.当M 点在线段AB 的延长线上,过D 作DH ∥BC 交AB 于H ,BP=21DH=1,由△AMD ∽△CDN ,则AM :DC=AD :CN ,即AM •CN=DC •AD ,可计算出CN ,然后根据三角形的面积公式可计算出S △D P N ,即两块三角形板重叠部分的面积.3、如图,已知△ABC为等边三角形,M为三角形外任意一点.(1)请你借助旋转知识说明AM≤BM+CM;(2)线段AM是否存在最大值?若存在,请指出存在的条件;若不存在,请说明理由.考点:旋转的性质;三角形三边关系;等边三角形的性质.分析:(1)应把AM和BM所在的三角形旋转,与AM组成三角形,将△BMC绕B点逆时针方向旋转,使C点与A点重合,得△BM′A,易得△BMM′为正三角形,根据三角形三边关系即可证明.(2)由(1)得线段AM存在最大值,M′在AM上时4、如图,P是正△ABC内一点,PA=3,PB=4,PC=5,将线段PA以点A为旋转中心逆时针旋转60°得到线段AP1,连结P1C.(1)判断△APB与△AP1C是否全等,请说明理由;(2)求∠APB的度数;(3)求△APB 与△APC的面积之和;(4)直接写出△BPC的面积,不需要说理.考点:旋转的性质;全等三角形的判定与性质;等边三角形的性质;勾股定理.分析:(1)根据正三角形的性质求出AB=AC,∠BAC=60°,再根据旋转的性质可得AP1=AP,然后求出∠CAP1=∠BAP,再利用“边角边”证明△APB与△AP1C全等即可;(2)连结PP1,求出△PAP1是等边三角形,根据等边三角形的性质可得PP1=AP=3,∠AP1P=60°,再利用勾股定理逆定理求出∠CP1P=90°,然后计算即可得解;(3)根据全等三角形的面积相等求出△APB与△APC的面积之和等于四边形APCP1的面积,然后根据等边三角形的面积与直角三角形的面积列式计算即可得解;(4)同理求出△ABP和△BPC的面积的和,△APC和△BPC的面积的和,从而求出△ABC的面积,然后根据△BPC的面积=△ABC的面积-△APB与△APC的面积的和计算即可得解.参考答案:1、解:四边形ABCD为正方形,PA=1,PB=2,PC=3,把△PAB绕A点逆时针旋转90°得△EAD,把△CPB绕C点顺时针旋转90°得△CFD,连PE,PF,如图,∴∠1=∠2,∠3=∠4,而∠1+∠3=90°,∴∠2+∠4=90°,而∠ADC=90°,∴∠EDF=180°,即E,D,F共线;由旋转的性质得到△APE,△CPF均为等腰直角三角形,并且ED=PB=2,DF=PB=2,2、3、解答:(1)∵△ABC和△DEF都是边长为4的等边三角形,∴∠A=∠C=∠EDF=60°,∴∠AMD+∠ADM=120°,∠ADM+∠NDC=120°,∴∠AMD=∠NDC,∴△AMD∽△CDN,∴AM:DC=AD:CN,即AM•CN=DC•AD,而D点为AC的中点,∴DC=AD=2,∴AM•CN=4;(2)分别过D点作DP⊥AB于P,DQ⊥BC于Q,连DB,如图∵∠A=∠C=60°,DA=DC=2,∴AP=CQ=1,∴DP=DQ=3,∵BD为等边三角形的高,∴点D到EF的距离为DB,∴两块三角形板重叠部分为四边形DMBN,在图(1)中,AM=1,∴当0°<α<60°时,x的取值范围为1<x<4;(3)当M 在线段AB 上,BM=2时,x=4-2=2,当M 点在线段AB 的延长线上,如图(备用图),过D 作DH ∥BC 交AB 于H ,∴DH=21BC=2,BH=2, ∵BM=2,∴BP=21DH=1,与①一样可证得△AMD ∽△CDN , ∴AM :DC=AD :CN ,即AM •CN=DC •AD ,4、解答:(1)将△BMC 绕B 点逆时针方向旋转,使C 点与A 点重合,得△BM ′A , ∵∠MBM ′=60°,BM=BM ′,AM ′=MC .∴△BMM ′为正三角形.∴MM ′=BM .①若M ′在AM 上,则AM=AM ′+MM ′=BM+MC ,②若M ′不在AM 上,连接AM ′、MM ′,在△AMM ′中,根据三角形三边关系可知:AM <AM ′+MM ′,∴AM <BM+MC ,综上所述:AM ≤BM+CM ;(2)线段AM 有最大值.当且仅当M ′在AM 上时,AM=BM+MC ;存在的条件是:∠BMC=120°.5、解答:解:(1)∵△ABC 是正三角形,∴AB=AC ,∠BAC=60°,∵线段AP 以点A 为旋转中心逆时针旋转60°得到线段AP 1,∴AP=AP 1,∠PAP 1=60°,∵∠BAP+∠PAC=∠BAC=60°,∠CAP 1+∠PAC=∠PAP 1=60°,∴∠BAP=∠CAP 1,∵在△APB 与△AP 1C 中,∴△APB≌△AP1C(SAS);(2)连结PP1,∴AP=AP1,∠PAP1=60°,∴△PAP1是等边三角形,∴PP1=AP=3,∠AP1P=60°,∵△APB≌△AP1C,∴CP1=BP=4,∵CP=5,∴PP12+CP12=CP2,∴△CP1P是直角三角形,∠CP1P=90°,∴∠APB=∠AP1P+∠CP1P=60°+90°=150°;。
例谈“旋转法”构造全等三角形,外显解题思路与技巧
例谈“旋转法”构造全等三角形,外显解题思路与技巧证明三角形全等是解决线段与角相等或和、差、倍、分关系的重要方法,应用“全等三角形”来解题时,通常需要添加辅助线,而很多同学在寻找辅助线的添法时往往感到无从下手,这也是很多学生认为几何比较难的重要原因.平移、旋转和翻折是图形运动中的三种全等变换,经过全等变换后的图形与原图形是全等的. 因此,我们可以借助全等变换的方法帮助我们识别复杂图形中的全等图形,同时我们还可以利用全等变换将分散的条件集中,从而寻求添加辅助线的方法. 本文主要从图形旋转的角度,通过几个具体的例题分析来谈谈什么时候构造旋转,怎样构造旋转,同时如何从学生的角度探索辅助线的叙述方法,从而帮助我们有效的解决问题,现呈现出来,希望得到指正.1. 旋转对应线段例1 已知如图1(1),以△ABC的AB,AC为边向三角形外作等边△ABD,△ACE,连接CD,BE相交于点O.求证:OA平分∠DOE.解析本题是旋转的基本模型,要证OA平分∠DOE,即证∠DOA = ∠EOA.可证∠DOA与∠EOA所在的三角形全等,或者证明∠DOA与∠EOA和同角(或等角)相等.由题目条件易知:AD = AB,∠DAC = ∠BAE,AC = AE,所以△DAC ≌△BAE.即△DAC绕点A逆时针旋转60°与△BAE重合.所以可旋转三角形的重要线段(或对应线段),从而构造三角形全等.方法1 (构造对应高相等)如图1(2),过点A作AP ⊥CD于点P,AQ⊥BE于点Q,则∠APD = ∠AQB = 90°. 因为△DAC ≌△BAE,所以∠ADP = ∠ABQ,AD = AB,所以△ADP ≌△ABQ,所以AP = AQ,又AO = AO,所以△APO ≌△AQO(HL). 所以∠DOA = ∠EOA,即OA 平分∠DOE.方法2 (构造一般对应线段)如图1(3),在线段BE 上截取BF = DO,因为△DAC ≌△BAE,所以∠ADO = ∠ABF,AD = AB,所以△ADO ≌△ABF,所以∠DOA = ∠BFA,AO = BF,所以∠EOA = ∠BFA. 所以∠DOA = ∠EOA,即OA 平分∠DOE.说明:△DAC绕点A逆时针旋转60°与△BAE重合,在旋转过程中,两个三角形的对应元素始终相等,线段AO 作为△DAC中的线段,在旋转过程中必有某线段AF与之对应,因此可构造△ADO ≌△ABF. 但是我们在叙述辅助线的时候,不易在BE上取点F,使得AF = AO,所以要变换辅助线的叙述方法,在线段BE上截取BF = DO.拓展:如图2,以△ABC的AB、AC为边向三角形外正方形ABDE、ACFG,连接CE交AB于点H,连接BG交CE于点O.求证:(1)BG⊥CE;(2)OA平分∠EOG .说明:还可以向外构造正五边形得到类似的结论.2. 旋转等腰三角形的顶角例2 如图3(1),△ABC是正三角形,△BDC是等腰三角形,且∠BDC = 120°,以点D为顶点作∠MDN = 60°,分别交AB、AC于M、N,连接MN.(1)探索线段BM、CN、MN的数量关系,并加以证明;(2)当M、N分别在边AB、CA的延长线上时,其他条件不变,如图3(2),探索BM、CN、MN之间的数量关系,并给出证明.分析(1)如图3(2),从△BDC是等腰三角形入手,可以将△BDM绕点D旋转120°,则点B落在点C,点M 落在点E,点N、C、E共线,然后证明△MDN ≌△EDN 即可.(2)如图3(4),同理将△BDM绕点D旋转120°,则点B落在点C,点M落在点F,点A、F、C,在共线,然后证明△MDN ≌△FDN即可.解析(1)MN = BM + CN. 如图3(2),延长NC到E,使得CE = BM . 因为△BDC是等腰三角形,且∠BDC = 120°,所以BD = CD,∠DBC = ∠DCB = 30°.又因为△ABC是正三角形,所以∠ABC = ∠ACB = 60°,所以∠MBD = ∠ECD = 90°,所以△BMD ≌△CED (SAS),所以DM = DE,∠BDM = ∠CDE. 因为∠MDN = 60°,∠BDC = 120°,所以∠MDN = ∠EDN = 60°,所以△MDN ≌△EDN(SAS),所以MN = EN. 所以MN = CE + CN,即MN = BM + CN.(2)MN = CN - BM. 如图3(4),在CN上截取CF = BM,由(1)可知∠MBD = ∠FCD = 90°,BD = CD,所以△BMD ≌△CFD(SAS). 所以DM = DF,∠BDM = ∠CDF,所以∠MDN = ∠FDN = 60°,所以△MDN ≌△FDN(SAS),所以MN = FN. 所以MN = CN - CF,即MN = CN - BM.说明:△BDM绕点D旋转120°,则点B落在点C,点M落在点E,因为∠NCD + ∠ECD = 180°,因此点N、C、E共线. 本题说明点共线比较容易,而当我们在旋转后,证明共线问题较困难时,我们可借鉴本题解析中的方法,转变角度,变换辅助线的叙述方法,来回避共线问题的证明.总结当然,利用“旋转法”添加辅助线的题型还很多,例如旋转30°、60°、90°、120°、150°、180°等. 只要我们心中有“旋转”的思想,在具体问题中注意变换辅助线的方法,通常都会使问题迎刃而解.。
九年级数学利用旋转构造相似三角形解决相关问题
九年级数学利用旋转构造相似三角形解决相关问题一、旋转相似:如果两个相似三角形绕某一点旋转,那么必然会出现一对新的相似三角形。
如图,已知△ABC ∽ △AB1C1 ,则有△ABB1 ∽ △ACC1 。
证明:∵ △ABC ∽ △AB1C1 ,∴ ∠BAC = ∠B1 AC1 ,∠BAB1 = ∠CAC1 ,∴ △ABB1 ∽ △ACC1 。
二、例题讲解:例题1、如图所示,已知△ABC 为等边三角形, D 为 AB 的中点,DE = 1 , EA = 2 ,求线段 CE 的最大值?解题思路:△ABC 为等边三角形,由已知条件点 D 为 AB 的中点,则∠ACD = 30° ,△ADC 为直角三角形(等腰三角形中三线合一)。
可以利用这个∠ACD = 30° 特殊角进行构造相似三角形。
解答过程:解:连 CD ,则CD ⊥ AD ,且 AC = 2 AD ,构造Rt△AEH ,使得 AH = 2AE ,如图所示则Rt△ADC ∽ Rt△AEH 。
∴ ∠DAC = ∠EAH = 60° ,∴ ∠EAD = ∠HAC ,∴ △AHC ∽ △AED ,∵ 在Rt△AEH 中,∠EAH = 60°,∠AEH = 90° ,∴ EH = √3 AE = 2√3 ,∴ CE ≤ EH + CH ,∴ CE ≤ 2√3 + 2 。
小结:这里可以看出若Rt△ADC ∽ Rt△AEH ,则由旋转相似可以得出△AHC ∽ △AED 。
例题2、如图,已知在Rt△ABC 中,∠ACB = 90° ,AC = 2BC ,CD = 3 ,AD = √5 ,求线段 BD 的最大值?解题思路:由已知△ACB 为直角三角形,AC = 2BC ,则可以利用这个直角三角形直角边的比构造相似三角形。
解答过程:解:过点 C 作CH⊥CD ,使 CH = 2 CD ,连接 DH , AH ,如图所示则有:Rt△ACB ∽ Rt△HCD 。
等边三角形、等腰直角三角形之间的旋转问题(精华)
等边三角形、等腰直角三角形之间的旋转问题(精华)1、图(D中,C点为线段AB上一点,△ACM, ZkCBN是等边三角形,AN与BM相等吗?说明理由;如图(2) C点为线段AB上一点,等边三角形ACM和等边三角形CBN在AB的异侧,此时AN与BM 相等吗?说明理由;如图(3) C点为线段AB外一点,AACM, △CBN是等边三角形,AN与BM相等吗?说明理由.2、如图(1)所示,点C为线段AB上一点,AACM、4CBN是等边三角形,直线AN、MC交于点E, 直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90° ,其他条件不变,在图(2)中补出符合要求的图形, 并判断(1)题中的结论是否依然成立,说明理由.3、如图,已知^幽是等边三角形,E是AC延长线上一点,选择一点D,使得4CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:ZkCMN是等边三角形.(根据△ACDgZkBCE,得出 AD=BE, AM=BN;又△AMCgZkBNC,可得 CM=CN, ZACM=ZBCN,证明NNCM=ZACB=60°即可证明△CMN是等边三角形;)1、(锦州)如图A, /XABC和4CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF 和BE. (1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图A中的4CEF绕点C旋转一定的角度,得到图B, (1)中的结论还成立吗?作出判断并说明理由;(3)若将图A中的4ABC 绕点C旋转一定的角度,请你画山一个变换后的图形C (草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现.(3)此小题图形不惟一,如图第(1)中的结论仍成立.(4)根据以上证明、说理、画图,归纳如下:如图A,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C 为旋转中心,任意旋转其中一个三角形,都有AF二BE.2、如图,AA。
几何结构之旋转及基本的解三角形(讲义及答案).
几何结构之折叠、旋转(讲义)>知识点睛L 折叠(轴对称)的思考层次<1)全等变换:对应边相等、对应角相等.<2)对应点与对称轴:对称轴所在直线是对应点连线的垂直 平分线.(对应点所连线段被对称轴垂直平分,对称轴上的点 到对应点的距离相等)(3)常见组合搭配①矩形背景下的折叠常出现等腰三角形;②两次折叠往往会出现特殊角:45。
, (4)应用,作图核心是确定对称轴和对应点,一般先确定对应点和对称轴, 然后再补全图形. 特征举例:① 折痕运动但过定点,则折叠后的对应点在圆上;② 对应点确定,折痕为对应点连线的垂直平分线. 2.旋转思考层次<1)全等变换:对应边相等、对应角相等.(2)对应点与旋转中心旋转会出现等线段共端点(对应点到旋转中心的距离相等);对应点与旋转中心的连线所夹的角等于旋转角:对应点所连线段的垂直平分线都经过旋转中心;60。
,90。
(构旋转会产生圆(圆弧)•(3)常见组合搭配旋转会出现相似的等腰三角形:旋转60。
会出现等边三角形;旋转90。
会出现等腰直角三角形;相似三角形对应点重合时会出现旋转放缩模型•(4)应用, 当题U (背景)中出现等线段共端点时,会考虑补全旋转构 造全等.(常见背景有正方形、等边三角形、等腰三角形) 注:读题标注时,往往要弄清楚旋转三要素:旋转方向不确定需要分类讨论;常将图形的旋转转化为点、线段的旋转进行操作.(有时只需保留研究U 标即可)作图(构造)>精讲精练1小明用不同的方式来折叠一个边长为8的正方形纸片ABCD. 折痕MN 分别与边AD. 交于点M, N,沿MN 将四边形ABNM 折叠,点A, B 的对应点分别为点』,他得到了以 下结论:①如图1,当点落在DC 的中点处时,BN=5.②如图2,当点B 落在CD 上时,延长NB 咬.AD 的延长线于 点£,△NEM 为等腰三角形.③如图2,当点5蔣在QD 上 时,连接此时*夕二MN,阳丄MN.④如图3,先将正 方形沿MN 对折,使AB 与DC重合,再将AB 沿过点A 的直 线折叠,使点歹落在MN 上,则其中正确结论 的序号是 ___ .ZACB=90\ 点将^CDE 沿DE 折叠,点C 恰好落在 AB 边上的点F 处.若AC=8, AB=10,则CD 的长为 ___________ .图3 D, E 分别在AC, BC2 如图,在△ABC 中, 上,且ZCDE=ZB.如图1,在矩形纸片ABCD 中,AB=^yl3. AD=\Q.点E 是 CD 的中点.将这张纸片依次折叠两次:第一次折叠纸片使点 A 与点£重合,如图2,折痕为MN,连接ME, NE ;第二次 折叠纸片使点N 与点£重合,如图3,点B 落在夕处,折痕 为 HG,连接 HE,则 tanZEHG 二 .A 图1 图2如图,在矩形ABCD中,AB=6, BC=10,将矩形ABCD 沿BE 折叠,点A 落在/鬼,若EV 的延长线恰好过C,则 Sin Z ABE 的值为 • 如图,一点,点F 是CQ 边上一点,连接EF,把△DEF 沿EF 折叠,使点 D 落在直线上的点D 处,当点D 蔣在BC 边上时,人£的 长为 .如图,在 RtAABC 中,ZC=90^ ZA=60。
旋转法构造全等三角形
旋转法构造全等三角形在我们生活中,几何形状随处可见,三角形更是其中的“老大”。
今天咱们聊聊旋转法构造全等三角形。
想象一下,咱们手里有一个三角形,就像拿着一个切好的水果拼盘。
旋转这个三角形就像在舞会上转圈圈,让它变得更加迷人,仿佛随时要跳起舞来。
这样转一圈,嘿,原来的形状没变,只是位置换了,太神奇了吧?就好比你换了个发型,结果还是那个你,真是让人忍俊不禁。
你看,这个旋转法其实是个挺简单的操作。
先把一个三角形固定在一个点上,这个点就像是咱们舞会的中心。
然后轻轻一转,就能看到另一个全新的三角形就此诞生。
想象一下,原来的三角形就像个古灵精怪的小孩,而旋转出来的那个三角形就像是它的双胞胎,简直是一个模子里刻出来的,毫无二致,真是“如出一辙”呢。
每个边的长度、每个角的大小都保持不变,简直完美!有趣的是,旋转的角度也可以随意选择,像你在舞池里想怎么转就怎么转。
可能是30度、60度,甚至是360度。
说到360度,那简直就是个圈啊,转完后你会发现自己又回到了原点,哈哈,就像过山车一样刺激。
不过不管怎么转,三角形的形状和大小都没变化。
试想一下,生活中有多少事情都是这样的,经过一番折腾,结果却还是老样子,真是让人哭笑不得。
你知道吗,旋转法不仅在数学上好玩,在生活中也是处处可见。
比如说,咱们在厨房里切菜时,把刀从一个角度旋转到另一个角度,最终切出的菜肴依然是原来的那些食材,只不过形状变了。
这就像我们的日常生活,有时候改变一下角度,事情可能会变得截然不同,但核心却依然不变,真是有趣。
再说说这些全等三角形,它们就像是朋友间的相互理解,虽然在不同的地方,却能保持着同样的默契。
想想那些打篮球的小伙伴们,虽然在场上跑来跑去,但每个人的配合都那么自然,简直像是天生的一对。
这种相互之间的联系,跟全等三角形的性质如出一辙,真是让人感慨万千。
在课堂上,老师常常给我们讲这个旋转法,其实更深层的含义在于它教会我们如何去看待事物。
有时候换个角度,事情就会豁然开朗。
数学全等三角形旋转模型知识点-+典型题及答案
数学全等三角形旋转模型知识点-+典型题及答案一、全等三角形旋转模型1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.答案:C解析:(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE ,∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN ,∴∠MCF=∠NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ),∴CF=CG (全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .2.一位同学拿了两块45︒三角尺MNK ∆,ACB ∆做了一个探究活动:将MNK ∆的直角顶点M 放在ACB ∆的斜边AB 的中点处,设4AC BC ==.(1)如图1所示,两三角尺的重叠部分为ACM ∆,则重叠部分的面积为______,周长为______.(2)将如图1所示中的MNK ∆绕顶点M 逆时针旋转45︒,得到如图2所示,此时重叠部分的面积为______,周长为______.(3)如果将MNK ∆绕M 旋转到不同于如图1所示和如图2所示的图形,如图3所示,请你猜想此时重叠部分的面积为______.(4)在如图3所示情况下,若1AD =,求出重叠部分图形的周长.答案:A解析:(1)4,442+;(2)4,8;(3)4;(4)425+【分析】()1根据4AC BC ==,90ACB ∠=,得出AB 的值,再根据M 是AB 的中点,得出AM MC =,求出重叠部分的面积,再根据AM ,MC ,AC 的值即可求出周长;()2易得重叠部分是正方形,边长为12AC ,面积为214AC ,周长为2.AC()3过点M 分别作AC 、BC 的垂线MH 、ME ,垂足为H 、.E 求得Rt MHD ≌Rt MEG ,则阴影部分的面积等于正方形CEMH 的面积. ()4先过点M 作ME BC ⊥于点E ,MH AC ⊥于点H ,根据DMH EMH ∠∠=,MH ME =,得出Rt DHM ≌Rt EMG ,从而得出HD GE =,CE AD =,最后根据AD 和DF的值,算出DM =.【详解】解:()14AC BC ==,90ACB ∠=,AB ∴== M 是AB 的中点,AM ∴=45ACM ∠=,AM MC ∴=,∴重叠部分的面积是42=, ∴周长为:44AM MC AC ++==+故答案为4,4+;()2重叠部分是正方形,∴边长为1422⨯=,面积为14444⨯⨯=, 周长为248⨯=.故答案为4,8.()3过点M 分别作AC 、BC 的垂线MH 、ME ,垂足为H 、E , M 是ABC 斜边AB 的中点,4AC BC ==,12MH BC ∴=, 12ME AC =, MH ME ∴=,又90NMK HME ∠∠==,90NMH HMK ∠∠∴+=,90EMG HMK ∠∠+=,HMD EMG ∠∠∴=,在MHD 和MEG 中,HMD GME MH MEDHM MEG ∠=∠⎧⎪=⎨⎪∠=∠⎩,MHD ∴≌()MEG ASA ,∴阴影部分的面积等于正方形CEMH 的面积, 正方形CEMH 的面积是1144422ME MH ⋅=⨯⨯⨯=; ∴阴影部分的面积是4; 故答案为4.()4如图所示, 过点M 作ME BC ⊥于点E ,MH AC ⊥于点H ,∴四边形MECH 是矩形,MH CE ∴=,45A ∠=,45AMH ∠∴=,AH MH ∴=,AH CE ∴=,在Rt DHM 和Rt GEM 中,DMH EMG MH MEDHM GEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, Rt DHM ∴≌.Rt GEMGE DH ∴=,AH DH CE GE ∴-=-,CG AD ∴=,1AD =,1.DH ∴=145DM ∴=+=.∴四边形DMGC 的周长为:CE CD DM ME +++2AD CD DM =++425=+【点睛】此题考查了等腰直角三角形,利用等腰直角三角形的性质,等腰直角三角形的面积公式,正方形的面积公式,全等三角形的判定和性质求解.3.(1)如图1,在OAB 和OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M .求:①AC BD 的值; ②∠AMB 的度数. (2)如图2,在OAB 和OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M .请判断AC BD的值及∠AMB 的度数,并说明理由; (3)在(2)的条件下,将OCD 点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=2,OB=23,请直接写出当点C 与点M 重合时AC 的长.答案:A解析:(1)①1,②40°;(2)AC BD 3∠AMB=90°,见解析;(3)33【分析】 (1)①根据已知条件证明△COA ≌△DOB ,即可证明AC=BD ;②根据△COA ≌△DOB 可得∠CAO=∠DBO ,根据已知条件可得∠OAB+∠ABO=140°,然后在△AMB 中,根据等角的转换即可得到答案;(2)根据已知条件证明△AOC ∽△BOD ,可得∠CAO=∠DBO ,进而可得∠MAB=∠OAB+∠DBO ,最后可得∠AMB=180°-(∠OAB+∠ABM+∠DBO )=90°;(3)分两种情况讨论,根据题(2),同理可得OAC OBD △△,90AMB ∠=︒,3AC BD=,设BD=x ,则3AC x = 用x 表示出AM 、BM 的长,在Rt AMB 中,根据勾股定理222AM BM AB +=列出方程,求解即可.【详解】 解:(1)①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB ,∵OC=OD ,OA=OB ,∴△COA ≌△DOB (SAS ),∴AC=BD , ∴AC BD =1, ②∵△COA ≌△DOB ,∴∠CAO=∠DBO ,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD )=180°﹣(∠DBO+∠OAB+∠ABD )=180°﹣140°=40°,(2)如图2,AC BD=3,∠AMB=90°,理由是:在Rt △COD 中,∠DCO=30°,∠DOC=90°,∴3tan 303OD OC =︒=,同理得:3tan 303OB OA =︒=, ∴OD OB OC OA=, ∵∠AOB=∠COD=90°,∴∠AOC=∠BOD ,∴△AOC ∽△BOD ,∴AC OC BD OD==3,∠CAO=∠DBO , 在△AMB 中,∠AMB=180°﹣(∠MAB+∠ABM )=180°﹣(∠OAB+∠ABM+∠DBO )=90°;(3)AC 的长为23或43.①如图,点C 与点M 重合,同理可得:OAC OBD △△,90AMB ∴∠=︒,3AC BD =设BD=x ,则3AC x =,在Rt ODC 中,30OCD ∠=︒,OD=2,4CD ∴=,在Rt AOB 中,30OAB ∠=︒,33AB ∴=,在Rt AMB 中,222AM BM AB +=,即222(3)(4)(43)x x ++=,解得:x=2或-4(舍),323x =②如图,点C 与点M 重合,同理可得:90AMB ∠=︒,3AC BD =设BD=x ,则3x ,在Rt COD 中, 90OCD ∠=︒,OD=2,4CD ∴=,4BC x =-,在Rt AOB 中,30OAB ∠=︒,3OB =243AB OB ∴==,在Rt AMB 中,222AM BM AB +=, 即222(3)(4)(43)x x +-=,解得:x=4或-2(舍), 343x =综上所述,AC 的长为2343【点睛】本题主要考查三角形的综合运用,涉及全等三角形与相似三角形的性质和判定、勾股定理、解一元一次方程、图形旋转证明、特殊角的三角函数值等知识点,难度较大,第(1)题证明△COA ≌△DOB 是关键,第(2)题证明△AOC ∽△BOD 是关键,第(3)题要特别注意分情况讨论.4.已知:在△ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,请直接写出线段BD 与CF 的数量关系: ; (2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,若AC=2,CD=1,则CF= ;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系: ;②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究△AOC 的形状,并说明理由.答案:B解析:(1)BD=CF ;(2)221;(3)①CD=CF+BC ,②等腰三角形,见解析【分析】(1)△ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ;(2)同(1)相同,利用SAS 即可证得△BAD ≌△CAF ,从而证得BD=CF ,即可得到CF=CD+BC ,然后求出答案;(3)中的①与(1)相同,可证明BD=CF ,又点D 、B 、C 共线,故:CD=BC+CF ; ②由(1)猜想并证明BD ⊥CF ,从而可知△FCD 为直角三角形,再由正方形的对角线的性质判定△AOC 三边的特点,再进一步判定其形状.【详解】解:(1)证明:∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,∵四边形ADEF 是正方形,∴AD=AF ,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF ,在△BAD 和△CAF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF (SAS ),∴BD=CF ,(2)与(1)同理,证△BAD ≌△CAF ;∴BD=CF ,∴CF=BC+CD ,∵AC=AB=2,CD=1, ∴22222BC =+=∴CF=221;(3)①BC 、CD 与CF 的关系:CD=BC+CF理由:与(1)同法可证△BAD ≌△CAF ,从而可得:BD=CF ,即:CD=BC+CF②△AOC 是等腰三角形理由:与(1)同法可证△BAD ≌△CAF ,可得:∠DBA=∠FCA ,又∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,则∠ABD=180°-45°=135°,∴∠ABD=∠FCA=135°∴∠DCF=135°-45°=90°∴△FCD 为直角三角形.又∵四边形ADEF 是正方形,对角线AE 与DF 相交于点O ,∴OC=12DF , ∴OC=OA ∴△AOC 是等腰三角形.【点睛】本题考查了等腰三角形、正方形的性质及全等三角形的判定与性质等知识点,一般情况下,要证明两条线段相等,就得证明这两条线段所在的两个三角形全等,关键是掌握图形特点挖掘题目所隐含的条件.5.如图,点B ,C ,D 在同一条直线上,△BCF 和△ACD 都是等腰直角三角形,连接AB ,DF ,延长DF 交AB 于点E .(1)如图1,若AD =BD ,DE 是∠ADB 的平分线,BC =1,求CD 的长度;(2)如图2,连接CE ,求证:DE =2CE +AE ;(3)如图3,改变△BCF 的大小,始终保持点在线段AC 上(点F 与点A ,C 不重合).将ED 绕点E 顺时针旋转90°得到EP ,取AD 的中点O ,连接OP .当AC =2时,直接写出OP 长度的最大值.解析:(1)21CD =;(2)证明见解析;(3)22+【分析】 (1)根据等腰直角三角形的性质,求出1FC BC ==,再判断出FA FB =,即可得出结论;(2)先判断出ABC DFC ≅△△,得出BAC CDF ∠=∠,进而判断出ACE DCH ≅△△,得出AE DH =,CE CH =,即可得出结论;(3)先判断出2OE OQ ==,再判断出OED QEP ≅△△,进而求出2PQ OD ==.即可得出结论. 【详解】(1)解:BCF 和ACD △都是等腰直角三角形,AC CD ∴=,1FC BC ==,2FB =,AD BD =,DE 是ABD ∆的平分线,DE ∴垂直平分AB ,2FA FB ∴==,21AC FA FC ∴=+=+,21CD ∴=+;(2)证明:如图2,过点C 作CH CE ⊥交ED 于点H ,BCF 和ACD △都是等腰直角三角形,AC DC ∴=,FC BC =,90ACB DCF ∠=∠=︒;()ABC DFC SAS ∴≅△△,BAC CDF ∴∠=∠,90ECH ∠=︒,90ACE ACH ∴∠+∠=︒,90ACD ∠=︒,90DCH ACH ∴∠+∠=︒,ACE DCH ∴∠=∠.在ACE 和DCH 中,BAC CDF AC DCACE DCH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ACE DCH ASA ∴≅△△,AE DH ∴=,CE CH =,2EH CE ∴=.2DE EH DH CE AE =+=+;(3)OP 的最大值是22+.解:如图3,连接OE ,将OE 绕点E 顺时针旋转90︒得到EQ ,连接OQ ,PQ ,则2OQ OE =.由(2)知,90AED ABC CDF ABC BAC ∠=∠+∠=∠+∠=︒,在Rt AED △中,点O 是斜边AD 的中点,122222OE OD AD AC ∴===== 2222OQ OE ∴===,在OED 和QEP △中,OE QE OED QEP DE PE =⎧⎪∠=∠⎨⎪=⎩,()OED QEP SAS ∴≅△△,2PQ OD ∴==22OP OQ PQ +=+O 、P 、Q 三点共线时,取“=”号, OP ∴的最大值是22+【点睛】此题是几何变换综合题,主要等腰直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 6.如图,ABD △和ACE △都是等边三角形.(1)连接CD 、BE 交于点P ,求∠BPD ; (2)连接PA ,判断线段PA 、PB 、PD 之间的数量关系并证明;(3)如图,等腰ABC 中AB =AC ,∠BAC =α(0<α<90),在ABC 内有一点M ,连接MA 、MB 、MC .当MA +MB +MC 最小时,∠ABM = (用含α的式子表示)答案:D解析:(1)60BPD ∠=︒(2)PD PB PA =+,证明见详解(3)1602α︒-【分析】(1)证明()DAC BAE SAS ≅,得ADC ABE ∠=∠,就可以证明60BPD DAB ∠=∠=︒;(2)在DP 上截取PF=PB ,连接BF ,证明()DBF ABP SAS ≅,得DF PA =,即可证明PD PB PA =+;(3)分别以AB 和AC 为边,向两边作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,然后利用等腰三角形ADC ,求出ADC ∠的度数,即可得到ABM ∠的度数.【详解】解:(1)∵ABD △和ACE △是等边三角形,∴AD AB =,AC AE =,60DAB CAE ∠=∠=︒,∵DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,在DAC △和BAE △中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()DAC BAE SAS ≅,∴ADC ABE ∠=∠,∵ADC DAB ABE BPD ∠+∠=∠+∠,∴60BPD DAB ∠=∠=︒;(2)如图,在DP 上截取PF=PB ,连接BF ,∵60BPD ∠=︒,PF PB =,∴PFB △是等边三角形,∴BF BP =,60FBP ∠=︒,∴DBA FBP ∠=∠,∵DBA FBA FBP FBA ∠-∠=∠-∠,∴DBF ABP ∠=∠,在DBF 和ABP △中,DB AB DBF ABP BF BP =⎧⎪∠=∠⎨⎪=⎩,∴()DBF ABP SAS ≅,∴DF PA =,∵PD PF FD =+,∴PD PB PA =+;(3)如图,分别以AB 和AC 为边,作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,由(2)中的结论可得MD MA MB =+,则当D 、M 、C 三点共线时MA MB MC ++最小,即CD 的长,由(1)得ADC ABM ∠=∠,∵AD AB AC ==,60DAC α∠=︒+,∴()1806016022ADC αα︒-︒+∠==︒-, ∴1602ABM α∠=︒-,故答案是:1602α︒-.【点睛】本题考查全等三角形的性质和判定,等边三角形的性质,解题的关键是做辅助线构造全等三角形来进行证明求解.7.如图1,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC .(1)求证:△ABD ≌△ACE ;(2)如图2,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC ,∠ADB=90°,点E 在△ABC 内,延长DE 交BC 于点F ,求证:点F 是BC 中点;(3)△ABC 为等腰三角形,∠BAC=120°,AB=AC ,点P 为△ABC 所在平面内一点,∠APB=120°,AP=2,BP=4,请直接写出 CP 的长.答案:D解析:(1)证明见详解;(2)证明见详解;(3)2713【分析】(1)因为∠DAE=∠BAC ,可以得到∠DAB=∠EAC ,因为AD=AE ,AB=AC ,即可得到△ABD ≌△ACE ;(2)连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,由(1)可得△ABD ≌△ACE ,所以∠AEC=90°和CE=BD ,可以推出∠BDF=∠CEF ,再证明△DBF ≌△ECH ,所以BF=CH ,等量代换即可得到BF=FC ,即可解决;(3)点P 在△ABC 内部,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC ,可以得到△PP C '是直角三角形,利用勾股定理即可求出PC 的值;当点P 在△ABC 外部,将△APB 绕点A 逆时针旋转120︒得到PDC ∆,连接PP '和PC ,过点P 作PD ⊥'CP 于点D ,连接PD 可以得到△PP D ',△PP D '是直角三角形和,利用勾股定理即可求出'DP 及PC 的值.【详解】解:(1)证明:∵∠DAE=∠BAC∴∠DAB=∠EAC∵AD=AE ,AB=AC∴△ABD ≌△ACE(2)证明:连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,如图所示:∵△ADB≌△AEC∴BD=EC,∠ADB=∠AEC=90°∵AD=AE∴∠ADE=∠AED∵∠ADE+∠EDB=∠AED+∠CEH=90°∴∠EDB=∠CEH∵CF=CH∴∠CFH=∠CHF∴∠DFB=∠H∵CE=BD∴△DBF≌△ECH∴BF=CH∴BF=CF∴点F是BC的中点∆',连接(3)当点P在△ABC内部,如图所示,将△ABP逆时针旋转120°,得到ACPPP'和PC∆'∵将△ABP旋转120°得到ACP∴∠PAP'=120°,AP='AP=2,BP=CP'=4∴PP'3∵∠AP C'=120°,∠AP P'=30°,∴∠PP C'=90°,∴()2223427+=.当点P在△ABC外部,如图所示,将△APB 绕点A 逆时针旋转120︒到△'AP C ,过点P 作PD ⊥'CP 于点D ,连接PD , ∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4,∴PP '=23, ∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=150°,∴∠PP D '=30°,在Rt 'PDP 中,1'32PD PP ==, 22''3DP PP PD ∴=-=,''347DC DP P C ∴=+=+=,()222237213PC PD DC ∴=+=+= . 综上所述,27213PC =或【点睛】本题主要考查了全等三角形以及旋转,合理的作出辅助线以及熟练旋转的性质是解决本题的关键.8.探究:如图①和②,在四边形ABCD 中,AB=AD ,∠BAD=90°,点E 、F 分别在BC 、CD 上,∠EAF=45°.(1)如图①,若∠B 、∠ADC 都是直角,把ABE △绕点A 逆时针旋转90°至△ADG ,使AB 与AD 重合,则能得EF=BE+DF ,请写出推理过程;(2)如图②,若∠B 、∠D 都不是直角,则当∠B 与∠D 满足数量关系 时,仍有EF=BE+DF ;(3)拓展:如图③,在ABC 中,∠BAC=90°,AB=AC=22,点D 、E 均在边BC 上,且∠DAE=45°.若BD=1,求DE 的长.答案:B解析:(1)见解析;(2)∠B+∠D=180°;(3)53【分析】 (1)根据已知条件证明△EAF ≌△GAF ,进而得到EF=FG ,即可得到答案;(2)先作辅助线,把△ABE 绕A 点旋转到△ADG ,使AB 和AD 重合,根据(1),要使EF=BE+DF ,需证明△EAF ≌△GAF ,因此需证明F 、D 、G 在一条直线上,即180ADG ADF ∠+∠=︒,即180B D ∠+∠=︒;(3)先作辅助线,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF ,根据已知条件证明△FAD ≌△EAD ,设DE=x ,则DF=x ,BF=CE=3﹣x ,然后再Rt BDF 中根据勾股定理即可求出x 的值,即DE 的长.【详解】(1)解:如图,∵把△ABE 绕点A 逆时针旋转90°至△ADG ,使AB 与AD 重合,∴AE=AG ,∠BAE=∠DAG ,BE=DG ,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF 和△GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△GAF (SAS ),∴EF=GF ,∵BE=DG ,∴EF=GF=BE+DF ;(2)解:∠B+∠D=180°,理由是:如图,把△ABE 绕A 点旋转到△ADG ,使AB 和AD 重合,则AE=AG ,∠B=∠ADG ,∠BAE=∠DAG ,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F 、D 、G 在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF 和△GAF 中AF AF EAF GAF AE AG =⎧⎪∠=∠⎨⎪=⎩∴△EAF ≌△GAF (SAS ),∴EF=GF ,∵BE=DG ,∴EF=GF=BE+DF ;故答案为:∠B+∠D=180°;(3)解:∵△ABC 中,AB=AC=22,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC=22AB AC +=4,如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴△FAD ≌△EAD ,∴DF=DE ,设DE=x ,则DF=x ,∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x ,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:222DF BF BD =+,22(3)1x x =-+,解得:x=53, 即DE=53. 【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.9.(1)问题感知 如图1,在△ABC 中,∠C =90°,且AC =BC ,点P 是边AC 的中点,连接BP ,将线段PB 绕点P 顺时针旋转90°到线段PD .连接AD .过点P 作PE ∥AB 交BC 于点E ,则图中与△BEP 全等的三角形是 ,∠BAD = °;(2)问题拓展 如图2,在△ABC 中,AC =BC =43AB ,点P 是CA 延长线上一点,连接BP ,将线段PB 绕点P 顺时针旋转到线段PD ,使得∠BPD =∠C ,连接AD ,则线段CP 与AD 之间存在的数量关系为CP =43AD ,请给予证明; (3)问题解决 如图3,在△ABC 中,AC =BC =AB =2,点P 在直线AC 上,且∠APB =30°,将线段PB 绕点P 顺时针旋转60°到线段PD ,连接AD ,请直接写出△ADP 的周长.答案:A解析:(1)△PAD ,90;(2)证明见解析;(3)623+.【分析】(1)由“SAS”可证△PAD ≌△BEP ,可得∠PAD=∠BEP=135°,依据∠ABC=45°,可得∠BAD=90°;(2)过点P 作PH ∥AB ,交CB 的延长线于点H ,由“SAS”可证△APD ≌△HBP ,可得PH=AD ,通过证明△CAB ∽△CPH ,可得H AC AB CP P ,即可得结论; (3)分两种情况讨论,由直角三角形的性质和相似三角形的性质可求解.【详解】证明:(1)∵点P 是边AC 的中点,PE ∥AB ,∴点E 是BC 的中点,∴CE =BE ,∵AC =BC ,∴BE =AP ,∵将线段PB 绕点P 顺时针旋转90°到线段PD .∴PB =PD ,∵∠APD+∠BPC =90°,∠EBP +∠BPC =90°,∴∠EBP =∠APD ,又∵PB =PD ,∴△PAD ≌△BEP (SAS ),∴∠PAD =∠BEP ,∵∠C =90°,AC =BC ,∴∠BAC =∠ABC =45°,∵PE ∥AB ,∴∠ABC =∠PEC =45°,∴∠BEP =135°,∴∠BAD =∠PAD ﹣∠BAC =135°﹣45°=90°,故答案为:△PAD ,90;(2)如图,过点P 作PH ∥AB ,交CB 的延长线于点H ,∴∠CBA =∠CHP ,∠CAB =∠CPH ,∵CB =CA ,∴∠CBA =∠CAB ,∴∠CHP =∠CPH ,∴CH =CP ,∴BH =AP ,∵将线段PB 绕点P 顺时针旋转90°到线段PD .∴PB =PD ,∵∠BPD =∠C ,∴∠BPD+∠BPC =∠C+∠BPC ,∴∠PBH =∠APD ,∴△APD ≌△HBP (SAS ),∴PH =AD ,∵PH ∥AB ,∴△CAB ∽△CPH , ∴H AC PC AB P = ∴HAC AB CP P = ∵AC =BC =43AB , ∴43CP PH =, ∴CP =43PH =43AD ; (3)当点P 在CA 的延长线上时,∵AC =BC =AB =2,∴△ABC 是等边三角形,∴∠ACB =60°,∵将线段PB 绕点P 顺时针旋转60°到线段PD ,∴BP =PD ,∠BPD =60°=∠ACB ,过点P 作PE ∥AB ,交CB 的延长线于点E ,∵∠ACB =∠APB+∠ABP ,∴∠ABP =∠APB =30°,∴AB =AP =2,∴CP =4,∵AB ∥PE ,∴P AB PE CA C = ∴CP =PE =4,由(2)得,PE =AD =4,∵∠APD =∠APB+BPD =90°,∴DP =2216423AD DP -=-=,∴△ADP 的周长=AD+AP+DP =23+6,当点P 在AC 延长线上时,如图,同理可求△ADP 的周长=6+23,综上所述:△ADP 的周长为6+23.【点睛】本题几何变换综合题,主要考查了相似三角形的判定与性质,全等三角形的判定与性质以及含30°角的直角三角形的性质的运用,解决问题的关键是作辅助线构造全等三角形或相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例进行推算. 10.综合与实践实践操作:①如图1,ABC ∆是等边三角形,D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .②如图2,在ABC ∆中,AD BC ⊥于点D ,将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC 交于点G .③如图3,将图2中得到AEF ∆沿AE 再一次折叠得到AME ∆,连接MB .问题解决:(1)小明在探索图1时发现四边形ABCE 是菱形.小明是这样想的:请根据小明的探索直接写出图1中线段CD,CF,AC之间的数量关系为:(2)猜想图2中四边形ADGF的形状,并说明理由;问题再探:(3)在图3中,若AD=6,BD=2,则MB的长为.答案:C解析:(1)CD+CF=AC;(2)四边形ADGF为正方形;理由见解析;(3)213【分析】(1)先证明C、F、E在同一直线上,再证明△BAD≌△CAF(SAS),则∠ADB=∠AFC,BD=CF,可得AC=CF+CD;(2)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF是矩形,由邻边相等可得四边形ADGF是正方形;(3)证明△BAM≌△EAD(SAS),根据BM=DE及勾股定理可得结论.【详解】解:(1)如图:由旋转得:∠DAF=60°=∠BAC,AD=AF,∴∠BAD=∠CAF,∵△ABC是等边三角形,∴AB=AC,∴△BAD≌△CAF(SAS),∴∠ADB=∠AFC,BD=CF,∵∠ADC+∠ADB=∠AFC+∠AFE=180°,∴C、F、E在同一直线上,∴AC=BC=BD+CD=CF+CD,+=;故答案为:CD CF AC(2)四边形ADGF是正方形,理由如下:如图:∵Rt△ABD绕点A逆时针旋转90°得到△AEF,∴AF=AD,∠DAF=90°,∵AD⊥BC,∴∠ADC=∠DAF=∠F=90°,∴四边形ADGF是矩形,∵AF=AD,∴四边形ADGF是正方形;(3)如图3,连接DE,∵四边形ADGF是正方形,DG=FG=AD=AF=6,∵△ABD绕点A逆时针旋转90°,得到△AEF,∴∠BAD=∠EAF,BD=EF=2,∴EG=FG-EF=6-2=4,∵将△AFE沿AE折叠得到△AME,∴∠MAE=∠FAE,AF=AM,∴∠BAD=∠EAM,∴∠BAD+∠DAM=∠EAM+∠DAM,即∠BAM=∠DAE,∵AF=AD,∴AM=AD,在△BAM和△EAD中,∵AM ADBAM DAEAB AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAM≌△EAD(SAS),∴22EG DG+2246213+=故答案为:213.【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.11.回答下列问题:(1)(发现)如图1,点A 为线段BC 外一动点,且4BC =,2AB =. 填空:线段AC 的最大值为 .图1(2)(应用)点A 为线段BC 外一动点,且3BC =,2AB =,如图2所示,分别以AB ,AC 为边,作等腰直角ABD △和等腰直角ACE ,连接CD ,BE .图2①证明:BE DC =.②求线段BE 的最大值. (3)(拓展)如图3,在平面直角坐标系中,直线l ;4y x =+与坐标轴交于点A 、B 两点,点C 为线段AB 外一动点,且2CB =,以AC 为边作等边ACD △,连接BD ,求线段BD 长的最大值并直接写出此时点C 的横坐标.图3答案:A解析:(1)6(2)①证明见解析.②3+(3)2;2或2【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论;(2) ①由“SAS” 可证△DAC ≌△BAE ,可得BE=DC ;②由于线段长BE 的最大值=线段DC 的最大值,根据(1)中的结论即可得到结果,(3)以BC 为边作等边三角形BCE ,可以证明△ACE ≌△DCB(SAS) ,从而得到BD=AE ,BE=BC ,由AE≤AB+BE ,当且仅当A 、B 、E 三点共线时,AE 取得最大值,即BD 取得最大值,当BD 取得最大值时,①当C 在直线AB 的上方时,过C 作CH ⊥y 轴于H ,作BC 的垂直平分线交BH 于N ,求出CH 的长度,即可求出点C 的横坐标,②当C 在直线AB 的下方时,按同①的方法也可以求出点C 的横坐标.【详解】(1)当A 在选段BC 的延长线上时, max 6AC AB BC =+=.(2)①∵等腰直角AEC 与等腰直角三角形ABD ,∴AD AB =,AE AC =,90DAB EAC ∠=∠=︒,∴DAB BAC EAC BAC ∠+∠=∠+∠,∴DAC EAB ∠=∠,在DAC △和BAE 中,DA BA DAC BAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS DAC BAE ≌△△, ∴BE CD =.②由①可知,BE DC =,∵线段BE 的最大值即线段DC 的最大值.在等腰直角ABD △中,BD ==∵CD BC BD ≤+,∴当点D 在CB 的延长线上时, CD取得最大值为3+.∴线段BE的最大值为3+(3)如图,以BC 为边作等边三角形BCE ,则BC CE =,60BCE ∠=︒.∵60ACD ∠=︒,∴ACD ECD BCE ECD ∠-∠=∠-∠,∴ACE DCB ∠=∠.在ACE 与DCB 中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ACE DCB ≌△△, ∴BD AE =.对于一次函数4y x =+,令0x =,则4y =,∴()0,4B ,令0y =,则4x =-,∴()4,0A -. ∴224442AB =+=,又∵2BE BC ==,∴AE AB BE ≤+,∴当且仅当A 、B 、E 三点共线时,AE 取得最大值,即BD 取得最大值为422+;当BD 取得最大值时,①当C 在直线AB 的上方时过C 作CH y ⊥轴于H ,∵45ABO HBE ∠=∠=︒,60CBE ∠=︒,∴15CBH CBE HBE ∠=∠-∠=︒,作BC 的垂直平分线交BH 于N ,∴CN BN =,15NCB NBC ∠=∠=︒,∴30CNB ∠=︒,在Rt CHN △中,设CH x =.则3HN x =, 2CN x =, ∴2BN x =,∴()32BH HN BN x =+=+, 在Rt BHC △中,22222HC BH BC +==,∴()222322x x ⎡⎤++=⎣⎦, 整理得()227434x x ++=, 223x =-,()12312x =-,()22312x =--(舍), ∴622CH -=, ∴点C 的横坐标为262-. ②当C 在直线AB 的下方时,过C 作CL ⊥y 轴于L ,∵∠ABO=45°,∠CBE=60°,∴∠CBL=180°-∠CBE−∠ABO=75°,∴∠BCL=15°,作BC 的垂直平分线交BL 于M ,∴CM=BM ,∠MCB=∠MBC=15°,∴∠LMB=30°,在Rt △CLB 中,设BL=y .则3,BM=2y ,∴CM=2y ,∴3+2)y ,在Rt △BLC 中,BL 2+CL 2=BC 2=22, ∴)222322y y ⎡⎤+=⎣⎦, 整理得(227434y y ++=, 223y =)12312y =,)22312y =-(舍去), 622BL =∴CL=)32BL 26+所以点C 26+综合以上可得点C 26-26+【点睛】本题是三角形综合题,考查了全等三角形的判.定和性质,等腰直角三角形的性质,最大值问题,旋转的性质正确的作出辅助线构造全等三角形是解题的关键.12.如图,在等边三角形ABC 中,点D 是射线CB 上一动点,连接DA ,将线段DA 绕点D 逆时针旋转60°得到线段DE ,过点E 作EF ∥BC 交直线AB 于点F ,连接CF .(1)如图1,若点D 为线段BC 的中点,则四边形EDCF 是 ;(2)如图2,若点D 为线段CB 延长线上任意一点,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若点D 为射线CB 上任意一点,当∠DAB =15°,△ABC 的边长为2时,请直接写出线段BD 的长.答案:A解析:(1)平行四边形;(2)成立,见解析;(3)423-或31-.【分析】(1)证明△ADB ≌△DEO (AAS )和四边形EOBF 为平行四边形,进而求解;(2)证明△OED ≌△DAC (SAS ),则∠EOD =∠ACD =60°=∠ABC ,故OE ∥AB ,进而求解;(3)分点D 在线段BC 上、点D (D ′)在BC 的延长线上两种情况,利用勾股定理和等腰直角三角形的性质分别求解即可.【详解】解:(1)过点E 作DE 的垂线交CB 的延长线于点O ,设BA 交ED 于点R ,∵点D 为线段BC 的中点,则AD ⊥BC 且∠BAD =30°,∵∠ADE =60°,∴∠EDB =∠ADB ﹣ADE =90°﹣60°=30°,∵EF ∥BC ,∴∠EFD =∠ABC =60°,∠FED =∠EDO =30°,∴∠ERF =90°,∴DE ⊥AB ,∵AD =ED ,∠BAD =∠EDO =30°,∠ADB =∠DEO =90°,∴△ADB ≌△DEO (AAS ),∴OE =BD =12BC =12AB ,则OB =OD ﹣BD =AB ﹣12AB =12AB , ∴OB =BD =CD ,∵OE⊥DE,DE⊥AB,∴OE∥AB,∵EF∥BC,∴四边形EOBF为平行四边形,∴EF=OB=CD,而EF∥CD,∴四边形EFCD为平行四边形,故答案为:平行四边形;(2)如图2,在CD的延长线上截取DO=AC,连接OE,设∠ADC的度数为α,∵∠EDO=180°﹣∠EDA﹣∠ADC=180°﹣60°﹣α=120°﹣α,∠DAC=180°﹣∠ACD﹣∠ADC=120°﹣α=∠EDO,而AC=OD,DE=AD,∴△OED≌△DAC(SAS),∴∠EOD=∠ACD=60°=∠ABC,∴OE∥AB,而EF∥BC,∴四边形EFCD为平行四边形;(3)①当点D在线段BC时,过点A作AH⊥BC,则∠BAH=30°,而∠DAB=15°,BH=12BC=1,即BD是∠BAH的角平分线,过点D作DG⊥AB于点G,设DH=x,则DG=DH=x,BD=BH﹣DH=1﹣x,在△BDG 中,∠BDG =30°,则BG =12BD =12x - 由勾股定理得:()21x -=212x -⎛⎫ ⎪⎝⎭+2x ,解得:x =233-, ∴BD =1﹣x =423-,②当点D (D ′)在BC 的延长线上时,∵∠BAD ′=15°,∴∠D ′AH =30°+15°=45°,则D ′H =AH =2213-=,∴BD ′=D ′H ﹣BH =31-;综上,BD 的长度为423-或31-.【点评】本题是四边形综合题,主要考查了平行四边形性质、三角形全等、等边三角形性质等知识点,综合性强,难度较大.13.问题发现:(1)如图1,在等腰直角三角形ABC 中,90C ∠=︒,点O 为AB 的中点,点M 为AC 上一点,将射线OM 顺时针旋转90︒交BC 于点N ,则OM 与ON 的数量关系为____;问题探究:(2)如图2,在等腰三角形ABC 中,120C ∠=︒,点O 为AB 的中点,点M 为AC 上一点,将射线OM 顺时针旋转60︒交BC 于点N ,则OM 与ON 的数量关系是否改变,请说明理由;问题解决:(3)如图3,点O 为正方形ABCD 对角线的交点,点P 为DO 的中点,点M 为直线BC 上一点,将射线OM 顺时针旋转90︒交直线AB 于点N ,若4AB =,当PMN 面积为252时,直接写出线段BN 的长.答案:B解析:(1)OM =ON ;(2)不改变;证明见解析;(3)线段BN 172或172【分析】(1)连接,OC ,证明△AOM ≌△CON (ASA )可得结论.(2)数量关系不变.如图2中,过点O 作OK ⊥AC 于K ,OJ ⊥BC 于J ,连接OC .证明△OKM ≌△OJN (AAS )可得结论.(3)如图3中,过点P作PG⊥AB于G,PH⊥BC于H.证明△MOC≌△NOB(SAS),推出CM=BN,设CM=BN=m,根据S△PMN=252=S△PBM+S△BMN-S△PBN,构建方程求解即可.当点M在CB的延长线上时,同法可求.【详解】解:(1)如图1中,结论:OM=ON.理由:连接OC.∵CA=CB,∠ACB=90°,AO=OB,CO=OA=OB,OC⊥AB,∠A=∠B=45°,∠BCO=∠ACO=45°∴∠AOC=∠MON=90°,∴∠AOM=∠CON,∵∠A=∠CON,∴△AOM≌△CON(ASA),∴OM=ON.故答案为:OM=ON.(2)理由:如图2中,过点O作OK⊥AC于K,OJ⊥BC于J,连接OC.∵∠ACB=120°,∠OKC=∠OJC=90°,∠KOJ=60°=∠MON,∴∠MKO=∠NOJ,∵CA=CB,OA=OB,∴OC平分∠ACB,∵OK⊥CA,OJ⊥CB,∴OK=OJ,∵∠OKM=∠OJN=90°,∴△OKM≌△OJN(AAS),∴OM=ON.(3)如图3中,过点P作PG⊥AB于G,PH⊥BC于H.∵四边形ABCD是正方形,AB=AD=4,∠BAD=90°,∴22,∴2,2,∴3,∵四边形PGBH是正方形,∴PG=PH=3,∵∠MON=∠COB=90°,∴∠MOC=∠NOB,∵OM=ON,OC=OB,∴△MOC≌△NOB(SAS),∴CM=BN,设CM=BN=m,∵S△PMN=252=S△PBM+S△BMN-S△PBN,∴12•(4+m)•3+12•m•(4+m)12-•m•3=252,∴整理得:m2+4m-13=0,解得172或172-(舍去),∴172.当点M在CB的延长线上时,同法可得172.综上所述,满足条件的BN172172.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.14.探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠BAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∠1+∠3=45°.即∠GAF=∠________.又AG=AE,AF=AE∴△GAF≌△________.∴ _________=EF,故DE+BF=EF.(2)方法迁移:如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF =∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.答案:E解析:(1)EAF、△EAF、GF;(2)DE+BF=EF.【解析】【分析】(1)利用角之间的等量代换得出∠GAF=∠FAE,再利用SAS得出△GAF≌△EAF,得出答案;(2)将△ADE顺时针旋转90°得到△ABG,再证明△AGF≌△AEF,即可得出答案;【详解】解:(1)如图①所示;根据等量代换得出∠GAF=∠FAE,利用SAS得出△GAF≌△EAF,∴GF=EF,故答案为:FAE;△EAF;GF;(2)DE+BF=EF,理由如下:假设∠BAD的度数为m,将△ADE绕点A顺时针旋转,m°得到△ABG,如图,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵,∴.∵∠1=∠2,∴∠1+∠3=.即∠GAF=∠EAF.∵在△AGF和△AEF中,,∴△GAF≌△EAF(SAS).∴GF=EF.又∵GF=BG+BF=DE+BF,∴DE+BF=EF.【点睛】此题主要考查了全等三角形的判定和性质、以及折叠的性质和旋转变换性质等知识,证得△GAF≌△EAF是解题的关键.15.综合与探究问题情境在Rt△ABC中,∠BAC=90°,AB=AC,点D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°至AE,连接DE,CE.探究发现(1)如图1,BD =CE ,BD ⊥CE ,请证明;探究猜想;(2)如图2,当BD =2DC 时,猜想AD 与BC 之间的数量关系,并说明理由; 探究拓广(3)当点D 在BC 的延长线上时,探究并直接写出线段BD ,DC ,AD 之间的数量关系. 答案:B解析:(1)证明见解析;(2)10AD BC =,理由见解析;(3)2222BD CD AD +=.【分析】(1)根据题意计算得∠BAD =∠CAE ;再根据旋转的性质,通过证明△BAD ≌△CAE ,从而完成求解;(2)结合(1)的结论,通过△BAD ≌△CAE ,得CE ;通过勾股定理,得2DE =;再通过勾股定理计算,记得得到答案;(3)过点A 作AM BC ⊥交BC 于点M ;根据等腰三角形三线合一的性质,得BM CM =,再根据直角三角形斜边中线的性质,得12AM BM CM BC ===;根据勾股定理的性质,通过计算,即可得到线段BD ,DC ,AD 之间的数量关系.【详解】(1)由题意得,∠BAC =∠DAE =90°∵∠BAD +∠CAD =∠CAE +∠CAD∴∠BAD =∠CAE∵线段AD 绕点A 逆时针旋转90°至AE∴AD=AE又∵AB=AC ,∴△BAD ≌△CAE∴BD=CE ,∠B =∠ACE =45°∴∠ECD =90°,BD ⊥CE .(2)由(1)得:△BAD ≌△CAE∴BD=CE ,∠B =∠ACE =45° ∵13CD BC =,BD =2DC ,即23BD BC =,。
构造等边三角形的解题技巧
构造等边三角形的解题技巧
从几何学的角度来看,构造等边三角形的方法有多种,其中一
种方法是利用圆和直线的性质。
首先,我们可以利用圆规在一张纸
上画一个任意长度的线段AB,然后以A为圆心,AB为半径画一个圆,再以B为圆心,AB为半径画另一个圆。
两个圆的交点分别记为C和D,连接CD,则三角形ACD就是一个等边三角形。
这个方法的原理
是利用圆的性质,圆上任意一点到圆心的距离都相等,因此AC和
AD的长度相等,所以三角形ACD是一个等边三角形。
另一种方法是利用直线的性质,我们可以先在纸上画一个任意
长度的线段AB,然后以A为起点,利用量角器画出一个60度的角,再以B为起点,同样利用量角器画出一个60度的角,连接AB上的
这两个60度角的顶点,得到一个等边三角形ABC。
这个方法的原理
是利用等边三角形内角相等的性质,以及利用量角器可以准确地画
出指定角度的性质。
从数学方法来看,构造等边三角形也可以利用坐标系和向量的
方法。
假设我们要构造一个等边三角形,我们可以先随意选取一个
顶点的坐标,然后利用向量的平移和旋转性质,可以求得另外两个
顶点的坐标,使得这三个顶点构成一个等边三角形。
总的来说,构造等边三角形的解题技巧有很多种,可以通过利用几何学的性质,也可以通过数学方法来实现。
希望以上介绍对你有所帮助。
初中数学全等三角形旋转模型知识点-+典型题及答案
初中数学全等三角形旋转模型知识点-+典型题及答案一、全等三角形旋转模型1.定义:按螺旋式分别延长n边形的n条边至一点,若顺次连接这些点所得的图形与原多边形相似,则称它为原图形的螺旋相似图形.例如:如图1,分别延长多边形A1A2…A n 的边得A1′,A2′,…,A n′,若多边形A1′A2′…A n′与多边形A1A2…An相似,则多边形A1′A2′…A n′就是A1A2…A n的螺旋相似图形.(1)如图2,已知△ABC是等边三角形,作出△ABC的一个螺旋相似图形,简述作法,并给以证明.(2)如图3,已知矩形ABCD,请探索矩形ABCD是否存在螺旋相似图形,若存在,求出此时AB与BC的比值;若不存在,说明理由.(3)如图4,△ABC是等腰直角三角形,AC=BC=2,分别延长CA,AB,BC至A′,B′,C′,使△A′B′C′是△ABC的螺旋相似三角形.若AA′=kAC,请直接写出BB′,CC′的长(用含k的代数式表示)答案:A解析:(1)见解析;(2)AB:BC=1;(3)BB′2k,CC′=k.【分析】(1)如图2中,延长AB到E,延长BC到F,延长CA到D,使得BE=CF=AD,连接EF,DF,DE.则△DEF是△ABC的一个螺旋相似图形,证明△DEF是等边三角形即可解决问题.(2)如图3中,假设存在.四边形EFGH是矩形ABCD的螺旋相似图形,设AB=CD=a,BC=AD=b,BE=DG=x,CF=AH=y.分两种情形,利用相似三角形的性质以及相似矩形的性质,构建关系式证明a=b即可解决问题.(3)如图4中,作B′T⊥CB交CB的延长线于T.设TB=TB′=m,证明△A′CC′≌△A′TB′(ASA),推出A′C=TC′,CC′=TB′=BT,构建关系式推出m=k即可解决问题.【详解】解:(1)如图2中,延长AB到E,延长BC到F,延长CA到D,使得BE=CF=AD,连接EF,DF,DE.则△DEF是△ABC的一个螺旋相似图形.理由:∵△ABC是等边三角形,∴AB=BC=AC,∠CAB=∠ABC=∠ACB,∴∠DAE=∠FCD=∠EBF=120°,∵BE=CF=AD,∴CD=AE=BF,∴△FCD≌△DAE≌△EBF(SAS),∴DF=DE=EF,∴△DEF是等边三角形,∴△DEF∽△ABC,∴△DEF是△ABC的一个螺旋相似图形.(2)如图3中,假设存在.四边形EFGH是矩形ABCD的螺旋相似图形,设AB=CD=a,BC=AD=b,BE=DG=x,CF=AH=y.由题意:△BEF∽△AHE,∴EFEH =BEAH=BFAE,∴xy=b ya x++,当EFHE=BCAB=ba时,ba=xy=b ya x++,∴x=ba•y,ax+x2=by+y2,∴by +22b a •y 2=by +y 2, ∴a 2=b 2,∴a =b ,即AB :BC =1.当EF EH =AB BC =a b 时.a b =x y =b y a x++, ∴x =a b•y ,ax +x 2=by +y 2, ∴2a b •y +22a b•y 2=by +y 2, ∴22a b b -•y (1+y b)=0, ∵y ≠0,1+y b≠0, ∴a 2=b 2, ∴a =b ,即AB :BC =1,综上所述,AB :BC =1.(3)如图4中,作B ′T ⊥CB 交CB 的延长线于T .∵AC =BC =2,∠ACB =90°,∴∠ABC =∠CAB =45°,∴∠TBB ′=∠ABC =45°,∴∠TB ′B =∠TBB ′=45°,∴TB =TB ′,设TB =TB ′=m ,∵△A ′B ′C ′是△ABC 的螺旋相似三角形,∴A ′C ′=B ′C ′,∠A ′C ′B ′=90°,∵∠A ′C ′C +∠B ′C ′=90°,∠A ′CC +∠C ′A ′C =90°,∴∠C ′A ′C =∠B ′C ′T ,∵∠A ′CC ′=∠T =90°,∴△A ′CC ′≌△A ′TB ′(ASA ),∴A ′C =TC ′,CC ′=TB ′=BT ,∴2+2k =2+2m ,∴m =k ,∴BB ′=2k ,CC ′=k .【点睛】本题属于相似形综合题,考查了等边三角形的性质,矩形的性质,等腰直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用参数解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.如图1,在等腰Rt △ABC 中,∠ABC =90°,AB =BC =6,过点B 作BD ⊥AC 交AC 于点D ,点E 、F 分别是线段AB 、BC 上两点,且BE =BF ,连接AF 交BD 于点Q ,过点E 作EH ⊥AF 交AF 于点P ,交AC 于点H .(1)若BF =4,求△ADQ 的面积;(2)求证:CH =2BQ ;(3)如图2,BE =3,连接EF ,将△EBF 绕点B 在平面内任意旋转,取EF 的中点M ,连接AM ,CM ,将线段AM 绕点A 逆时针旋转90°得线段AN ,连接MN 、CN ,过点N 作NR ⊥AC 交AC 于点R .当线段NR 的长最小时,直接写出△CMN 的周长.答案:A解析:(1)1.8;(2)证明见解析;(3326335102. 【分析】(1)利用等腰直角三角形的性质求出1322BD AD CD AC ====积相等和勾股定理分别求出AQ 和QD ,最后利用三角形面积公式即可求解;(2)如图,先作辅助线构造()AEH CFG ASA ∆∆≌,得到AH CG =,再通过转化得到2AH DQ =,最后利用AC ,得到一个相等关系,即()2AH HC BQ QD +=+,利用等式性质即可得到所求;(3)如图,通过做辅助线构造全等三角形确定出当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小,接着利用勾股定理和等腰直角三角形的性质,分别求出CM 、MN 、CN 的长,相加即可.【详解】解:6AB BC ==,°90ABC =∠,AC ==∴又∵AC BD ⊥∴BD 平分AC ,且BD 是∠ABC 的角平分线∴12BD AD CD AC ====Q 点到BA 和BC 边的距离相等; ∵4BF =, ∴6342ABQBFQ S S ∆∆==, ∴32AQ FQ =,∵AF ===∴355AQ AF ==,∴5QD ===,∴1 1.82ADQ S ∆==, ∴△ADQ 的面积为1.8.(2)如图,作CG ⊥AC ,垂足为C ,交AF 的延长线于点G ,∴°90ACG =∠∵°45ACB CAB ==∠∠,∴°45GCB CAB ==∠∠,∵EH ⊥AF ,∴°90EAP AEP +=∠∠,又∵°90EAP AFB +=∠∠∴AEP AFB =∠∠,∴AEP CFG =∠∠∵BE BF =,BA BC =∴AE CF =,在AEH ∆和CFG ∆中,AEH CFG AE CFEAH FCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AEH CFG ASA ∆∆≌∴AH CG =;∵BD ⊥AC ,CG ⊥AC ,∵D 点是AC 的中点,且BD ∥CG ,∴DQ 是ACG ∆的中位线, ∴12DQ CG =, ∴2DQ CG AH ==; ∵AC =2BD ,∴()2AH HC BQ QD +=+,∵2AH DQ =,∴CH =2BQ .(3)如图①,作AH ⊥AB ,且AH =AB ,∴∠NAH +∠HAM =∠HAM +∠BAM =90°,∴∠BAM =∠NAH ,∵AB =AH ,AM =AN ,∴()ABM AHN SAS ∆∆≌, ∴HN =BM ,∵BE =BF =3,∠EBF =90°, ∴232EF BE ==∴由M 点是EF 的中点,可得13222BM EF ==, ∴322NH =, ∴N 点在以H 32为半径的圆上, 如图②,当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小, 为322NR HR HN HR =-=-, ∵∠BAC =45°,∴∠AHN =45°,HR =AR ,∵222HR AR AH +=,∴HR AR ===,∴22NR HR =-=, ∵AC == ∴CR AC AR =-=∴CN AN === ∵∠MAN =90°,AM =AN ,∴MN ==∴∠ABM =45°,∴∠EBM =45°,∴F 点在BA 上,E 点在CB 延长线上,如图,作MP ⊥EC ,垂足为P ,∴1322BP MP EB ===, ∴315622PC PB BC =+=+=,∴MC ==∴2MC MN CN ++=+∴△CMN+.【点睛】本题综合考查了等腰直角三角形的性质、全等三角形的判定与性质、旋转的性质、勾股定理、圆等知识,要求学生熟练掌握相关概念并能灵活应用它们,本题的综合性较强,难点在于作辅助线构造全等三角形以及线段之间的关系转化等,考查了学生综合分析和推理论证以及计算的能力,本题属于压轴题,蕴含了数形结合和转化的思想方法等. 3.在ABC 中,,AB AC BAC α=∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接,DB DC .(1)如图1,当60α=︒时,请直接写出线段PA 与线段CD 的数量关系是__________,DCP ∠为______度;(2)如图2,当120α=︒时,写出线段PA 和线段DC 的数量关系,并说明理由; (3)如图2,在(2)的条件下,当23AB =13BP PC +的最小值. 答案:A解析:(1)PA =DC ,60;(2)CD 3PA .理由见详解;(232【分析】(1)先证明△ABC ,△PBD 是等边三角形,再证明△PBA ≌△DBC ,进而线段PA 与线段CD 的数量关系,利用全等三角形的性质以及三角形内角和等于180°,解决问题即可;(2)证明△CBD ∽△ABP ,可得3CD BC PA AB ==,解决问题; (3)过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC , 过点B 作BG ⊥BA 于点G ,当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小,由BGP CNP ∽,得13GP NP BP CP ==,结合勾股定理求出GP ,从而得CP ,进而即可求解. 【详解】(1)①证明: ∵将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD , ∴PB =PD ,∵AB =AC ,PB =PD ,∠BAC =∠BPD =60°,∴△ABC ,△PBD 是等边三角形,∴∠ABC =∠PBD =60°,∴∠PBA =∠DBC ,∵BP =BD ,BA =BC ,∴△PBA ≌△DBC (SAS ),∴PA =DC .设BD 交PC 于点O ,如图1,∵△PBA ≌△DBC ,∴∠BPA =∠BDC ,∵∠BOP =∠COD ,∴∠OBP =∠OCD =60°,即∠DCP =60°.故答案是:PA =DC ,60;(2)解:结论:CD 3.理由如下:∵AB =AC ,PB =PD ,∠BAC =∠BPD =120°,∴BC =2•AB •cos30°3,BD ═2BP •cos30°3,∴BC BD BA BP=3∵∠ABC =∠PBD =30°,∴∠ABP =∠CBD ,∴△CBD ∽△ABP , ∴3CD BC PA AB ==, ∴CD =3PA ; (3) 过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC , 过点B 作BG CA ⊥于点G ,则BG =AB ×sin ∠BAG =23×sin60°=3,AG = AB ×cos ∠BAG =3. 当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小, ∵∠BGP =∠CNP =90°,∠BPG =∠CPN , ∴BGP CNP ∽,∴13GP NP BP CP ==, 设GP =x ,则AP =3-x ,BP =3x ,∴()22233x x +=,解得:x =324, ∴BP =924,AP =3-324, ∴CP =AC +AP =23+3-324=33-324, ∴13BP PC +最小值=924+13×(33-324)=3+22.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,第(1)(2)题解题的关键是正确寻找全等三角形或相似三角形解决问题,第(3)题的关键是过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N . 4.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.答案:C解析:(1)60BD CE ,=;(2)452CEB BD CE ∠︒=,=,理由见解析;(3)CE 的长为2或2【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论; (2)证明ACE ABD ∽,得出AEC ADB ∠=∠,2BD CE =,即可得出结论; (3)先判断出2BD CE =,再求出210AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论.【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形,同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAEAD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEBCEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;.(2)45CEB BD ∠︒=,,理由如下:在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,45AB CAB ∴∠︒,= ,同理,45AD ADE DAE ∠∠︒,==, ∴AE AC AD AB =,DAE CAB ∠∠=, EAC DAB ∴∠∠=,ACE ABD ∴∽ ,∴BD AD CE AE==∴AEC ADB BD ∠∠=,,点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒==135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==;(3)由(2)知,ACE ABD ∽,BD ∴,在Rt ABC中,AC =AB ∴=,①当点E 在点D 上方时,如图③,过点A 作AP BD ⊥交BD 的延长线于P ,DE BD ⊥,PDE AED APD ∴∠∠∠==,∴四边形APDE 是矩形,AE DE = ,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,226BP AB AP -==,4BD BP AP ∴-==,1222CE BD ∴==; ②当点E 在点D 下方时,如图④同①的方法得,AP =DP =AE =2,BP =6,∴BD =BP +DP =8,122CE BD ∴==4, 综上CE 的长为22或42.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.5.矩形ABCD 中,6,8AB BC ==,点,M N 分别在边,BC AD 上,且3,2BM DN ==,连接MN 并延长,交CD 的延长线于点E ,点Q 为射线MN 上一动点,过点Q 作AQ 的垂线,交CD 于点P .(1)特例发现,如图,若点P 恰好与点D 重合,填空:①DE =________;②QA 与QP 的等量关系为_________.(2)拓展探究如图,若点Q 在MN 的延长线上,QA 与QP 能否相等?若能,求出DP 的长;若不能,请说明理由.(3)思维延伸如图,点G 是线段CD 上异于点D 一点,连接AG ,过点G 作直线GI AG ⊥,交直线MN 于点I ,是否存在点G ,使,AG GI 相等?若存在,请直接写出DG 的长;若不存在,请说明理由.答案:E解析:(1)①4; ②QA QP =;(2)QA 与QP 能够相等,理由详见解析;(3)(3),AG GI 能够相等,43DG =【分析】(1)①根据END EMC ,利用对应边成比例列式求出ED 长;②过点Q 作//HG BC ,交AB 于点H ,交DC 于点G ,设QG x =,利用AHQ QGD ,对应边成比例列式求出x ,得到这两个三角形其实是全等的,所以QA QP =;(2)过点Q 作QF AB ⊥,交BA 的延长线于点F ,延长FQ 交CE 于点G ,构造“k”字型全等三角形,设AF x =,再利用相似三角形的性质列式求解;(3)过点G 作GK AB ⊥于点K ,过点I 作IS KG ⊥,交KG 的延长线于点S ,延长AD 交IS 于点T ,同(2)构造“k”字型全等三角形,DG y =,再利用相似三角形的性质列式求解.【详解】(1)①∵//ND MC ,∴END EMC ,∴ED ND EC MC=, 835MC BC BM =-=-=,6DC =,265ED ED =+,解得4ED =, 故答案是:4;②如图,过点Q 作//HG BC ,交AB 于点H ,交DC 于点G ,可得HG AB ⊥,HG DC ⊥,∴90AHQ QGD ∠=∠=︒,∵AQ QD ⊥,∴90AQH DQG ∠+∠=︒,∵90QAH AQH ∠+∠=︒,∴QAH DQG ∠=∠,∴AHQ QGD ,∴AH HQ QG GD=,设QG x =,8HQ x =-,∵//QG MC ,∴EQG EMC , ∴QG EG MC EC =,4510x DG +=,得24DG x =-, ∴24AH x =-,根据AH HQ QG GD =,得24824x x x x --=-,解得4x =, ∴4AH HQ QG GD ====,∴AHQ QGD ≅,∴AQ QD QP ==,故答案是:QA QP =;(2)QA 与QP 能够相等,163PD =, 如图,过点Q 作QF AB ⊥,交BA 的延长线于点F ,延长FQ 交CE 于点G , 90,90,AQF PQG GPQ PQG AQF GPQ ∠+∠=︒∠+∠=︒∴∠=∠,又90,,,,AFQ PGQ AQ PQ FAQ GDP AF QG FQ PG ∠=∠=︒=∆≅∆∴==, 设AF x =,则,,4QG x DG x EG x ===-,42,2EG ED x QG ND x -==∴=,解得43x =, 经检验,43x =是该分式方程的根, 42020204168,,333333FQ PG PD ∴=-=∴==-=;(3),AG GI 能够相等,43DG =,如图,过点G 作GK AB ⊥于点K ,过点I 作IS KG ⊥,交KG 的延长线于点S ,延长AD 交IS 于点T ,根据“k ”字型全等得,,8AKG GSI AK GS IS KG ∆≅∆∴===, 设DG y =,则,8,2AK TS GS DT y IT y NT y ====∴=-=+, 84tan ,22IT ED y INT NT ND y -∠==∴=+,解得43y =,故DG 的长为43.【点睛】本题考查“k ”字型全等三角形,相似三角形的性质和判定,解题的关键是作辅助线构造“k ”字型全等,再利用相似三角形对应边成比例列式求解.6.在ABC 中,AB =AC ,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与∠BAC 相等的角度,得到线段AN ,连结NB .(感知)如图①,若M 是线段BC 上的任意一点,易证ABN ACM △≌△,可知∠NAB =∠MAC ,BN =MC .(探究)(1)如图②,点E 是AB 延长线上的点,若点M 是∠CBE 内部射线BD 上任意一点,连结MC ,(感知)中的结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(拓展)(2)如图③,在DEF 中,DE =8,∠DEF =60°,∠EDF =75°,P 是EF 上的任意点,连结DP ,将DP 绕点D 按顺时针方向旋转75°,得到线段DQ ,连结EQ ,则EQ 的最小值为 .解析:(1)成立,见解析;(2)4342【分析】(1)根据SAS 证明NAB MAC ∆≅∆即可.(2)如图3中,在DF 上截取DN DE =,连接PN ,作 NH EF ⊥于H ,作DM EF⊥于M .理由全等三角形的性质证明EQ PN =,推出当 PN 的值最小时,QE 的值最小,求出HN 的值即可解决问题.【详解】(1)结论仍然成立.理由:MAN CAB ∠=∠,NAB BAM BAM MAC ∠+∠=∠+∠∴,NAB MAC ∠=∠∴,AB AC =,AN AM =,()NAB MAC SAS ∴∆≅∆,BN CM ∴=.(2)如图3中,在DF 上截取DN DE =,连接PN ,作NH EF ⊥于H ,作DM EF ⊥于M .FDE PDQ ∠=∠,QDE PDN ∴∠=∠,DQ DP =,DE DN =,∴()QDE PDN SAS ≅,EQ PN ∴=,∴当PN 的值最小时,QE 的值最小,在Rt DEM △中,60DEM ∠=︒,8DE =,sin 6043DM DE ∴=︒=,753045MDF EDF EDM ∠=∠-∠=︒-︒=︒,46DF ∴=,468NF DF DN ∴=-=,在Rt NHF ∆,45F ∠=︒,342NH ∴=根据垂线段最短可知,当点P 与H 重合时,PN 的值最小,QE ∴的最小值为4342-.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰三角形的性质,解直角三角形,垂线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用垂线段最短解决最值问题.7.如图,抛物线y =﹣x 2+bx+c 与x 轴交于A ,B 两点,其中A (3,0),B (﹣1,0),与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,直线y =kx+b 1经过点A ,C ,连接CD . (1)求抛物线和直线AC 的解析式:(2)若抛物线上存在一点P ,使△ACP 的面积是△ACD 面积的2倍,求点P 的坐标; (3)在抛物线的对称轴上是否存在一点Q ,使线段AQ 绕Q 点顺时针旋转90°得到线段QA 1,且A 1好落在抛物线上?若存在,求出点Q 的坐标;若不存在,请说明理由.答案:A解析:(1)2y x 2x 3=-++;3y x =-+ ;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【分析】(1)将点A ,B 坐标代入抛物线解析式中,求出b ,c 得出抛物线的解析式,进而求出点C 的坐标,再将点A ,C 坐标代入直线AC 的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD =AD ,进而判断出△ABC 的面积和△ACP 的面积相等,即可得出结论;(3)分点Q 在x 轴上方和在x 轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A (3,0),B (﹣1,0)代入y =﹣x 2+bc+c 中,得93010b c b c -++=⎧⎨--+=⎩, ∴23b c =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x+3,当x =0时,y =3,∴点C 的坐标是(0,3),把A (3,0)和C (0,3)代入y =kx+b 1中,得11303k b b +=⎧⎨=⎩, ∴113k b =-⎧⎨=⎩ ∴直线AC 的解析式为y =﹣x+3;(2)如图,连接BC ,∵点D 是抛物线与x 轴的交点,∴AD =BD ,∴S △ABC =2S △ACD ,∵S △ACP =2S △ACD ,∴S △ACP =S △ABC ,此时,点P 与点B 重合,即:P (﹣1,0),过B 点作PB ∥AC 交抛物线于点P ,则直线BP 的解析式为y =﹣x ﹣1①,∵抛物线的解析式为y =﹣x 2+2x+3②,联立①②解得,10x y =-⎧⎨=⎩或45x y =⎧⎨=-⎩, ∴P (4,﹣5),∴即点P 的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q 在x 轴上方时,设AC 与对称轴交点为Q',由(1)知,直线AC 的解析式为y =﹣x+3,当x =1时,y =2,∴Q'坐标为(1,2),∵Q'D =AD =BD =2,∴∠Q'AB =∠Q'BA =45°,∴∠AQ'B =90°,∴点Q'为所求,②当点Q 在x 轴下方时,设点Q (1,m ),过点A 1'作A 1'E ⊥DQ 于E ,∴∠A 1'EQ =∠QDA =90°,∴∠DAQ+∠AQD =90°,由旋转知,AQ =A 1'Q ,∠AQA 1'=90°,∴∠AQD+∠A 1'QE =90°,∴∠DAQ =∠A 1'QE ,∴△ADQ ≌△QEA 1'(AAS ),∴AD =QE =2,DQ =A 1'E =﹣m ,∴点A 1'的坐标为(﹣m+1,m ﹣2),代入y =﹣x 2+2x+3中,解得,m =﹣3或m =2(舍),∴Q 的坐标为(1,﹣3),∴点Q 的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.8.综合与实践实践操作:①如图1,ABC ∆是等边三角形,D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转60︒得到AEF ∆,连接CE .②如图2,在ABC ∆中,AD BC ⊥于点D ,将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC 交于点G .③如图3,将图2中得到AEF ∆沿AE 再一次折叠得到AME ∆,连接MB .问题解决:(1)小明在探索图1时发现四边形ABCE 是菱形.小明是这样想的:请根据小明的探索直接写出图1中线段CD ,CF ,AC 之间的数量关系为 : (2)猜想图2中四边形ADGF 的形状,并说明理由;问题再探:(3)在图3中,若AD=6,BD=2,则MB 的长为 .答案:C解析:(1)CD+CF=AC ;(2)四边形ADGF 为正方形;理由见解析;(3)213【分析】(1)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;(2)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(3)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论.【详解】解:(1)如图:由旋转得:∠DAF=60°=∠BAC ,AD=AF ,∴∠BAD=∠CAF ,∵△ABC 是等边三角形,∴AB=AC ,∴△BAD ≌△CAF (SAS ),∴∠ADB=∠AFC ,BD=CF ,∵∠ADC+∠ADB=∠AFC+∠AFE=180°,∴C 、F 、E 在同一直线上,∴AC=BC=BD+CD=CF+CD ,故答案为:CD CF AC +=;(2)四边形ADGF是正方形,理由如下:如图:∵Rt△ABD绕点A逆时针旋转90°得到△AEF,∴AF=AD,∠DAF=90°,∵AD⊥BC,∴∠ADC=∠DAF=∠F=90°,∴四边形ADGF是矩形,∵AF=AD,∴四边形ADGF是正方形;(3)如图3,连接DE,∵四边形ADGF是正方形,DG=FG=AD=AF=6,∵△ABD绕点A逆时针旋转90°,得到△AEF,∴∠BAD=∠EAF,BD=EF=2,∴EG=FG-EF=6-2=4,∵将△AFE沿AE折叠得到△AME,∴∠MAE=∠FAE,AF=AM,∴∠BAD=∠EAM,∴∠BAD+∠DAM=∠EAM+∠DAM,即∠BAM=∠DAE,∵AF=AD,∴AM=AD,在△BAM和△EAD中,∵AM ADBAM DAEAB AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAM ≌△EAD (SAS ),∴BM=DE=22EG DG +=2246213+=.故答案为:213.【点睛】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.9.如图1,ABC ∆中,CA CB =,ACB α∠=,D 为ABC ∆内一点,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆,点,A D 的对应点分别为点,B E ,且,,A D E 三点在同一直线上.(1)填空:CDE ∠=______(用含α的代数式表示);(2)如图2,若60α=︒,请补全图形,再过点C 作CF AE ⊥于点F ,然后探究线段CF ,AE ,BE 之间的数量关系,并证明你的结论;(3)如图3,若90α=︒,52AC =ABEC 面积的最大值______. 解析:(1)1802α-;(2)23AE BE =+;证明见解析;(3)21)2. 【分析】(1)由旋转的性质可得CD CE =,DCE α∠=,即可求解;(2)由旋转的性质可得AD BE =,CD CE =,60DCE ∠=︒,可证CDE ∆是等边三角形,由等边三角形的性质可得3DF EF ==,即可求解; (3)如图3中,过点C 作CF BE ⊥交BE 的延长线于F ,设AE 交BC 于J .证明90ACJBEJ ,推出点E 在以AB 为直径的圆上运动,即图中BC 上运动,当CE EB 时,四边形ABEC 的面积最大,此时EC EB =,分别求出ABC ∆,BCE ∆的面积即可解决问题.【详解】解:(1)如图1中,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆ACD BCE ∴∆≅∆,DCE α∠=CD CE ∴= 1802CDE α︒-∴∠=. 故答案为:1802α︒-. (2)233AE BE CF =+理由如下:如图2中,将CAD ∆绕点C 按逆时针方向旋转角60︒得到CBE ∆ACD BCE ∴∆≅∆AD BE ∴=,CD CE =,60DCE ∠=︒CDE ∴∆是等边三角形,且CF DE ⊥3DF EF ∴== AE AD DF EF =++ 23AE BE ∴=+. (3)如图3中,过点C 作CWBE 交BE 的延长线于W ,设AE 交BC 于J .CAD ∆绕点C 按逆时针方向旋转90︒得到CBE ∆,CAD CBE ,CAD CBE ∴∠=∠,AJC BJE ,90ACJ BEJ ,∴点E 在以AB 为直径的圆上运动,即图中BC 上运动,当CE EB 时,四边形ABEC 的面积最大,此时EC EB =,CD CE =,90DCE ∠=︒,45CED ∴∠=︒,90AEW AEB ,45CEW ,CF EW ,45WCE CEW ,CW EW ,设CW EW x ,则2EC EB x ==, 在Rt BCW 中,222BC CW BW , 222(2)(52)x x x , 225(22)2x , 21225(21)222BCE S BE CW x , 2521252115252222ABC BCE ABEC S S S 四边形.【点睛】本题考查了圆的性质,等腰三角形的性质,全等三角形的判定和性质,解直角三角形等知识,熟悉相关性质,灵活运用所学知识解决问题是解题的关键. 10.回答下列问题:(1)(发现)如图1,点A 为线段BC 外一动点,且4BC =,2AB =.填空:线段AC 的最大值为 .图1(2)(应用)点A 为线段BC 外一动点,且3BC =,2AB =,如图2所示,分别以AB ,AC 为边,作等腰直角ABD △和等腰直角ACE ,连接CD ,BE .图2①证明:BE DC =.②求线段BE 的最大值.(3)(拓展)如图3,在平面直角坐标系中,直线l ;4y x =+与坐标轴交于点A 、B 两点,点C 为线段AB 外一动点,且2CB =,以AC 为边作等边ACD △,连接BD ,求线段BD 长的最大值并直接写出此时点C 的横坐标.图3答案:A解析:(1)6(2)①证明见解析. ②322+(3)42226-26+ 【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论;(2) ①由“SAS” 可证△DAC ≌△BAE ,可得BE=DC ;②由于线段长BE 的最大值=线段DC 的最大值,根据(1)中的结论即可得到结果,(3)以BC 为边作等边三角形BCE ,可以证明△ACE ≌△DCB(SAS) ,从而得到BD=AE ,BE=BC ,由AE≤AB+BE ,当且仅当A 、B 、E 三点共线时,AE 取得最大值,即BD 取得最大值,当BD 取得最大值时,①当C 在直线AB 的上方时,过C 作CH ⊥y 轴于H ,作BC 的垂直平分线交BH 于N ,求出CH 的长度,即可求出点C 的横坐标,②当C 在直线AB 的下方时,按同①的方法也可以求出点C 的横坐标.【详解】(1)当A 在选段BC 的延长线上时,max 6AC AB BC =+=.(2)①∵等腰直角AEC 与等腰直角三角形ABD ,∴AD AB =,AE AC =,90DAB EAC ∠=∠=︒,∴DAB BAC EAC BAC ∠+∠=∠+∠,∴DAC EAB ∠=∠,在DAC △和BAE 中,DA BA DAC BAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS DAC BAE ≌△△, ∴BE CD =.②由①可知,BE DC =,∵线段BE 的最大值即线段DC 的最大值.在等腰直角ABD △中,222BD AB ==,∵CD BC BD ≤+,∴当点D 在CB 的延长线上时, CD 取得最大值为322+.∴线段BE 的最大值为322+.(3)如图,以BC 为边作等边三角形BCE ,则BC CE =,60BCE ∠=︒.∵60ACD ∠=︒,∴ACD ECD BCE ECD ∠-∠=∠-∠,∴ACE DCB ∠=∠.在ACE 与DCB 中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ACE DCB ≌△△, ∴BD AE =.对于一次函数4y x =+,令0x =,则4y =,∴()0,4B ,令0y =,则4x =-,∴()4,0A -. ∴224442AB =+=,又∵2BE BC ==,∴AE AB BE ≤+,∴当且仅当A 、B 、E 三点共线时,AE 取得最大值,即BD 取得最大值为422+;当BD 取得最大值时,①当C 在直线AB 的上方时过C 作CH y ⊥轴于H ,∵45ABO HBE ∠=∠=︒,60CBE ∠=︒,∴15CBH CBE HBE ∠=∠-∠=︒,作BC 的垂直平分线交BH 于N ,∴CN BN =,15NCB NBC ∠=∠=︒,∴30CNB ∠=︒,2CN x =, ∴2BN x =,∴()32BH HN BN x =+=+, 在Rt BHC △中,22222HC BH BC +==,∴()222322x x ⎡⎤++=⎣⎦, 整理得()227434x x ++=, 223x =-,()12312x =-,()22312x =--(舍), ∴622CH -=, ∴点C 的横坐标为262-. ②当C 在直线AB 的下方时,过C 作CL ⊥y 轴于L ,∵∠ABO=45°,∠CBE=60°,∴∠CBL=180°-∠CBE−∠ABO=75°,∴∠BCL=15°,作BC 的垂直平分线交BL 于M ,∴CM=BM ,∠MCB=∠MBC=15°,∴∠LMB=30°,∴CM=2y , ∴CL=LM+CM=(3+2)y ,在Rt △BLC 中,BL 2+CL 2=BC 2=22,∴()222322y y ⎡⎤++=⎣⎦, 整理得()227434y y ++=, 223y =-,()12312y =-,()22312y =--(舍去), 622BL -=∴CL=()32BL +=262+ 所以点C 的横坐标为:262+ 综合以上可得点C 的横坐标为:262-或 262+ 【点睛】本题是三角形综合题,考查了全等三角形的判.定和性质,等腰直角三角形的性质,最大值问题,旋转的性质正确的作出辅助线构造全等三角形是解题的关键.11.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中BEF 绕B 点逆时针旋转45°,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (3)将图①中BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).答案:E解析:(1)见解析;(2)依然成立,见解析;(3)依然成立,EG ⊥CG【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG;(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG;(3)结论依然成立,证明方法类似(2).【详解】(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理,在Rt△DEF中,EG=12 FD,∴CG=EG.(2)解:(1)中结论仍然成立,即EG=CG.证法:如图,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG =CG .(3)解:(1)中的结论仍然成立.理由如下:如图,过F 作CD 的平行线并延长CG 交于M 点,连接EM 、EC ,过F 作FN 垂直于AB 于N ,∵G 为FD 中点,∴FG =GD ,∵MF ∥CD ,∴∠FMG =∠DCG ,∠GDC =∠GFM ,∴△CDG ≌△MFG ,∴CD =FM ,∵NF ∥BC ,∴∠NFH +∠NHF =∠EHB +∠EBH ,又∵∠NHF =∠EBH ,∴∠NFH =∠EBH ,∴∠EFM =∠EBC ,又∵BE =EF ,则△EFM ≌△EBC ,∠FEM =∠BEC ,EM =EC∵∠FEC +∠BEC =90°,∴∠FEC +∠FEM =90°,即∠MEC =90°,∴△MEC 是等腰直角三角形,∵G 为CM 中点,∴EG =CG ,EG ⊥CG .【点睛】本题考查全等三角形的判定和性质、矩形的判定与性质,正方形的性质,旋转的性质,解题的关键是掌握相关性质.12.如图1,在正方形ABCD 中,点,E F 分别在边,AB AD 上,且AE AF =,延长FD 到点G ,使得DG DF =,连接,,EF GE CE .(特例感知)(1)图1中GE 与CE 的数量关系是______________.(结论探索)(2)图2,将图1中的AEF 绕着点A 逆时针旋转()090αα︒<<︒,连接FD 并延长到点G ,使得DC DF =,连接,,GE CE BE ,此时GE 与CE 还存在(1)中的数量关系吗?判断并说明理由.(拓展应用)(3)在(2)的条件下,若5,32AB AE ==EFG 是以EF 为直角边的直角三角形时,请直接写出GE 的长.答案:G解析:(1) GE 2CE ,(2)存在,证明见解析,(3)25810或16或4.【分析】(1)连接GC ,证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(2)类似(1)的方法,先证△AFD ≌△AEB ,再证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(3)根据E 、F 是直角顶点分类讨论,结合(2)中结论,利用勾股定理求解即可.【详解】解:(1)连接GC ,∵AE =AF ,AD =AB ,∴DF =BE ,∵DG DF =,∴DG = BE ,∵∠GDC =∠B =90°,DC =BC ,∴△CDG ≌△CBE ,∴CE =CG ,∠GCD =∠ECB ,∵∠ECB +∠DCE =90°,∴∠GCE =∠GCD +∠DCE =90°,∴GE 2CE ;故答案为:GE 2CE ;(2) 存在,连接GC,∵AE=AF,AD=AB,∠FAE=∠DAB=90°,∴∠FAD=∠EAB,∴△FAD≌△EAB,∴FD=EB=GD,∠FDA=∠EBA,∵∠GDC+∠FDA=90°,∠EBC+∠EBA=90°,∴∠GDC=∠EBC,∵DC=BD,∴△CDG≌△CBE,与(1)同理,GE=2CE;(3)当∠FEG=90°时,如图1,因为∠FEA=∠GEC=45°,所以,A、E、C在一条直线上,∵AB =5,∴AC =52, CE =52-32=22,GE =2EC =4;如图2,E 在CA 延长线上,同理可得,EC =82,GE =2EC =16;当∠EFG =90°时,如图3,∠AFD =∠EFG +∠AFE =135°,由(2)得,∠AFD =∠AEB =135°,DF =BE ,所以,B 、E 、F 在一条直线上,作AM ⊥EF ,垂足为M ,∵5,32AB AE ==∴EF =6,AM =ME =MF =3,224BM AB AM =-=,BE=DF=1,FG=2,22210=+=;GE FG EF如图4,同图3,BE=DF=7,FG=14,EF=6,22258=+=,GE FG EF综上,GE的长为258210或16或4.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、勾股定理和等腰直角三角形的性质,解题关键是恰当的连接辅助线,构造全等三角形;会分类讨论,结合题目前后联系,解决问题.13.如图,在等边三角形ABC中,点D是射线CB上一动点,连接DA,将线段DA绕点D 逆时针旋转60°得到线段DE,过点E作EF∥BC交直线AB于点F,连接CF.(1)如图1,若点D为线段BC的中点,则四边形EDCF是;(2)如图2,若点D为线段CB延长线上任意一点,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若点D为射线CB上任意一点,当∠DAB=15°,△ABC的边长为2时,请直接写出线段BD的长.答案:A解析:(1)平行四边形;(2)成立,见解析;(3)423-或31-.【分析】(1)证明△ADB ≌△DEO (AAS )和四边形EOBF 为平行四边形,进而求解;(2)证明△OED ≌△DAC (SAS ),则∠EOD =∠ACD =60°=∠ABC ,故OE ∥AB ,进而求解;(3)分点D 在线段BC 上、点D (D ′)在BC 的延长线上两种情况,利用勾股定理和等腰直角三角形的性质分别求解即可.【详解】解:(1)过点E 作DE 的垂线交CB 的延长线于点O ,设BA 交ED 于点R ,∵点D 为线段BC 的中点,则AD ⊥BC 且∠BAD =30°,∵∠ADE =60°,∴∠EDB =∠ADB ﹣ADE =90°﹣60°=30°,∵EF ∥BC ,∴∠EFD =∠ABC =60°,∠FED =∠EDO =30°,∴∠ERF =90°,∴DE ⊥AB ,∵AD =ED ,∠BAD =∠EDO =30°,∠ADB =∠DEO =90°,∴△ADB ≌△DEO (AAS ),∴OE =BD =12BC =12AB ,则OB =OD ﹣BD =AB ﹣12AB =12AB , ∴OB =BD =CD ,∵OE ⊥DE ,DE ⊥AB ,∴OE ∥AB ,∵EF∥BC,∴四边形EOBF为平行四边形,∴EF=OB=CD,而EF∥CD,∴四边形EFCD为平行四边形,故答案为:平行四边形;(2)如图2,在CD的延长线上截取DO=AC,连接OE,设∠ADC的度数为α,∵∠EDO=180°﹣∠EDA﹣∠ADC=180°﹣60°﹣α=120°﹣α,∠DAC=180°﹣∠ACD﹣∠ADC=120°﹣α=∠EDO,而AC=OD,DE=AD,∴△OED≌△DAC(SAS),∴∠EOD=∠ACD=60°=∠ABC,∴OE∥AB,而EF∥BC,∴四边形EFCD为平行四边形;(3)①当点D在线段BC时,过点A作AH⊥BC,则∠BAH=30°,而∠DAB=15°,BH=12BC=1,即BD是∠BAH的角平分线,过点D作DG⊥AB于点G,设DH=x,则DG=DH=x,BD=BH﹣DH=1﹣x,在△BDG中,∠BDG=30°,则BG=12BD=12x由勾股定理得:()21x -=212x -⎛⎫ ⎪⎝⎭+2x ,解得:x =233-, ∴BD =1﹣x =423-,②当点D (D ′)在BC 的延长线上时,∵∠BAD ′=15°,∴∠D ′AH =30°+15°=45°,则D ′H =AH =2213-=,∴BD ′=D ′H ﹣BH =31-;综上,BD 的长度为423-或31-.【点评】本题是四边形综合题,主要考查了平行四边形性质、三角形全等、等边三角形性质等知识点,综合性强,难度较大.14.如图,△ABC 中,O 是△ABC 内一点,AO 平分∠BAC ,连OB ,OC .(1)如图1,若∠ACB =2∠ABC ,BO 平分∠ABC ,AC =5,OC =3,则AB = ; (2)如图2,若∠CBO +∠ACO =∠BAC =60°,求证:BO 平分∠ABC ;(3)如图3,在(2)的条件下,若BC =3B 绕点O 逆时针旋转60°得点D ,直接写出CD 的最小值为 .答案:A解析:(1)8;(2)见解析;(3)33【分析】(1)先补充证明角平分线的性质定理:如图,△ABC 中,AD 是角平分线,则:BD DC=AB AC .如图1中,延长CO 交AB 于E ,由OA 平分∠EAC ,推出AE AC =OE OC,推出AE EO =AC OC =53,设AE =5k ,OE =3k ,利用相似三角形的性质构建方程求出k 即可解决问题. (2)如图2中,过点O 作EF ⊥OA 交AB 于E ,交AC 于F ,作CG ∥EF 交AB 于G ,连接OG .证明△AGO ≌△ACO (SAS ),推出OG =OC ,推出∠OGC =∠OCG ,证明O ,G ,B ,C 四点共圆,可得结论.(3)如图3中,以BC 为边向上作等边△BCH ,连接OH ,作HM ⊥BC 于M .证明。
等边三角形内的旋转
中考专题——玩转等边三角形类型一:抓住等边三角形的边进行旋转1.如图,△ABC为等边三角形,D是△ABC内一点,若将△ABD经过一次逆时针旋转后到△ACP的位置,则旋转中心是_________,旋转角等于_________°,△ADP是_________三角形.2.如图,设P是等边△ABC内的一点,PA=3,PB=4,PC=5,则∠APB的度数是_________.3.已知:等边三角形ABC(1)如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD.QPED CBAQPEDCBAQPED CBA跟踪练习:1. 如图1,已知∠DAC =90°,△ABC 是等边三角形,点P 为射线AD 上任意一点(点P 与点A 不重合),连结CP ,将线段CP 绕点C 顺时针旋转60°得到线段CQ ,连结QB 并延长交直线AD 于点E . (1)如图1,猜想∠QEP = °; (2)如图2,3,若当∠DAC 是锐角或钝角时,其它条件不变,猜想∠QEP 的度数,选取一种情况加以证明;(3)如图3,若∠DAC =135°,∠ACP =15°,且AC =4,求BQ 的长.2、(海淀期末)在△ABC 中,AB =AC ,∠BAC =α,点P 是△ABC 内一点,且2PAC PCA α∠+∠=.连接PB ,试探究P A ,PB ,PC 满足的等量关系.PAB CP'AB C P(1)当α=60°时,将△ABP 绕点A 逆时针旋转60°得到ACP '△,连接PP ',如图1所示.由ABP △≌ACP '△可以证得'APP △是等边三角形,再由30PAC PCA ∠+∠=︒可得 ∠APC 的大小为 度,进而得到CPP '△是直角三角形,这样可以得到P A , PB ,PC 满足的等量关系为 ;(2)如图2,当α=120°时,请参考(1)中的方法,探究P A ,PB ,PC 满足的等量关系,并给出证明;(3)P A ,PB ,PC 满足的等量关系为 .图1 图23.(13年中考)在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
构造等边三角形重难点突破 人教版八年级数学上册(含解析)
构造等边三角形重难点突破构等边(一) 作平行类型一作平行线构X型全等1.如图,△ABC 为等边三角形,D 为CB 的延长线上一点,∠ADF=∠DCF=60°.求证:BD=CF.2.如图,在等边△ABC 中,D 是AB 上一点,E 是BC 延长线上一点,且AD=CE,连接DE 交AC 于点F.(1)求证:DF=EF;的值.(2)过点D 作DH⊥AC 于点H,求HFAC类型二作平行线构旋转全等3.如图1,在等边△ABC 中,M 为AB 上一点,N 为CB 的延长线上一点,∠MNB=∠MCB.(1)求证:AM=BN;(2)如图2,E 为MC 的中点,连接AE.求证:AN=2AE.构等边(二) 作等边三角形类型一遇等边构等边1如图,在四边形ABCD 中, ∠ADC=60°,AD=CD,AB=3,BC=5,连接BD,则BD 的长不可能是( )A.3B.5C.7D.9类型二遇60°角构等边2.如图,在△ABC中,D,E 分别为AB,BC上的点, ∠CDE=∠ACB=60°,BD=CD,DE=5,AD=3,,则CD 的长为.C 3.如图,在四边形ABCD 中, AB=AD=CD,AC,BD交于点O, ∠AOB=60°.求证:( OB=OC.参考答案突破24 构等边(一) 作平行1.证明:过点D 作DE∥AC 交AB 的延长线于点E.∵△ABC 为等边三角形,∴AB=BC,∠BAC=∠ABC=60°.∵DE∥AC,∴∠EDB=∠ACB=60°,∠E=∠BAC=60°,∴△DBE 为等边三角形,∴DB=BE=DE,∴AB+BE=BC+DB,即AE=CD.∵∠ADF=∠ABC=∠DCF=60°,∴∠ADB + ∠CDF = ∠ADB +∠DAB,∴∠DAB=∠CDF.∵∠E=∠DCF=60°,∴△ADE≌△DFC,∴CF=DE,∴BD=CF.2.解:(1)过点D 作DG∥BC 交AC 于点G,∴∠ADG=∠B,∠AGD=∠ACB,∠FDG=∠E.∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=∠A=60°,∴∠A=∠ADG=∠AGD=60°,∴△ADG是等边三角形,∴DG=AD.∵AD=CE,∴DG=CE.∵∠DFG=∠EFC,∠FDG=∠E,DG=CE,∴△DFG≌△EFC,∴DF=EF;(2)∵△ADG 是等边三角形, AD=DG,DH⊥AC,∴AH=HG=12AG.又∵△DFG≌△EFC,∴GF=FC=12GC,∴HF=HG+GF=12AG+12GC=12AC,∴HFAC =12.3.证明:(1)过点M 作MH∥BC交AC于点H.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=∠A=60°.∵MH∥BC,∴∠AMH=∠ABC=60°,∠AHM=∠ACB=60°,∴△AMH 为等边三角形,∴∠MHC=∠MBN=120°,∴AM=MH.∵MH∥BC,∴∠HMC=∠MCB.∵∠MCB=∠MNB,∴MN=MC,∠MNB=∠HMC,∴△HMC≌△BNM,∴MH=BN,∴AM=BN;(2)延长AE 至点F,使EF=AE,连接CF.∵E 为MC 的中点,∴ME=EC.∵∠AEM=∠FEC,∴△AEM≌△FEC,∴AM=CF,∠MAE=∠F,∴AM∥CF,∴∠FCA+∠BAC=180°.∵∠BAC=∠ABC=60°,∴∠ACF=∠ABN=120°.∵AM=CF,AM=BN,∴BN=CF.∵AB=AC,∴△ABN≌△ACF,∴AN=AF=2AE.突破25 构等边(二)作等边三角形1. D 解:连接AC,以AB 为边在AB的左侧作等边△ABF,则△ABD≌△AFC(SAS),∴BD=CF,AB=BF=3.∵BC-BF≤CF≤BC+BF,即5-3≤CF≤5+3,∴2≤CF≤8,∴2≤BD≤8.故选 D.2.8 解:延长DE 至点F,使DF=CD,则△DCF 为等边三角形.在AC 上截取CG=CE,连接DG,则△CDG≌△CFE(SAS),∴∠CDG=∠F=60°,DG=EF.设∠ACD=x,∵BD=CD,∴∠B=∠DCB=60°−x,∴∠A=60°+x.∵∠AGD=∠CDG+∠ACD=60°+x,∴∠A=∠AGD,∴DG=AD=3=EF,∴CD=DF=DE+EF=5+3=8.3.证明:延长OA 至点E,使OE=OB,连接BE.∵∠AOB=60°,∴△BOE 为等边三角形,∴∠EBO=60°,BE=OB.∵AB=AD,∴可设∠ABD=∠ADB=α,则∠ABE=60°−α.∵AD=CD,∴∠DCA = ∠DAC = ∠AOB - ∠ADO=60°−α,∴∠ABE=∠DCA.又∵∠E=∠COD=∠AOB=60°,AB=AD=CD,∴△ABE≌△DCO(AAS),∴OC=BE,∴OC=OB.。
等边三角形的旋转法(一题多解)
以上提供的六种几何证明方法大致可以分为三大类而每类都可以分成两种基本的思考方法还是解决手拉手的模型先找左右手左手拉左手右手拉右手然后证全等证完全等找旋转旋转帮你找对应旋转角度用八字模型必包含对顶角和对应角然后结合题目中的30度角度来思考得到的结果自然就不会难考虑了
等边三角形的旋转法(一题多解)
正三角和旋转
中考数学总复习《旋转变换构造全等三角形》专题(含答案)
旋转变换构造全等三角形一 、选择题1.在等腰Rt ABC ∆的斜边AB 上取两点M 、N ,使45MCN ∠=︒,记AM m =,MN x =,BN n =,则以x 、m 、n 为边长的三角形的形状是( ).A .锐角三角形B .直角三角形C .钝角三角形D .随x 、m 、n 的变化而变化二 、填空题2.如图,ABD ∆和CED ∆均为等边三角形,AC BC =,AC BC ⊥.若BE =,则CD = .3.如图,把边长为1的正方形ABCD 绕顶点A 逆时针旋转30°到正方形A ′B ′C ′D ′,则它们的公共部分的面积等于______.三 、解答题4.如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.5.如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E是BM 中点,求证:CDE ∆是等边三角形.MNCBADMNCBA图6DECBADECBA6.以△ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,求证:CE =BG ,且CE⊥BG .7.如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值.8.如图,已知五边形ABCDE 中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2.求该五边形的面积.9.已知:如图,ABCD 是正方形,FAD FAE ∠=∠. 求证:BE DF AE +=.M DNECBAOB ECF A E DCBA FEDCBA10.在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M ,N ,D 为ABC ∆外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M ,N 分别爱直线AB ,AC 上移动时,BM ,NC ,MN 之间的数量关系及AMN ∆的周长与等边ABC ∆的周长L 的关系.⑴如图①,当点M ,N 在边AB ,AC 上,且DM=DN 时,BM ,NC ,MN 之间的数量关系式__________;此时QL=__________ ⑵如图②,当点M ,N 在边AB ,AC 上,且DM DN ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M ,N 分别在边AB ,CA 的延长线上时,若AN=x ,则Q=_________(用x ,L 表示)11.(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF=12∠BAD .求证:EF =BE +FD;(2)如图2,在四边形ABCD 中,AB =AD ,∠B+∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF=12∠BAD , (1)中的结论是否仍然成立?不用证明. (3)如图3,在四边形ABCD 中,AB =AD ,∠B+∠ADC =180°,E 、F 分别是边F ED C BA M FEDCBA 图③图②图①ABCD MNABCD MNN M D CBABC 、CD 延长线上的点,且∠EAF=12∠BAD , (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.图1 图2 图3旋转变换构造全等三角形答案解析一 、选择题1.如图,将CBN ∆绕点C 顺时针旋转90︒,得CAD ∆,连结MD ,则AD BN n ==,CD CN =,ACD BCN =∠∠,∴MCD ACM ACD =+∠∠∠ACM BCN =∠+∠904545MCN =-==∠. ∴MDC MNC ∆∆≌,∴MD MN x ==又易得454590DAM ∠=+︒=,∴在Rt AMD ∆中,有222m n x +=,故应选(B )二 、填空题1.易知CDB ∆≌CDA ∆≌EDB ∆,从而BC AC BE ===2AB =, 由CDA CDB ∠=∠知CD 是ABD ∆一条高的一部分,1.;设线段CD 与B C ''的交点为M ,则公共部分AB MD '的面积等于直角三角形ADM 和直角三角形AB M '的面积的和,因为是经过旋转后得到的公共部分,可容易得到ADM AB M '△≌△,又根据勾股定理容易得到1323ADM S=△,所以ADMB S ' 三 、解答题4.∵ABC ∆是等边三角形,∴60ACB ∠=︒,AC BC =.∴60BCD DCA ∠+∠=︒,同理60ACE DCA ∠+∠=︒,DC EC =.∴BCD ACE ∠=∠FED CBAFEDCBAF EDCBA在BCD ∆与ACE ∆ 中,BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩∴BCD ACE ∆∆≌,∴BD AE =. 5.∵ACN MCB ∆∆≌,∴AN BM =,ABM ANC ∠=∠又∵D 、E 分别是AN 、BM 的中点, ∴BCE NCD ∆∆≌,∴CE CD =,BCE NCD ∠=∠ ∴60DCE NCD NCE BCE NCE NCB ∠=∠+∠=∠+∠=∠= ∴CDE ∆是等边三角形6.易证△AEC ≌△ABG ,故∠ACE =∠AGB ,又AC ⊥AG ,∠AOG =∠BOC ,故CE ⊥BG .7.连结OB 由上可知,1290+∠=︒∠,2390∠+=∠,13∠=∠,而445C =∠=︒∠,OB OC =.∴OBE OCF ∆∆≌,∴BE FC =,∴BE BF CF BF BC a +=+==.8.延长CB 至F ,使得BF=DE ,连接AF 、AC 、AD .∵∠ABC=∠AED=90°,AB=AE ,BF=DE ∴△ABF ≌△AED ∴AF=AD∵CD= BC+DE=BC+BF=CF ,AC=AC ∴△ACF ≌△ACD ∵AB=CD=CF=2∴该五边形的面积为16. 9.延长CB 至M ,使得BM=DF ,连接AM.∵AB=AD ,AD ⊥CD ,AB ⊥BM ,BM=DF ∴△ABM ≌△ADF∴∠AFD=∠AMB ,∠DAF=∠BAM ∵AB ∥CD4321OB ECF A∴∠AFD=∠BAF=∠EAF+∠BAE=∠BAE+∠BAM=∠EAM ∴∠AMB=∠EAM ∴AE=EM=BE+BM=BE+DF. 10.BM+NC=MN;23Q L =(2)猜想:仍然成立证明:如图,延长AC 至E ,使CE=BM ,连接DE ,120BD CD BDC =∠=︒且,30DBC DCB ∴∠=∠=︒由ABC 是等边三角形,90MBD NCD ∴∠=∠=︒,()MBD ECD SAS ∴∆∆≌,DM DE BDM CDE ∴=∠=∠,60EDN BDC MDN ∴∠=∠-∠=︒在MDN ∆与EDN ∆中DM DE MDN EDN DN DN =⎧⎪∠=⎨⎪=⎩()MDN EDN SAS ∴∆∆≌MN NE NC BM ∴==+AMN ∆的周长Q AM AN MN =++=()()AM BM AN NC +++=2AB AC AB +=而等边ABC ∆的周长3L AB =23Q L ∴= (3)223x L +11.(1)证明:延长EB 到G ,使BG=DF ,联结AG .∵∠ABG =∠ABC=∠D =90°, AB=AD , ∴△ABG ≌△ADF .EABC DM N∴AG=AF,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF=1∠BAD.2∴∠GAE=∠EAF.又AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF= BE+FD(2) (1)中的结论EF= BE+FD仍然成立.(3)结论EF=BE+FD不成立,应当是EF=BE-FD 证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∠BAD.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF =12∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE-BG。
构造等边三角形解决角度问题
例 6 在等腰 △AB C 中 , B = C = 40°,延长 AB 至点 D, 使 AD = B C. 求 B CD 的度数.
解法 1:如图 7,以 AB 为边在 △AB C外作 等边 △AB E,联结 CE. 易知
AB =AC, BAC = 100°.
图8
图9
解 法 3: 如 图 9, 以 AD 为 边 作 等 边
即 BD = 2 7. 过点 D
作 DE BC 交 BC
的延长线于点 E.
图3
设 AC = x. 则 CD = x. 在 R t△CD E中 ,
DCE = 180°- ACD -
ACB = 30°.
于是 , D E = 1 CD = 1 x,
2
2
EC = CD co s
DCE
=
3 2
x.
在 R t△AD E中 , B E2 +D E2 =BD2 ,即
3 运用对称性恢复等边三角形
例 5 在 △AB C中 , AB = AC, A = 80°, P是 △AB C 内一点 , 且 PB C = 10°, PCA = 30°. 求 PAC的度数.
4
中等数学
解 :如图 6, 作点 P
关于 AC 的对称点 P′,
联 结 P′A、P′B、P′C、
P ′P.
2
2 + 3x + 2
1 x 2 = (2 2
7) 2.
解得 x = 2 3. 在 R t△AB C中 ,
tan
AB C
= AC BC
=
23 2
=
3.
于是 , AB C = 60°.
注 :成“丫 ”状的三条线段经过作等边三
等边三角形及形内点构图,旋转是技巧,分割是通法,解读精炼12题
等边三角形及形内点构图,旋转是技巧,分割是通法,解读精炼12题H12.点P在等边△ABC内部,且PA=6,PB=8,PC=10,求:(1)△PBC的面积;(2)以等边三角形的边长a为边长的正方形的面积。
思路:1.等边△ABC被3个三角形所填充:△PAB,△PAC,△PBC,所以等边三角形ABC的面积等于这3个三角形面积之和;2.将△PAB绕点B顺时针旋转60°,得到△DBC,△DBC与△PBC组成四边形BDCP;3.四边形BDCP又可以视为△PCD与△PBD构成的;4.可以判断:△PBD为等边三角形,△PDC为直角三角形;5.可以得到△DBC中∠BDC=150°,进而求出其高和面积;6. △PBC的面积=四边形BDCP的面积-△DBC的面积;7.同理可以求出△PAB和△PAC的面积;8.等边△ABC的面积=△PAB的面积+△PAC的面积+△PBC的面积,同时等边△ABC的面积=1/2a^2sin60°;9.建立方程,即可求出a的平方;10.正方形的面积=a的平方。
实际操作:(1)将△PAB绕点B顺时针旋转60°,得到△DBC,(如下图)连接PD,显然△PAB≌DCB,因而BP=BD,∠PBD=60°,所以△PBD是等边三角形,∠PDB=60°,即PD=PB=8,PA=DC=6,PC=10,PD^2+DC^2=64+36=100, PC^2=100,所以PD^2+DC^2=PC^2,所以△PDC为直角三角形,∠PDC=90°,在△BDC中,∠BDC=90°+60°=150°,作C E⊥BD的延长线,垂足为E,在Rt△CDE中,∠CDE=180°-150°=30°,DC=6,则CE=1/2DC=3,所以△BDC的面积=1/2BD×CE=12,Rt△PDC的面积=1/2PD×CD=24,等边△PBD的面积=1/2PB^2sin60°=16√3,四边形BDCP的面积=24+16√3,四边形BDCP的面积=△BDC的面积+△PBC的面积,则24+16√3=12+△PBC的面积,所以△PBC的面积=12+16√3,△PAB的面积=△BDC的面积=12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目 在凸四边形ABCD 中,60ABC ∠=︒,AB BC =,30ADC ∠=︒。
证明:222AD CD BD +=。
分析:待证结论让我们联想到勾股定理,需要通过添加辅助线将AD 、CD (作
为直角边)和BD (作为斜边)集中到一个直角三角形里。
图1
图2
证明1:如图1,过D 作DE DA ⊥,且使得ED CD =,连接AE 、CE 、AC
903060CDE ADE ADC ∠=∠-∠=︒-︒=︒ ∴CDE ∆是等边三角形 ∴CE CD =,60DCE ∠=︒ 60ABC ∠=︒,AB BC = ∴ABC ∆是等边三角形 ∴AC BC =,60BCA ∠=︒
∴ACE ACD DCE ACD BCA BCD ∠=∠+∠=∠+∠=∠ ∴ACE ∆≌BCD ∆(SAS ) ∴AE BD =
在Rt ADE ∆中,222AD ED AE +=
∴222AD CD BD +=
评注:意外的是,添加辅助线后原图回到了一个经典(老)问题的图上—两个有公共顶点的等边三角形(不看AD ,试试?)!另外,也可以按如下方式作辅助线:如图2,过D 作DE DC ⊥,且使得ED AD =,连接CE 、AE 、AC (过程基本同证明1,不赘述)。
D
B
B
D B
D
图3
图4
证明2:如图3,过C 作CE CD ⊥,且使得CE AD =,连接DE 、BE
360360BCE ECD BCD ABC ADC BCD BAD ∠=︒-∠-∠=︒-∠-∠-∠=∠ BC BA =
∴BCE ∆≌BAD ∆(SAS ) ∴BE BD =,CBE ABD ∠=∠ ∴60DBE ABC ∠=∠=︒ ∴DBE ∆是等边三角形 ∴ED BD =
在Rt DCE ∆中,222CE CD ED +=
∴222AD CD BD +=
评注:明白作辅助线的初衷和目的后,问题解决将得心应手,也可以按如下方式作辅助线:如图4,过A 作AE AD ⊥,且使得AE CD =,连接DE 、BE (过程基本同证明2,不赘述)。
后记:1、证明1的图可以看成以CD 为边作等边三角形CDE ,证明2的图可以看成以BD 为边作等边三角形BDE ,你能理解为什么作等边三角形吗?
2、图1可以看成是将BCD ∆绕点C 沿顺时针方向旋转60︒到ACE ∆,图3可以看成是将ABD ∆绕点B 沿顺时针方向旋转60︒到CBE ∆,你能理解为什么旋转60︒吗?其实,从旋转的视角来看待本题,过程将十分简洁:如图3,将ABD ∆绕点B 沿顺时针方向旋转60︒到CBE ∆,连接DE ,易知DBE ∆是等边三角形,故ED BD =,
由于D C E D B E C E B
C D B A B C A D B C ∠=∠+∠+∠=∠+∠+∠603090=︒+︒=︒(凹四边形),所以2
2
2
CE CD ED +=,从而2
2
2
AD CD BD +=。
相关题目如图,在ABC ∆中,90ABC ∠=︒,AB CB =,45DBE ∠=︒D 、E 是AC 上两点。
试证明:222
AD CE DE +=。
请务必督促孩子今晚进行独立思考,下午辅导课时在黑板上已抄过B B。