(完整版)构造相似三角形解题的几种类型

合集下载

相似三角形六大证明技巧

相似三角形六大证明技巧

相似三角形六大证明技巧一、AA(角角)相似准则这是最常用的相似三角形证明方法。

如果两个三角形的两个角分别相等,那么这两个三角形相似。

这是因为两个三角形如果两个角相等,那么第三个角也必然相等,从而保证了两个三角形的形状相同。

二、SAS(边角边)相似准则如果两个三角形的两边分别成比例,且夹角相等,那么这两个三角形相似。

这是因为两边成比例且夹角相等,可以保证两个三角形的形状相同。

三、SSS(边边边)相似准则如果两个三角形的三边分别成比例,那么这两个三角形相似。

这是因为三边成比例,可以保证两个三角形的形状相同。

四、HL(斜边和直角边)相似准则这个准则适用于直角三角形。

如果两个直角三角形的斜边和一条直角边分别成比例,那么这两个三角形相似。

这是因为斜边和直角边成比例,可以保证两个直角三角形的形状相同。

五、等比三角形如果两个三角形的对应边成等比,那么这两个三角形相似。

这是因为等比关系可以保证两个三角形的形状相同。

六、共线相似如果两个三角形有一条边共线,且这条边上的两个点分别与另一个三角形的两个点对应,那么这两个三角形相似。

这是因为共线关系可以保证两个三角形的形状相同。

相似三角形六大证明技巧一、AA(角角)相似准则这是最常用的相似三角形证明方法。

如果两个三角形的两个角分别相等,那么这两个三角形相似。

这是因为两个三角形如果两个角相等,那么第三个角也必然相等,从而保证了两个三角形的形状相同。

二、SAS(边角边)相似准则如果两个三角形的两边分别成比例,且夹角相等,那么这两个三角形相似。

这是因为两边成比例且夹角相等,可以保证两个三角形的形状相同。

三、SSS(边边边)相似准则如果两个三角形的三边分别成比例,那么这两个三角形相似。

这是因为三边成比例,可以保证两个三角形的形状相同。

四、HL(斜边和直角边)相似准则这个准则适用于直角三角形。

如果两个直角三角形的斜边和一条直角边分别成比例,那么这两个三角形相似。

这是因为斜边和直角边成比例,可以保证两个直角三角形的形状相同。

专题22 相似三角形(归纳与讲解)(解析版)

专题22 相似三角形(归纳与讲解)(解析版)

专题22 相似三角形【专题目录】技巧1:巧用“基本图形”探索相似条件 技巧2:巧作平行线构造相似三角形 技巧3:证比例式或等积式的技巧 (1)基本性质:a b =cd ad =bc ; (2)合比性质:a b =cda +b b =c +dd;技巧1:巧用“基本图形”探索相似条件2.相交线型.3.子母型.4.旋转型.12与3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DF AF.【类型】四、旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ; (2)AD AE =BD CE.参考答案1.(1)证明:∵ED∥BC,∵ED ∥BC,∴∠DE B =∠EBC.h△BDE表示△BDE中DE边上的高,∵DE=6,∴BC=10.2.解:相似.理由如下:因为EOBO=DOCO,∠BO E=∠COD,∠DOE=∠COB,所以△BOE∽△COD,△DOE∽△COB.所以∠EBO=∠DCO,∠DEO=∠CBO.因为∠ADE=∠DCO+∠DEO,∠ABC=∠EBO+∠CBO,所以∠ADE=∠ABC.又因为∠A=∠A,所以△ADE∽△ABC.3.证明:∵∠BAC=90°,AD⊥BC于点D,∴∠BAC=∠A DB=90°.又∵∠CBA =∠ABD(公共角), ∴△ABC ∽△DBA. ∴AB AC =DBDA,∠BAD =∠C. ∵AD ⊥BC 于点D ,E 为AC 的中点, ∴DE =EC.∴∠BDF =∠CDE =∠C. ∴∠BDF =∠BAD. 又∵∠F =∠F , ∴△DBF ∽△ADF. ∴DB AD =DF AF .∴AB AC =DF AF.(第3题)点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC 中,AD ⊥BC 于点D ,D E ⊥AB 于点E ,DF ⊥AC 于点F ,求证:AE·AB =AF·AC.可由两组“射影图”得AE·AB =AD 2,AF·AC =AD 2,∴AE·AB =AF·AC. 4.证明:(1)∵∠DAB =∠EAC ,∴∠DAE =∠BAC.又∵∠ADE =∠ABC ,∴△ADE ∽△ABC. (2)∵△ADE ∽△ABC ,∴AD AE =ABAC.∵∠DAB =∠EAC ,∴△ADB ∽△AEC.∴AD AE =BDCE .技巧2:巧作平行线构造相似三角形【类型】一、巧连线段的中点构造相似三角形1.如图,在△ABC 中,E ,F 是边BC 上的两个三等分点,D 是AC 的中点,BD 分别交AE ,AF 于点P ,Q ,求BP PQ QD.【类型】二、过顶点作平行线构造相似三角形2.如图,在△ABC 中,AC =BC ,F 为底边AB 上一点,BF AF =32,取CF 的中点D ,连接AD并延长交BC 于点E ,求BEEC的值.【类型】三、过一边上的点作平行线构造相似三角形3.如图,在△ABC 中,AB >AC ,在边AB 上取一点D ,在AC 上取一点E ,使AD =AE ,直线DE 和BC 的延长线交于点P.求证:BP CP =BDEC.【类型】四、过一点作平行线构造相似三角形4.如图,在△ABC 中,点M 为AC 边的中点,点E 为AB 上一点,且AE =14AB ,连接EM 并延长交BC 的延长线于点D.求证:BC =2CD.参考答案1.解:如图,连接DF ,∵E ,F 是边BC 上的两个三等分点,∴BE =EF =FC.∵D 是AC 的中点,∴AD =CD. ∴DF 是△ACE 的中位线. ∴DF ∥AE ,且DF =12AE.∴DF ∥PE. ∴∠BEP =∠BFD. 又∵∠EBP 为公共角,∴△BEP ∽△BFD.∴BE BF =BPBD.∵BF =2BE ,∴BD =2BP.∴BP =PD.∴DF =2PE. ∵DF ∥AE ,∴∠APQ =∠FDQ ,∠PAQ =∠DFQ. ∴△APQ ∽△FDQ.∴PQ QD =APDF .设PE =a ,则DF =2a ,AP =3a. ∴PQ QD =AP DF =3 2.∴BP PQ QD =53 2.2.解:如图,过点C 作CG ∥AB 交AE 的延长线于点G.∵CG ∥AB ,∴∠DAF =∠G. 又∵D 为C F 的中点,∴CD =DF.在△ADF 和△GDC 中,⎩⎪⎨⎪⎧∠DAF =∠G ,∠ADF =∠CDG ,DF =CD ,∴△ADF ≌△GDC(AAS ).∴AF =CG. ∵BF AF =32,∴AB AF =52.∵AB ∥CG ,∴∠CGE =∠BAE ,∠BCE =∠ABE. ∴△ABE ∽△GCE. ∴BE EC =AB CG =AB AF =52.3.证明:如图,过点C 作CF ∥AB 交DP 于点F ,∴∠PFC =∠PDB ,∠PCF =∠PBD. ∴△PCF ∽△PBD.∴BP CP =BDCF.∵AD ∥CF ,∴∠ADE =∠EFC. ∵AD =AE ,∴∠ADE =∠AED.∵∠AED =∠CEP ,∴∠EFC =∠CEP.∴EC =CF. ∴BP CP =BD EC. 4.证明:(方法一)如图①,过点C 作CF ∥A B ,交DE 于点F ,又∵∠AME =∠CM F , ∴AE BE =CD BD =13,即BD =3CD. 又∵BD =BC +CD , ∴BC =2CD.(第4题②)(方法二)如图②,过点C 作CF ∥DE ,交AB 于点F , ∴AE AF =AM AC. 又∵点M 为AC 边的中点, ∴AC =2AM. ∴2AE =AF.∴AE =EF. ∴BC =2CD.由EF ∥CD ,易证得△EFM ∽△DCM , EF MF∴EF =12CD.∴BC =2CD.(第4题④)(方法四)如图④,过点A 作AF ∥BD ,交DE 的延长线于点F , ∴∠F =∠D ,∠FAE =∠B. ∴△AEF ∽△BED. ∴AE BE =AF BD . ∵AE =14AB ,=1BE.=1BD.12.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F.求证:DC AE =CF AD.4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB 于E.求证:AM2=MD·ME.【类型】三、构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.【类型】四、等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.【类型】五、两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F.求证:BF BE =ABBC.9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:1011BP12.如图,已知AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB·PC.参考答案12而解决问题.3.证明:∵四边形ABCD 是平行四边形,∴A E ∥D C ,∠A =∠C. ∴∠CDF =∠E.∴△FCD ∽△DAE.∴DC AE =CFAD .4.证明:∵DM ⊥BC ,∠BAC =90°,∴∠B+∠BEM=90°,∠D+∠DEA=90°.∵∠BEM=∠DEA,∴∠B=∠D.又∵M为BC的中点,∠BAC=90°,∴BM=AM.∴∠B=∠BAM.∴∠BAM=∠D.即∠EAM=∠D.56.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵DE∥BC,∴∠ABC+∠EDB=180°,∠ACB+∠FED=180°.∴∠FED=∠EDB.又∵∠EDF=∠DBE,∴△DEF∽△BDE.(2)由△DEF∽△BDE得DEBD=EFDE.即DE2=DB·EF.又由△DEF∽△BDE,得∠GED=∠EFD.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴DG DE =DEDF .即DE 2=DG·DF. ∴DG·DF =DB·EF.7.证明:∴BG∴AP ,PE∴AB ,∴∴AEP =∴DEB =∴AGB =90°. ∴∴P +∴PAB =90°, ∴PAB +∴AB G =90°.89.证明:(1)∵四边形ABCD 为平行四边形,∴∠B =∠D.∵AM ⊥BC ,AN ⊥CD , ∴∠AMB =∠AND =90°. ∴△AMB ∽△AND.(2)由△AMB ∽△AND 得AM AN =AB AD ,∠BAM =∠DAN.又AD =BC ,∴AM AN =ABBC .∵AM ⊥BC ,AD ∥BC ,∴∠MAD =∠AMB =90°.∴∠B +∠BAM =∠MAN +∠NAD =90°.∴∠B =∠MAN. ∴△AMN ∽△BAC.∴AM AB =MN AC .10.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°. 又∵∠BAD =∠DAE ,1112.证明:如图,连接PA ,∵EP 是AD 的垂直平分线, ∴PA =PD.∴∠PD A =∠PAD.∴∠B +∠BAD =∠DAC +∠CAP. 又∵AD 平分∠BAC ,∴∠BAD =∠DAC.∴∠B =∠CAP. 又∵∠APC =∠BPA , ∴△PAC ∽△PBA.∴PA PB =PCPA .A 3243A .6B .7C .8D .9【答案】C【提示】根据平行线分线段成比例定理,由DE∴BC 得AD AEDB EC=,然后利用比例性质求EC 和AE的值即可【详解】∴//DE BC , ∴AD AE DB EC =,即932AE=, ∴6AE =,∴628AC AE EC =+=+=. 故选C .例(A AB ACAB BCA B C D 例4、如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=( )A.30B.25C.22.5D.20【答案】D:S∆例得mA【解析】∴∴ABE=∴DCE, ∴AEB=∴CED,∴∴ABE∴∴DCE,∴AB BE CD CE=.∴BE=90m,EC=45m,CD=60m,∴()906012045AB m ⨯== 故选A.【物高问题】【题型】六、位似图形的概念与性质例6、如图,∴ABC 与∴DEF 位似,点O 为位似中心.已知OA ∴OD =1∴2,则∴ABC 与∴DEF 的面积比为( )A 8A .20cmB .10cmC .8cmD .3.2cm【答案】A【提示】根据对应边的比等于相似比列式进行计算即可得解. 【详解】解:设投影三角尺的对应边长为xcm , ∴三角尺与投影三角尺相似, ∴8:x =2:5, 12BD ADE 与ABC 的周长之比为(A ABC ADE ∽,相似三角形的对应边成∴∴∴ABC ADE ∽, ∴∴AD :AB =1:3, ∴13ADE ABC C C ∆∆=::, 即ADE 与ABC 的周长比为1:3. 故选:D .【点睛】题目主要考查相似三角形的判定与性质,平行线的性质,熟练掌握相似三角形的判定定理及其性质是解题关键.2.如图,在ABC 中,高BD 、CE 相交于点.F 图中与AEC △一定相似的三角形有( )A ADB ,△∴FEB ,△A ∠=∠∴ADB , ABD =∠,又90AEC BEC =∠=∴FEB ,ACE =∠,∴FDC △,【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法是解题的关键.3ABC 中,D 、A ∴∴ADE ∴∴ABC ,∴∴ADE 与∴ABC 的周长之比为1:2,∴∴ADE 与∴ABC 的面积之比为1:4,即14.故选:B .【点睛】此题考查的是相似三角形的性质,三角形中位线定理,掌握相似三角形的周长之比等于相似比,面积比等于相似比的平方是解决此题关键.4.如图,D 是ABC 的边BC 上的一点,那么下列四个条件中,不能够判定∴ABC 与∴DBA 相似的是( )ABC ∴DBA ,故选项ABC ∴DBA ,故选项B 不符合题意;ACB 与BAD ∠是否相等,所以无法判定两三角形相似,故选项B B ∠=∠,ABC ∴DBA ,故选项【点睛】本题考查相似三角形的判定定理,熟练掌握相关定理是解题的关键.ABC ∴A B C ''',是它们的对应角平分线,若的面积比是( )3 B .C .3【答案】B【分析】根据相似三角形的性质:【详解】ABC ∴A B C ''',AD 和A D ''是它们的对应角平分线,8AD =,12A D ''=,∴两三角形的相似比为: :8:122:3AD A D '==',则ABC 与'''A B C 的面积比是:4:9. 故选:B【点睛】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.二、填空题6.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高为1.5m,测得AB =3m,AC=10m,则建筑物CD的高是_____m.7.如图所示,要使ABC ADE~,需要添加一个条件∠=∠【答案】ADE B【分析】根据已有条件,加上一对角相等就可以证明ABC与ADE相似,依据是:两角对应相等的两个三角形相似.【详解】解:添加ADE B∠=∠,A A∠=∠ABC ADE∴~故答案为:ADE B∠=∠.【点睛】本题主要考查了三角形相似的判定方法,牢记三角形相似的判定方法是做出本题的关键.8(1)(2)(2)(((2)解:∴∴ADE∴∴ABC,∴AD DEAB BC=,243BC=,∴BC=6.【点睛】本题考查了三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.相似三角形(提升测评)一、单选题1.如图,在菱形ABCD 中,点E 在AD 边上,EF ∴CD ,交对角线BD 于点F ,则下列结论中错误的是( )DE DFEF DFEF DFEF DF【点睛】此题考查平行四边形的性质、相似三角形的判定与性质以及平行线分线段成比例定理;熟练掌握平行四边形的性质,证明三角形相似是解决问题的关键.2.如图1为一张正三角形纸片ABC ,其中D 点在AB 上,E 点在BC 上.今以DE 为折线将B 点往右折后,BD 、BE 分别与AC 相交于F 点、G 点,如图2所示.若10AD =,16AF =,14DF =,8BF =,则CG 的长度为多少?( )A.7B.8C.9D.10,解:∴3A.B.4C D.2【答案】B【分析】先过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,构造相似三角形,再利用相似三角形的性质列出比例式,计算求解即可.【详解】解:过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,则90ACO ODB ∠=∠=︒,90B BOD ∠+∠=︒,A 的坐标是AC =1,122DB=,即:B 的纵坐标是故选:B . 4的A .AD AFBD EF= B .AF DFAE EB= C .=AD AEAB ACD .CAF FE DEB = 【答案】D∥找到对应线段成比例或相似三角形对应线段的比相等,判断即可.【分析】根据DF BE∥,DE BC【详解】解:DF BE∥,AD AF∴=,BD EF故A选项比例式正确,不符合题意;DF BE∥,∴△∽△,ADF ABE5【答案】9x,根据同时同地物高与影长成正比列出比例式求出x,然后加【分析】设地面影长对应的树高为m上墙上的影长CD即为树的高度.x,【详解】解:设地面影长对应的树高为m由题意得,140.5x =, 解得8x =,墙上的影子CD 长为1m , ∴树的高度为()819m +=.故答案为:9.【点睛】本题考查利用投影求物高.熟练掌握同时同地物高与影长成正比是解题的关键.616AD BC ,FCG ,2, CFG 的面积之比AD BC ,:(2)2:5x a a x ∴+-=,67x a ∴=,68,77AE a EG a ∴==, :3:4AE EG =,∴DEG ∆与ADE ∆的面积之比是4:3,∴DEG ∆与CFG ∆的面积之比是16:7.故答案为:16:7.【点睛】此题考查了相似三角形的判定与性质,熟练掌握并运用:相似三角形对应边成比例、相似三角形的面积比等于相似比的平方等性质,是解此题的关键.三、解答题7,H(1)(2)(2),证出ADK FGK ,得出比例式求出()由正方形的性质求出出AM =4,FM =2,∴AMF 12CH AF =,根据勾股定理求出()解:∴四边形ABCD 和四边形CEFG 是正方形,∴AD =CD =BC =1,CG =FG =CE =3,,AD BC GF BE ∥∥,∴G =90°,∴DG =CG -CD =2,AD GF ∥,∴ADK FGK ,∴DK :GK =AD :GF =1:3,∴3342GK DG ==,∴312tan32GKGFKFG∠===;(2)解:∴正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∴E=90°,延长AD交EF于M,连接AC、CF,如图所示:则∴∴∴在∴8.如图所示,BEF的顶点AF,满足((CEB , BCE ∠∴=,ABCD 是矩形,∴BC DAB ∠,ACB =∠,BCE ACB ∠∠+=∴即∴90FAD DAC ∠∠∴+=︒,90DAB ∠=︒,90BAC DAC ∠∠∴+=︒,FAD BAC ∠∠∴=,在Rt ABC 中,tanBCBACAB∠===,30BAC∴∠=︒,30FAD∠∴=︒;(2)由(1)得9030ABC BAC∠∠=︒=︒,,CEB,ABCE,313,3,FAE中,【点睛】本题主要考查相似三角形的性质,矩形的性质,解直角三角形,解答的关键是结合图形及相应的性质求得∠。

完整版)相似三角形题型归纳

完整版)相似三角形题型归纳

完整版)相似三角形题型归纳1、在平行四边形ABCD中,点E为对角线AC上的一点,且AE∶EC=1∶3.将BE延长至与CD的延长线交于点G,与AD交于点F。

证明BF∶FG=1∶2.2、在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上的一点。

点G在BE上,连接DG并延长至交AE于点F,且∠FGE=45°。

证明:(1)BD·BC=BG·BE;(2)AG⊥BE;(3)若E为AC的中点,则EF∶FD=1∶2.3、在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上的一点,连接BO交AD于点F,OE⊥OB交BC边于点E。

证明:(1)△ABF∽△COE;(2)当O为AC的中点时,求△ABC的面积;(3)当O为AC边中点时,求△ABC的面积。

4、在平行四边形ABCD和平行四边形ACED中,点R为DE的中点,BR分别交AC、CD于点P、Q。

写出各对相似三角形(相似比为1除外),并求出BP∶PQ∶QR的值。

5、在△ABC中,AD平分∠BAC,EM为AD的中垂线,交BC延长线于点E。

证明DE=BE·CE。

6、过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和E。

证明AE∶ED=2AF∶FB。

7、在Rt△ABC中,CD为斜边AB上的高,点M在CD 上,DH⊥BM且与AC的延长线交于点E。

证明:(1)△AED∽△CBM;(2)DE=DM。

8、在△ABC中,BD、CE分别是两边上的高,过D作DG⊥BC于点G,分别交CE及BA的延长线于点F、H。

证明:(1)DG=BG·CG;(2)BG·CG=GF·GH。

9、在平行四边形ABCD中,点P为对角线AC上的一点。

过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H。

证明:AG∶GB=CP∶PD。

1、求证:如图,已知平行四边形ABCD中,点P在AC上,点Q在BC上,且AP=CQ。

模型05 相似三角形中的常见五种基本模型(解析版)-中考数学解题大招复习讲义

模型05 相似三角形中的常见五种基本模型(解析版)-中考数学解题大招复习讲义

模型探究相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、A字型相似模型A字型(平行)反A字型(不平行)模型二、8字型与反8字型相似模型模型三、AX型相似模型(A字型及X字型两者相结合)模型四、共边角相似模型(子母型)模型五、手拉手相似模型例题精讲考点一、A字相似模型【例1】.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.变式训练【变式1-1】.如图,在△ABC中,DE∥BC,AH⊥BC于点H,与DE交于点G.若,则=.解:∵,∴,∵DE∥BC,∴△ADE∽△ABC,∴,故答案为.【变式1-2】.如图,在△ABC中,M是AC的中点,E是AB上一点,AE=AB,连接EM并延长,交BC的延长线于D,则=__________.解:如图,过C点作CP∥AB,交DE于P,∵PC∥AE,∴△AEM∽△CPM,∴=,∵M是AC的中点,∴AM=CM,∴PC=AE,∵AE=AB,∴CP=AB,∴CP=BE,∵CP∥BE,∴△DCP∽△DBE,∴==,∴BD=3CD,∴BC=2CD,即=2.【变式1-3】.如图,在△ABC中,点D在边AB上,AD=9,BD=7.AC=12.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)若AF=8,求AE的长度.解:(1)∵AD=9,BD=7,AC=12,∴AB=AD+BD=16,∵==,==,∴=,∵∠BAC=∠CAD,∴△ACD∽△ABC;(2)由(1)可知,△ACD∽△ABC,∴∠ABE=∠ACF,∵AE平分∠BAC,∴∠BAE=∠CAF,∴△ABE∽△ACF,∴=,即=,∴AE==.考点二、8字与反8字相似模型【例2】.如图,AG∥BD,AF:FB=1:2,BC:CD=2:1,求的值解:∵AG∥BD,∴△AFG∽△BFD,∴=,∵,∴CD=BD,∴,∵AG∥BD,∴△AEG∽△CED,∴.变式训练【变式2-1】.如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是()A.B.C.D.解:A、∵AB∥CD,∴=,故本选项不符合题目要求;B、∵AE∥DF,∴△CEG∞△CDH,∴=,∴=,∵AB∥CD,∴=,∴=,∴=,∴=,故本选项不符合题目要求;∵AB∥CD,AE∥DF,∴四边形AEDF是平行四边形,∴AF=DE,∵AE∥DF,∴,∴=,故本选项不符合题目要求;D、∵AE∥DF,∴△BFH∞△BAG,∴,故本选项符合题目要求;故选:D.【变式2-2】.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.14解:如图,∵四边形ABCD是平行四边形,∵EA∥BC,∴△AEF∽△CBF,∵AE=DE=AD,CB=AD,∴====,∴AF=AC,EF=BF,=S△ABC,∴S△ABF=S△ABF=×S△ABC=S△ABC,∴S△AEF=2,∵S△AEF=6S△AEF=6×2=12,故选:C.∴S△ABC【变式2-3】.如图,锐角三角形ABC中,∠A=60°,BE⊥AC于E,CD⊥AB于D,则DE:BC=1:2.解:如图,∵在△ADC中,∠A=60°,CD⊥AB于点D,∴∠ACD=30°,∴=.又∵在△ABE中,∠A=60°,BE⊥AC于E,∴∠ABE=30°,∴=,∴=.又∵∠A=∠A,∴△ADE∽△ACB,∴DE:BC=AD:AC=1:2.故答案是:1:2.考点三、AX型相似模型(A字型及X字型两者相结合)【例3】.如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为()A.6B.9C.12D.13.5解:∵点D和E分别是边AB和AC的中点,∴O点为△ABC的重心,∴OB=2OE,=2S△DOE=2×1=2,∴S△BOD=3,∴S△BDE∵AD=BD,=2S△BDE=6,∴S△ABE∵AE=CE,=2S△ABE=2×6=12.故选C.∴S△ABC变式训练【变式3-1】.如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,=1,则S△ABC=24.若S△EFG解:方法一:∵DE是△ABC的中位线,∴D、E分别为AB、BC的中点,如图过D作DM∥BC交AG于点M,∵DM∥BC,∴∠DMF=∠EGF,∵点F为DE的中点,∴DF=EF,在△DMF和△EGF中,,∴△DMF≌△EGF(AAS),=S△EGF=1,GF=FM,DM=GE,∴S△DMF∵点D为AB的中点,且DM∥BC,∴AM=MG,∴FM=AM,=2S△DMF=2,∴S△ADM∵DM为△ABG的中位线,∴=,=4S△ADM=4×2=8,∴S△ABG=S△ABG﹣S△ADM=8﹣2=6,∴S梯形DMGB=S梯形DMGB=6,∴S△BDE∵DE是△ABC的中位线,=4S△BDE=4×6=24,∴S△ABC方法二:连接AE,∵DE是△ABC的中位线,∴DE∥AC,DE=AC,∵F是DE的中点,∴=,∴==,=1,∵S△EFG=16,∴S△ACG∵EF∥AC,∴==,∴==,=S△ACG=4,∴S△AEG=S△ACG﹣S△AEG=12,∴S△ACE=2S△ACE=24,故答案为:24.∴S△ABC【变式3-2】.如图:AD∥EG∥BC,EG交DB于点F,已知AD=6,BC=8,AE=6,EF =2.(1)求EB的长;(2)求FG的长.解:(1)∵EG∥AD,∴△BAD∽△BEF,∴=,即=,∴EB=3.(2)∵EG∥∥BC,∴△AEG∽△ABC,∴=,即=,∴EG=,∴FG=EG﹣EF=.【变式3-3】.如图,已知AB∥CD,AC与BD相交于点E,点F在线段BC上,,.(1)求证:AB∥EF;:S△EBC:S△ECD.(2)求S△ABE(1)证明:∵AB∥CD,∴==,∵,∴=,∴EF∥CD,∴AB∥EF.(2)解:设△ABE的面积为m.∵AB∥CD,∴△ABE∽△CDE,∴=()2=,=4m,∴S△CDE∵==,=2m,∴S△BEC:S△EBC:S△ECD=m:2m:4m=1:2:4.∴S△ABE模型四、子母型相似模型【例4】.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证:(1)△ACP∽△PDB,(2)CD2=AC•BD.证明:(1)∵△PCD是等边三角形,∴∠PCD=∠PDC=∠CPD=60°,∴∠ACP=∠PDB=120°,∵∠APB=120°,∴∠APC+∠BPD=60°,∵∠CAP+∠APC=60°∴∠BPD=∠CAP,∴△ACP∽△PDB;(2)由(1)得△ACP∽△PDB,∴,∵△PCD是等边三角形,∴PC=PD=CD,∴,∴CD2=AC•BD.变式训练【变式4-1】.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.D.解:在△ABP和△ACB中,∠BAP=∠CAB,∴当∠ABP=∠C时,满足两组角对应相等,可判断△ABP∽△ACB,故A正确;当∠APB=∠ABC时,满足两组角对应相等,可判断△ABP∽△ACB,故B正确;当时,满足两边对应成比例且夹角相等,可判断△ABP∽△ACB,故C正确;当时,其夹角不相等,则不能判断△ABP∽△ACB,故D不正确;故选:D.【变式4-2】.如图,在△ABC中,点D在AC边上,连接BD,若∠ABC+∠BDC=180°,AD=2,CD=4,则AB的长为()A.3B.4C.D.2解:∵∠ABC+∠BDC=180°,∠ADB+∠BDC=180°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABC∽△ADB,∴,∵AD=2,CD=4,∴,∴AB2=12,∴AB=2或﹣2(不合题意,舍去),故选:D.【变式4-3】.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则PA+PB的最小值为2.解:设⊙O半径为r,OP=r=BC=2,OB=r=2,取OB的中点I,连接PI,∴OI=IB=,∵,,∴,∠O是公共角,∴△BOP∽△POI,∴,∴PI=PB,∴AP+PB=AP+PI,∴当A、P、I在一条直线上时,AP+PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=BI=1,∴AE=AB﹣BE=3,∴AI==,∴AP+PB最小值=AI=,∵PA+PB=(PA+PB),∴PA+PB的最小值是AI==2.故答案是2.模型五、手拉手相似模型【例5】.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为.解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1=,故答案为:.变式训练【变式5-1】.如图,在△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE.求证:(1)△BAC∽△DAE;(2)△BAD∽△CAE.证明:(1)∵∠BAC=∠DAE,∠ABC=∠ADE.∴△BAC∽△DAE;(2)∵△BAC∽△DAE,∴,∴,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE.【变式5-2】.如图,点D是△ABC内一点,且∠BDC=90°,AB=2,AC=,∠BAD=∠CBD=30°,AD=.解:如图,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴=,∵AC=,∴BM=3,在Rt△ABM中,AM===,∴AD=AM=.【变式5-3】.如图,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),则BD的长为.(用含k的式子表示)解:如图中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=,故答案为:.实战演练1.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.=B.C.D.解:A、∵EF∥AB,∴=,∵DE∥BC,∴=,∴=,故A正确,B、易知△ADE∽△EFC,∴=,∴=,故B正确.C、∵△CEF∽△CAB,∴=,∴=,故C正确.D、∵DE∥BC,∴=,显然DE≠CF,故D错误.故选:D.2.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3B.2:5C.4:9D.:解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD===,∵=()2=∴△ABC与△DCA的面积比为4:9.故选:C.3.如图,菱形ABCD中,E点在BC上,F点在CD上,G点、H点在AD上,且AE∥HC ∥GF.若AH=8,HG=5,GD=4,则下列选项中的线段,何者长度最长?()A.CF B.FD C.BE D.EC解:∵AH=8,HG=5,GD=4,∴AD=8+5+4=17,∵四边形ABCD为菱形,∴BC=CD=AD=17,∵AE∥HC,AD∥BC,∴四边形AECH为平行四边形,∴CE=AH=8,∴BE=BC﹣CE=17﹣8=9,∵HC∥GF,∴=,即=,解得:DF=,∴FC=17﹣=,∵>9>8>,∴CF长度最长,故选:A.4.如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP 交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6B.9C.12D.18解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴=2,∴EM=2BC=2×6=12,即EP+BP=12.故选:C.5.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′等于()A.B.2C.D.解:过D作DE⊥BC于E,则BE=AD=2,DE=2,设B′C=BC=x,则DC=x,∴DC2=DE2+EC2,即2x2=28+(x﹣2)2,解得:x=4(负值舍去),∴BC=4,AC=,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴∴△A′CA∽△B′CB,∴,即∴AA′=,故选:A.6.如图,已知,△ABC中边AB上一点P,且∠ACP=∠B,AC=4,AP=2,则BP=6.解:∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,∴AC2=AP•AB,即AB=AC2÷AP=16÷2=8,∴BP=AB﹣AP=6.7.如图,在▱ABCD中,AC、BD相交于点O,点E是OA的中点,联结BE并延长交AD 于点F,如果△AEF的面积是4,那么△BCE的面积是36.解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,=4,=()2=,∵S△AEF=36,故答案为36.∴S△BCE8.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8.解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.9.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则sin∠ABE=.解:∵将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,∴BD=AB,BC=BE,∠ABD=∠CBE,∠DEB=∠ACB,∴∠D=∠BAC=∠BAD=(180°﹣∠ABD),∴∠BEC=(180°﹣∠CBE),∴∠D=∠BEC,∵∠ABC=∠DBE=90°,∴∠DEB+∠BEC=90°,∴∠AEC=90°,∵∠AGB=∠EGC,∴∠ACE=∠ABE,∵在Rt△ABC中,AB=3,BC=4,∴AC=DE=5,过B作BH⊥DE于H,则DH=AH,BD2=DH•DE,∴DH==,∴AD=,∴AE=DE﹣AD=,∴sin∠ABE=sin∠ACE===,故答案为:.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC于点D,过点D作CA的平行线,交边AB于点E.(1)求线段DE的长;(2)取线段AD的中点M,联结BM,交线段DE于点F,延长线段BM交边AC于点G,求的值.解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=30°,在Rt△ACD中,∠ACD=90°,∠DAC=30°,AC=6,∴CD=2,在Rt△ACB中,∠ACB=90°,∠BAC=60°,AC=6,∴BC=6,∴BD=BC﹣CD=4,∵DE∥CA,∴,∴DE=4;(2)如图,∵点M是线段AD的中点,∴DM=AM,∵DE∥CA,∴,∴DF=AG,∵DE∥CA,∴,∴,∵BD=4,BC=6,DF=AG,∴.11.如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC 于点M,且∠ADE=∠CDF.(1)求证:CE=AF;(2)连接ME,若=,AF=2,求ME的长.解:(1)∵四边形ABCD是菱形,∴AD=CD,∠DAF=∠DCE,又∵∠ADE=∠CDF,∴∠ADE﹣∠EDF=∠CDF﹣∠EDF,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE,∴CE=AF.(2)∵四边形ABCD是菱形,∴AB=BC,由(1)得:CE=AF=2,∴BE=BF,设BE=BF=x,∵=,AF=2,∴,解得x=,∴BE=BF=,∵=,且CE=AF,∴==,∵∠CMD=∠AMF,∠DCM=∠AMF,∴△AMF∽△CMD,∴,∴=,且∠ACB=∠ACB∴△ABC∽△MEC∴∠CAB=∠CME=∠ACB∴ME=CE=212.[问题背景](1)如图①,已知△ABC∽△ADE,求证:△ABD∽△ACE.[尝试应用](2)如图②,在△ABC和△ADE中,∠BAC=∠DAE=90°∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,①填空:=1;②求的值.(1)证明:如图①,∵△ABC∽△ADE,∴∠BAC=∠DAE,=,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,=,∴∠BAD=∠CAE,∴△ABD∽△ACE.(2)解:①如图②,∵∠DAE=90°,∠ADE=30°,∴DE=2AE,∴AD===AE,∵=,∴AD=BD,∴AE=BD,∴=1,故答案为:1.②如图②,连接CE,∵∠BAC=∠DAE=90°,∠ABC=∠ADE,∴△BAC∽△CAE,∴=,∴=,∵∠BAD=∠CAE=90°﹣∠CAD,∴△BAD∽△CAE,∴∠ABC=∠ACE,∴∠ADE=∠ACE,∵∠AFD=∠EFC,∴△AFD∽△EFC,∴=,由①得AD=AE,AD=BD,∴==,∴BD=CE,∴AD=×CE=3CE,∴=3,∴=3,∴的值是3.13.如图,在正方形ABCD中,AB=4,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于点M、N,连接EN、EF.(1)求证:△ABN∽△MBE;(2)求证:BM2+ND2=MN2;(3)①求△CEF的周长;②若点G、F分别是EF、CD的中点,连接NG,则NG的长为.(1)证明:如图1,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=90°,∴∠ABD=∠ADB=45°,∴∠ABN=∠MBE=45°,∠BME=∠ABD+∠BAM=45°+∠BAM,∵∠EAF=45°,∴∠BAN=∠EAF+∠BAM=45°+∠BAM,∴∠BAN=∠BME,∴△ABN∽△MBE.(2)证明:如图1,将△ADN绕点A顺时针旋转90°得到△ABH,连接MH,∴∠BAH=∠DAN,AH=AN,HB=ND,∵∠MAN=∠EAF=45°,∴∠MAH=∠BAH+∠BAM=∠DAN+∠BAM=45°,∴∠MAH=∠MAN,∵AM=AM,∴△MAH≌△MAN(SAS),∴MH=MN,∵∠ABH=∠ADN=45°,∴∠MBH=∠ABD+∠ABH=90°,∴BM2+HB2=MH2,∴BM2+ND2=MN2.(3)解:①如图2,将△ADF绕点A顺时针旋转90°得到△ABK,∴AK=AF,∠BAK=∠DAF,BK=DF,∠ABK=∠ADF=90°,∴∠ABK+∠ABE=180°,∴点K、点B、点E在同一条直线上,∵∠EAK=∠BAE+∠BAK=∠BAE+∠DAF=45°,∴∠EAK=∠EAFM,∵AE=AE,∴△EAK≌△EAF(SAS),∴EK=EF,∴BE+DF=BE+BK=EK=EF,∵CB=CD=AB=4,∴CE+EF+CF=CE+BE+DF+CF=CB+CD=4+4=8,∴△CEF的周长是8.②如图2,∵F是CD的中点,∴CF=DF=CD=2,∵∠C=90°,∴CF2+EF2=CE2,∵EF=BE+DF=BE+2,CE=CB﹣BE=4﹣BE,∴22+(4﹣BE)2=(BE+2)2,解得BE=,∴EF=+2=,∵∠MBE=∠MAN=45°,∠BME=∠AMN,∴△BME∽△AMN,∴=,∴=,∴∠AMB=∠NME,∴△AMB∽△NME,∴∠NEM=∠ABM=45°,∴∠ENF=∠MAN+∠NEM=90°,∵G是EF的中点,∴NG=EF=×=,故答案为:.14.问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴在Rt△ABM中,AM===2,∴AD=.15.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的数量关系BG=DE及所在直线的位置关系BG⊥DE;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4﹣6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),则线段BG、线段DE的数量关系=及所在直线的位置关系BG ⊥DE;(3)在第(2)题图5中,连接DG、BE,且a=4,b=3,k=,直接写出BE2+DG2的值为.解:(1)①猜想:BG ⊥DE ,BG =DE ;故答案为:BG =DE ,BG ⊥DE ;②结论成立.理由:如图2中,∵四边形ABCD 和四边形CEFG 是正方形,∴BC =DC ,CG =CE ,∠BCD =∠ECG =90°,∴∠BCG =∠DCE ,∴△BCG ≌△DCE (SAS ),∴BG =DE ,∠CBG =∠CDE ,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG ⊥DE .(2)∵AB =a ,BC =b ,CE =ka ,CG =kb ,∴==,又∵∠BCG =∠DCE ,∴△BCG ∽△DCE ,∴∠CBG =∠CDE ,==,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG⊥DE.故答案为:=,BG⊥DE.(3)连接BE、DG.根据题意,得AB=4,BC=3,CE=2,CG=1.5,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+16+2.25+4=.。

相似三角形模型分析大全(非常全面,经典)

相似三角形模型分析大全(非常全面,经典)

相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.ACDEB相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

求证:∠=︒GBM 90GMF EHDCBA5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DCB上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.双垂型1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED2、如图,已知锐角△ABC,AD、CE分别是BC、AB边上的高,△ABC和△BDE的面积分别是27和3,DE=62,求:点B到直线AC的距离。

证相似三角形的方法

证相似三角形的方法

证相似三角形的方法
证明两个三角形相似的方法有以下几种:
1. AA相似定理:如果两个三角形的两个对应角度相等,那么这两个三角形是相似的。

2. SSS相似定理:如果两个三角形的对应边长成比例,那么这两个三角形是相似的。

3. SAS相似定理:如果两个三角形的两个对应边成比例,并且夹角的大小相等,那么这两个三角形是相似的。

4. 直角三角形相似定理:如果两个直角三角形的两个锐角相等,那么这两个三角形是相似的。

在证明相似三角形的过程中,我们可以使用这些相似定理,利用已知条件进行推理和运用几何性质进行证明。

相似三角形题型

相似三角形题型

相似三角形题型
相似三角形是初中数学中非常重要的一部分,以下是一些常见的相似三角形题型:
1. **利用相似三角形求长度**。

在这种题型中,通常会给出一个或多个相似三角形,并询问某个特定边的长度。

解决此类问题通常需要找出相似三角形的对应边,并利用其比例关系来求解。

2. **利用相似三角形求角度**。

这类问题通常会涉及一个或多个相似三角形的角度。

通过相似三角形的对应角相等这一性质,可以很容易地求解出未知角度。

3. **利用相似三角形求面积**。

根据相似三角形的面积比等于对应边的平方比这一性质,我们可以通过已知的相似三角形面积来求出未知的相似三角形面积。

4. **利用相似三角形设计问题**。

这类问题通常会设计一个实际问题场景,例如建筑设计、机械设计等,然后通过引入相似三角形来解决这个问题。

5. **利用相似三角形解决实际问题**。

例如,在物理学中,可以利用相似三角形来解决一些力学问题;在地理学中,可以利用相似三角形来计算一些地理数据等。

以上只是相似三角形题型的部分例子,实际上,相似三角形的应用非常广泛,可以用来解决很多实际问题。

在解决相似三角形问题时,一定要灵活运用相似三角形的性质和定理,以及相关的数学知识和方法。

相似三角形证明技巧(整理)

相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全

相似三角形的判定方法总结:1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.2. 三边成比例的两个三角形相似.(SSS )3. 两边成比例且夹角相等的两个三角形相似. (SAS)4. 两角分别相等的两个三角形相似.(AA)5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A ”型与“反X ”型.示意图结论E D CB A反A 型:如图,已知△ABC ,∠ADE =∠C ,则△ADE ∽△ACB (AA ),∴AE ·AC =AD ·AB. 若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS)O DCBA反X 型:如图,已知角∠BAO =∠CDO ,则△AOB ∽△DOC (AA ),∴OA ·OC =OD ·OB . 若连AD ,BC ,进而能证明△AOD ∽△BOC .“类射影”与射影模型示意图结论A BCD类射影:如图,已知△ABC ,∠ABD =∠C ,则△ABD ∽△ACB (AA ),∴2AB =AD ·AC. CABH射影定理如图,已知∠ACB =90°,CH ⊥AB 于H ,则222,,AC AH AB BC BH BA HC HA HB =⋅=⋅=⋅相似三角形6大证明技巧相似三角形证明方法“旋转相似”与“一线三等角”反A 型与反X 型已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ⋅=⋅(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCBOF ECBA类射影如图,已知2AB AC AD =⋅,求证:BD ABBC AC= A BCD射影定理已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =⋅,2BC BH BA =⋅,2HC HA HB =⋅通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。

(完整版)相似三角形中几种常见的辅助线作法(有辅助线)

(完整版)相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。

主要的辅助线有以下几种:一、添加平行线构造“A ”“X ”型例1:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点,求:BE :EF 的值.解法一:过点D 作CA 的平行线交BF 于点P ,则∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE :EF=5:1.解法二:过点D 作BF 的平行线交AC 于点Q ,∴BE :EF=5:1.解法三:过点E 作BC 的平行线交AC 于点S ,解法四:过点E 作AC 的平行线交BC 于点T ,∵BD=2DC ∴ ∴BE :EF=5:1.变式:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点,连结BE 并延长交AC 于F,求AF :CF 的值.解法一:过点D 作CA 的平行线交BF 于点P , 解法二:过点D 作BF 的平行线交AC 于点Q , 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T ,,1==AE DE FEPE ,2==DC BD PF BP ,则2==EA DA EF DQ ,3==DCBC DQBF ,EF EF EF EF DQ EF BF BE 563=-=-=-=,则DC CT DT 21==;TC BT EF BE =,DC BT 25=例2:如图,在△ABC 的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,DE 延长线与BC 延长线相交于F ,求证:(证明:过点C 作CG//FD 交AB 于G )例3:如图,△ABC 中,AB<AC ,在AB 、AC 上分别截取BD=CE ,DE ,BC 的延长线相交于点F ,证明:AB ·DF=AC ·EF.分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。

初中数学解题模型专题讲解16---相似三角形六大证明技巧

初中数学解题模型专题讲解16---相似三角形六大证明技巧

初中数学解题模型专题讲解 专题16 16 相似三角形相似三角形6大证明技巧大证明技巧相似三角形的判定方法总结相似三角形的判定方法总结:: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS)3. 两边成比例且夹角相等的两个三角形相似. (SAS)4. 两角分别相等的两个三角形相似.(AA)5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结相似三角形的模型方法总结:: “反A ”型与型与““反X ”型.“类射影”与射影模型与射影模型类射影””一线三等角”“旋转相似”与“一线三等角旋转相似”反A型与反X型已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ⋅=⋅(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCBOF ECBA类射影如图,已知2AB AC AD =⋅,求证:BD ABBC AC= A BCD射影定理已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =⋅,2BC BH BA =⋅,2HC HA HB =⋅通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维比例式的证明方法方法,能让模型成为解题的利刃,让复杂的问题变简单。

在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算 【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证:DC CF AE AD=. ABCFDE【例2】 如图,ABC △中,90BAC ∠=°,M 为BC 的中点,DM BC ⊥交CA 的延长线于D ,交AB 于E .求证:2AM MD ME =⋅技巧一技巧一::三点定型三点定型CBAEDM【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E ,交AD 于F .求证:BF ABBE BC=.DBACF E悄悄地替换比例式中的某条线段…【例4】 如图,在△ABC ,AD 平分∠BAC ,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证:2FD FB FC =⋅ABCDEF【例5】 如图,四边形ABCD 是平行四边形,点E 在边BA 的延长线上,CE 交AD 于F ,ECA D ∠=∠.求证:AC BE CE AD ⋅=⋅.技巧二技巧二::等线段代换等线段代换CBAD EF【例6】 如图,△ACB 为等腰直角三角形,AB=AC ,∠BAC=90°,∠DAE=45°,求证:2AB BE CD =⋅ABCE【例7】 如图,ABC △中,AB AC =,AD 是中线,P 是AD 上一点,过C 作CF AB ∥,延长BP 交AC 于E ,交CF 于F .求证:2BP PE PF =⋅.CBADPEF【例8】 如图,平行四边形ABCD 中,过B 作直线AC 、AD 于O ,E 、交CD 的延长线于F ,求证:2OB OE OF =⋅.技巧三技巧三::等比代换等比代换OFEDC BA【例9】 如图,在ABC △中,已知90A ∠=°时,AD BC ⊥于D ,E 为直角边AC 的中点,过D 、E 作直线交AB 的延长线于F .求证:AB AF AC DF ⋅=⋅.EFCABD【例10】 如图,在ABC △中(AB >AC )的边AB 上取一点D ,在边AC 上取一点E ,使AD AE =,直线DE 和BC 的延长线交于点P .求证:BP CE CP BD⋅=⋅E CD BAP【例11】 如图,ABC △中,BD 、CE 是高,EH BC ⊥于H 、交BD 于G 、交CA 的延长线于M .求证:2HE HG MH =⋅.技巧四技巧四::等积代换等积代换PMN D ABCA BCDE HGM【例12】 如图,在ABC △中,AD BC ⊥于D ,DE AB ⊥于E ,DF AC ⊥于F ,连EF ,求证:∠AEF =∠CFEDCBA【例13】 如图,在ABC △中,90BAC ∠=°,D 为AC 中点,AE BD ⊥,E 为垂足,求证:CBD ECD ∠=∠.CBADE【例14】 在Rt △ABC 中,AD ⊥BC ,P 为AD 中点,MN ⊥BC ,求证2MN AN NC =⋅【例15】 已知,平行四边形ABCD 中,E 、F 分别在直线AD 、CD 上,EF //AC ,BE 、BF 分别交AC 于M 、N .,求证:AM =CN.【例16】 已知如图AB =AC ,BD //AC ,AB //CE ,过A点的直线分别交BD 、CE 于D 、E . 求证:AM =NC ,MN //DE .DBAEM N【例17】 如图,△ABC 为等腰直角三角形,点P 为AB 上任意一点,PF ⊥BC ,PE ⊥AC ,AF 交PE 于N ,BE 交PF 于M .,求证:PM =PN ,MN //AB .CBAP EFN M技巧五技巧五::证等量先证等比证等量先证等比FMNEDC BA【例18】 如图,正方形BFDE 内接于△ABC ,CE 与DF 交于点N ,AF 交ED 于点M ,CE 与AF 交于点P . 求证:(1)MN //AC ;(2)EM =DN .PNM EFD ABC【例19】 (※)设E 、F 分别为AC 、AB 的中点,D 为BC 上一点,P 在BF 上,DP //CF ,Q 在CE 上,DQ //BE ,PQ 交BE 于R ,交CF 于S ,求证:13RS PQ =CBADP QSE FGR【例20】 (※)如图,梯形ABCD 的底边AB 上任取一点M ,过M 作MK //BD ,MN //AC ,分别交AD 、BC 于K 、N ,连KN ,分别交对角线AC 、BD 于P 、Q ,求证:KP =QN .Q N S PRKM ODC BA【例21】 (2016年四月调考)如图,在△ABC 中,AC >AB ,AD 是角平分线,AE 是中线,BF ⊥AD 于G ,交AC 于点M ,EG 的延长线交AB 于点H .(1)求证:AH =BH ,(2)若∠BAC =60°,求FG DG的值. HM FG E D CB A【例22】 (2016七一华源)如图:正方形ABCD 中,点E 、点F 、点G 分别在边BC 、AB 、CD 上,∠1=∠2=∠3=α. 求证:(1)EF +EG =AE (2)求证:CE+CG =AF技巧六技巧六::几何计算几何计算。

(word完整版)相似三角形证明技巧(整理)

(word完整版)相似三角形证明技巧(整理)

1相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:① ;② ;③ 。

二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决。

三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2a )已知一对b)己知两边对应成c)己知一个2找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e )相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB ,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的 平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB 吗? 说明理由。

(完整版)相似三角形证明技巧(整理)

(完整版)相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

附8 相似三角形的常见模型

附8 相似三角形的常见模型

学霸班主任精编2022年中考数学相似三角形的常见模型1.了解相似三角形的性质定理与判定定理;2.能利用相似三角形的性质定理和判定定理解决简单问题.1.相似三角形的判定;2.能构成相似三角形的常见模型.《模型分析》相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到相似三角形的问题就信心更足了.本专题重点讲解相似三角形的六大基本模型.在添加辅助线时,所添加辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系.相似基本模型专题探究之一线三等角【知识点睛】一.常见基本类型:同侧型(通常以等腰三角形或者等边三角形为背景)异侧型二.模型性质应用:321321.3.2.1∽△∽△,则△,且如右图,若两相似中,可得三个三角形两中点型“一线三等角”;≌△时,△如图②,当;∽△易得△常用结论:右左DC BD CFD BDE DF DE =∠=∠=∠=模型构造:1.图中已存在“一线三等角”,则直接应用模型结论解题.2.图中存在“一线两等角”,补上“一等角”,构造模型解题.3.图中某直线上只存在1个角,补上“两等角”,构造模型解题.如果直线上只有1个角,要补成“一线三等角”时,该角通常是特殊角(30°、45°、60°)特征:构造特殊角的等角时,一般是在“定线”上做含特殊角的直角三角形。

“一线三等角”得到的相似,通常用外边的两等角的两边对应成比例求解长度.相似常见模型之平行相似【知识点睛】A 字图及其变型“斜A 型”一般地:当动点E 运动到底边的中点时,CF 有最大值当∠A=∠C 时△AJB ∽△CJD 性质:JDJBJC JA CD AB ==变型☆:斜A 型在圆中的应用:如图可得:△PAB∽△PCD8字图及其变型“蝴蝶型”变型知识点睛一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换.☆:A 字图与8字图相似模型均是由“平行”直接得到的,∴有“∥”,多想此两种模型常见“∥”的引入方式:1.直接给出平行的已知条件2.平行四边形、矩形、菱形、正方形、梯形等几何图形中自带的平行3.由很多中点构造的“中位线”的平行4.根据线段成比例的条件或结论自己构造平行辅助线当DE ∥BC 时△ADE ∽△ABC 性质:☆:“蝴蝶型”常见应用1.常出现在“圆”中,直接由相交弦得到,求角度相关此时注意“同弧所对圆周角相等”的应用2.出现在“手拉手模型”中,用于证明“两直线垂直”或者“两直线成一固定已知角度”当∠ADE=∠ACB 时△ADE ∽△ACB 性质:当AB ∥CD 时△AOB ∽△DOC 性质:☆:“A 字图”最值应用A 字图中作动态矩形求最大面积时,通常当MN 为△ABC 中位线,矩形面积达到最大值!BC DE AC AE AB AD ==①ECAEDB AD =②BCDEAB AE AC AD ==OCOBOD OA CD AB ==2.相似图形的特性两个相似图形的对应边成比例,对应角相等.3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).图34.相似三角形周长的比等于相似比.如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”.1.横向定型法欲证AB BCBE BF =,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

构造相似三角形解题的几种类型
⑴构造相似三角形求值;⑵构造相似三角形证角相等;⑶构造相似三角形证明等积式;⑷构造相似三角形证明线段的平方和、差、积;⑸构造相似三角形证明两线垂直
例1、(构造相似三角形求值)如图,已知梯形ABCD 中,AD ∥BC ,BC=3AD ,E 是腰AB 上一点.若△BCE 和四边形AECD 的面积分别为1S 和2S ,并且21S =32S ,求AE BE 的值
(延长两腰,构造相似三角形)
例2、(构造相似三角形证角相等)如图,在等边△ABC 的边BC 上取点D ,使DC BD =2
1,作CH ⊥AD ,H 为垂足,连接BH.求证:∠DBH=∠DAB
构造相似三角形证明等积式
(作BC 边上的高,由“三线合一”得到垂足即为中点.构造相似三角形;对△BDH 和△ADB ,有一个公共角,只需证夹它的两边对应成比例)
例3、(构造相似三角形证明等积式)在△ABC 中,已知AB=AC ,BD 为AC 边上的高.求证:CD AC BC ⋅=22
(提示:法一 出现2AC
法三 利用三线合一,构造双直角图形
例4、(构造相似三角形证明线段的平方和、差、积)如图,在△ABC 中, ∠B=2∠C ,求证:BC AB AB AC ⋅=-22
例5、(构造相似三角形证明两线垂直)如图,△ABC 和△111C B A 均为正三角形,BC 和11C B 的中点均为点D.求证:AA ₁⊥CC ₁
法二 出现2CD 两个等腰三角形
相似
例6、⑴确定最值;⑵探索图形相似
如图①,在△ABC中,∠A=90°,BC=10,△ABC的面积为25.点D为AB 边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折痕将△ADE翻折,使△ADE落在四边形BDCE所在平面内,所得的△A´DE与梯形DBCE重叠部分的面积记为y.
⑴用x表示△ADE的面积;
⑵当0<x≤5时,求y与x的函数关系式;
⑶当5<x<10时,求y与x的函数关系式;
⑷当x取何值时,y的值最大?最大值时多少?。

相关文档
最新文档