§1 正整数指数函数
3.1《正整数指数函数》ppt课件
2 2 x 1 即 3 <3 ,所以
x>1,x∈N+,
故不等式的解集为{x|x>1,且 x∈N+}.
• [规律总结] 由正整数指数函数的性质:y= ax(a>0,a≠1,x∈N+)是增函数,得a>1;y =ax(a>0,a≠1,x∈N+)是减函数,得0<a<1. 根据这一性质可以求参数的取值范围.另外, 我们也可以根据这一性质解不等式.
[规律总结]正确地建立函数模型,用好函数模型,此类问 题就不难了.
在定义域 N+上单调递增. 5x (2)正整数指数函数 y=( ) (x∈N+)的图像如图(2),在定义 6 域 N+上单调递减.
• 利用正整数指数函数的性质解不等式
• 解下列不等式: • (1)4x>23-2x(x∈N+); • (2)0.3×0.4x<0.2×0.6x(x∈N+). • [思路分析] 根据正整数指数函数的性质,将 所给不等式化为一元一次不等式的形式,再 进行求解,一定要注意题中所给未知数的取 值范围.
• [辨析] 第x年的木材蓄积量不是200(1+ 5%·x),而是200(1+5%)x,是指数关系.
• [正解] (1)现有木材的蓄积量为200万立方 米,经过1年后木材蓄积量为200+200×5% =200(1+5%);经过2年后木材蓄积量为 200(1+5%)+200(1+5%)×5%=200(1+ 5%)2; • 所以经过x年后木材蓄积量为200(1+5%)x. • 所以y=f(x)=200(1+5%)x(x∈N+).
[答案] D
)
B.一条下降的曲线 D.一系列下降的点
1 [解析] 底数 0< <1,函数为减函数,图像下降.因为 x∈ 2 N+,所以其图像为一系列下降的点.
精 品 教 学 设 计3.1正整数指数函数
精品教学设计§1 正整数指数函数教学目的:1.理解正整数指数函数的概念,了解其图象及性质.2.能初步应用正整数指数函数性质解决实际应用问题教学重点:正整数指数函数的图象、性质教学难点:正整数指数函数的概念及图象.授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教材分析:正整数指数函数是在初中学习了正整数指数幂运算、以及函数的基本概念性质的基础上,并结合实际问题引入.这样既说明指数函数同时,由于正整数指数函数的局限性(定义域为正整数集),为后面学习指数幂概念的扩充及指数函数留下伏笔.教学过程:一、复习引入:引例1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个,……一直分裂下去.(1)用列表表示1个细胞分裂次数分别为1,2,3,4,5,6,7,8时,得到的细胞个数;)与得到的细胞个数(2)用图像表示1个细胞分裂次数n(n∈N+y之间的关系;(3)写出y与n之间的关系式,试用科学计算器计算细胞分裂15、20次得到的细胞个数.)和它的图引例1主要目的是为了得出函数关系:2ny= (n∈N+像.引例2:电冰箱使用的氟化物的释放会破坏大气层中的臭氧层. 臭氧含量 Q 近似满足关系式 Q=Q×0.9975t,其中0Q是臭氧的初始量,t是时间(年). 这里设Q =1.(1)计算经过20,40,60,80,100年,臭氧量Q;(2)用图像表示每隔20年臭氧含量Q 的变化;(3)试分析随着时间的增加,臭氧含量Q 是增加还是减少.引例 2 除了进一步认识函数0.9975()t Q t N +=∈的图像外,又直观感受其单调性.在2n y =(n ∈N + ),0.9975()t Q t N +=∈中指数为正整数的n,t 是自变量,底数是一个大于0且不等于1的常量.我们把这种自变量在指数位置上且自变量取正整数而底数是一个大于0且不等于1的常量的函数叫做正整数指数函数.二、新授内容:1.正整数指数函数的定义:函数(01,)x y a a a x N +=>≠∈且叫做正整数指数函数,其中x 是自变量,函数定义域是正整数集N +.注意: (1)定义域是正整数集;(2)图像是一列孤立的点;(3)当a>1时是增函数,当0<a<1时是减函数.2. 复利和公式:正整数指数函数在研究增长问题,复利问题,质量浓度问题中常有应用. 通过概括这类问题,我们得到一个常用模型,通常称之为“复利和公式”.复利和公式:设本金为a ,年增长率为p ,则x 年后本利和A 为(1)x A a p =+三、讲解范例:例1 某地现有森林面积为1000 h ㎡,每年增长5%.经过x (x ∈N +)年,森林面积为y h ㎡. 写出x,y 间的函数关系式,并求出经过5年,森林的面积.解: y 与x 之间的函数关系式为1000(15%)()x y x N +=+∈.经过5年,森林的面积为 521000(15%)1276.28()hm +=. (答略)例2 已知镭经过100年剩留原来质量的95.76﹪.设质量为1的镭经过x 年后的剩留量为y ,求y 关于x 的函数解析式.解:设经过1年,镭剩留原来质量的a ﹪.则,()100xa y x N +⎛⎫=∈ ⎪⎝⎭∵1000.9576100a ⎛⎫= ⎪⎝⎭, ∴11000.9576.100a = ∴1000.9576,().x y x N +=∈ (答略)例3 某商品1月份降价10﹪,此后价格又上涨三次,使目前价格与1月份降价前相同. 问三次价格的平均上涨率是多少? 解: 设原价格为1,平均上涨率为x ﹪,则 30.9(1%)1x +=∴%1x =.1. (答略) 例4已知光线通过1块玻璃,光线的强度要损失掉10﹪ . 要使通过玻璃的光线的强度减弱到原来的1/3以下,问至少需要重叠多少块玻璃?解: 设需要重叠n 块玻璃,则1(110%)3n -≤ 利用计算器可解得n ≥11. (答略)四、练习:1. 给出下列函数:(1)4x y =;(2)4y x =(x N +∈);(3)4x y =-(x N +∈);(4)(4)x y =-(x N +∈);(5)x y π=(x N +∈);(6)1(21)(,1,)2x y a a a x N +=->≠∈. 其中为正整数函数的是_____.2. 比较大小:(1)191.58,201.58;(2)20080.5,20090.5.3. 按复利计算利息是目前储蓄计息的一种方式.设本金为a 元,每期利率为r ,记本利和为y ,存期为x ,写出本利和y 随存期x 变化的函数关系式.如果存入本金1000元,每期利率为2.25﹪,试求5期后的本利和是多少?(精确到1元)解:本利和y随存期x变化的函数关系式为y a r=+(1)x当a=1000,r=2.25﹪,x=5时,利用计算器可得y≈1118.即5期后的本利和是1118元.4. 画出函数1=(x∈Z)的图像,分析函数图像的对称性,单调性.2xy-函数有无最值?解:(图像略)函数的图像关于直线x=1对称.函数在{x∈Z|x<1}上是减函数;在{x∈Z|x≥1}上是增函数.函数有最小值1.五、小结本节课学习了以下内容:正整数指数函数概念,正整数指数函数的图象和单调性.研究增长等问题常用的“复利和公式”. 六、课后作业:。
正整数指数函数
每年比上一年增加 p%.写出年产量随经过年数变化的函数关
系式. y=10 000(1+ p%)m ( m∈N+), 练习4.抽气机每次抽出容器内空气的60%,要使容器内的空气 8 少于原来的0.1%,则至少要抽_________次.
四、小Leabharlann 结1.一般地,函数 y=ax (a>0, a≠1, x∈N+)叫做正整数指数函 数,其中x是自变量,定义域是正整数集N+. 2.正整数指数函数的图像特征: (1)图像是一群点; (2)当a>1时,是单调递增函数; (3)当0<a<1时,是单调递减函数; (4)ax的系数为1.
导入新课:
1992年底世界人口达到54.8亿,若人口的年平 均增长率为2%,到2009年底人口将达到多少亿? 设年数为x,人口数为y,则 y=54.8(1+2%)x,其中 x∈N+
§1 正整数指数函数 一、实例分析: 问题1. 归纳1:细胞分裂次数n与细胞个数 y之间的函数关系式为 y=2n , n∈N+. 问题2. 归纳2: 臭氧含量Q与时间 t之间的函数关系近似地满足 Q=0.9975t , t∈N+. 注意!在研究增长问题、复利问题、质量溶度问题中 常见这类函数.
三、例题与练习: 例1.判断下列函数是否为正整数指数函数: (1) y=3x x∈N+; (2) y=3-x , x∈N+; (3)y=1x; (4) y=2×3x , x∈N+; (5) y=x3 , x∈N+; (6)y=(-2)x; (7)y=2x , x∈R. 练习1.函数 y=(3a-2)x表示正整数指数函数应满足什么条件? 例2.下列给出的四个正整数指数函数中,是减函数的是( A. y=1.2x , x∈N+; B. y=3x , x∈N+; )
高中数学 第三章 指数概念的扩充教案 北师大版必修1
第三章指数函数与对数函数§1正整数指数函数一. 教学目标:1.知识与技能(1)理解正整数指数函数的概念和意义;(2)理解和掌握正整数指数函数的图象和性质;(3)体会具体到一般数学讨论方式及数形结合的思想;2.情感、态度、价值观(1)让学生了解数学来自生活,数学又服务于生活的哲理.(2)培养学生观察问题,分析问题的能力.§2.1指数概念的扩充一.教学目标:1.知识与技能:(1)理解分数指数幂和根式的概念;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力.2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质.3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.二.重点、难点1.教学重点:(1)分数指数幂和根式概念的理解;(2)掌握并运用分数指数幂的运算性质;2.教学难点:分数指数幂及根式概念的理解教学过程:一、复习1.零指数、负整数指数的概念,以及它们之间的关系.2.浓缩后的3条法则是什么?怎样浓缩好?二、新课引入与讲解在初中已学过,若是大于1的整数,是的整数倍,那么若不是的整数倍,那么上式中右端的就是一个分数了(引入自然,合理)例如,当=2,=3时,,显然不能用正整数指数幂来解释,所以必须对的分数指数幂重新定义,为此规定,在不是的整数倍时也适用,自然应把看成是根式的另一种记法,对于底为什么要使,须回忆应分几种情况:1.零指数与负整数的底均不能为零.2.正分数指数幂,当指数的分子,分母互质时,分母为奇数,底数可以为任意实数;分母为偶数时底数为非负实数.3.负分数指数幂,当指数的分子与分母互质时,分母为奇数、底数不能为零,分母为偶数,底数为正实数.总之,当正实数为底时,指数可为任意实数.以上这几点均可举例说明.关于运算法则仍然成立,可以通过特殊值加以验证,克服心理障碍.假如,设=,=验证第一条∵ ,∴成立.它不仅让学生从心理上承认在指数概念推广后,运算法则仍然有效,同时也能启发学生在解繁杂根式运算时,用幂的运算法则更为简便.当时,(、∈,且为既约分数);(、∈且为既约分数). 这样当指数推广到分数指数幂以后当,为有理数时,表示一个确定的实数.当,为无理数时,是否还表示一个确定的实数?答案是肯定的,它是在的以值不足近似值为指数的所有幂与以的以的过剩近似值为指数的所有的幂中间的一个实数,这样就使中的可取一切实数了.为学习指数函数做好了必要准备.由此得可以验证与证明;;,其中,,、为任意实数.三、课堂练习(1)(2)(3)(4)(5)(6)(7)(8)利用计算器计算(精确到0.001)①;②;③.(请同学按课本上的方式按键计算,如学生手中的计算器按键方式不同,教师需给予辅导).课堂小结:。
高中数学复习课件-第三章 正整数指数函数
事例1:某种细胞分裂时,由一个分为2个,2 个分4个,……细 胞分裂次数n(n∈N+)与得到的细胞个数y之间的关系。
通过分析细胞分裂的个数y与次数n应有如下关系:
y
n
2 21
1
4 22
2
8 23
3
16 24
4
……
…
y 2n
n
y
32 28 24 20 16 12 8 4
(
)
(
)
(3) y 2 3x ( x N ) (
)
(4) y x3 (x N )
(
)
变式训练:比较下列各组幂值的大小(用“>”或“<”填空). (1)1.5819____<____1.5820;
(2)0.52012____>____0.52013.
(3)比较下列几个数.0.910,0.911,1.14,1.15, 1的大小.
1
22
1 (1)2
2
42
1 (1)3
3
82
……
…
y (1)n
n
2
y
1 2
3 8
1 4
1 8
O 12345
表达式:y
( 1 )n (n 2
N )
想一想
在我们刚研究的两个关系式
y 2n (n N )
y
(
1)n 2
(n
N
)
中,y与n之间是否为函数关系?
正整数指数函数的概念:
一般地,函数 y=ax( a>0,a≠1, x∈N+ )叫做正整数指数 函数,它的定义域是N+. ① x是自变量,定义域是正整数集N , x在指数上.
正整数指数函数
特别指出的是 y a x 有如下特点:
① x是自变量,定义域是正整数集 N
在指数上.
,x
② 当a>1时,是单调递增函数,当0<a<1 时,是单调递减函数.
③ 规定底数a大于0且不等于1.
④形式 y a x 的严格性:a x 前的系数
思考
为什么规定底数a大于0且不等于1? (1) 如a 果 0,则x 当 0时 ,ax 0;
当 x0时a , x无意义
(2) 如果 a0,例y如 (4)x,则x1,x1时, 24
在实数范围之不 内存 函在 数值
(3) a 1, y 1x 1是一个常量,对于它 没有研究的必要
正整数指数函数
B. y3x(xN)
C. y0.999x(xN)
D. yx(xN)
例3 某地现有森林面积1 000 h m 2 ,每年增长5%, 经过 x ( x N ) 年,森林面积为 y ,写出x,y 间的函数关系式,并求出经过5年森林的面积。
分析:要想知道森林面积为 y 与年经过的年数x间的 函数关系式,先请同学们思考每一年的增长 情况! 演 示
(1)列表表示1个细胞分裂次数分别是1,2,3,4,
5,6,7,8时,得到的细胞个数。
演示
(2)用图像表示1个细胞分裂次数n(n∈N+)与得 到的细胞个数y之间的关系。 演 示
(3)写出y与n之间的关系式,试用科学计算器 计算细胞分裂15、20次得到的细胞个数。
演示
公元前300年左右,中国有位杰出的学者 庄子,在他的文章《天下篇》中写道:一 尺之棰,日取其半,万世不竭。意思是, 一尺长的木棍,每天截掉一半,千年万载 也截不完!
正整数指数函数(导学案)
§1、正整数指数函数预习案学习目标:了解正整数指数函数模型的实际背景。
了解正整数指数函数的概念。
理解具体的正整数指数函数的图像特征及函数的单调性。
让学生了解数学来自生活,数学又服务生活的哲理。
培养学生观察问题、分析问题的能力。
教学重点:正整数指数函数的概念及图象特征。
教学难点:对正整数指数函数概念的理解。
问题1 某种细胞分裂时,由1个分裂成2个,2个分裂成4个……一直分裂下去(回答下列问题)用列表表示1个细胞分裂次数分别为本1、2、3、4、5、6、7、8时,得到的细胞个数;用图像表示1个分裂的次数n(n∈N+)与得到的细胞个数y之间的关系;写出得到的细胞个数y与分裂次数n之间的关系式,试用科学计算器计算细胞分裂15次、20次得到细胞的个数。
问题2 电冰箱使用的氟化物的释放会破坏大气层中的臭氧层。
臭氧含量Q近似满足关系式Q=Q。
·0.9975t,其中Q。
是臭氧的初始量,t是时间(年)。
这里设Q。
=1。
计算经过20,40,60,80,100年,臭氧含量Q;用图像表示每隔20年臭氧含量Q的变化;试分析随着眼于时间的增加,臭氧含量Q是增加还是减少。
创设情境:1、问题1中分裂次数n 与得到细胞个数y 的关系式y=2n和问题2中t 与Q 的关系式Q=0.9975t,能否构成函数关系?2、这两个函数有什么共同点?3、如何给正整数指数函数下定义?结合问题1和问题2,指出正整数指数函数的图像有什么特征?探究案例1、若x ∈N+,指出下列哪些是正整数指数函数 (1)y=4x(2) y=x 2(3) y=-2x(4) y=(-3)x(5) y=(2)x(6) y=2x(7) y=3-x变式:下列各式是正整数指数函数的是( ) A 、y=2x 1( x ∈N+) B 、y=2x2( x ∈N+)C y=x x( x ∈N+) D y=x-2 (x ∈N+)例2、截止到1999年底,我国人口约为13亿,若今后能将人口年平均递增率控制在1‰,经过x 年后,我国人口数字为y (亿): 求x 与y 的函数关系y= f(x); 求函数关系y= f(x)的定义域;判断函数f(x)是增函数还是减函数?并指出在这里函数的增、减有什么实际意义。
高中数学北师大版必修1 正整数指数函数 课件(35张)
是正整数指数函数. (3)是.因为 y=(π -3)x 的底数是大于 0 且小于 1 的常数,所 以函数 y=(π -3)x 是正整数指数函数且是减函数.
方法归纳 (1)按正整数指数函数的 4 个特征来判定; (2)注意与幂函数的区别.
1.(1)若函数 y=(a2-3a+3)· ax 为正整数指数函数,则实数 a 2 的值为________ . 16 2, ,则此函数的解析式 (2)正整数指数函数的图像经过点 x 9 4 N+ 为 y=________ ,定义域为________ . 3 解析:(1)若函数 y=(a2-3a+3)· ax 为正整数指数函数,则 ax 的系数 a2-3a+3=1, 且底数 a>0 且 a≠1.由此可知, 实数 a 的值为 2. 16 16 2 4 x (2)把2, 9 代入 y=a (a>0 且 a≠1),得 =a ,所以 a= , 9 3 x 4 ,N+. y= 3
正整数指数函数的图像与性质
x 3 (x∈N+)的图像,并说明函数的单调 画出函数 y= 2
性和值域. [解] (1)列表:
x y
1 3 2
2 9 4
3 27 8
4 81 16
„ „
(2)描点:图像如图所示.
x 3 (x∈N+)在其定义域上是增函数, 根据图像知 y= 其值域为 2
1.正整数指数函数的概念、图像和性质 y=ax (1)一般地,函数__________ (a>0,a≠1,x∈N+)叫作正整数 指数函数,其中 x 是自变量,定义域是正整数集 N+. (2)正整数指数函数的图像和性质
①图像特征 共同特征:正整数指数函数的图像是由一些孤立的点组成的; 分类特征: a. 当底数 a > 1 时,正整数指数函数的图像是
指数函数和对数函数练习题
第三章 指数函数和对数函数 §1 正整数指数函数 §2 指数扩充及其运算性质1.正整数指数函数 函数y =a x (a>0,a ≠1,x ∈N +)叫作________指数函数;形如y =ka x (k ∈R ,a >0,且a ≠1)的函数称为________函数. 2.分数指数幂(1)分数指数幂的定义:给定正实数a ,对于任意给定的整数m ,n (m ,n 互素),存在唯—的正实数b ,使得b n =a m ,我们把b 叫作a 的mn 次幂,记作b =mn a ;(2)正分数指数幂写成根式形式:m na =na m (a >0);(3)规定正数的负分数指数幂的意义是:m na -=__________________(a >0,m 、n ∈N +,且n >1);(4)0的正分数指数幂等于____,0的负分数指数幂__________. 3.有理数指数幂的运算性质(1)a m a n =________(a >0);(2)(a m )n =________(a >0);(3)(ab )n =________(a >0,b >0). 一、选择题1.以下说法中:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,n a 对任意a ∈R 都有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中正确的选项是( )A .①③④B .②③④C .②③D .③④ 2.假设2<a <3,化简(2-a )2+4(3-a )4的结果是( ) A .5-2a B .2a -5 C .1 D .-1 3.在(-12)-1、122-、1212-⎛⎫⎪⎝⎭、2-1中,最大的是( ) A .(-12)-1 B .122- C .1212-⎛⎫⎪⎝⎭D .2-14.化简3a a 的结果是( )A .aB .12a C .a 2 D .13a 5.以下各式成立的是( ) A.3m 2+n 2=()23m n + B .(ba)2=12a 12bC.6(-3)2=()133- D.34=1326.以下结论中,正确的个数是( ) ①当a <0时,()322a=a 3;②na n =|a |(n >0);③函数y =()122x --(3x -7)0的定义域是(2,+∞); ④假设100a =5,10b =2,则2a +b =1.A .0B .1C .2D .3 二、填空题 7.614-3338+30.125的值为________. 8.假设a >0,且a x=3,a y=5,则22y x a+=________.9.假设x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________.三、解答题10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0); (2)计算:122-+(-4)02+12-1-(1-5)0·238.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值. 12.化简:413322333842a a b b ab a-++÷(1-23b a)×3a .13.假设x >0,y >0,且x -xy -2y =0,求2x -xyy +2xy的值.§3 指数函数(一)1.指数函数的概念一般地,________________叫做指数函数,其中x 是自变量,函数的定义域是____. 2.指数函数y =a x (a >0,且a ≠1)的图像和性质a >1 0<a <1图像定义域 R 值域 (0,+∞) 性 质 过定点 过点______,即x =____时,y =____ 函数值 的变化 当x >0时,______; 当x <0时,________ 当x >0时,________; 当x <0时,________单调性 是R 上的________ 是R 上的________1.以下以x 为自变量的函数中,是指数函数的是( ) A .y =(-4)x B .y =πxC .y =-4xD .y =a x +2(a >0且a ≠1) 2.函数f (x )=(a 2-3a +3)a x 是指数函数,则有( )A .a =1或a =2B .a =1C .a =2D .a >0且a ≠13.函数y =a |x |(a >1)的图像是( )4.已知f (x )为R 上的奇函数,当x <0时,f (x )=3x ,那么f (2)的值为( )A .-9 B.19C .-19D .95.如图是指数函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图像,则a 、b 、c 、d 与1的大小关系是( ) A .a <b <1<c <d B .b <a <1<d <c C .1<a <b <c <d D .a <b <1<d <c6.函数y =(12)x -2的图像( )A .第—、二、三象限B .第—、二、四象限C .第—、三、四象限D .第二、三、四象限 二、填空题7.函数f (x )=a x 的图像经过点(2,4),则f (-3)的值为________.8.假设函数y =a x -(b -1)(a >0,a ≠1)的图像不经过第二象限,则a ,b 必满足条件________.9.函数y =8-23-x (x ≥0)的值域是________. 三、解答题10.比拟以下各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)1314⎛⎫⎪⎝⎭和2314⎛⎫⎪⎝⎭; (3)2-1.5和30.2.11.2022年10月18日,美国某城市的以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积到达50 000 m 3〞,副标题是:“垃圾的体积每三年增加一倍〞.如果把3年作为垃圾体积加倍的周期,请你依据下面关于垃圾的体积V (m 3)与垃圾体积的加倍的周期(3年)数n 的关系的表格,答复以下问题.周期数n 体积V (m 3)0 50 000×20 1 50 000×2 2 50 000×22 … … n 50 000×2n(1)设想城市垃圾的体积每3年继续加倍,问24年后该市垃圾的体积是多少? (2)依据报纸所述的信息,你估量3年前垃圾的体积是多少? (3)如果n =-2,这时的n ,V 表示什么信息?(4)写出n 与V 的函数关系式,并画出函数图像(横轴取n 轴). (5)曲线可能与横轴相交吗?为什么? 能力提升12.定义运算a ⊕b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊕2x 的图像是( )13.定义在区间(0,+∞)上的函数f (x )满足对任意的实数x ,y 都有f (x y )=yf (x ). (1)求f (1)的值;(2)假设f (12)>0,解不等式f (ax )>0.(其中字母a 为常数).§3 指数函数(二)1.以下肯定是指数函数的是( )A .y =-3xB .y =X (x >0,且x ≠1)C .y =(a -2)x (a >3)D .y =(1-2)x 2.指数函数y =a x 与y =b x 的图像如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <1 3.函数y =πx 的值域是( )A .(0,+∞)B .0,+∞)C .RD .(-∞,0)4.假设(12)2a +1<(12)3-2a ,则实数a 的取值范围是( )A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12)5.设13<(13)b <(13)a <1,则( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a6.假设指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( ) A .a <2 B .a >2 C .-1<a <0 D .0<a <1 一、选择题1.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则( ) A .Q P B .Q PC .P ∩Q ={2,4}D .P ∩Q ={(2,4)} 2.函数y =16-4x 的值域是( )A .0,+∞)B .0,4C .0,4)D .(0,4)3.函数y =a x 在0,1]上的最大值与最小值的和为3,则函数y =2ax -1在0,1]上的最大值是( )A .6B .1C .3 D.324.假设函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D .f (x )为奇函数,g (x )为偶函数 5.函数y =f (x )的图像与函数g (x )=e x +2的图像关于原点对称,则f (x )的表达式为( )A .f (x )=-e x -2B .f (x )=-e -x +2C .f (x )=-e -x -2D .f (x )=e -x +2 6.已知a =1335-⎛⎫ ⎪⎝⎭,b =1235-⎛⎫ ⎪⎝⎭,c =1243-⎛⎫⎪⎝⎭,则a ,b ,c 三个数的大小关系是( ) A .c <a <b B .c <b <a C .a <b <c D .b <a <c 二、填空题7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,假设荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________________. 9.函数y =2212x x-+⎛⎫⎪⎝⎭的单调递增区间是________.三、解答题10.(1)设f (x )=2u ,u =g (x ),g (x )是R 上的单调增函数,试推断f (x )的单调性; (2)求函数y =2212x x --的单调区间.11.函数f (x )=4x -2x +1+3的定义域为-12,12].(1)设t =2x,求t 的取值范围; (2)求函数f (x )的值域. 能力提升12.函数y =2x -x 2的图像大致是( )13.已知函数f (x )=2x -12x +1.(1)求f f (0)+4]的值;(2)求证:f (x )在R 上是增函数;(3)解不等式:0<f (x -2)<1517.习题课1.以下函数中,指数函数的个数是( )①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3.A .0B .1C .2D .32.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( )A .-3B .-1C .1D .33.对于每一个实数x ,f (x )是y =2x 与y =-x +1这两个函数中的较小者,则f (x )的最大值是( )A .1B .0C .-1D .无最大值4.将22化成指数式为________.5.已知a =40.2,b =80.1,c =(12)-0.5,则a ,b ,c 的大小顺序为________.6.已知12x +12x -=3,求x +1x的值.一、选择题 1.(1222-⎡⎤⎢⎥⎣⎦的值为( )A. 2 B .- 2 C.22 D .-222.化简3(a -b )3+(a -2b )2的结果是( )A .3b -2aB .2a -3bC .b 或2a -3bD .b3.假设0<x <1,则2x ,(12)x ,(0.2)x 之间的大小关系是( )A .2x <(0.2)x <(12)xB .2x <(12)x <(0.2)xC .(12)x <(0.2)x <2xD .(0.2)x <(12)x <2x4.假设函数则f (-3)的值为( ) A.18 B.12 C .2 D .85.函数f (x )=a x -b 的图像如下图,其中a ,b 均为常数,则以下结论正确的选项是( )A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <06.函数f (x )=4x +12x 的图像( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称 二、填空题7.计算:130.064--(-14)0+160.75+120.01=________________.8.已知10m =4,10n =9,则3210m n -=________. 9.函数y =1-3x (x ∈-1,2])的值域是________. 三、解答题10.比拟以下各组中两个数的大小:(1)0.63.5和0.63.7;(2)(2)-1.2和(2)-1.4; (3)1332⎛⎫⎪⎝⎭和2332⎛⎫ ⎪⎝⎭;(4)π-2和(13)-1.3 11.函数f (x )=a x (a >0,且a ≠1)在区间1,2]上的最大值比最小值大a2,求a 的值.能力提升12.已知f (x )=a a 2-1(a x -a -x )(a >0且a ≠1),商量f (x )的单调性.13.依据函数y =|2x -1|的图像,推断当实数m 为何值时,方程|2x -1|=m 无解?有一解?有两解?§4 对数(一)1.对数的概念如果a b =N (a >0,且a ≠1),那么数b 叫做______________,记作__________,其中a叫做__________,N 叫做________. 2.常用对数与自然对数通常将以10为底的对数叫做__________,以e 为底的对数叫做__________,log 10N 可简记为________,loge N 简记为________. 3.对数与指数的关系假设a >0,且a ≠1,则a x =N ⇔log a N =____.对数恒等式:log a Na =____;log a a x =____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数________. 一、选择题1.有以下说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg10)=0;②ln(ln e)=0;③假设10=lg x ,则x =100;④假设e =ln x ,则x =e 2.其中正确的选项是( ) A .①③ B .②④ C .①② D .③④3.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3log 2x=14的解是( )A .x =19B .x =33C .x = 3D .x =9 5.假设log a 5b =c ,则以下关系式中正确的选项是( ) A .b =a 5c B .b 5=a c C .b =5a c D .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72C .8 D.37二、填空题7.已知log 7log 3(log 2x )]=0,那么12x-=________.8.假设log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则ba=________.三、解答题10.(1)将以下指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1.(2)将以下对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1;③lg 3=0.477 1.11.已知log a x =4,log a y =5,求A =121232x x y -⎡⎤⎢⎥⋅⎢⎥⎢⎥⎣⎦的值. 能力提升12.假设log a 3=m ,log a 5=n ,则a 2m +n 的值是( ) A .15 B .75 C .45 D .22513.(1)先将以下式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a =8,试用a 表示以下各式: ①log 68;②log 62;③log 26.§4 对数(二)1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,则: (1)log a (MN )=________________;(2)log a MN=________;(3)log a M n =__________(n ∈R ). 2.对数换底公式log b N =log a Nlog a b(a ,b >0,a ,b ≠1,N >0);特别地:log a b ·log b a =____(a >0,且a ≠1,b >0,且b ≠1). 一、选择题1.以下式子中成立的是(假定各式均有意义)( ) A .log a x ·log a y =log a (x +y ) B .(log a x )n =n log a xC.log a x n =log a n xD.log a x log a y =log a x -log a y2.计算:log 916·log 881的值为( )A .18 B.118 C.83 D.383.假设log 513·log 36·log 6x =2,则x 等于( )A .9 B.19 C .25 D.1254.已知3a =5b =A ,假设1a +1b=2,则A 等于( )A .15 B.15 C .±15 D .225 5.已知log 89=a ,log 25=b ,则lg 3等于( )A.a b -1B.32(b -1)C.3a2(b +1)D.3(a -1)2b6.假设lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab)2的值等于( )A .2 B.12 C .4 D.14二、填空题7.2log 510+log 50.25+(325-125)÷425=______________. 8.(lg 5)2+lg 2·lg 50=________.9.2022年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了庞大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的X 的能量,那么汶川大地震所释放的能量相当于________颗广岛X .三、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b =36,求2a +1b的值.11.假设a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值. 能力提升12.以下给出了x 与10x 的七组近似对应值: 组号 一 二 三 四 五 六 七 x 0.301 03 0.477 11 0.698 97 0.778 15 0.903 09 1.000 00 1.079 18 10x 2 3 5 6 8 10 12假设在上表的各组对应值中,有且仅有一组是错误的,它是第________组.( ) A .二 B .四 C .五 D .七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估量约经过多年少,该物质的剩余量是原来的13?(结果保存1位有效数字)(lg 2≈0.3010,lg 3≈0.477 1)§5 对数函数(一)1.对数函数的定义:一般地,我们把______________________________叫做对数函数,其中x 是自变量,函数的定义域是________.________为常用对数函数;y =________为自然对数函数.2.对数函数的图像与性质定义 y =log a x (a >0,且a ≠1) 底数 a >1 0<a <1图像定义域______ 值域 ______单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数共点性 图像过点______,即log a 1=0 函数值x ∈(0,1)时, x ∈(0,1)时,特点y ∈______; x ∈1,+∞)时, y ∈______. y ∈______; x ∈1,+∞)时, y ∈______.对称性 函数y =log a x 与y =1log ax 的图像关于______对称3.反函数对数函数y =log a x (a >0且a ≠1)和指数函数____________________互为反函数. 一、选择题1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .3,+∞)C .(4,+∞)D .4,+∞)2.设集合M ={y |y =(12)x ,x ∈0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N是( )A .(-∞,0)∪1,+∞)B .0,+∞)C .(-∞,1D .(-∞,0)∪(0,1) 3.已知函数f (x )=log 2(x +1),假设f (α)=1,则α等于( )A .0B .1C .2D .3 4.函数f (x )=|log 3x |的图像是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( )A .g (x )=4xB .g (x )=2xC .g (x )=9xD .g (x )=3x6.假设log a 23<1,则a 的取值范围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)二、填空题7.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是________. 8.已知函数y =log a (x -3)-1的图像恒过定点P ,则点P 的坐标是________.9.给出函数,则f (log 23)=________. 三、解答题10.求以下函数的定义域与值域: (1)y =log 2(x -2);(2)y =log 4(x 2+8).11.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1). (1)设a =2,函数f (x )的定义域为3,63],求函数f (x )的最值.(2)求使f (x )-g (x )>0的x 的取值范围. 能力提升12.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =1log a x ,y =2log a x ,y =3log a x ,y =4log a x 的图像,则a 1,a 2,a 3,a 4的大小关系是( ) A .a 4<a 3<a 2<a 1 B .a 3<a 4<a 1<a 2 C .a 2<a 1<a 3<a 4 D .a 3<a 4<a 2<a 113.假设不等式x 2-log m x <0在(0,12)内恒成立,求实数m 的取值范围.§5 对数函数(二)1.函数y =log a x 的图像如下图,则实数a 的可能取值是( )A .5 B.15 C.1e D.122.以下各组函数中,表示同一函数的是( )A .y =x 2和y =(x )2B .|y |=|x |和y 3=x 3C .y =log a x 2和y =2log a xD .y =x 和y =log a a x3.假设函数y =f (x )的定义域是2,4],则y =f (12log x )的定义域是( )A .12,1 B .4,16]C .116,14 D .2,4]4.函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .0,+∞)C .(1,+∞)D .1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图像经过(-1,0)和(0,1)两点,则f (2)=________.6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点______________________________ __________________________________________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c2.已知函数y =f (2x )的定义域为-1,1],则函数y =f (log 2x )的定义域为( )A .-1,1B .12,2]C .1,2D .2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( )A .f (2)>f (-2)B .f (1)>f (2)C .f (-3)>f (-2)D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在0,1]上的最大值与最小值之和为a ,则a 的值为( )A.14 B.12 C .2 D .45.已知函数f (x )=lg 1-x1+x ,假设f (a )=b ,则f (-a )等于( )A .bB .-bC.1b D .-1b6.函数y =3x (-1≤x <0)的反函数是( )A .y =13log x (x >0) B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)二、填空题7.函数f (x )=lg(2x -b ),假设x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________.8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是________.9.假设log a 2<2,则实数a 的取值范围是______________.三、解答题10.已知f (x )=log a (3-ax )在x ∈0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=12log 1-ax x -1的图像关于原点对称,其中a 为常数. (1)求a 的值;(2)假设当x ∈(1,+∞)时,f (x )+12log (x -1)<m 恒成立.求实数m 的取值范围.能力提升12.假设函数f (x )=log a (x 2-ax +12)有最小值,则实数a 的取值范围是( ) A .(0,1) B .(0,1)∪(1,2)C .(1,2)D .2,+∞)13.已知log m 4<log n 4,比拟m 与n 的大小.习题课1.已知m =0.95.1,n =5.10.9,p =log 0.95.1,则这三个数的大小关系是( )A .m <n <pB .m <p <nC .p <m <nD .p <n <m2.已知0<a <1,log a m <log a n <0,则( )A .1<n <mB .1<m <nC .m <n <1D .n <m <13.函数y =x -1+1lg (2-x )的定义域是( ) A .(1,2) B .1,4]C .1,2)D .(1,2]4.给定函数①y =12x ,②y =12log (x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.设函数f (x )=log a |x |,则f (a +1)与f (2)的大小关系是________________.6.假设log 32=a ,则log 38-2log 36=________.一、选择题1.以下不等号连接错误的一组是( )A .log 0.52.7>log 0.52.8B .log 34>log 65C .log 34>log 56D .log πe>log e π2.假设log 37·log 29·log 49m =log 412,则m 等于( ) A.14 B.22C. 2 D .4 3.设函数假设f (3)=2,f (-2)=0,则b 等于( )A .0B .-1C .1D .24.假设函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12)5.假设函数假设f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (18log x )<0的解集为( )A .(0,12)B .(12,+∞) C .(12,1)∪(2,+∞) D .(0,12)∪(2,+∞) 二、填空题7.已知log a (ab )=1p ,则log ab a b=________. 8.假设log 236=a ,log 210=b ,则log 215=________.9.设函数假设f (a )=18,则f (a +6)=________. 三、解答题10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},假设A ∩B =∅,求实数a 的取值范围.11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,求不等式log a (x -1)>0的解集.13.已知函数f (x )=log a (1+x ),其中a >1.(1)比拟12f (0)+f (1)]与f (12)的大小; (2)探究12f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1)对任意x 1>0,x 2>0恒成立. §6 指数函数、幂函数、对数函数增长的比拟1.当a >1时,指数函数y =a x 是________,并且当a 越大时,其函数值增长越____.2.当a >1时,对数函数y =log a x (x >0)是________,并且当a 越小时,其函数值________.3.当x >0,n >1时,幂函数y =x n 是________,并且当x >1时,n 越大,其函数值__________.一、选择题1t 1.99 3.0 4.0 5.1 6.12v 1.5 4.40 7.5 12 18.01A .v =log 2tB .v =12log t C .v =t 2-12 D .v =2t -2 2.从山顶到山下的招待所的距离为20千米.某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s (千米)与时间t (小时)的函数关系用图像表示为( )3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,假设要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( )A .一次函数B .二次函数C .指数型函数D .对数型函数4.某自行车存车处在某天的存车量为4 000辆次,存车费为:变速车0.3元/辆次,一般车0.2元/辆次.假设当天一般车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式为( )A .y =0.2x (0≤x ≤4 000)B .y =0.5x (0≤x ≤4 000)C .y =-0.1x +1 200(0≤x ≤4 000)D .y =0.1x +1 200(0≤x ≤4 000)5.已知f (x )=x 2-bx +c 且f (0)=3,f (1+x )=f (1-x ),则有( )A .f (b x )≥f (c x )B .f (b x )≤f (c x )C .f (b x )<f (c x )D .f (b x ),f (c x )大小不定6.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为l 1=5.06x -0.15x 2和l 2=2x ,其中x 为销售量(单位:辆).假设该公司在这两地共销售15辆车,则可能获得的最大利润是( )A .45.606B .45.6C .45.56D .45.51二、填空题7.一种特意侵占内存的计算机病毒,开机时占据内存2KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64MB 内存(1MB =210KB).8.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子几乎没有变化,但价格却上涨了,小张在2022年以80万元的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2022年,这所房子的价格y (万元)与价格年膨胀率x 之间的函数关系式是________.三、解答题9.用模型f (x )=ax +b 来描述某企业每季度的利润f (x )(亿元)和生产本钱投入x (亿元)的关系.统计说明,当每季度投入1(亿元)时利润y 1=1(亿元),当每季度投入2(亿元)时利润y 2=2(亿元),当每季度投入3(亿元)时利润y 3=2(亿元).又定义:当f (x )使f (1)-y 1]2+f (2)-y 2]2+f (3)-y 3]2的数值最小时为最正确模型.(1)当b =23,求相应的a 使f (x )=ax +b 成为最正确模型; (2)依据题(1)得到的最正确模型,请预测每季度投入4(亿元)时利润y 4(亿元)的值.10.依据市场调查,某种商品在最近的40天内的价格f (t )与时间t 满足关系f (t )=,销售量g (t )与时间t 满足关系g (t )=-13t +433(0≤t ≤40,t ∈N ).求这种商品的日销售额(销售量与价格之积)的最大值.11.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是p =该商品的日销售量Q (件)与时间t (天)的函数关系式为Q =-t +40(0<t ≤30,t ∈N ),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?能力提升12.某种商品进价每个80元,零售价每个100元,为了促销拟采取买一个这种商品,赠送一个小礼品的方法,实践说明:礼品价值为1元时,销售量增加10%,且在肯定范围内,礼品价值为(n +1)元时,比礼品价值为n 元(n ∈N +)时的销售量增加10%.(1)写出礼品价值为n 元时,利润y n (元)与n 的函数关系式;(2)请你设计礼品价值,以使商店获得最大利润.13.已知桶1与桶2通过水管相连如下图,开始时桶1中有a L 水,t min 后剩余的水符合指数衰减函数y 1=a e -nt ,那么桶2中的水就是y 2=a -a e -nt ,假定5 min 后,桶1中的水与桶2中的水相等,那么再过多长时间桶1中的水只有a 4L 第三章 章末检测一、选择题(本大题共12小题,每题5分,共60分)1.已知函数f (x )=lg(4-x )的定义域为M ,函数g (x )=0.5x -4的值域为N ,则M ∩N 等于( )A .MB .NC .0,4)D .0,+∞)2.函数y =3|x |-1的定义域为-1,2],则函数的值域为( )A .2,8B .0,8]C .1,8D .-1,8]3.已知f (3x )=log 29x +12,则f (1)的值为( ) A .1 B .2 C .-1 D.124.21log 52 等于( )A .7B .10C .6 D.925.假设100a =5,10b =2,则2a +b 等于( )A .0B .1C .2D .36.比拟13.11.5、23.1、13.12的大小关系是( ) A .23.1<13.12<13.11.5 B .13.11.5<23.1<13.12 C .13.11.5<13.12<23.1 D .13.12<13.11.5<23.17.式子log 89log 23的值为( ) A.23 B.32C .2D .38.已知ab >0,下面四个等式中:①lg(ab )=lg a +lg b ; ②lg a b=lg a -lg b ; ③12lg(a b )2=lg a b ; ④lg(ab )=1log ab 10. 其中正确的个数为( )A .0B .1C .2D .39.为了得到函数y =lg x +310的图像,只需把函数y =lg x 的图像上全部的点( ) A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.函数y =2x 与y =x 2的图像的交点个数是( )A .0B .1C .2D .311.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}等于( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}12.函数f (x )=a |x +1|(a >0,a ≠1)的值域为1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定二、填空题(本大题共4小题,每题5分,共20分)13.已知函数f (x )=⎩⎨⎧(12)x , x ≥4f (x +1), x <4,则f (2+log 23)的值为______. 14.函数f (x )=log a 3-x 3+x (a >0且a ≠1),f (2)=3,则f (-2)的值为________. 15.函数y =12log (x 2-3x +2)的单调递增区间为______________.16.设0≤x ≤2,则函数y =124x --3·2x +5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f (x )=a x (a >0且a ≠1).(1)求f (x )的反函数g (x )的解析式;(2)解不等式:g (x )≤log a (2-3x ).18.(12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈-3,0]的值域;(2)假设关于x 的方程f (x )=0有解,求a 的取值范围.19.(12分)已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比拟f (x )与g (x )的大小. 20.(12分)设函数f (x )=log 2(4x )·log 2(2x ),14≤x ≤4, (1)假设t =log 2x ,求t 的取值范围;(2)求f (x )的最值,并写出最值时对应的x 的值.21.(12分)已知f (x )=log a 1+x 1-x(a >0,a ≠1). (1)求f (x )的定义域;(2)推断f (x )的奇偶性并予以证明;(3)求使f (x )>0的x 的取值范围.22.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数. (1)求b 的值;(2)推断函数f (x )的单调性;(3)假设对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.。
高一上学期数学必修课件第章正整数指数函数
如 log_a 1 = 0, log_a a = 1, log_a (M/N) = -log_a (N/M), log_a (M*N) = log_a M + log_a N 等。
指数函数与对数函数关系探讨
指数函数与对数函数互为反函数
对于函数 y = a^x (a > 0, a ≠ 1) 和 y = log_a x,它们是互为反函数的,即如果 y = a^x,则 x = log_a y。
指数函数定义
形如y=a^x(a>0且a≠1)的函 数叫做指数函数。
指数函数性质
当a>1时,函数在定义域内单调 递增;当0<a<1时,函数在定义 域内单调递减。
指数运算规则
01
02
03
同底数幂相乘
底数不变,指数相加,即 a^m*a^n=a^(m+n)。
同底数幂相除
底数不变,指数相减,即 a^m/a^n=a^(m-n)。
分数指数幂的性质
如 a^0 = 1 (a ≠ 0), a^(-m/n) = 1/a^m/n, (a^m/n)^p = a^(m*p)/n 等。
对数概念和运算规则
01
对数定义
如果 a^x = N (a > 0, a ≠ 1),那么 x 叫做以 a 为底 N 的对数,记作
x = log_a N。
02 03
高一上学期数学必修课件
第章正整数指数函数
汇报人:XX
20XX-01-12
• 正整数指数函数基本概念 • 正整数指数函数运算 • 正整数指数函数在生活中的应用 • 正整数指数函数与方程求解 • 正整数指数函数在几何图形中的应用 • 正整数指数函数拓展与提高
01
正整数指数函数数学教案
正整数指数函数数学教案教案章节:一、正整数指数函数的定义及性质教学目标:1. 理解正整数指数函数的定义。
2. 掌握正整数指数函数的性质。
教学内容:1. 正整数指数函数的定义:形如f(x) = a^x 的函数,其中a 是正常数,x 是正整数。
2. 正整数指数函数的性质:a) 随着x 的增大,a^x 的值也会增大。
b) 当a > 1 时,a^x 是增函数;当0 < a < 1 时,a^x 是减函数。
c) a^x 的图像是一条通过原点的直线。
教学活动:1. 引入正整数指数函数的概念,让学生回顾已学的指数函数知识。
3. 举例说明正整数指数函数的性质,让学生通过实际问题理解并巩固知识。
教学评价:1. 通过课堂提问,检查学生对正整数指数函数定义的理解。
2. 通过练习题,检验学生对正整数指数函数性质的掌握。
教案章节:二、正整数指数函数的应用教学目标:1. 掌握正整数指数函数在实际问题中的应用。
2. 能够运用正整数指数函数解决相关问题。
教学内容:1. 正整数指数函数在实际问题中的应用:a) 计算幂运算。
b) 描述细胞分裂。
c) 描述放射性衰变。
教学活动:1. 通过举例,让学生了解正整数指数函数在实际问题中的应用。
2. 引导学生运用正整数指数函数解决相关问题。
3. 组织学生进行小组讨论,分享各自的应用实例和解决方法。
教学评价:1. 通过练习题,检验学生对正整数指数函数应用的掌握。
2. 通过课堂讨论,了解学生对正整数指数函数在实际问题中的应用的理解。
教案章节:三、正整数指数函数的图像教学目标:1. 学会绘制正整数指数函数的图像。
2. 能够通过图像分析正整数指数函数的性质。
教学内容:1. 正整数指数函数的图像特点:a) 图像是一条通过原点的直线。
b) 随着x 的增大,y 值也会增大。
教学活动:1. 引导学生通过绘制正整数指数函数的图像,观察和分析其特点。
2. 举例说明如何通过图像来分析正整数指数函数的性质。
《正整数指数函数》 讲义
《正整数指数函数》讲义一、引入在数学的世界里,函数是一种非常重要的概念,它描述了两个变量之间的关系。
今天,我们要来探讨一种特殊的函数——正整数指数函数。
想象一下,我们在生活中经常会遇到一些数量随着某个因素的变化而有规律地增加或减少的情况。
比如,银行存款的利息计算、细胞的分裂、放射性物质的衰变等等。
正整数指数函数就能很好地帮助我们描述和理解这些现象。
二、正整数指数函数的定义正整数指数函数是指形如 y = a^x (a > 0 且a ≠ 1,x 是正整数)的函数。
其中,a 被称为底数,x 被称为指数。
举个例子,如果有函数 y = 2^x ,当 x 分别为 1、2、3 时,y 的值依次为 2、4、8 。
三、正整数指数函数的图像让我们来画一下正整数指数函数的图像,以 y = 2^x 为例。
我们先列出 x 和 y 的对应值:当 x = 1 时,y = 2当 x = 2 时,y = 4当 x = 3 时,y = 8……然后,在平面直角坐标系中描出这些点,再用平滑的曲线将它们连接起来。
可以发现,正整数指数函数的图像是一些孤立的点,并且呈现出一种上升的趋势。
当底数 a > 1 时,函数图像是单调递增的;当 0 < a < 1 时,函数图像是单调递减的。
四、正整数指数函数的性质1、定义域正整数指数函数的定义域是正整数集合,即 x ∈{1, 2, 3, ……}2、值域当 a > 1 时,值域为{ a, a^2, a^3, ……},函数值随着 x 的增大而增大;当 0 < a < 1 时,值域为{ a, a^2, a^3, ……},函数值随着 x 的增大而减小。
3、单调性如前面所说,当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。
4、过定点正整数指数函数的图像一定过点(1, a) 。
五、正整数指数函数的应用正整数指数函数在很多领域都有广泛的应用。
1、经济领域在计算复利时,正整数指数函数就发挥了作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 正整数指数函数
【使用说明】
1.课前认真阅读并思考课本P61-63页的内容,然后根据自身能力完成学案所设计的问题,并在不明白的问题前用红笔做出标记。
2.限时完成,规范书写,课上小组合作探讨,答疑解惑,并对每个问题做出点评,反思。
【学习重点】 正整数指数函数的概念及性质
【学习难点】 正整数指数函数的运算及函数性质
【学习目标】
1.理解正整数指数函数的概念及性质,会画正整数指数函数的图像,并能利用正整数指数函数的性质解决问题。
2.由正整数指数函数的运算性质,体会数形结合的思想。
3.我在五中,激情投入,高效学习,踊跃展示,大胆质疑,体验成功,创想快乐。
一、问题导学
1正整数指数函数的概念
思考:
(1)一般的,函数 (a>0),1且,+∈
≠N x a 叫做正整数指数函数的概念。
其中x 自变量,定义域是 。
(2)正整数指数函数与幂函数有什么区别?
(3)正整数指数函数)(2+∈
=N x y x 的值域是什么?由此你能得到什么?
2. 正整数指数函数的图像与性质
在直角坐标系中画出)(2+∈=N x y x 和)()2
1
(+∈=N x y x 的图像,由图可判断,正整数指数函数的图像是在第 象限的一些 组成的。
思考:
(1)当底数0<a<1时,正整数指数函数的图像是 的,正整数指数函数 函
数 ;当底数a>1时,正整数指数函数的图像是 的,正整数指数函数 函数
(2))(3+∈=N x y x 的单调区间是+N 吗?
二、导学自测
1.已知+∈N x ,下列是正整数指数函数 。
①12+=x y ②x y 3-= ③ x y π= ④20)1(x
y = ⑤x
y )47
(=
⑥πx y =
2.比较下列大小(用“<”或“>”填空)
(1)151.1 161.1 (2)78.0 108.0 (3) 32 33
三、合作探究
1.在同一直角坐标系,分别画出下列两组函数图像,你能发现什么规律?
(1)x y 2=和x 3=y (其中+∈N x )
(2)x y )21
(=和x )31
(=y (其中+∈N x )
2.若)()1m (+∈-=N x y x 为定义域内的增函数,则m 的取值范围是 。
3.函数)(a +∈
=N x y x 的值域是 (写成集合的形式)
4.+∈N x ,比较下列大小(用“<”或“>”填空)
(1)x )31
( 1 (2)x 5.1 1 (3)x )31( x )41
( (4)x
2 x 3
5. 某股票自上市以来行情看好,从2009年初的每股6元涨到2012年初的每股12元,若每年结算一次增长率,那么这三年该市平均增长率为多少?
四、课堂小结
五、巩固测评
1.函数x a y )
1a 1
(+-=是正整数指数函数,则a 的取值范围是 。
2.若函数)()1a (2+∈--
=N x a y x 为定义域内的单调递减函数,求实数a 的取值范
围。
3.试探索函数23)(f x x =·49x -(+∈N x )的单调性,并求出函数的最值。