浙江人教A版数学高二选修2-2学案第一章导数及其应用1.3.3
2020年人教版A版数学选修2-2全册完整讲义学案(教师用书)
第一章导数及其应用§1.1变化率与导数§1.1.1变化率问题§1.1.2导数的概念§1.1.3导数的几何意义§1.2导数的计算§1.2.1几个常用函数的导数§1.2.2基本初等函数的导数公式及导数的运算法则(一) §1.2.2基本初等函数的导数公式及导数的运算法则(二) §1.3导数在研究函数中的应用§1.3.1函数的单调性与导数§1.3.2函数的极值与导数§1.3.3函数的最大(小)值与导数§1.4生活中的优化问题举例§1.5定积分的概念§1.5.1曲边梯形的面积§1.5.2汽车行驶的路程§1.5.3定积分的概念§1.6微积分基本定理§1.7定积分的简单应用§1.7.1定积分在几何中的应用§1.7.2定积分在物理中的应用章末整合提升章末达标测试第二章推理与证明§2.1合情推理与演绎推理§2.1.1合情推理§2.1.2演绎推理§2.2直接证明与间接证明§2.2.1综合法和分析法§2.2.2反证法§2.3数学归纳法章末整合提升章末达标测试第三章数系的扩充与复数的引入§3.1数系的扩充和复数的概念§3.1.1数系的扩充和复数的概念§3.1.2复数的几何意义§3.2复数代数形式的四则运算§3.2.1复数代数形式的加、减运算及其几何意义§3.2.2复数代数形式的乘除运算章末整合提升章末达标测试模块综合检测§1.1 变化率与导数§1.1.1 变化率问题 §1.1.2 导数的概念[课标要求]1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景.(难点) 2.会求函数在某一点附近的平均变化率.(重点)3.会利用导数的定义求函数在某点处的导数.(重点、难点)一、函数平均变化率如果函数关系用y =f (x )表示,那么变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率.习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1的一个“增量”,可用x 1+Δx 代替x 2;类似地,Δy =f (x 2)-f (x 1).于是平均变化率可以表示为Δy Δx. 二、导数的有关概念 1.瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是f (x 0+Δx )-f (x 0)Δx =ΔyΔx. 2.函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作,即f ′(x 0)=ΔyΔx=f (x 0+Δx )-f (x 0)Δx.知识点一 平均变化率 【问题1】 气球的膨胀率 阅读教材,思考下面的问题.吹一只气球,观察一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?答案 气球的半径r (单位:dm)与体积V (单位:L)之间的函数关系是r (V )=33V4π, (1)当空气容量V 从0增加到1 L 时,气球半径增加了r (1)-r (0)≈0.62(dm), 气球的平均膨胀率为r (1)-r (0)1-0≈0.62(dm/L).(2)当空气容量V 从1 L 增加到2 L 时,气球半径增加了r (2)-r (1)≈0.16(dm), 气球的平均膨胀率为r (2)-r (1)2-1≈0.16(dm/L).可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了. 【问题2】 高台跳水人们发现,在高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在时间段①0≤t ≤0.5,②1≤t ≤2内的平均速度v ,并思考平均速度有什么作用? 答案 (1)在0≤t ≤0.5这段时间里,v =h (0.5)-h (0)0.5-0=4.05(m/s);(2)在1≤t ≤2这段时间里,v =h (2)-h (1)2-1=-8.2(m/s).由以上计算体会到平均速度可以描述运动员在某段时间内运动的快慢. 【问题3】 结合问题1和问题2说出你对平均变化率的理解.答案 (1)如果上述两个问题中的函数关系用y =f (x )表示,那么问题1中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.问题1中的平均变化率表示在空气容量从V 1增加到V 2时,气球半径的平均增长率.问题2中的平均变化率表示在时间从t 1增加到t 2时,高度h 的平均增长率.(2)平均变化率的几何意义就是函数y =f (x )图象上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))所在直线的斜率. (3)平均变化率的取值①平均变化率可以表现函数的变化趋势,平均变化率为0,并不一定说明函数f (x )没有发生变化.②自变量的改变量Δx 取值越小,越能准确体现函数的变化规律. (4)平均变化率的物理意义平均变化率的物理意义是把位移s 看成时间t 的函数s =s (t ),在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1.知识点二 函数在某点处的导数【问题1】 (1)物体的平均速度能否精确反映它的运动状态? (2)什么叫做瞬时速度? (3)它与平均速度有什么关系?答案 (1)物体的平均速度不能精确地反映物体的运动状态,如高台跳水运动员相对于水面的高度h 与起跳时间t 的函数关系h (t )=-4.9t 2+6.5t +10,易知h (6549)=h (0),v =h (6549)-h (0)6546-0=0,而运动员依然是运动状态.(2)设物体运动的路程与时间的关系是s =f (t ),当Δt 趋近于0时,函数f (t )在t 0到t 0+Δt 之间的平均变化率f (t 0+Δt )-f (t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.(3)平均速度只能粗略地描述物体的运动状态,并不能反映物体在某一时刻的瞬时速度.当时间间隔|Δt |趋近于0时,平均速度v 就无限趋近于t 0时的瞬时速度.【问题2】 平均变化率与瞬时变化率有什么关系?答案 (1)区别:平均变化率不是瞬时变化率.平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢,瞬时变化率刻画函数值在x 0点处变化的快慢.(2)联系:当Δx 趋近于0时,平均变化率ΔyΔx 趋近于一个常数,这个常数即为函数在x 0处的瞬时变化率,它是一个固定值.【问题3】 导数与瞬时变化率有什么关系? 答案 导数与瞬时变化率的关系导数是函数在x 0及其附近函数的改变量Δy 与自变量的改变量Δx 之比在Δx 趋近于0时所趋近的数,它是一个局部性的概念,若ΔyΔx存在,则函数y =f (x )在x 0处有导数,否则不存在导数.可以说导数就是函数在某点处的导数,例如,位移s 关于时间t 的导数就是运动物体在某时刻的瞬时速度.题型一 求函数的平均变化率求函数f (x )=x 2在x 0到x 0+Δx 之间的平均变化率. 【解析】 函数f (x )=x 2在x 0到x 0+Δx 的平均变化率为 f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=x 20+2x 0Δx +(Δx )2-x 2Δx=2x 0·Δx +(Δx )2Δx =2x 0+Δx .●规律方法求函数y =f (x )平均变化率的步骤(1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.[特别提醒](1)求函数平均变化率时注意Δx ,Δy ,两者都可正、可负,但Δx 的值不能为零,Δy 的值可以为零. (2)求点x 0附近的平均变化率,可用f (x 0+Δx )-f (x 0)Δx的形式.1.若本例中,Δx =13,x 0=1,2,3,比较函数f (x )=x 2在哪一点附近的平均变化率最大?解析 x 0=1到x =1+13=43的平均变化率k 1=f ⎝⎛⎭⎫43-f (1)13=⎝⎛⎭⎫432-1213=73, x 0=2到x =73的平均变化率k 2=f ⎝⎛⎭⎫73-f (2)13=⎝⎛⎭⎫732-2213=133,x 0=3到x =103的平均变化率k 3=f ⎝⎛⎭⎫103-f (3)13=⎝⎛⎭⎫1032-3213=193,由于k 1<k 2<k 3,∴函数f (x )=x 2在x 0=3附近的平均变化率最大. 题型二 物体运动的瞬时速度物体自由落体的运动方程是s =12gt 2(g =9.8 m/s 2),求物体在t =3 s 这一时刻的速度.【解析】 平均速度Δs Δt =12g (3+Δt )2-12g ×32Δt=12g (6+Δt ). 当Δt 趋于0时,Δs Δt =12g (6+Δt )趋于3g ,所以v =3g =29.4(m/s),即物体在t =3 s 时的速度为29.4 m/s.●规律方法求运动物体瞬时速度的步骤(1)求时间改变量Δt 和位置改变量Δs =s (t 0+Δt )-s (t 0). (2)求平均速度v =ΔsΔt.(3)求瞬时速度:当Δt 无限趋近于0,ΔsΔt 无限趋近于的常数v 即为瞬时速度.提示 求ΔyΔx (当Δx 无限趋近于0时)的极限的方法(1)在极限表达式中,可把Δx 作为一个变量来参与运算.(2)求出ΔyΔx的表达式后,Δx 无限趋近于0就是令Δx =0,求出结果即可.2.一辆汽车按规律s =2t 2+3做直线运动,求这辆车在t =2时的瞬时速度(时间单位:s ,位移单位:m). 解析 设这辆车在t =2附近的时间变化量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt)2,ΔsΔt=8+2Δt,ΔsΔt=(8+2Δt)=8.所以,这辆车在t=2时的瞬时速度为8 m/s.题型三求函数在某点处的导数(6分)求函数y=x-1x在x=1处的导数.【规范解答】因为Δy=(1+Δx)-11+Δx-(1-11)=Δx+Δx1+Δx,(2分)所以ΔyΔx=Δx+Δx1+ΔxΔx=1+11+Δx.(4分)当Δx→0时,f′(1)=ΔyΔx=(1+11+Δx)=2,即函数y=x-1x在x=1处的导数为2.(6分)●规律方法求函数y=f(x)在x=x0处的导数的步骤(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=ΔyΔx.3.利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解析由导数的定义知,函数在x=2处的导数f′(2)=f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-(-22+3×2)=-(Δx)2-Δx,于是f′(2)=-(Δx)2-ΔxΔx=(-Δx-1)=-1.易错误区(一) 对导数的概念理解不清致误若函数f (x )在x =a 的导数为m ,那么 f (a +2Δx )-f (a -2Δx )Δx 的值为________.【解析】f (a +2Δx )-f (a -2Δx )Δx=f (a +2Δx )-f (a )+f (a )-f (a -2Δx )Δx=f (a +2Δx )-f (a )Δx +f (a )-f (a -2Δx )Δx ①=2f (a +2Δx )-f (a )2Δx+2f (a -2Δx )-f (a )-2Δx=2m +2m =4m . 【答案】 4m [易错防范]1.误认为①处两极限值均为m ,即运算结果为2m .2.对平均变化率中自变量的增加量“Δx ”理解不当.在平均变化率f (x 0+Δx )-f (x 0)Δx 中,分子中的“Δx ”与分母中的“Δx ”应取相同值,且可正可负.3.熟记瞬时变化率(即导数)的几种变形形式f (x 0+Δx )-f (x 0)Δx=f (x 0-Δx )-f (x 0)-Δx=f (x 0+n Δx )-f (x 0)n Δx=f (x 0+Δx )-f (x 0-Δx )2Δx=f ′(x 0).若f ′(1)=2 016,则f (1+Δx )-f (1)-2Δx=________.解析f (1+Δx )-f (1)-2Δx=-12f (1+Δx )-f (1)Δx=-12f ′(1)=-12×2 016=-1 008.答案 -1 008[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.质点运动规律s =2t 2+5,则在时间(2,2+Δt )中,相应的平均速度等于 A .8+2Δt B .8+2Δt +4ΔtC .4+ΔtD .8+Δt解析 Δs =s (2+Δt )-s (2)=2(2+Δt )2+5-(2×22+5)=2(Δt )2+8Δt . ∴Δs Δt =2(Δt )2+8Δt Δt =8+2Δt . 答案 A2.函数y =x 2-2x 在x =2附近的平均变化率是 A .2B .ΔxC .Δx +2D .1解析 Δy =f (2+Δx )-f (2) =(2+Δx )2-2(2+Δx )-(4-4) =(Δx )2+2Δx ,∴Δy Δx =(Δx )2+2Δx Δx=Δx +2.答案 C3.设函数y =f (x )可导,则f (1+3Δx )-f (1)Δx 等于 A .f ′(1)B .3f ′(1) C.13f ′(1) D .以上都不对 解析 f (1+3Δx )-f (1)Δx=3f (1+3Δx )-f (1)3Δx =3f ′(1). 答案 B4.一个物体的运动方程为s =(2t +1)2,其中s 的单位是米,t 的单位是秒,那么该物体在1秒末的瞬时速度是A .10米/秒B .8米/秒C .12米/秒D .6米/秒解析 ∵s =4t 2+4t +1,Δs =[4(1+Δt )2+4(1+Δt )+1]-(4×12+4×1+1)=4(Δt )2+12Δt ,Δs Δt =4(Δt )2+12Δt Δt=4Δt +12, ∴v =Δs Δt =(4Δt +12)=12(米/秒). 答案 C5.如果函数y =f (x )=x 在点x =x 0处的瞬时变化率是33,那么x 0的值是 A.34B.12 C .1D .3解析 函数f (x )=x 在x =x 0处的瞬时变化率,f ′(x 0)=x 0+Δx -x 0Δx =Δx Δx (x 0+Δx +x 0)=12x 0=33,答案 A 6.某物体做直线运动,其运动规律是s =t 2+16t(t 的单位是秒,s 的单位是米),则它的瞬时速度为0米/秒的时刻为A .8秒末B .6秒末C .4秒末D .2秒末解析 设当t =t 0时该物体瞬时速度为0米/秒,∵Δs Δt =(t 0+Δt )2+16t 0+Δt -⎝⎛⎭⎫t 20+16t 0Δt =2t 0+Δt -16(t 0+Δt )t 0, ∴Δs Δt=2t 0-16t 20, 由2t 0-16t 20=0得t 0=2. 答案 D二、填空题(每小题5分,共15分)7.函数y =-3x 2+6在区间[1,1+Δx ]内的平均变化率是________.解析 Δy Δx =[-3(1+Δx )2+6]-(-3×12+6)Δx=-6Δx -3(Δx )2Δx=-6-3Δx . 答案 -6-3Δx8.一质点的运动方程为s =1t,则t =3时的瞬时速度为________. 解析 由导数定义及导数的物理意义知s ′=1t +Δt -1t Δt=-Δt (t +Δt )·t ·Δt =-1t 2+t ·Δt =-1t 2, ∴s ′ |t =3=-19,即t =3时的瞬时速度为-19.9.已知曲线y =1x -1上两点A ⎝⎛⎭⎫2,-12、B ⎝⎛⎭⎫2+Δx ,-12+Δy ,当Δx =1时,割线AB 的斜率为________. 解析 Δy =⎝ ⎛⎭⎪⎫12+Δx -1-⎝⎛⎭⎫12-1 =12+Δx -12=2-(2+Δx )2(2+Δx )=-Δx 2(2+Δx ). ∴Δy Δx =-Δx2(2+Δx )Δx =-12(2+Δx ), 即k =Δy Δx =-12(2+Δx ). ∴当Δx =1时,k =-12×(2+1)=-16. 答案 -16三、解答题(本大题共3小题,共35分)10.(10分)一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2.(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度;(3)求t =0到t =2的平均速度.解析 (1)v 0=s (Δt )-s (0)Δt=3Δt -(Δt )2Δt=(3-Δt )=3. (2)v 2=s (2+Δt )-s (2)Δt =(-Δt -1)=-1.(3)v -=s (2)-s (0)2=6-4-02=1. 11.(12分)已知f (x )=x 2,g (x )=x 3,求适合f ′(x 0)+2=g ′(x 0)的x 0值.解析 由导数的定义知,f ′(x 0)=Δf Δx =(x 0+Δx )2-x 20Δx =2x 0,g ′(x 0)=Δg Δx =(x 0+Δx )3-x 30Δx=3x 20. 因为f ′(x 0)+2=g ′(x 0),所以2x 0+2=3x 20,即3x 20-2x 0-2=0,解得x 0=1-73或x 0=1+73.12.(13分)节日期间燃放烟花是中国的传统习惯之一,制造时通常希望它在达到最高点时爆裂.如果烟花距地面的高度h (m)与时间t (s)之间的关系式为h (t )=-4.9t 2+14.7t +18,求烟花在t =2 s 时的瞬时速度,并解释烟花升空后的运动状况.解析 因为Δh Δt =h (t +Δt )-h (t )Δt=-9.8t -4.9Δt +14.7, 所以h ′(t )=Δh Δt =(-9.8t -4.9Δt +14.7)=-9.8t +14.7,所以h ′(2)=-4.9,即在t =2 s 时烟花正以4.9 m/s 的速度下降.由h ′(t )=0得t =1.5,所以在t =1.5 s 附近,烟花运动的瞬时速度几乎为0,此时达到最高点并爆裂,在1.5 s 之前,导数大于0且递减,所以烟花以越来越小的速度上升,在1.5 s 之后,导数小于0且绝对值越来越大,所以烟花以越来越大的速度下降,直至落地.§1.1.3 导数的几何意义[课标要求]1.了解导函数的概念;理解导数的几何意义.(难点)2.会求导函数.(重点)3.根据导数的几何意义,会求曲线上某点处的切线方程.(重点、易错点)一、导数的几何意义1.切线:如图,当点P n (x n ,f (x n ))(n =1,2,3,4…)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.显然割线PP n 的斜率是k n =f (x n )-f (x 0)x n -x 0,当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率.2.几何意义:函数y =f (x )在x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率k =f (x 0+Δx )-f (x 0)Δx=f ′(x 0).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二、函数y =f (x )的导函数从求函数f (x )在x =x 0处导数的过程可以看到,当x =x 0时,f ′(x 0)是一个确定的数.这样,当x 变化时, f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=f (x +Δx )-f (x )Δx.知识点一 导数的几何意义【问题1】 曲线的切线是不是一定和曲线只有一个公共点?答案 不一定.曲线的切线和曲线不一定只有一个公共点,和曲线只有一个公共点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.【问题2】 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同?答案 曲线f (x )在点(x 0,f (x 0))处的切线,点(x 0,f (x 0))一定是切点,只要求出k =f ′(x 0),利用点斜式写出切线即可;而曲线f (x )过某点(x 0,y 0)的切线,给出的点(x 0,y 0)不一定在曲线上,即使在曲线上也不一定是切点.知识点二 导数与函数的单调性【问题1】 观察下面两个图形,在曲线的切点附近(Δx →0时)曲线与那一小段线段有何关系?答案 能在曲线的切点附近,曲线与切线贴合在一起,可用切线近似代替曲线.【问题2】 按照切线近似代替曲线的思想,切线的单调性能否表示曲线的变化趋势?如上左图,若在某一区间上曲线上各点的切线斜率均为负,则可判定在该区间上曲线的单调性如何?答案 在连续区间上切线斜率的正负,对应了曲线的单调性.【问题3】 如问题1中右图,当t 在(t 0,t 2)上变化时,其对应各点的导数值变化吗?会怎样变化? 答案 会.当t 变化时h ′(t )便是t 的一个函数,我们称它为h (t )的导函数.知识点三 函数y =f (x )的导函数【问题】 函数在某点处的导数与导函数有什么关系?答案 区别:(1)f ′(x )是函数f (x )的导函数,简称导数,是对一个区间而言的,它是一个确定的函数,依赖于函数本身,而与x 0,Δx 无关;(2)f ′(x 0)表示的是函数f (x )在x =x 0处的导数,是对一个点而言的,它是一个确定的值,与给定的函数及x 0的位置有关,而与Δx 无关.联系:在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这点的函数值.题型一 求曲线的切线方程已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,如图,求:(1)点P 处的切线的斜率;(2)点P 处的切线方程.【解析】 (1)∵y =13x 3, ∴y ′=Δy Δx =13(x +Δx )3-13x 3Δx =133x 2Δx +3x (Δx )2+(Δx )3Δx =13[3x 2+3x Δx +(Δx )2]=x 2, y ′|x =2=22=4.∴点P 处的切线的斜率等于4.(2)在点P 处的切线方程是y -83=4(x -2), 即12x -3y -16=0.●规律方法求曲线上某点处的切线方程的步骤(1)求出该点的坐标.(2)求出函数在该点处的导数,即曲线在该点处的切线的斜率.(3)利用点斜式写出切线方程.1.例1中的P 点换为坐标原点(0,0),其他不变,如何解答?解析 由例1知y =13x 3的导函数为y ′=x 2. (1)点P 处的切线斜率k =0.(2)在点P 处的切线方程是y -0=0×(x -0)即y =0.(注意:原点处的切线即x 轴,结合图象理解切线的定义)题型二 求切点坐标过曲线y =x 2上哪一点的切线满足下列条件?(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)倾斜角为135°.【解析】 f ′(x )=f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,得x 0=-32,y 0=94, 即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,得x 0=-12,y 0=14, 即P ⎝⎛⎭⎫-12,14是满足条件的点. ●规律方法求切点坐标的一般步骤(1)先设切点坐标(x 0,y 0).(2)求导函数f ′(x ).(3)求切线的斜率f ′(x 0).(4)由已知条件求出切线的斜率k .由此得到方程f ′(x 0)=k ,解此方程求出x 0.(5)由于点(x 0,y 0)在曲线y =f (x )上,故将x 0代入曲线方程可得y 0,即可写出切点坐标.2.(1)曲线y =x 2-3x 在点P 处的切线平行于x 轴,则点P 的坐标为________.(2)已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________. 解析 (1)根据题意可设切点为P (x 0,y 0),因为Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x Δx +(Δx )2-3Δx , Δy Δx =2x +Δx -3, 所以f ′(x )=Δy Δx =(2x +Δx -3)=2x -3.由f ′(x 0)=0,即2x 0-3=0,得x 0=32, 代入曲线方程得y 0=-94, 所以P ⎝⎛⎭⎫32,-94. (2)由导数的几何意义得f ′(1)=12, 由切线方程得f (1)=12×1+2=52, 所以f (1)+f ′(1)=3.答案 (1)⎝⎛⎭⎫32,-94 (2)3 题型三 导数几何意义的综合应用已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 1,l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.【解析】 (1)f ′(1)=Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+(1+Δx )-2]-(1+1-2)Δx=(Δx +3)=3, 所以直线l 1的方程为y =3x -3.设直线l 2与曲线y =x 2+x -2相切于点B (b ,b 2+b -2),则可求得切线l 2的斜率为2b +1.因为l 1⊥l 2,则有2b +1=-13,b =-23. 所以直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1、l 2与x 轴交点的坐标分别为(1,0)、⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×⎪⎪⎪⎪-52=12512. ●规律方法与导数几何意义相关题目的解题策略(1)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.(2)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线间的位置关系等,因此要综合应用所学知识解题.3.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值. 解析 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3, ∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2.当Δx 无限趋近于零时,Δy Δx 无限趋近于3x 20+2ax 0-9,即f ′(x 0)=3x 20+2ax 0-9. ∴f ′(x 0)=3⎝⎛⎭⎫x 0+a 32-9-a23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12. ∴-9-a 23=-12.解得a =±3.又a <0,∴a =-3.规范解答(一) 求曲线过点P (x 1,y 1)的切线方程(12分)已知函数y =f (x )=x 3-3x 及y =f (x )上一点P (1,-2),求过点P 与曲线y =f (x )相切的直线l的方程.[审题指导]【规范解答】 (1)y ′=(x +Δx )3-3(x +Δx )-x 3+3xΔx=3x 2-3.(2分)设切点坐标为(x 0,x 30-3x 0), 则直线l 的斜率k =f ′(x 0)=3x 20-3,所以直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又因为直线l 过点P (1,-2),所以-2-(x 30-3x 0)=(3x 20-3)(1-x 0), 所以2x 30-3x 20+1=0,即(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.(6分)故所求直线斜率为k =3x 20-3=0或k =3x 20-3=-94, 于是y -(-2)=0·(x -1)或y -(-2)=-94(x -1),即y =-2或y =-94x +14.(10分)故过点P (1,-2)的切线方程为 y =-2或y =-94x +14.(12分)[题后悟道]1.求过点P (x 1,y 1)的切线方程的步骤: (1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =Δy Δx. (3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率(或利用切点和斜率写出切线方程).(4)根据斜率相等求得x 0,然后求得斜率k (或利用已写出的切线过点P (x ,y ),求出x 0,然后求得斜率k ). (5)根据点斜式写出切线方程. 2.注意事项:(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异.过点P 的切线,点P 不一定是切点,也不一定在曲线上;在点P 处的切线,点P 必为切点,且在曲线上.(2)若曲线y =f (x )在点x 0处的导数f ′(x 0)不存在,则切线与y 轴平行或不存在;若f ′(x 0)=0,则切线与x 轴平行.已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程. 解析 y ′=Δy Δx=[2(x +Δx )2-7]-(2x 2-7)Δx=(4x +2Δx )=4x .由于2×32-7=11≠9,故点P (3,9)不在曲线上.设切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求切线方程为y -y 0=4x 0(x -x 0). 将P (3,9)及y 0=2x 20-7代入上式,得 9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4,所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0或16x -y -39=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小, 结合导数的几何意义知f ′(x A )<f ′(x B ),选B. 答案 B2.曲线y =12x 2-2在点⎝⎛⎭⎫1,-32处的切线的倾斜角为 A .1 B.π4 C.5π4D .-π4解析 f ′(1)=12(1+Δx )2-2+32Δx=12+Δx +12(Δx )2-2+32Δx=(1+12Δx )=1,即切线的斜率为1,故切线的倾斜角为π4.答案 B3.若曲线y =2x 2-4x +a 与直线y =1相切,则a 等于 A .1 B .2 C .3D .4解析 设切点坐标为(x 0,1), 则f ′(x 0)=[2(x 0+Δx )2-4(x 0+Δx )+a ]-(2x 20-4x 0+a )Δx=(4x 0+2Δx -4)=4x 0-4=0,∴x 0=1,即切点坐标为(1,1). ∴2-4+a =1,即a =3. 答案 C4.设曲线y =x 2+x -2在点M 处的切线斜率为3,则点M 的坐标为 A .(0,-2) B .(1,0) C .(0,0)D .(1,1)解析 设点M (x 0,y 0), ∴k =(x 0+Δx )2+(x 0+Δx )-2-(x 20+x 0-2)Δx=2x 0+1, 令2x 0+1=3,∴x 0=1,则y 0=0.故选B. 答案 B5.曲线y =x 2在点(1,1)处的切线与坐标轴所围三角形的面积为 A.14B.12 C .1D .2 解析 f ′(1)=Δy Δx=(1+Δx )2-1Δx=(2+Δx )=2.则曲线在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.则三角形的面积为S =12×1×12=14.答案 A6.已知点P 在曲线F :y =x 3-x 上,且曲线F 在点P 处的切线与直线x +2y =0垂直,则点P 的坐标为 A .(1,1)B .(-1,0)C .(-1,0)或(1,0)D .(1,0)或(1,1)解析 设点P (x 0,y 0),则f ′(x 0)=ΔyΔx=[(x 0+Δx )3-(x 0+Δx )]-(x 30-x 0)Δx=3x 20-1=2⇒x 0=±1. 答案 C二、填空题(每小题5分,共15分)7.如果函数f (x )在x =x 0处的切线的倾斜角是钝角,那么函数f (x )在x =x 0附近的变化情况是________(填“逐渐上升”或“逐渐下降”).解析 由题意知f ′(x 0)<0,根据导数的几何意义知,f (x )在x =x 0附近的变化情况是“逐渐下降”. 答案 逐渐下降8.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ab =________.解析a (1+Δx )2+b -(a +b )Δx=(a Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2, 即a b =12. 答案 129.已知曲线y =x 24的一条切线的斜率为12,则切点的坐标为________.解析 设切点的坐标为(x 0,y 0), 因为Δy Δx =(x 0+Δx )24-x 204Δx =12x 0+14Δx ,当Δx →0时,Δy Δx →12x 0,而切线的斜率为12,所以12x 0=12,所以x 0=1,y 0=14.故切点坐标为⎝⎛⎭⎫1,14. 答案 ⎝⎛⎭⎫1,14 三、解答题(本大题共3小题,共35分) 10.(10分)已知曲线C :y =x 3.求:(1)曲线C 上横坐标为1的点处的切线的方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点? 解析 (1)将x =1代入曲线C 的方程得y =1, ∴切点为P (1,1). ∵y ′=ΔyΔx=(x +Δx )3-x 3Δx=3x 2Δx +3x (Δx )2+(Δx )3Δx=[3x 2+3x Δx +(Δx )2]=3x 2,∴y ′|x =1=3.∴点P 处的切线方程为y -1=3(x -1), 即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)(x 2+x -2)=0,解得x 1=1,x 2=-2.从而求得公共点为P (1,1)或P (-2,-8). 故第(1)小题中的切线与曲线C 还有其他的公共点.11.(12分)已知一物体的运动方程是s =⎩⎪⎨⎪⎧3t 2+2,0≤t <3,29+3(t -3)2,t ≥3.求此物体在t =1和t =4时的瞬时速度. 解析 当t =1时,Δs Δt =3(1+Δt )2+2-(3×12+2)Δt =6+3Δt , 所以s ′(1)=ΔsΔt=(6+3Δt )=6.故当t =1时的瞬时速度为6. 当t =4时,Δs Δt =29+3(4+Δt -3)2-[29+3×(4-3)2]Δt =6+3Δt , 所以s ′(4)=ΔsΔt=(6+3Δt )=6,故当t =4时的瞬时速度为6.12.(13分)已知曲线f (x )=x 2的一条在点P (x 0,y 0)处的切线,求: (1)切线平行于直线y =-x +2时切点P 的坐标及切线方程; (2)切线垂直于直线12x -4y +5=0时切点P 的坐标及切线方程;(3)切线的倾斜角为60°时切点P 的坐标及切线方程. 解析 f ′(x 0)=(x 0+Δx )2-x 20Δx=2x 0.(1)因为切线与直线y =-x +2平行, 所以2x 0=-1,x 0=-12,即P ⎝⎛⎭⎫-12,14, 所以切线方程为y -14=-⎝⎛⎭⎫x +12, 即4x +4y +1=0.(2)因为切线与直线12x -4y +5=0垂直,所以2x 0·18=-1,x 0=-4,即P (-4,16).所以切线方程为y -16=-8(x +4), 即8x +y +16=0.(3)因为切线的倾斜角为60°,所以切线的斜率为3,即2x 0=3,x 0=32, 所以P ⎝⎛⎭⎫32,34,所以切线方程为y -34=3⎝⎛⎭⎫x -32, 即43x -4y -3=0.§1.2 导数的计算§1.2.1 几个常用函数的导数§1.2.2 基本初等函数的导数公式及导数的运算法则(一)[课标要求]1.能根据导数的定义求函数y =c ,y =x ,y =x 2,y =x ,y =1x 的导数.(难点)2.掌握基本初等函数的导数公式并能进行简单的应用.(重点、难点)一、常用函数的导数原函数导函数f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x二、基本初等函数的导数公式原函数导函数①f (x )=c f ′(x )=0 ②f (x )=x n (n ∈Q *) f ′(x )=nx n -1 ③f (x )=sin x f ′(x )=cos_x ④f (x )=cos x f ′(x )=-sin_x ⑤f (x )=a x (a >0) f ′(x )=a x ln_a ⑥f (x )=e xf ′(x )=e x ⑦f (x )=log a x (a >0且a ≠1) f ′(x )=1x ln a⑧f (x )=ln xf ′(x )=1x知识点一 几个常用函数的导数【问题1】 用定义求下列常用函数的导数: ①y =c ;②y =x ;③y =x 2;④y =1x ;⑤y =x .答案 ①y ′=0;②y ′=1;③y ′=2x ;④y ′=Δy Δx=1x +Δx -1xΔx=-1x (x +Δx )=-1x 2(其他类似);⑤y ′=12x.【问题2】 导数的几何意义是曲线在某点处的切线的斜率.物理意义是运动物体在某一时刻的瞬时速度. (1)函数y =f (x )=c (常数)的导数的物理意义是什么? (2)函数y =f (x )=x 的导数的物理意义呢?答案 (1)若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.(2)若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做瞬时速度为1的匀速运动. 【问题3】 由正比例函数y =kx (k ≠0)的图象及导数可知;|k |越大函数增加(k >0)或减少(k <0)的速度越 快.画出函数y =x 2的图象,结合图象及导数说明函数y =x 2的变化情况.答案 图象如图从导数作为函数在一点的瞬时变化率来看,y ′=2x 表明:当x <0时,随着x 的增加,y =x 2减少得越来越慢;当x >0时,随着x 的增加,y =x 2增加得越来越快.若y =x 2表示路程关于时间的函数,则y ′=2x 可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .知识点二 基本初等函数的导数公式【问题】 你能说出基本初等函数的导数公式的特点吗? 答案 (1)常数函数的导数为零.(2)有理数幂函数f (x )=x α的导数依然为幂函数,且系数为原函数的次数,幂指数是原函数的幂指数减去1. (3)正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数. (4)指数函数的导数依然为指数函数,且系数为原函数底数的自然对数. (5)公式⑥是公式⑤的特例,公式⑧是公式⑦的特例.题型一 利用公式求导数求下列函数的导数:(1)y =x 7;(2)y =1x 2;(3)y =3x ;(4)y =2sin x 2cos x2;(5)y =log 12x 2-log 12x .【解析】 (1)y ′=7x 7-1=7x 6. (2)∵y =x -2,∴y ′=-2x -2-1=-2x -3. (3)∵y =x 13,∴y ′=13x -23.(4)∵y =2sin x 2cos x2=sin x ,∴y ′=cos x .(5)∵y =log 12x 2-log 12x =log 12x ,∴y ′=(log 12x )′=1x ln 12.●规律方法用公式求函数导数的方法(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,关键是将其合理转化为可以直接应用公式的基本函数的模式,如y =1x 2可以写成y =x -2,y = 3x =x 13等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.1.求下列函数的导数:(1)y =lg 4;(2)y =2x;(3)y =x 2x ;(4)y =2cos 2x 2-1. 解析 (1)y ′=(lg 4)′=0;(2)y ′=(2x )′=2x ln 2;(3)∵y =x 2x=x 2-12=x 32,∴y ′=(x 32)′=32x 12; (4)∵y =2cos 2x 2-1=cos x , ∴y ′=(cos x )′=-sin x .题型二 导数公式在解决切线问题中的应用(6分)已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.【规范解答】 y ′=(x 2)′=2x ,设切点为M (x 0,y 0),则y ′0|x x ==2x 0.(2分)∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ , ∴k =2x 0=1,即x 0=12,所以切点为M ⎝⎛⎭⎫12,14.(4分) ∴所求的切线方程为y -14=x -12,(5分) 即4x -4y -1=0.(6分)●规律方法利用导数解决求曲线的切线方程问题的策略求曲线的切线方程主要有两种类型.(1)已知切点型,其步骤为: 求导函数―→求切点处导数,即切线斜率―→写出切线方程 (2)未知切点型,其步骤为:设切点―→求导函数―→求切线斜率k =f ′(x 0) 写出切线的点斜式方程―→列出关于x 0的方程(组)―→求切点―→写出切线方程2.求曲线y =x 过点(3,2)的切线方程.解析 ∵点(3,2)不在曲线y =x 上,∴设过(3,2)与曲线y =x 相切的直线在曲线的切点为(x 0,y 0),则y 0=x 0. ∵y =x ,∴y ′=(x 12)′=12x 12-1=12x. ∴根据导数的几何意义,曲线在点(x 0,y 0)处的切线斜率k =12x 0. ∵切线过点(3,2),∴2-y 03-x 0=12x 0,2-x 03-x 0=12x 0, 整理得(x 0)2-4x 0+3=0,解得x 0=1,x 0=9,∴切点坐标为(1,1)或(9,3).(1)当切点坐标为(1,1)时,切线斜率k =12, ∴切线方程为y -2=12(x -3),即x -2y +1=0. (2)当切点坐标为(9,3)时,切线斜率k =16,∴切线方程为y -2=16(x -3),即x -6y +9=0. 综上可知:曲线y =x 过点(3,2)的切线方程为:x -2y +1=0或x -6y +9=0.易错误区(二) 正确使用求导公式已知直线y =kx 是曲线f (x )=e x 的切线,则k 的值等于________.【解析】 设切点的坐标为(x 0,y 0),由f (x )=e x ,可得y ′=f ′(x )=e x ,又k =y 0x 0,f ′(x 0)=0e x , 所以0e x =y 0x 0且y 0=0e x ①. 解得x 0=1,y 0=e.k =y 0x 0=e. 【答案】 e[易错防范]1.①处一要注意导数0e x ,即切线斜率y 0x 0,二要注意切点在曲线上,即y 0=0e x . 2.导数几何意义的应用本例实质是求过点(0,0)且与曲线y =e x 相切的直线方程的斜率.要把切线的斜率与导数联系起来,要注意切点的坐标既满足切线方程又满足曲线方程.3.牢记导数公式导数公式是函数导数计算的关键,解题时要注意使用.例如,在本例中,要正确应用公式(e x )′=e x .已知曲线y =1x3在点P (-1,-1)处的切线与直线m 平行且距离等于10,求直线m 的方程.解析 因为y ′=-3x 4, 所以曲线在点P (-1,-1)处的切线斜率为k =-3,则切线方程为y +1=-3(x +1),即3x +y +4=0.由题意设直线m 的方程为3x +y +b =0(b ≠4),所以|b -4|32+12=10,所以|b -4|=10, 所以b =14或b =-6,所以直线m 的方程为3x +y +14=0或3x +y -6=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.下列结论不正确的是A .若y =3,则y ′=0B .若y =1x ,则y ′=-x 2C .若y =x ,则y ′=12x D .若y =x ,则y ′=1解析 对于A ,常数的导数为零,故A 正确;对于B ,y ′=(x -12)′=-12x -32=-12x 3,故B 错误; 对于C ,y ′=(x 12)′=12x -12=12x,故C 正确; 对于D ,y ′=x ′=1,故D 正确.答案 B2.已知曲线f (x )=x 3的切线的斜率等于3,则切线有A .1条B .2条C .3条D .不确定 解析 ∵f ′(x )=3x 2=3,解得x =±1,切点有两个,即可得切线有两条.。
人教版高中数学选修2-2学案:第一章1.2第二课时导数的运算法则
第二课时导数的运算法例预习课本P15~ 18,思虑并达成以下问题(1)导数的四则运算法例是什么?在使用运算法例时的前提条件是什么?(2)复合函数的定义是什么,它的求导法例又是什么?[新知初探 ]1.导数的四则运算法例(1)条件: f(x), g(x)是可导的.(2)结论:① [f(x) ±g(x)] =′f′(x)±g′(x).② [f (x)g(x)] =′ f′(x)g(x)+ f(x)g′(x).③f x′=f xg x - f x g x(g(x) ≠ 0).g x2[g x[点睛 ]应用导数公式的注意事项(1)两个导数的和差运算只可推行到有限个函数的和差的导数运算.(2)两个函数可导,则它们的和、差、积、商(商的分母不为零 )必可导.(3)若两个函数不行导,则它们的和、差、积、商不必定不行导.(4)对于较复杂的函数式,应先进行适合的化简变形,化为较简单的函数式后再求导,可简化求导过程.2.复合函数的求导公式(1)复合函数的定义:①一般形式是 y= f(g( x)).②可分解为 y= f(u)与 u= g(x),此中 u 称为中间变量.(2)求导法例:复合函数y= f (g(x))的导数和函数y= f(u), u= g(x)的导数间的关系为:y x′= y u′·u x′.[小试身手 ]1.判断 (正确的打“√”,错误的打“×”)(1) f′(x)=2x,则 f(x)= x2 .()(2)函数 f(x)= xe x的导数是 f′(x)=e x(x+ 1). ()(3)函数 f(x)= sin(- x)的导数为 f′(x)= cos x. ()答案: (1) × (2) √ (3) ×2.函数 y = sin x ·cos xA . y ′= cos 2x + sin 2xC . y ′= 2cos x ·sin x答案: B的导数是()B . y ′= cos 2xD . y ′= cos x ·sin x3.函数 y = xcos x - sin x 的导数为 ________.答案: - xsin x4.若 f(x)= (2x + a)2,且 f ′(2)= 20,则 a = ________.答案: 1利用导数四则运算法例求导[典例 ] 求以下函数的导数:2+ log 3x ; (2)y = x 3 x(3)y = cos x(1) y = x ·e ;x .解 ′= 2+ log =′ 2 ) ′+ (log′ [ ] (1) y (x 3x)(x 3x) = 2x + 1.xln 33 x 3x3 x′′= · ) ′= ( x) ′·e+x· )(2) y(x e(e= 3x 2·e x +x 3 ·e x = e x (x 3+ 3x 2). (3) y ′= cos x ′= xx - cos x x2xx - x ·sin x - cos x xsin x + cos x= 2 =- 2. xx求函数的导数的策略(1)先划分函数的运算特色,即函数的和、差、积、商,再依据导数的运算法例求导数.(2) 对于三个以上函数的积、商的导数,挨次转变为“两个 ”函数的积、商的导数计算.[活学活用 ]求以下函数的导数:x(1) y = sin x - 2x 2; (2)y =cos x ·ln x ; (3) y = sin ex .解: (1)y ′= (sin x - 2x 2) ′= (sin x) ′- (2x 2) ′= cos x - 4x. (2) y ′= (cos x ·ln x) ′= (cos x) ′·x +ln cos x ·(ln x) ′=- sin x ·ln x + cos xx.e xxx - e x x(3) y ′= sin x ′=sin 2x = e x ·sin x - e x ·cos x e x x - cosx2 =2sin xsin x复合函数的导数运算[典例 ] 求以下函数的导数:(1) y = 1 2; (2)y = e sin(ax +b);1- 2x(3) y = sin 2 2x +π3 ; (4)y = 5log 2(2x + 1).[解 ] (1)设 y =u - 1, u = 1- 2x 2,2则 y ′= (u -12) ′ -(12x2) ′= -21u - 32 ·(- 4x)=-1 23 23.(1- 2x )-2(- 4x)= 2x(1- 2x )- 22(2) 设 y = e u , u = sin v , v = ax + b ,则 y x ′= y u ′·u v ′·v x ′= e u ·cos v ·asin(ax +b) .= acos(ax + b) ·e(3) 设 y = uπ2, u = sin v , v =2x + ,3则 y x ′= y u ′·u v ′·v x ′= 2u ·cos v ·22π= 4sin vcos v = 2sin 2v = 2sin 4x + 3 .(4) 设 y = 5log 2 u , u = 2x + 1,则 y ′= 5(log 2u) ′·x +(21) ′= 10 = 10 .uln 2 x +1. 求复合函数的导数的步骤2. 求复合函数的导数的注意点(1) 内、外层函数往常为基本初等函数.(2)求每层函数的导数时注意分清是对哪个变量求导, 这是求复合函数导数时的易错点.[活学活用 ]求以下函数的导数:(1) y = (3x - 2)2 ; (2) y = ln(6x + 4);(3) y = e 2x +1;(4)y = 2x - 1;π; (6)y = cos 2x.解: (1)y ′= 2(3x - 2) ·(3x -2) ′= 18x - 12;13;(2) y ′= 6x + 4·(6x + 4) =′3x + 2(3) y ′= e 2x + 1·(2x + 1) ′=2e 2x +1;(4) y ′= 1 ′=1. ·(2x - 1) 2x - 1 2 2x - 1π ππ(5) y ′= cos 3x - 4 ·3x - 4 ′=3cos 3x - 4 .(6) y ′= 2cos x ·(cos x) ′=- 2cos x ·sin x =- sin 2x.与切线相关的综合问题2π[典例 ]处的切线斜率为 ________.(1) 函数 y = 2cos x 在 x =12(2) 已知函数 f(x)= ax 2+ ln x 的导数为 f ′(x),①求 f(1)+ f ′(1).②若曲线 y = f (x)存在垂直于 y 轴的切线,务实数a 的取值范围.[分析 ] (1) 由函数 y = 2cos 2x = 1+ cos 2x ,得 y ′= (1+ cos 2x) ′=- 2sin 2x ,所以函数在π 2sinπ=处的切线斜率为-2 × =-1.x1212答案:-1(2) 解: ①由题意,函数的定义域为(0,+ ∞),由 f( x)= ax 2+ ln x ,得 f ′(x)= 2ax + 1,x 所以 f(1)+ f ′(1)= 3a + 1.② 因为曲线 y = f(x)存在垂直于y 轴的切线, 故此时切线斜率为0,问题转变为在 x ∈ (0,+∞)内导函数f ′(x)= 2ax + 1存在零点,x即 f ′(x)= 0?2ax + 1x = 0 有正实数解,(5) y = sin 3x - 4即 2ax 2=- 1 有正实数解,故有 a<0 ,所以实数 a 的取值范围是 (-∞, 0).对于函数导数的应用及其解决方法(1) 应用:导数应用主要有:求在某点处的切线方程,已知切线的方程或斜率求切点,以及波及切线问题的综合应用.(2) 方法:先求出函数的导数,若已知切点则求出切线斜率、切线方程﹔若切点未知,则先设出切点,用切点表示切线斜率,再依据条件求切点坐标.总之,切点在解决此类问题时起着至关重要的作用.[活学活用 ]若存在过点 (1,0) 的直线与曲线y = x 3 和 y = ax 2+15都相切,则 a 的值为 ()4 x - 92521A .- 1 或- 64B .- 1 或 4C .- 7或- 25D .-7或 74 644分析:选A 设过点 (1,0)的直线与曲线 y = x 3 相切于点 (x 0, x 03),则切线方程为y - x 03= 3x 02(x - x 0),即 y = 3x 02x - 2x 03.又点 (1,0)在切线上,代入以上方程得 3x 0= 0 或 x 0= .2当 x 0= 0 时,直线方程为 y = 0.21525由 y = 0 与 y = ax +4 x - 9 相切可得 a =- 64.当 x 0= 3时,直线方程为 y = 27x - 27.24 42727215由 y = 4 x - 4 与 y = ax + 4 x - 9 相切可得 a =- 1.层级一学业水平达标1.已知函数 f (x)= ax 2 +c ,且 f ′(1)= 2,则 a 的值为 ()A . 1B. 2C .- 1D . 0分析: 选A∵ f(x)= ax 2+ c ,∴ f ′(x)= 2ax ,又∵ f ′(1)= 2a ,∴ 2a = 2,∴ a = 1.2.函数2y = (x + 1) (x - 1)在x = 1 处的导数等于()A . 1B . 2C . 3D . 4分析:选 D y ′= [(x + 1) 2] ′(x - 1)+ (x + 1) 22= 3x 2+ 2x(x - 1) ′= 2(x + 1) ·(x - 1) + (x + 1) - 1,∴ y ′|== 4.x 13.曲线 f(x)= xln x 在点 x = 1 处的切线方程为 ( )A . y = 2x + 2B . y = 2x - 2C . y = x - 1D . y = x + 1分析:选C∵ f ′(x)= ln x + 1,∴ f ′(1)= 1,又 f(1) =0,∴在点 x = 1 处曲线 f(x)的切线方程为 y = x - 1.4. 已知物体的运动方程为s = t 2+ 3(t 是时间, s 是位移 ),则物体在时辰 t = 2 时的速度t为 ()19 17 A. 4B. 415 13C. 4D. 4分析:选D33 13∵ s ′= 2t -t ,∴ s ′|t2= 4-4=4=5.设曲线 y = ax - ln(x + 1)在点 (0,0) 处的切线方程为 y = 2x ,则 a = ()A . 0B . 1C . 2D . 3分析:选Dy ′= a - 1,由题意得 y ′|x =0= 2,即 a - 1= 2,所以 a =3.x + 13- x + 3 在点 (1,3)处的切线方程为 ________.6.曲线 y = x22分析:∵ y ′= 3x - 1,∴ y ′x1= 3×1 - 1= 2.=∴切线方程为 y - 3= 2(x -1) ,即 2x - y + 1= 0.答案: 2x - y + 1= 07.已知曲线y 1= 2- 1与 y 2= x 3- x 2+ 2x 在 x =x 0 处切线的斜率的乘积为3,则 x 0=x ________.分析: 由题知 y ′=12处切线的斜率分别为12= 3x - 2x + 2,所以两曲线在 x = x2,1x , y ′2x 02-2x 0+ 2,所以3x 02- 2x 0+ 23x 02= 3,所以 x 0= 1.x 0答案: 1ππ8.已知函数 f (x)= f ′4 cos x + sin x ,则 f 4 的值为 ________.π分析: ∵ f ′(x)=- f ′4 sin x + cos x ,ππ 2 2∴ f ′4 =- f ′4 ×2 + 2 ,π得 f ′4 = 2- 1.∴ f( x)= ( 2- 1)cos x + sin x.π∴ f 4 = 1. 答案: 19.求以下函数的导数:2e x + 1x;(1) y = xsin x ; (2)y = e - 1x + cos x(3) y = x + sin x ; (4)y = cos x ·sin 3x.22解: (1)y ′= (x) ′sinx + x(sin x) ′= sin 2 x + x ·2sin x ·(sin x) ′=sin 2x + xsin 2x.(2) y ′= e x + 1 ′ e x - 1- e x + 1e x - 1 ′x 1 2e -- 2e x .=x- 12ex + cos x ′ x + sin x - x + cos xx + sin x ′(3) y ′=x + sin x2=1- sin xx + sin x -x + cos x1+ cos xx + sin x 2- xcos x -xsin x + sin x - cos x - 1 = x + sin x 2.(4) y ′= (cos x ·sin 3x) ′= (cos x) ′sinx3+ cos x(sin 3x) ′=- sin xsin 3x + 3cos xcos 3x= 3cos xcos 3x - sin xsin 3x.10.偶函数 f(x)= ax 4+ bx 3+ cx 2+ dx + e 的图象过点 P(0,1),且在 x = 1 处的切线方程为y =x - 2,求 f(x)的分析式.解: ∵ f(x)的图象过点 P(0,1),∴ e = 1.又∵ f( x)为偶函数,∴ f(- x)= f(x).故 ax 4+ bx 3+ cx 2+ dx + e = ax 4- bx 3+ cx 2- dx + e.∴ b = 0, d = 0.∴ f(x)= ax 4+ cx 2+ 1. ∵函数 f(x)在 x = 1 处的切线方程为y = x - 2,∴切点为 (1,- 1).∴ a + c + 1=- 1.∵f′(x)|x=1= 4a+ 2c,∴ 4a+ 2c= 1.∴a=5, c=-9.225492∴函数 f(x)的分析式为 f (x)=x- x + 1.22层级二应试能力达标1.若函数 f(x)= ax4+ bx2+ c 知足 f′(1)= 2,则 f′(-1)等于 ()A.- 1B.- 2C. 2D. 0分析:选B∵ f′(x)= 4ax3+ 2bx 为奇函数,∴ f′(-1)=- f′(1)=- 2. 2.曲线 y= xe x-1在点 (1,1)处切线的斜率等于 ()A. 2e B. eC. 2D. 1分析:选C函数的导数为 f′(x)= e x-1+ xe x-1= (1+ x)e x-1,当 x= 1 时, f′(1)= 2,即曲线x-1在点 (1,1)处切线的斜率k= f′(1)= 2,应选 C. y= xe3.已知函数 f (x)的导函数为 f′(x),且知足 f(x)= 2xf ′ (e)+ ln x,则 f′ (e)= ()- 1B.- 1A. e- 1D.- eC.- e分析:选C∵ f(x)= 2xf′(e)+ ln x,∴f′(x)= 2f′(e)+1 x,∴f′(e)= 2f′(e)+1,解得 f′(e)=-1,应选 C.e e4.若 f(x)= x2- 2x- 4ln x,则 f′(x)> 0的解集为 ()A. (0,+∞ )B. (- 1,0)∪ (2,+∞) C. (2,+∞ )D. (- 1,0)分析:选C∵ f(x)= x2- 2x- 4ln x,∴f′(x)= 2x- 2-4x> 0,x+x-或 x> 2,整理得> 0,解得- 1< x< 0x又因为 f(x)的定义域为 (0,+∞),所以 x> 2.5.已知直线y= 2x- 1 与曲线 y= ln(x+ a)相切,则a 的值为 ________________.1分析:∵ y= ln(x+ a),∴ y′=,设切点为(x0,y0),1则 y0= 2x0- 1, y0= ln(x0+ a),且x0+a= 2,解之得 a=1ln 2. 2答案:1ln 22x在点 (1,1)的切 l, l 上的点到x2+ y2+ 4x+ 3= 0 上的点的6.曲 y=2x-1近来距离是 ____________.分析: y′=-1|y- 1=- (x- 1),即 x+ y- 2 2, y′x=1=- 1,∴切方程= 0,心 (- 2,0)到直的距离d= 2 2,的半径 r= 1,∴所求近来距离 2 2- 1.答案: 2 2-17.已知曲 f (x)= x3+ ax+ b 在点P(2,- 6)的切方程是13x- y- 32= 0.(1) 求a, b 的;1(2)假如曲 y= f(x)的某全部与直 l:y=-4x+ 3 垂直,求切点坐与切的方程.解: (1)∵ f(x)= x3+ ax+ b 的数 f′(x)= 3x2+ a,由意可得f′(2)= 12+ a=13, f(2)= 8+ 2a+ b=- 6,解得 a= 1, b=- 16.1(2)∵切与直 y=-4x+ 3 垂直,∴切的斜率k= 4.切点的坐(x0, y0),2f′(x0)= 3x0+ 1= 4,∴ x0=±1.由 f( x)= x3+x- 16,可得 y0= 1+ 1- 16=- 14,或 y0=- 1- 1- 16=- 18.切方程y= 4(x- 1)- 14 或 y= 4(x+ 1)- 18.即 y= 4x- 18 或 y= 4x- 14.8. f n(x)= x+ x2+⋯+ x n- 1, x≥0, n∈ N, n≥2.(1) 求 f n′ (2);明:在 0,2内有且有一个零点(a,且<12n(2)f n(x)n)a n-<n+13023.解: (1)由 f n′(x)= 1+ 2x+⋯+ nx n-1.所以 f n′ (2)= 1+ 2×2+⋯+ (n- 1)2n-2+n·2n-1,①2f n′ (2)= 2+ 2×22+⋯+ (n- 1)2n-1+ n·2n,②①-②得,- f n′ (2)= 1+ 2+ 22+⋯+ 2n-1- n·2n=1- 2n n n- n·2= (1- n) ·2- 1,1- 2所以 f n′ (2)= (n-1)n ·2+1.(2)因 f(0)=- 1< 0,22nn 231-3- 1=1-2×2n2×22> 0,f3=23≥ -3 1-13因 x≥0, n≥2.所以 f n(x)= x+ x2+⋯+ x n- 1 增函数,所以 f n(x)在 0,2内增,3所以 f n在 0,2内有且有一个零点 a n(x)3.n+ 1x- x因为 f n(x)=-1,n+1所以 0= f n(a n) =a n- a n- 1,1- a n由此可得11n+ 11,故12 a n=+a n>2< a n< .22231 1 n+112 n+1n所以 0< a n-22=2a n<2×3=3n+ 1.。
高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二
1.1.3 导数的几何意义1.理解曲线的切线的含义.2.理解导数的几何意义.3.会求曲线在某点处的切线方程.4.理解导函数的定义,会用定义法求简单函数的导函数.1.导数的几何意义(1)切线的定义如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P 处的切线.(2)导数的几何意义当点P n无限趋近于点P时,k n无限趋近于切线PT的斜率.因此,函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=limΔx→0f(x0+Δx)-f(x0)Δx=f′(x0).2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.此处切线定义与以前所学过的切线定义的比较(1)初中我们学习过圆的切线:直线和圆有唯一的公共点时,称直线和圆相切,唯一的公共点叫做切点,直线叫做圆的切线.但因为圆是一种特殊的曲线,所以圆的切线定义不适用于一般的曲线.如图中的曲线C ,直线l 1与曲线C 有唯一的公共点M ,但l 1不是曲线C 的切线;l 2虽然与曲线C 有不止一个公共点,但l 2是曲线C 在点N 处的切线.(2)此处是通过逼近方法,将割线趋近于确定的位置的直线定义为切线,适用于各种曲线.所以这种定义才真正反映了切线的本质.2.函数f (x )在x =x 0处的导数f ′(x 0)、导函数f ′(x )之间的区别与联系区别:(1)f ′(x 0)是在x =x 0处函数值的改变量与自变量的改变量之比的极限,是一个常数,不是变量.(2)f ′(x )是函数f (x )的导数,是对某一区间内任意x 而言的,即如果函数y =f (x )在开区间(a ,b )内的每点处都有导数,此时对于每一个x ∈(a ,b ),都对应着一个确定的导数f ′(x ),从而构成了一个新的函数——导函数f ′(x ).联系:函数f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.这也是求函数在x =x 0处的导数的方法之一.判断正误(正确的打“√”,错误的打“×”) (1)函数在一点处的导数f ′(x 0)是一个常数.( )(2)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.( )(3)函数f (x )=0没有导数.( )(4)直线与曲线相切,则直线与该曲线只有一个公共点.( ) 答案:(1)√ (2)√ (3)× (4)×如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=( ) A. 12 B .3 C .4D .5解析:选A.根据导数的几何意义知f ′(4)是曲线y =f (x )在x =4处的切线的斜率k ,注意到k =5-34-0=12,所以f ′(4)=12.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B.由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选 B.曲线y =-2x 2+1在点(0,1)处的切线的斜率是________. 解析:因为Δy =-2(Δx )2,所以Δy Δx =-2Δx ,lim Δx →0Δy Δx =lim Δx →0(-2Δx )=0,由导数的几何意义知切线的斜率为0.答案:0探究点1 求曲线在定点处的切线方程求曲线y =2x -x 3在点(-1,-1)处的切线方程. 【解】 因为y ′=lim Δx →02(x +Δx )-(x +Δx )3-2x +x3Δx=lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.所以y ′|x =-1=2-3(-1)2=2-3=-1.所以切线方程为y -(-1)=-[x -(-1)], 即x +y +2=0.求过点(-1,-2)且与曲线y =2x -x 3相切的直线方程.解:y ′=lim Δx →0Δy Δx =lim Δx →02(x +Δx )-(x +Δx )3-2x +x 3Δx =lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.设切点坐标为(x 0,2x 0-x 30),则切线方程为y -2x 0+x 30=(2-3x 20)(x -x 0). 因为切线过点(-1,-2),所以-2-2x 0+x 30=(2-3x 20)·(-1-x 0), 即2x 30+3x 20=0,解得x 0=0或x 0=-32.所以切点坐标为(0,0)或⎝ ⎛⎭⎪⎫-32,38. 当切点坐标为(0,0)时,切线斜率k =-2-0-1-0=2,切线方程为y =2x ;当切点坐标为⎝ ⎛⎭⎪⎫-32,38时,切线斜率k =38-(-2)-32-(-1)=-194,切线方程为y +2=-194(x +1),即19x +4y +27=0.综上可知,过点(-1,-2)且与曲线y =2x -x 3相切的直线方程为y =2x 或19x +4y +27=0.解决曲线的切线问题的思路(1)求曲线y =f (x )在点P (x 0,f (x 0))处的切线方程,即点P 的坐标既满足曲线方程,又满足切线方程时,若点P 处的切线斜率存在,则点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0);若曲线y =f (x )在点P 处的切线斜率不存在(此时切线平行于y 轴),则点P 处的切线方程为x =x 0.(2)若切点未知,则需设出切点坐标,再根据题意列出关于切点横坐标的方程,最后求出切点纵坐标及切线的方程,此时求出的切线方程往往不止一个.已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由.解:(1)将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx =3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx 趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0, 解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 探究点2 求切点坐标在曲线y =x 2上取一点,使得在该点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.【解】 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx =limΔx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为点P 处的切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4).(2)因为点P 处的切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94. (3)因为点P 处的切线的倾斜角为135°,所以切线的斜率为tan 135°=-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0). (2)求导函数f ′(x ). (3)求切线的斜率f ′(x 0).(4)由斜率间的关系列出关于x 0的方程,解方程求x 0.(5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.1.已知曲线y =x 24的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .4解析:选A.因为y ′=lim Δx →0Δy Δx =12x =12, 所以x =1,所以切点的横坐标为 1.2.已知曲线f (x )=x 2+6在点P 处的切线平行于直线4x -y -3=0,求点P 的坐标. 解:设切点P 坐标为(x 0,y 0).f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )2+6-(x 2+6)Δx=lim Δx →0(2x +Δx )=2x .所以点P 在(x 0,y 0)处的切线的斜率为2x 0. 因为切线与直线4x -y -3=0平行,所以2x 0=4,x 0=2,y 0=x 20+6=10,即切点为(2,10). 探究点3 导数几何意义的应用我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下所示.在这四种方案中,运输效率(单位时间内的运输量)逐步提高的是( )【解析】 从函数图象上看,要求图象在[0,T ]上越来越陡峭,在各选项中,只有B 项中的切线斜率在不断增大,也即运输效率(单位时间内的运输量)逐步提高.【答案】 B(1)曲线f (x )在x 0附近的变化情况可通过x 0处的切线刻画.f ′(x 0)>0说明曲线在x 0处的切线的斜率为正值,从而得出在x 0附近曲线是上升的;f ′(x 0)<0说明在x 0附近曲线是下降的.(2)曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况,由切线的倾斜程度,可以判断出曲线升降的快慢.1.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选B.从图象上可以看出f (x )在x =2处的切线的斜率比在x =3处的斜率大,且均为正数,所以有0<f ′(3)<f ′(2),过此两点的割线的斜率f (3)-f (2)3-2比f (x )在x =2处的切线的斜率小,比f (x )在x =3处的斜率大,所以0<f ′(3)<f (3)-f (2)<f ′(2),故选B.2.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h 是关于时间t 的函数h (t ),则函数h (t )的图象可能是( )解析:选B.由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,以后高度增加得越来越慢,仅有B 中的图象符合题意.1.下列说法中正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处没有切线B .若曲线y =f (x )在x =x 0处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处的切线斜率不存在D .若曲线y =f (x )在x =x 0处的切线斜率不存在,则曲线在该点处没有切线解析:选C.f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率,切线斜率不存在,但其切线方程可以为x =x 0,所以A ,B ,D 错误.2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析:选B.由题意可知,f ′(x 0)=-12.3.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于________.解析:易得切点P (5,3), 所以f (5)=3,k =-1, 即f ′(5)=-1.所以f (5)+f ′(5)=3-1=2. 答案:2 4.已知曲线y =1t -x 上两点P (2,-1),Q ⎝⎛⎭⎪⎫-1,12. (1)求曲线在点P ,Q 处的切线的斜率; (2)求曲线在点P ,Q 处的切线方程. 解:将点P (2,-1)代入y =1t -x, 得t =1,所以y =11-x.y ′=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →011-(x +Δx )-11-x Δx=limΔx →0Δx[1-(x +Δx )](1-x )Δx=limΔx →01(1-x -Δx )(1-x )=1(1-x )2,(1)曲线在点P 处的切线斜率为y ′|x =2=1(1-2)2=1;曲线在点Q 处的切线斜率为y ′|x =-1=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2, 即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.知识结构深化拓展导数与函数图象的关系在x =x 0附近各切线的斜率反映切线的升降变化情况,导数f ′(x 0)反映函数在x =x 0附近的增减情况,而在x =x 0处的切线斜率k =f ′(x 0),所以反映在图形上它们的变化情况是一致的,如图.曲线的升降、切线的斜率与导数符号的关系如下表:曲线f (x )在x =x 0附近切线的斜率k切线的倾斜角 f ′(x 0)>0上升k >0 锐角f ′(x 0)<0下降k <0 钝角 f ′(x 0)=0k =0零角(切线与x 轴平行)[注意] 导数绝对值的大小反映了曲线上升或下降的快慢.[A 基础达标]1.已知二次函数f (x )的图象的顶点坐标为(1,2),则f ′(1)的值为( ) A .1 B .0 C .-1D .2解析:选B.因为二次函数f (x )的图象的顶点坐标为(1,2),所以过点(1,2)的切线平行于x 轴,即切线的斜率为0,所以f ′(1)=0,选B.2.曲线f (x )=9x在点(3,3)处的切线的倾斜角等于( )A .45°B .60°C .135°D .120°解析:选C.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =9lim Δx →01x +Δx -1x Δx =-9limΔx →01(x +Δx )x=-9x2,所以f ′(3)=-1.又切线的倾斜角的范围为[0°,180°),所以所求倾斜角为135°.3.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B. 12 C .-12D .-1解析:选A.因为y ′|x =1=lim Δx →0a (1+Δx )2-a ×12Δx=lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a ,所以2a =2, 所以a =1.4.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -4=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0解析:选A.设切点为(x 0,y 0),因为f ′(x )=lim Δx →0(x +Δx )2-x2Δx =lim Δx →0 (2x +Δx )=2x .由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0,故选A.5.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A.因为点(0,b )在直线x -y +1=0上,所以b =1.又y ′=lim Δx →0(x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a ,所以过点(0,b )的切线的斜率为y ′|x =0=a =1.6.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则y ′|x =2=________.解析:因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知y ′|x =2=3. 答案:37.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.解析:由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1,从而可得切点坐标为(1,3),所以f (1)=1+a =3,即a =2.答案:28.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx =-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为________.解析:limΔx →0f (1)-f (1-2Δx )2Δx=lim Δx →0f (1-2Δx )-f (1)-2Δx=f ′(x )=-1. 答案:-19.已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,求: (1)曲线在点P 处的切线方程; (2)过点P 的曲线的切线方程.解:(1)因为函数y =13x 3的导函数为y ′=lim Δx →0ΔyΔx =lim Δx →013(x +Δx )3-13x 3Δx =13lim Δx →03x 2Δx +3x (Δx )2+(Δx )3Δx =13lim Δx →0[3x 2+3x Δx +(Δx )2]=x 2, 所以y ′|x =2=22=4.所以曲线在点P 处的切线的斜率等于4.故曲线在点P 处的切线方程是y -83=4(x -2),即12x -3y -16=0.(2)设切点为(x 0,y 0),由(1)知y ′=x 2,则点(x 0,y 0)处的切线斜率k =x 20,切线方程为y -y 0=x 20(x -x 0).又切线过点P ⎝ ⎛⎭⎪⎫2,83,且(x 0,y 0)在曲线y =13x 3上,所以⎩⎪⎨⎪⎧83-y 0=x 2(2-x 0),y 0=13x 30,整理得x 30-3x 20+4=0,即(x 0-2)2(x 0+1)=0,解得x 0=2或x 0=-1.当x 0=2时,y 0=83,切线斜率k =4,切线方程为12x -3y -16=0;当x 0=-1时,y 0=-13,切线斜率k =1,切线方程为3x -3y +2=0.故过点P 的切线方程为12x -3y -16=0或3x -3y +2=0.10.已知曲线f (x )=ax-x 在x =4处的切线方程为5x +16y +b =0,求实数a 与b 的值.解:因为直线5x +16y +b =0的斜率k =-516,所以f ′(4)=-516.而f ′(4)=lim Δx →0(a 4+Δx -4+Δx )-(a4-4)Δx=limΔx →0(a 4+Δx -a4)-(4+Δx -2)Δx=lim Δx →0[-a 4(4+Δx )-14+Δx +2]=-a +416,所以-a +416=-516,解得a =1. 所以f (x )=1x -x ,所以f (4)=14-4=-74,即切点为(4,-74).因为(4,-74)在切线5x +16y +b =0上,所以5×4+16×(-74)+b =0,即b =8,从而a =1,b =8.[B 能力提升]11.曲线y =x +1x上任意一点P 处的切线斜率为k ,则k 的取值范围是( )A .(-∞,-1)B .(-1,1)C .(-∞,1)D .(1,+∞)解析:选C.y =x +1x上任意一点P (x 0,y 0)处的切线斜率为k =y ′|x =x 0=lim Δx →0(x 0+Δx )+1x 0+Δx -⎝⎛⎭⎪⎫x 0+1x 0Δx=lim Δx →0⎝ ⎛⎭⎪⎫1-1x 20+x 0Δx =1-1x 20<1.即k <1.12.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为________.解析:y ′=limΔx →0ΔyΔx =2x -1,在点P 处切线的斜率为2×(-2)-1=-5.因为点P 的横坐标是-2,所以点P 的纵坐标是6+c ,故直线OP 的斜率为-6+c 2,根据题意有-6+c2=-5,解得c =4.答案:413.已知直线l :y =4x +a 与曲线C :y =x 3-2x 2+3相切,求a 的值及切点坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0), 因为f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx=3x 2-4x , 由题意可知k =4, 即3x 20-4x 0=4, 解得x 0=-23或x 0=2,所以切点的坐标为(-23,4927)或(2,3).当切点为(-23,4927)时,有4927=4×(-23)+a ,a =12127.当切点为(2,3)时,有3=4×2+a ,a =-5.所以当a =12127时,切点为(-23,4927);当a =-5时,切点为(2,3).14.(选做题)已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,试分别求出这两条平行的切线方程.解:对于曲线y =x 2-1在x =x 0处,y ′|x =x 0=lim Δx →0[(x 0+Δx )2-1]-(x 20-1)Δx=lim Δx →02x 0·Δx +(Δx )2Δx=lim Δx →0(2x 0+Δx )=2x 0.对于曲线y =1-x 3在x =x 0处,y ′|x =x 0=lim Δx →0[1-(x 0+Δx )3]-(1-x 30)Δx=lim Δx →0-3x 20Δx -3x 0(Δx )2-(Δx )3Δx=lim Δx →0[-3x 20-3x 0·Δx -(Δx )2]=-3x 20,又y =1-x 3与y =x 2-1在x =x 0处的切线互相平行, 所以2x 0=-3x 20,解得x 0=0或x 0=-23.(1)当x 0=0时,两条切线的斜率k =0, 曲线y =x 2-1上的切点坐标为(0,-1), 切线方程为y =-1,曲线y =1-x 3上的切点坐标为(0,1),切线方程为y =1. 但直线y =1并不是曲线的切线,不符合题意. (2)当x 0=-23时,两条切线的斜率k =-43,曲线y =x 2-1上的切点坐标为⎝ ⎛⎭⎪⎫-23,-59,切线方程为y +59=-43⎝ ⎛⎭⎪⎫x +23,即12x +9y+13=0,曲线y =1-x 3上的切点坐标为⎝ ⎛⎭⎪⎫-23,3527,切线方程为y -3527=-43⎝ ⎛⎭⎪⎫x +23,即36x +27y-11=0.综上,两曲线的切线方程分别是12x+9y+13=0,36x+27y-11=0.。
高中数学 第一章 导数及其应用 1.2 第3课时 导数的运算法则学案 新人教A版选修2-2-新人教A
1.2.2 第三课时 导数的运算法则一、课前准备 1.课时目标1. 能运用函数四则运算的求导法则,求常见函数四则运算的导数;2. 能运用复合函数的求导法则,求简单的复合函数的导数;3. 能综合利用导数的公式和运算法则解决简单的综合问题。
2.基础预探1.(1)[f (x )±g (x )]′=________. (2)[f (x )·g (x )]′=________. (3)[f (x )g (x )]′=________.2.由几个函数复合而成的函数,叫复合函数,函数y =f [φ(x )]是由________和________复合而成的.3.设函数u =φ(x )在点x 处有导数u ′x =φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数,且y ′x =________,或写作f ′x [φ(x )]=________.二、学习引领1.对导数的运算法则的理解(1) [f (x )±g (x )]′=f ′(x )±g ′(x ),即两个函数的和(或差)的导数,等于这两个函数的导数的和(或差).(2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).即两个函数积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.特别的,[cf (x )]′=cf ′(x ) 即常数与函数的积的导数,等于常数乘函数的导数.(3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2即需记忆如下几个特征:两个函数商的导数,其分母为原分母的平方;分子类似乘法公式,中间用减号链接,f ′(x )g (x )减去含分母导数f (x )g ′(x )的式子。
人教版高中数学选修2-2课后习题参考答案
新课程数学选修2(一)—2第一章课后习题解答第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升.练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9) 函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆.所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第 5 s 时的瞬时速度为10 m /s ,它在第 5 s 的动能213101502k E =⨯⨯= J.4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=.车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33xy '=-; (6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=. 2、()9.8 6.5h t t '=-+. 3、3213()34r V Vπ'=.4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x xy x -+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++. 5、()82f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+; (2)1y x =-. 7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少. 习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P .x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增;当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-.注:图象形状不唯一.令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减.所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =-时,()f x 有极大值,并且极大值为54; 当3x =时,()f x 有极小值,并且极小值为54-. (3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-; 当2x =时,()f x 有极大值,并且极大值为22 (4)因为3()3f x x x =-,所以2()33f x x '=-.令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-; 当1x =时,()f x 有极大值,并且极大值为2 练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-; 又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈.因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值;(2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16; 当2x =时,()f x 有极小值,并且极小值为16-. (3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22; 当2x =时,()f x 有极小值,并且极小值为10-. (4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-; 当4x =时,()f x 有极大值,并且极大值为128. 6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16;当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略 (2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略(4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<; 当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >. . 综上,ln x x x e <<,0x >图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++. 下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+, 所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+ 由2V R h π=,得2V h Rπ=. (第2题)因此,2222()222V V S R R R R R Rππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>. 因此,R =是函数()S R 的极小值点,也是最小值点. 此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的面积为28x π2m ,矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m 因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<.令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点.所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c cc x a x b b-=-+⨯=--,54b a x <<. 令845()0c ac bc L x x b b+'=-+=,解得458a bx +=.当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点. 所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n '∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n =-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑ 说明:进一步体会“以不变代变”和“逼近”的思想. 2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50)1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式 11()nni i i b af x b a nξ==-∆==-∑∑, 从而 11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此4π=⎰.5、(1)03114x dx -=-⎰. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得10133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx-⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义. 习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m ); 不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰; 49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n l l n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作: 12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l il n n ξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n-上质量2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm nξ→∞==∑,所以20l m x dx =⎰..1.6微积分基本定理练习(P55) (1)50; (2)503; (3)533-; (4)24; (5)3ln 22-; (6)12; (7)0; (8)2-.说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题1.6 A 组(P55)1、(1)403; (2)13ln 22--; (3)9ln 3ln 22+-;(4)176-; (5)2318π+; (6)22ln 2e e --. 说明:本题利用微积分基本定理和定积分的性质计算定积分.2、3300sin [cos ]2xdx x ππ=-=⎰.它表示位于x 轴上方的两个曲边梯形的面积与x 轴下方的曲边梯形的面积之差. 或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与x 轴下方的曲边梯形的面积(取负值)的代数和. 习题1.6 B 组(P55)1、(1)原式=221011[]222x e e =-; (2)原式=4611[sin 2]22x ππ=; (3)原式=3126[]ln 2ln 2x =.2、(1)cos 1sin [][cos cos()]0mx mxdx m m m m ππππππ--=-=---=⎰;(2)sin 1cos [sin sin()]0mx mxdx m m m m ππππππ--=|=--=⎰;(3)21cos 2sin 2sin []224mx x mx mxdx dx m πππππππ----==-=⎰⎰;(4)21cos 2sin 2cos []224mx x mx mxdx dx mπππππππ---+==+=⎰⎰.3、(1)0.202220()(1)[]49245245t kt kt t kt t g g g g g gs t e dt t e t e t e k k k k k k----=-=+=+-=+-⎰.(2)由题意得 0.2492452455000t t e -+-=.这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围. 根据指数函数的性质,当0t >时,0.201t e -<<,从而 5000495245t <<, 因此,500052454949t <<. 因此50000.2749245 3.3610e-⨯-≈⨯,52450.2749245 1.2410e-⨯-≈⨯,所以,70.271.2410245 3.3610t e ---⨯<<⨯.从而,在解方程0.2492452455000t t e -+-=时,0.2245t e -可以忽略不计.因此,.492455000t -≈,解之得 524549t ≈(s ). 说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7定积分的简单应用 练习(P58)(1)323; (2)1.说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程. 练习(P59)1、52533(23)[3]22s t dt t t =+=+=⎰(m ).2、42403(34)[4]402W x dx x x =+=+=⎰(J ). 习题1.7 A 组(P60)1、(1)2; (2)92.2、2[]b b a a q q q qW k dr k k k r r a b==-=-⎰. 3、令()0v t =,即40100t -=. 解得4t =. 即第4s 时物体达到最大高度.最大高度为 424(4010)[405]80h t dt t t =-=-=⎰(m ). 4、设t s 后两物体相遇,则 2(31)105ttt dt tdt +=+⎰⎰,解之得5t =. 即,A B 两物体5s 后相遇.此时,物体A 离出发地的距离为 523500(31)[]130t dt t t +=+=⎰(m ).5、由F kl =,得100.01k =. 解之得1000k =. 所做的功为 0.120.10010005005W ldl l ==|=⎰(J ).6、(1)令55()501v t t t=-+=+,解之得10t =. 因此,火车经过10s 后完全停止. (2)1021000551(5)[555ln(1)]55ln1112s t dt t t t t =-+=-++=+⎰(m ). 习题1.7 B 组(P60)1、(1)22a aa x dx --⎰表示圆222x y a +=与x 轴所围成的上半圆的面积,因此2222aaa a x dx π--=⎰(2)120[1(1)]x x dx ---⎰表示圆22(1)1x y -+=与直线y x =所围成的图形(如图所示)的面积,因此,2120111[1(1)]114242x x dx ππ⨯---=-⨯⨯=-⎰. 2、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为2y ax =,则2()2b h a =⨯,所以24ha b =.从而抛物线的方程为 224hy x b =.于是,抛物线拱的面积232202204422()2[]33b b h h S h x dx hx x bh b b =-=-=⎰. 3、如图所示.解方程组223y x y x⎧=+⎨=⎩得曲线22y x =+与曲线3y x =交点的横坐标11x =,22x =. 于是,所求的面积为122201[(2)3][3(2)]1x x dx x x dx +-+-+=⎰⎰.y xO1(第1(2)题)yxh b O (第2题)4、证明:2[]()R hR h R RMm Mm MmhW Gdr G G r r R R h ++==-=+⎰. 第一章 复习参考题A 组(P65)1、(1)3; (2)4y =-.2、(1)22sin cos 2cos x x xy x+'=; (2)23(2)(31)(53)y x x x '=-+-; (3)22ln ln 2x xy x x '=+; (4)2422(21)x x y x -'=+. 3、32GMm F r '=-. 4、(1)()0f t '<. 因为红茶的温度在下降.(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略.5、因为()f x =()f x '=.当()0f x '=>,即0x >时,()f x 单调递增;当()0f x '=<,即0x <时,()f x 单调递减.6、因为2()f x x px q =++,所以()2f x x p '=+. 当()20f x x p '=+=,即12px =-=时,()f x 有最小值. 由12p-=,得2p =-. 又因为(1)124f q =-+=,所以5q =. 7、因为2322()()2f x x x c x cx c x =-=-+, 所以22()34(3)()f x x cx c x c x c '=-+=--. 当()0f x '=,即3cx =,或x c =时,函数2()()f x x x c =-可能有极值. 由题意当2x =时,函数2()()f x x x c =-有极大值,所以0c >.由于 所以,当3c x =时,函数2()()f x x x c =-有极大值. 此时,23c=,6c =. 8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小. 因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为001y x a x a--=--,即1()1y x a a =--. 当0x =时,1a y a =-,即点B 的坐标是(0,)1aa -. 因此,AOB ∆的面积21()212(1)AOBa a S S a a a a ∆===--.令()0S a '=,即2212()02(1)a aS a a -'=⋅=-. 当0a =,或2a =时,()0S a '=,0a =不合题意舍去. 由于 所以,当2a =,即直线的倾斜角为时,的面积最小,最小面积为2. 9、D .10、设底面一边的长为x m ,另一边的长为(0.5)x +m. 因为钢条长为14.8m. 所以,长方体容器的高为14.844(0.5)12.88 3.2244x x xx --+-==-.设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x x x x x x ==+-=-++,0 1.6x <<.令()0V x '=,即26 4.4 1.60x x -++=. 所以,415x =-(舍去),或1x =. 当(0,1)x ∈时,()0V x '>;当(1,1.6)x ∈时,()0V x '<. 因此,1x =是函数()V x 在(0,1.6)的极大值点,也是最大值点. 所以,当长方体容器的高为1 m 时,容器最大,最大容器为1.8 m 3.11、设旅游团人数为100x +时,旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080)x ≤≤. 令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =. 所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大.因为打印纸的面积为623.7,长为x ,所以宽为623.7x,打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯23168.396655.9072 6.34x x=--,5.0898.38x <<. 令()0S x '=,即23168.3966.340x -=,22.36x ≈(负值舍去),623.727.8922.36≈. 22.36x =是函数()S x 在(5.08,98.38)内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为y 元.则 21()20000100300200002y R q q q q =--=-+-(0400,)q q N <≤∈.令0y '=,即3000q -+=,300q =.当300q =时,25000y =;当400q =时,20000y =.300q =是函数()y p 在(0,400]内唯一极值点,且为极大值点,从而是最大值点. 所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.14、(1)2; (2)22e -; (3)1;(4)原式=22222000cos sin (cos sin )[sin cos ]0cos sin x x dx x x dx x x x xπππ-=-=+=+⎰⎰;(5)原式=22001cos sin 2[]224x x x dx πππ---==⎰.15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2.17、由F kl =,得0.0490.01k =. 解之得 4.9k =.所做的功为 20.30.30.10.14.9 4.90.1962l W ldl ==⨯|=⎰(J )第一章 复习参考题B 组(P66)1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t ≤<时,()0b t '>,所以细菌在增加;当55t <<+()0b t '<,所以细菌在减少.2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S .因为212S r α=,2l r r α-=,所以2lrα=-.222111(2)(2)222l S r r lr r r α==-=-,02l r <<.令0S '=,即40l r -=,4lr =,此时α为2弧度.4lr =是函数()S r 在(0,)2l 内唯一极值点,且是极大值点,从而是最大值点.所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大.3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222r h R +=.因此,222231111()3333V r h R h h R h h ππππ==-=-,0h R <<.令22103V R h ππ'=-=,解得h =.容易知道,h =是函数()V h 的极大值点,也是最大值点.所以,当h R =时,容积最大.把3h R =代入222r h R +=,得3r R =.由2R r απ=,得3α=.所以,圆心角为α=时,容积最大. 4、由于28010k =⨯,所以45k =. 设船速为x km /h 时,总费用为y ,则2420204805y x x x=⨯+⨯ 960016x x=+,0x > 令0y '=,即29600160x -=,24x ≈.容易知道,24x =是函数y 的极小值点,也是最小值点.当24x =时,960020(1624)()9412424⨯+÷≈(元/时) 所以,船速约为24km /h 时,总费用最少,此时每小时费用约为941元.5、设汽车以x km /h 行驶时,行车的总费用2390130(3)14360x y x x=++⨯,50100x ≤≤令0y '=,解得53x ≈(km /h ). 此时,114y ≈(元) 容易得到,53x ≈是函数y 的极小值点,也是最小值点.因此,当53x ≈时,行车总费用最少.所以,最经济的车速约为53km /h ;如果不考虑其他费用,这次行车的总费用约是114元.6、原式=4404422022[]2xxx x x e dx e dx e dx e e e e -----=+=-+|=+-⎰⎰⎰.7、解方程组 2y kx y x x=⎧⎨=-⎩ 得,直线y kx =与抛物线2y x x =-交点的横坐标为0x =,1k -.抛物线与x 轴所围图形的面积2312100111()[]23236x x S x x dx =-=-=-=⎰.由题设得11200()2k k Sx x dx kxdx --=--⎰⎰31221001()[]23kkk x x x kx dx x ---=--=-⎰3(1)6k -=.又因为16S =,所以31(1)2k -=.于是1k =说明:本题也可以由面积相等直接得到111220()()kk k x x kx dx kxdx x x dx -----=+-⎰⎰⎰,由此求出k 的值. 但计算较为烦琐.新课程数学选修2—2第二章课后习题解答第二章推理与证明2.1合情推理与演绎推理 练习(P77)1、由12341a a a a ====,猜想1n a =.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=⋅⋅. 练习(P81) 1、略.2、因为通项公式为n a 的数列{}n a , 若1n na p a +=,其中p 是非零常数,则{}n a 是等比数列;……………………大前提 又因为0cq ≠,则0q ≠,则11n n nn a cq q a cq++==;……………………………小前提 所以,通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列. ……………………结论 3、由AD BD >,得到ACD BCD ∠>∠的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中.习题2.1 A 组(P83)1、21n a n =+()n N *∈. 2、2F V E +=+.3、当6n ≤时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *∈.4、212111(2)n n A A A n π++≥-(2n >,且n N *∈). 5、121217n n b b b b b b -=(17n <,且n N *∈).6、如图,作DE ∥AB 交BC 于E .因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形ABED 是平行四边形.因为平行四边形的对边相等.又因为四边形ABED 是平行四边形. 所以AB DE =.因为与同一条线段等长的两条线段的长度相等,又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的.又因为△DEC 是等腰三角形, 所以DEC C ∠=∠ 因为平行线的同位角相等又因为DEC ∠与B ∠是平行线AB 和DE 的同位角, 所以DEC B ∠=∠ 因为等于同角的两个角是相等的,又因为DEC C ∠=∠,DEC B ∠=∠, 所以B C ∠=∠ 习题2.1 B 组(P84)1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略.2.2直接证明与间接证明 练习(P89)1、因为442222cos sin (cos sin )(cos sin )cos 2θθθθθθθ-=+-=,所以,命题得证. 2>,只需证22>,即证1313+>+>,只需要22>,即证4240>,这是显然成立的. 所以,命题得证. 3、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b αααα-=-+==, 又因为sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab αααααααααα+-=+-=⋅22222222sin (1cos )sin sin 161616sin tan cos cos αααααααα-===, 从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.(第6练习(P91)1、假设B ∠不是锐角,则90B ∠≥︒. 因此9090180C B ∠+∠≥︒+︒=︒. 这与三角形的内角和等于180°矛盾.所以,假设不成立. 从而,B ∠一定是锐角.2成等差数列,则=所以22=,化简得5=225=,即2540=, 这是不可能的. 所以,假设不成立..说明:进一步熟悉运用反证法证明数学命题的思考过程与特点. 习题2.2 A 组(P91)1、由于0a ≠,因此方程至少有一个跟bx a=.假设方程不止一个根,则至少有两个根,不妨设12,x x 是它的两个不同的根,则1ax b =①2ax b =②①-②得12()0a x x -=因为12x x ≠,所以120x x -≠,从而0a =,这与已知条件矛盾,故假设不成立. 2、因为(1tan )(1tan )2A B ++=展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ①假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B π<+<,从而2A B π+=,与已知矛盾.因此1tan tan 0A B -≠.①式变形得tan tan 11tan tan A BA B +=-,即tan()1A B +=.又因为0A B π<+<,所以4A B π+=. 说明:本题也可以把综合法和分析法综合使用完成证明.3、因为1tan 12tan αα-=+,所以12tan 0α+=,从而2sin cos 0αα+=.另一方面,要证3sin 24cos2αα=-,只要证226sin cos 4(cos sin )αααα=-- 即证222sin 3sin cos 2cos 0αααα--=, 即证(2sin cos )(sin 2cos )0αααα+-=由2sin cos 0αα+=可得,(2sin cos )(sin 2cos )0αααα+-=,于是命题得证. 说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.4、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B π<不成立,即2B π≥,则B 是ABC ∆的最大内角,所以,b a b c >>(在三角形中,大角对大边), 从而11112a c b b b +>+=. 这与211b a c=+矛盾. 所以,假设不成立,因此,2B π<.习题2.2 B 组(P91)1、要证2s a <,由于22s ab <,所以只需要2s s b<,即证b s <.因为1()2s a b c =++,所以只需要2b a b c <++,即证b a c <+. 由于,,a b c 为一个三角形的三条边,所以上式成立. 于是原命题成立. 2、由已知条件得2b ac =①2x a b =+,2y b c =+②要证2a cx y+=,只要证2ay cx xy +=,只要证224ay cx xy += 由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++,24()()2xy a b b c ab b ac bc ab ac bc =++=+++=++, 所以,224ay cx xy +=,于是命题得证. 3、由tan()2tan αβα+=得sin()2sin cos()cos αβααβα+=+,即sin()cos 2cos()sin αβααβα+=+. ……①要证3sin sin(2)βαβ=+即证3sin[()]sin[()]αβααβα+-=++即证3[sin()cos cos()sin ]sin()cos cos()sin αβααβααβααβα+-+=+++ 化简得sin()cos 2cos()sin αβααβα+=+,这就是①式.所以,命题成立.说明:用综合法和分析法证明命题时,经常需要把两者结合起来使用. 2.3数学归纳法 练习(P95)1、先证明:首项是1a ,公差是d 的等差数列的通项公式是1(1)n a a n d =+-. (1)当1n =时,左边=1a ,右边=11(11)a d a +-=, 因此,左边=右边. 所以,当1n =时命题成立. (2)假设当n k =时,命题成立,即1(1)k a a k d =+-. 那么,11(1)[(1)1]k k k a a d a k d d a k d +=+=+-+=++-. 所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立.再证明:该数列的前n 项和的公式是1(1)2n n n S na d -=+. (1)当1n =时,左边=11S a =,右边=111(11)12a d a ⨯-⨯+=,因此,左边=右边. 所以,当1n =时命题成立.(2)假设当n k =时,命题成立,即1(1)2k k k S ka d -=+.那么,1111(1)[(1)1]2k k k k k S S a ka d a k d ++-=+=++++-1(1)(1)[1]2k k a k d -=+++1(1)(1)2k kk a d +=++所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立. 2、略.。
浙江人教A版数学高二选修2-2学案第一章导数及其应用(二)
1.2.2 基本初等函数的导数公式及导数的运算法则(二) 学习目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点一 和、差的导数已知f (x )=x ,g (x )=1x. 思考1 f (x ),g (x )的导数分别是什么?答案 f ′(x )=1,g ′(x )=-1x2. 思考2 试求y =Q (x )=x +1x ,H (x )=x -1x的导数. 答案 ∵Δy =(x +Δx )+1x +Δx-(x +1x ) =Δx +-Δx x (x +Δx ), ∴Δy Δx =1-1x (x +Δx ). ∴Q ′(x )=lim Δx →0Δy Δx =lim Δx →0[1-1x (x +Δx )]=1-1x 2. 同理,H ′(x )=1+1x2. 思考3 Q (x ),H (x )的导数与f (x ),g (x )的导数有何关系?答案 Q (x )的导数等于f (x ),g (x )的导数的和.H (x )的导数等于f (x ),g (x )的导数的差. 梳理 和、差的导数[f (x )±g (x )]′=f ′(x )±g ′(x ).知识点二 积、商的导数已知f (x )=x 2,g (x )=sin x ,φ(x )=3.思考1 试求f ′(x ),g ′(x ),φ′(x ).答案 f ′(x )=2x ,g ′(x )=cos x ,φ′(x )=0.思考2 求H (x )=x 2sin x ,M (x )=sin x x 2,Q (x )=3sin x 的导数. 答案 H ′(x )=2x sin x +x 2cos x ,M ′(x )=(sin x )′x 2-sin x (x 2)′(x 2)2=x 2cos x -2x sin x x 4=x cos x -2sin x x 3, Q ′(x )=3cos x .梳理 (1)积的导数①[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ).②[cf (x )]′=cf ′(x ).(2)商的导数[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). (3)注意[f (x )g (x )]′≠f ′(x )g ′(x ),[f (x )g (x )]′≠f ′(x )g ′(x ).类型一 导数运算法则的应用例1 求下列函数的导数.(1)y =2x 3-3x +x +1x x; (2)y =x 2+1x 2+3; (3)y =(x +1)(x +3)(x +5);(4)y =x sin x -2cos x. 解 (1)∵313122223y x xx x ---=-++, ∴135222233322y x x x x ---'=+--. (2)方法一 y ′=(x 2+1)′(x 2+3)-(x 2+1)(x 2+3)′(x 2+3)2=2x (x 2+3)-2x (x 2+1)(x 2+3)2=4x (x 2+3)2. 方法二 ∵y =x 2+1x 2+3=x 2+3-2x 2+3=1-2x 2+3, ∴y ′=(1-2x 2+3)′=(-2x 2+3)′=(-2)′(x 2+3)-(-2)(x 2+3)′(x 2+3)2=4x (x 2+3)2. (3)方法一 y ′=[(x +1)(x +3)]′(x +5)+(x +1)(x +3)(x +5)′=[(x +1)′(x +3)+(x +1)(x +3)′](x +5)+(x +1)(x +3)=(2x +4)(x +5)+(x +1)(x +3)=3x 2+18x +23.方法二 ∵y =(x +1)(x +3)(x +5)=(x 2+4x +3)(x +5)=x 3+9x 2+23x +15,∴y ′=(x 3+9x 2+23x +15)′=3x 2+18x +23.(4)y ′=(x sin x )′-(2cos x)′ =x ′sin x +x (sin x )′-2′cos x -2(cos x )′(cos x )2=sin x +x cos x -2sin x cos 2x. 反思与感悟 (1)解答此类问题时常因导数的四则运算法则不熟而失分.(2)对一个函数求导时,要紧扣导数运算法则,联系基本初等函数的导数公式,当不易直接应用导数公式时,应先对函数进行化简(恒等变形),然后求导.这样可以减少运算量,优化解题过程.(3)利用求导法则求导的原则是尽可能化为和、差,利用和、差的求导法则求导,尽量少用积、商的求导法则求导.跟踪训练1 (1)已知f (x )=(x -a )(x -b )(x -c ),则a f ′(a )+b f ′(b )+c f ′(c )=________. 答案 0解析 ∵f ′(x )=(x -a )′(x -b )(x -c )+(x -a )(x -b )′·(x -c )+(x -a )(x -b )(x -c )′ =(x -b )(x -c )+(x -a )(x -c )+(x -a )(x -b ),∴f ′(a )=(a -b )(a -c ),f ′(b )=(b -a )(b -c )=-(a -b )(b -c ),f ′(c )=(c -a )(c -b )=(a -c )(b -c ).∴a f ′(a )+b f ′(b )+c f ′(c ) =a (a -b )(a -c )-b (a -b )(b -c )+c (a -c )(b -c ) =a (b -c )-b (a -c )+c (a -b )(a -b )(b -c )(a -c )=0. (2)求下列函数的导数.①y =x 2-sin x 2cos x 2;②y =e x -1e x +1; ③y =x tan x .解 ①∵y =x 2-12sin x , ∴y ′=2x -12cos x . ②y ′=(e x -1)′(e x +1)-(e x -1)(e x +1)′(e x +1)2=e x (e x +1)-e x (e x -1)(e x +1)2=2e x(e x +1)2. ③f ′(x )=(x tan x )′=(x sin x cos x)′ =(x sin x )′cos x -x sin x (cos x )′cos 2x=(sin x +x cos x )cos x +x sin 2x cos 2x=sin x cos x +x cos 2x=12sin 2x +x cos 2x=sin 2x +2x 2cos 2x. 类型二 导数运算法则的综合应用命题角度1 利用导数求函数解析式例2 (1)已知函数f (x )=ln x x+2xf ′(1),试比较f (e)与f (1)的大小关系; (2)设f (x )=(ax +b )sin x +(cx +d )cos x ,试确定常数a ,b ,c ,d ,使得f ′(x )=x cos x .解 (1)由题意得f ′(x )=1-ln x x 2+2f ′(1), 令x =1,得f ′(1)=1-ln 11+2f ′(1),即f ′(1)=-1. ∴f (x )=ln x x-2x . ∴f (e)=ln e e -2e =1e-2e ,f (1)=-2, 由f (e)-f (1)=1e-2e +2<0,得f (e)<f (1).(2)由已知得f ′(x )=[(ax +b )sin x +(cx +d )cos x ]′=[(ax +b )sin x ]′+[(cx +d )cos x ]′=(ax +b )′sin x +(ax +b )(sin x )′+(cx +d )′cos x +(cx +d )(cos x )′=a sin x +(ax +b )cos x +c cos x -(cx +d )sin x=(a -cx -d )sin x +(ax +b +c )cos x .又∵f ′(x )=x cos x ,∴⎩⎪⎨⎪⎧ a -d -cx =0,ax +b +c =x ,即⎩⎪⎨⎪⎧ a -d =0,-c =0,a =1,b +c =0,解得a =d =1,b =c =0.反思与感悟 (1)中确定函数f (x )的解析式,需要求出f ′(1),注意f ′(1)是常数.(2)中利用待定系数法可确定a ,b ,c ,d 的值.完成(1)(2)问的前提是熟练应用导数的运算法则.跟踪训练2 函数f (x )=x 2x -1+f ′(1),则f ′(1)=________. 答案 -1解析 对f (x )求导,得f ′(x )=2x -1-2x (2x -1)2=-1(2x -1)2, 则f ′(1)=-1.命题角度2 与切线有关的问题例3 (1)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 答案 (e ,e)解析 设P (x 0,y 0).∵y =x ln x ,∴y ′=ln x +x ·1x=1+ln x ,∴k =1+ln x 0. 又k =2,∴1+ln x 0=2,∴x 0=e.∴y 0=eln e =e.∴点P 的坐标是(e ,e).(2)已知函数f (x )=ax 2+bx +3(a ≠0),其导函数为f ′(x )=2x -8.①求a ,b 的值;②设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.解 ①因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b ,又知f ′(x )=2x -8,所以a =1,b =-8.②由①可知g (x )=e x sin x +x 2-8x +3,所以g ′(x )=e x sin x +e x cos x +2x -8,所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7.又知g (0)=3,所以g (x )在x =0处的切线方程为y -3=-7(x -0),即7x +y -3=0.反思与感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点. 跟踪训练3 (1)设曲线y =2-cos x sin x 在点(π2,2)处的切线与直线x +ay +1=0垂直,则a =________.(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为________.答案 (1)1 (2)4解析 (1)∵y ′=sin 2x -(2-cos x )cos x sin 2x =1-2cos x sin 2x, 当x =π2时,y ′=1-2cos π2sin 2π2=1. 又直线x +ay +1=0的斜率是-1a, ∴-1a=-1,即a =1. (2)因为曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,由导数的几何意义知g ′(1)=2. 又因为f (x )=g (x )+x 2,所以f ′(x )=g ′(x )+2x ⇒f ′(1)=g ′(1)+2=4,所以y =f (x )在点(1,f (1))处切线的斜率为4.1.设y =-2e x sin x ,则y ′等于( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )答案 D解析 y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ).2.函数y =cos x 1-x的导数是( ) A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x答案 C解析 y ′=⎝⎛⎭⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x (1-x )2. 3.对于函数f (x )=e x x 2+ln x -2k x,若f ′(1)=1,则k 等于( ) A.e 2B.e 3 C .-e 2D .-e 3答案 A解析 ∵f ′(x )=e x (x -2)x 3+1x +2k x 2, ∴f ′(1)=-e +1+2k =1,解得k =e 2, 故选A.4.在平面直角坐标系xOy 中,若曲线y =ax 2+b x(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.答案 -3解析 y =ax 2+b x 的导数为y ′=2ax -b x 2, 直线7x +2y +3=0的斜率为-72. 由题意得⎩⎨⎧ 4a +b 2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2, 则a +b =-3. 5.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线的方程为________________. 答案 3x -y -11=0解析 ∵y ′=3x 2+6x +6=3(x 2+2x +2)=3(x +1)2+3≥3,∴当x =-1时,斜率最小,切点坐标为(-1,-14),∴切线方程为y +14=3(x +1),即3x -y -11=0.1.导数的求法对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.首先,在化简时,要注意化简的等价性,避免不必要的运算失误;其次,利用导数公式求函数的导数时,一定要将函数化为基本初等函数中的某一个,再套用公式求导数.2.和与差的运算法则可以推广[f (x 1)±f (x 2)±…±f (x n )]′=f ′(x 1)±f ′(x 2)±…±f ′(x n ).3.积、商的求导法则(1)若c 为常数,则[c ·f (x )]′=c ·f ′(x );(2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ),[f (x )g (x )]′=f ′(x )·g (x )-f (x )·g ′(x )[g (x )]2;(3)当f (x )=1时,有[1g (x )]′=-g ′(x )[g (x )]2.课时作业一、选择题1.下列求导运算正确的是( )A .(x +3x )′=1+3x 2B .(log 2x )′=1x ln 2C .(3x )′=3x log 3eD .(x 2cos x )′=-2x sin x答案 B解析 选项A ,(x +3x )′=1-3x 2,故错误;选项B ,(log 2x )′=1x ln 2,故正确;选项C ,(3x )′=3x ln 3,故错误;选项D ,(x 2cos x )′=2x cos x -x 2sin x ,故错误.故选B.2.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( )A.π2B .0C .钝角D .锐角 答案 C解析 ∵f ′(x )=e x sin x +e x cos x ,∴f ′(4)=e 4(sin 4+cos 4).∵π<4<32π,∴sin 4<0,cos 4<0,∴f ′(4)<0. 由导数的几何意义得,切线的倾斜角为钝角.3.若函数f (x )=(x -1)(x -2)(x -3)(x -4)(x -5),且f ′(x )是函数f (x )的导函数,则f ′(1)等于( )A .24B .-24C .10D .-10答案 A解析 ∵f ′(x )=(x -1)′[(x -2)(x -3)(x -4)(x -5)]+(x -1)[(x -2)(x -3)(x -4)(x -5)]′ =(x -2)(x -3)(x -4)(x -5)+(x -1)[(x -2)(x -3)(x -4)(x -5)]′,∴f ′(1)=(1-2)·(1-3)·(1-4)·(1-5)+0=24.4.函数f (x )=x cos x -sin x 的导函数是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数,又不是偶函数答案 B解析 f ′(x )=(x cos x )′-(sin x )′=cos x -x sin x -cos x=-x sin x .令F (x )=-x sin x ,x ∈R ,则F (-x )=x sin(-x )=-x sin x =F (x ),∴f ′(x )是偶函数.5.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( ) A .2 B.12 C .-12D .-2 答案 D解析 ∵y =x +1x -1=1+2x -1,∴y ′=-2(x -1)2,∴y ′|x =3=-12. ∴-a =2,即a =-2.6.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 1(x )+f 2(x )+…+f 2 015(x )等于( )A .-sin x +cos xB .sin x -cos xC .-sin x -cos xD .sin x +cos x 答案 A解析 因为f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,所以f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,…,由此发现f n +1(x )是f n (x )的导函数,并且周期为4,每个周期的和为0, 所以f 1(x )+f 2(x )+…+f 2 015(x )=f 1(x )+f 2(x )+f 3(x )=cos x -sin x .故选A.7.在下面的四个图象中,其中一个图象是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)等于( )A.13B .-13 C.73D .-13或53 答案 B解析 ∵f ′(x )=x 2+2ax +(a 2-1),∴导函数f ′(x )的图象开口向上,故其图象必为第三个图.由图象特征知f ′(0)=0,且对称轴-a >0,∴a =-1,则f (-1)=-13-1+1=-13,故选B. 二、填空题8.设f (5)=5,f ′(5)=3,g (5)=4,g ′(5)=1,若h (x )=f (x )+2g (x ),则h ′(5)=________. 答案 516解析 由题意知f (5)=5,f ′(5)=3,g (5)=4,g ′(5)=1,∵h ′(x )=f ′(x )g (x )-[f (x )+2]g ′(x )[g (x )]2, ∴h ′(5)=f ′(5)g (5)-[f (5)+2]g ′(5)[g (5)]2=3×4-(5+2)×142=516. 9.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________. 答案 1解析 ∵f ′(x )=x 2+3f ′(0),令x =0,则f ′(0)=0,∴f ′(1)=12+3f ′(0)=1.10.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________.答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0, 解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.11.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 答案 8解析 由y =x +ln x ,得y ′=1+1x, 得曲线在点(1,1)处的切线的斜率为k =y ′|x =1=2,所以切线方程为y -1=2(x -1),即y =2x -1.此切线与曲线y =ax 2+(a +2)x +1相切,消去y ,得ax 2+ax +2=0,所以a ≠0且Δ=a 2-8a =0,解得a =8.三、解答题12.若函数f (x )=e x x在x =c 处的导数值与函数值互为相反数,求c 的值. 解 ∵f ′(x )=e x x -e x x 2=e x (x -1)x 2, ∴f ′(c )=e c (c -1)c 2. 依题意知f (c )+f ′(c )=0,即e c c +e c (c -1)c 2=0, ∴2c -1=0,得c =12. 13.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.解 ∵曲线y =ax 2+bx +c 过点P (1,1),∴a +b +c =1. ①∵y ′=2ax +b ,当x =2时,y ′=4a +b .∴4a +b =1. ②又曲线过点Q (2,-1),∴4a +2b +c =-1. ③联立①②③,解得a =3,b =-11,c =9.四、探究与拓展14.在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)…(x -a 8),则f ′(0)=________. 答案 4 096解析 ∵f ′(x )=x ′(x -a 1)(x -a 2)…(x -a 8)+x (x -a 1)′(x -a 2)…(x -a 8)+…+x (x -a 1)(x -a 2)…(x -a 8)′=(x -a 1)(x -a 2)…(x -a 8)+x (x -a 2)…(x -a 8)+…+x (x -a 1)(x -a 2)…(x -a 7),∴f ′(0)=a 1·a 2·…·a 8=(a 1a 8)4=84=4 096.15.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解 由7x -4y -12=0,得y =74x -3. 当x =2时,y =12,∴f (2)=12, ①又f ′(x )=a +b x 2,∴f ′(2)=74, ②由①②得⎩⎨⎧ 2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3. 故f (x )=x -3x . (2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知,曲线在点P (x 0,y 0)处的切线方程为 y -y 0=(1+3x 20)(x -x 0), 即y -(x 0-3x 0)=(1+3x 20)(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为(0,-6x 0). 令y =x ,得y =x =2x 0,从而切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12|-6x 0||2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.。
【人教A版】数学《优化方案》选修2-2课件第1章1.3.3
x f′(x)
f(x)
(-1,0)
0
(0,2)
+
0
-
↗ 最大值3 ↘
∴当x=0时,f(x)取最大值,∴b=3. 又f(2)=8a-24a+3=-16a+3, f(-1)=-7a+3>f(2), ∴当x=2时,f(x)取最小值,-16a+3=-29, ∴a=2, ∴a=2,b=3.
【思维总结】 本题属于逆向探究题型.解这 类问题的基本方法是待定系数法.从逆向思维 出发,实现由已知向未知的转化,最终落脚在 比较极值与端点值大小上,从而解决问题.
【解】 ∵f(x)=x3-12x2-2x+5, ∴f′(x)=3x2-x-2. 令 f′(x)=0,即 3x2-x-2=0,
∴x=1,或 x=-23. 列表:
x -1
(-1,-23) -23
(-23,1)
1
(1,2) 2
f′(x)
f(x)
11
2
+
↗
0
157 27
-
↘
0
7 2
+
↗
7
∴当 x=-23时,f(x)取得极大值 f-23=52227;
值,在熟练掌握求解步骤的基础上,还须注
意以下几点: (1)对函数进行准确求导; (2)研究函数的单调性,正确确定极值和端点 函数值; (3)比较极值与端点函数值大小时,有时需要 利用作差或作商,甚至要分类讨论.
变式训练1 求下列各函数的最值. (1)f(x)=-x4+2x2+3,x∈[-3,2]; (2)f(x)=e-x-ex,x∈[0,a],a为正常数. 解:(1)f′(x)=-4x3+4x, 令f′(x)=-4x(x+1)(x-1)=0, 得x=-1或x=0或x=1. 当x变化时,f′(x)及f(x)的变化情况如下表:
人教版数学高二A版选修2-2学案 第一章 导数及其应用
1.5.3 定积分的概念学习目标1.了解定积分的概念,会用定义求定积分.2.理解定积分的几何意义.3.掌握定积分的基本性质.知识点一 定积分的概念思考 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点.答案 两个问题均可以通过“分割、近似代替、求和、取极限”解决,都可以归结为一个特定形式和的极限.梳理 一般地,如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξi )Δx =∑i =1n b -an f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑i =1n b -an f (ξi ),这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.知识点二 定积分的几何意义思考1 根据定积分的定义求得ʃ21(x +1)d x 的值是多少? 答案 ʃ21(x +1)d x =52. 思考2 ʃ21(x +1)d x 的值与直线x =1,x =2,y =0,f (x )=x +1围成的梯形面积有何关系? 答案 相等.梳理 从几何上看,如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么定积分ʃb a f (x )d x 表示由直线x =a ,x =b ,y =0和曲线y =f (x )所围成的曲边梯形的面积.这就是定积分ʃb a f (x )d x 的几何意义.注意:f (x )<0(图象在x 轴的下方)时,ʃb a f (x )d x <0,-ʃb a f (x )d x 等于曲边梯形的面积.知识点三 定积分的性质思考你能根据定积分的几何意义解释ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b)吗?答案直线x=c把一个大的曲边梯形分成了两个小曲边梯形,因此大曲边梯形的面积S是两个小曲边梯形的面积S1,S2之和,即S=S1+S2.梳理(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数).(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x.(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).1.ʃb a f(x)d x=ʃb a f(t)d t.(√)2.ʃb a f(x)d x的值一定是一个正数.(×)3.ʃb a⎣⎡⎦⎤x3+⎝⎛⎭⎫12x d x=ʃb a x3d x+ʃb a⎝⎛⎭⎫12x d x.(√)类型一利用定积分的定义求定积分例1利用定积分的定义,计算ʃ21(3x+2)d x的值.考点定积分的概念题点定积分的概念解令f(x)=3x+2.(1)分割在区间[1,2]上等间隔地插入n-1个分点,把区间[1,2]等分成n个小区间⎣⎢⎡⎦⎥⎤n+i-1n,n+in(i=1,2,…,n),每个小区间的长度为Δx=n+in-n+i-1n=1n.(2)近似代替、求和取ξi=n+i-1n(i=1,2,…,n),则S n=∑i=1nf⎝⎛⎭⎪⎫n+i-1n·Δx=∑i=1n⎣⎢⎡⎦⎥⎤3(n+i-1)n+2·1n=∑i =1n⎣⎢⎡⎦⎥⎤3(i -1)n 2+5n =3n2[0+1+2+…+(n -1)]+5 =32×n 2-n n 2+5=132-32n. (3)取极限ʃ21(3x +2)d x =lim n →∞ S n=lim n →∞ ⎝⎛⎭⎫132-32n =132. 反思与感悟 利用定义求定积分的步骤跟踪训练1 利用定积分的定义计算ʃ32(x +2)d x . 考点 定积分的概念 题点 定积分的概念 解 令f (x )=x +2.将区间[2,3]平均分为n 个小区间,每个小区间的长度为Δx i =1n,[x i -1,x i ]=⎣⎢⎡⎦⎥⎤2+i -1n ,2+i n ,i =1,2,…,n .取ξi =x i =2+i n ,则f (ξi )=2+i n +2=4+in .则∑ni =1f (ξi )Δx i=∑ni =1 ⎝⎛⎭⎫4+i n ·1n=∑ni =1 ⎝⎛⎭⎫4n +i n 2=n ·4n +1+2+…+n n 2=4+n +12n.∴ʃ32(x +2)d x =lim n →∞ ⎝⎛⎭⎫4+n +12n =92. 类型二 利用定积分的性质求定积分例2 已知ʃ10x 3d x =14,ʃ21x 3d x =154,ʃ21x 2d x =73,ʃ42x 2d x =563,求下列各式的值. (1)ʃ20(3x 3)d x ; (2)ʃ41(6x 2)d x ; (3)ʃ21(3x 2-2x 3)d x .考点 定积分性质的应用 题点 定积分性质的应用解 (1)ʃ20(3x 3)d x =3ʃ20x 3d x =3()ʃ10x 3d x +ʃ21x 3d x=3×⎝⎛⎭⎫14+154=12.(2)ʃ41(6x 2)d x =6ʃ41x 2d x =6()ʃ21x 2d x +ʃ42x 2d x=6×⎝⎛⎭⎫73+563=126.(3)ʃ21(3x 2-2x 3)d x =ʃ21(3x 2)d x -ʃ21(2x 3)d x=3ʃ21x 2d x -2ʃ21x 3d x =3×73-2×154=-12. 反思与感悟 若函数f (x )的奇偶性已经明确,且f (x )在[-a ,a ]上连续,则 (1)若函数f (x )为奇函数,则ʃa -a f (x )d x =0.(2)若函数f (x )为偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d x .跟踪训练2 若f (x )=⎩⎪⎨⎪⎧2x -1,-1≤x <0,e -x ,0≤x ≤1,且ʃ0-1(2x -1)d x =-2,ʃ10e -x d x =1-e -1,求ʃ1-1f (x )d x . 考点 定积分性质的应用 题点 定积分性质的应用解 ʃ1-1f (x )d x =ʃ0-1f (x )d x +ʃ10f (x )d x =ʃ0-1(2x -1)d x +ʃ10e -x d x =-2+1-e -1=-(e -1+1).类型三 利用定积分的几何意义求定积分 例3 用定积分的几何意义求下列各式的值.(1)ʃ1-14-x 2d x ; (2)π2π-2sin d x x ⎰.考点 定积分几何意义的应用 题点 定积分几何意义的应用 解 (1)由y =4-x 2得x 2+y 2=4(y ≥0),其图象如图所示.ʃ1-14-x 2d x 等于圆心角为60°的弓形CED 的面积与矩形ABCD 的面积之和,S 弓形CED =12×π3×22-12×2×3=2π3-3,S 矩形ABCD =AB ·BC =23,∴ʃ1-14-x 2d x =23+2π3-3=2π3+ 3. (2)∵函数y =sin x 在x ∈⎣⎡⎦⎤-π2,π2上是奇函数, ∴π2π-2sin d x x ⎰=0.跟踪训练3 求定积分:ʃ20(4-(x -2)2-x )d x .考点 定积分几何意义的应用 题点 定积分几何意义的应用 解 ʃ204-(x -2)2d x 表示圆心在(2,0),半径等于2的圆的面积的14,即ʃ204-(x -2)2d x =14×π×22=π.ʃ20x d x 表示底和高都为2的直角三角形的面积, 即ʃ20x d x =12×22=2. ∴原式=ʃ204-(x -2)2d x -ʃ20x d x=π-2.1.下列结论中成立的个数是( )①ʃ10x 3d x =∑i =1n i 3n 3·1n ;②ʃ10x 3d x =lim n →∞∑i =1n (i -1)3n 3·1n ; ③ʃ10x 3d x =lim n →∞∑i =1ni 3n 3·1n . A .0 B .1 C .2 D .3 考点 定积分的概念 题点 定积分的概念 答案 C解析 ②③成立.2.关于定积分a =ʃ2-1(-2)d x 的叙述正确的是( ) A .被积函数为y =2,a =6 B .被积函数为y =-2,a =6 C .被积函数为y =-2,a =-6 D .被积函数为y =2,a =-6 考点 定积分的几何意义及性质 题点 定积分的几何意义 答案 C解析 由定积分的概念可知, ʃ2-1(-2)d x 中的被积函数为y =-2,由定积分的几何意义知,ʃ2-1(-2)d x 等于由直线x =-1,x =2,y =0,y =-2所围成的图形的面积的相反数,∴ʃ2-1(-2)d x =-2×3=-6. 3.已知定积分ʃ60f (x )d x =8,且f (x )为偶函数,则ʃ6-6f (x )d x 等于( )A .0B .16C .12D .8考点 定积分的几何意义及性质 题点 定积分性质 答案 B解析 ʃ6-6f (x )d x =2ʃ60f (x )d x =16. 4.由函数y =-x 的图象,直线x =1,x =0,y =0所围成的图形的面积可表示为( ) A .ʃ10(-x )d xB .ʃ10|-x |d xC .ʃ0-1x d xD .-ʃ10x d x考点 定积分的几何意义及性质 题点 定积分的几何意义 答案 B解析 由定积分的几何意义可知,所求图形的面积为 S =ʃ10|-x |d x .5.计算ʃ3-3(9-x 2-x 3)d x . 考点 定积分几何意义的应用 题点 定积分几何意义的应用 解 如图所示,由定积分的几何意义得ʃ3-39-x 2d x =π×322=9π2, ʃ3-3x 3d x =0,由定积分性质得ʃ3-3(9-x 2-x 3)d x =ʃ3-39-x 2d x -ʃ3-3x 3d x =9π2.1.定积分ʃb a f (x )d x是一个和式 i =1n b -anf (ξi )的极限,是一个常数.2.可以利用“分割、近似代替、求和、取极限”求定积分.对于一些特殊函数,也可以利用几何意义求定积分.3.定积分的几何性质可以帮助简化定积分运算.一、选择题1.根据定积分的定义,ʃ20x 2d x 等于( )A.∑i =1n ⎝⎛⎭⎫i -1n 2·1n B .lim n →∞ ∑i =1n⎝⎛⎭⎫i -1n 2·1n C.∑i =1n ⎝⎛⎭⎫2i n 2·2n D .lim n →∞ ∑i =1n⎝⎛⎭⎫2i n 2·2n 考点 定积分的概念 题点 定积分的概念 答案 D 解析根据定积分的定义,ʃ20x 2d x =lim n →∞∑i =1n⎝⎛⎭⎫2i n 2·2n .2.下列定积分的值等于1的是( ) A .ʃ101d x B .ʃ10(x +1)d x C .ʃ1012d x D .ʃ10x d x考点 定积分的几何意义及性质 题点 定积分性质 答案 A解析 D 项,ʃ10x d x =12,C 项,ʃ1012d x =12, B 项,ʃ10(x +1)d x =32,A 项,ʃ101d x =1,故选A. 3.下列命题不正确的是( )A .若f (x )是连续的奇函数,则ʃa -a f (x )d x =0B .若f (x )是连续的偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d xC .若f (x )在[a ,b ]上连续且恒正,则ʃb a f (x )d x >0D .若f (x )在[a ,b ]上连续且ʃb a f (x )d x >0,则f (x )在[a ,b ]上恒正考点 定积分的几何意义及性质 题点 定积分性质 答案 D解析 A 项,因为f (x )是奇函数,图象关于原点对称,所以x 轴上方的面积和x 轴下方的面积相等,故积分是0,所以A 项正确;B 项,因为f (x )是偶函数,图象关于y 轴对称,故y 轴两侧的图象都在x 轴上方或下方且面积相等,故B 项正确;由定积分的几何意义知,C 项显然正确;D 项,f (x )也可以小于0,但必须有大于0的部分,且f (x )>0的曲线围成的面积比f (x )<0的曲线围成的面积大. 4.与定积分3π2x ⎰相等的是( )A.3π20sin d x x ⎰B.3π2sin d x x ⎰C .ʃπ0sin x d x -3π2πsin d x x ⎰D.π3π22π02sin d sin d x x x x +⎰⎰考点 定积分的几何意义及性质 题点 定积分性质 答案 C解析 当x ∈[0,π]时,sin x ≥0; 当x ∈⎝⎛⎦⎤π,3π2时,sin x <0. ∴由定积分的性质可得,3π2sin d x x ⎰=ʃπ0|sin x |d x +3π2πsin d x x ⎰=ʃπ0sin x d x +()3π2πsin d x x -⎰=ʃπ0sin x d x -3π2πsin d x x ⎰.5.下列各阴影部分的面积S 不可以用S =ʃb a [f (x )-g (x )]d x 求出的是( )考点 定积分的几何意义及性质 题点 定积分的几何意义答案 B解析 定积分S =ʃb a [f (x )-g (x )]d x 的几何意义是求函数f (x )与g (x )之间的阴影部分的面积,必须注意f (x )的图象要在g (x )的图象上方.对照各选项可知,B 项中f (x )的图象不全在g (x )的图象上方,故选B.6.由直线y =x ,y =-x +1及x 轴围成的平面图形的面积为( ) A .ʃ10[(1-y )-y ]d y B .()121d x x x -+-⎡⎤⎣⎦⎰ C .()112102d 1d x x x x +-+⎰⎰D .ʃ10[x -(-x +1)]d x考点 定积分的几何意义及性质 题点 定积分的几何意义 答案 C解析 联立⎩⎪⎨⎪⎧y =x ,y =-x +1,解得⎩⎨⎧x =12,y =12,故A ⎝⎛⎭⎫12,12.由图知阴影部分的面积可表示为()112102d 1d x x x x +-+⎰⎰.7.设a =ʃ1013x d x ,b =ʃ10x 2d x ,c =ʃ10x 3d x ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a =b >cD .c >a >b考点 定积分几何意义的应用 题点 定积分几何意义的应用答案A解析根据定积分的几何意义,易知ʃ10x3d x<ʃ10x2d x<ʃ1013x d x,即a>b>c,故选A.8.若ʃa-a|56x|d x≤2 016,则正数a的最大值为() A.6 B.56C.36 D.2 016考点定积分几何意义的应用题点定积分几何意义的应用答案A解析由ʃa-a|56x|d x=56ʃa-a|x|d x≤2 016,得ʃa-a|x|d x≤36,∵ʃa-a|x|d x=a2,∴a2≤36,即0<a≤6.故正数a的最大值为6.二、填空题9.若ʃ1012f(x)d x=1,ʃ0-13f(x)d x=2,则ʃ1-1f(x)d x=________.考点定积分性质的应用题点定积分性质的应用答案8 3解析∵ʃ1012f(x)d x=12ʃ10f(x)d x=1,∴ʃ10f(x)d x=2.又ʃ0-13f(x)d x=3ʃ0-1f(x)d x=2,∴ʃ0-1f(x)d x=2 3.∴ʃ1-1f(x)d x=ʃ0-1f(x)d x+ʃ10f(x)d x=23+2=83.10.如图所示的阴影部分的面积用定积分表示为________.考点定积分的几何意义及性质题点 定积分的几何意义答案 ʃ2-4x 22d x 11.定积分ʃ10(2+1-x 2)d x =________.考点 定积分几何意义的应用题点 定积分几何意义的应用答案 2+π4解析 原式=ʃ102d x +ʃ101-x 2d x .因为ʃ102d x =2,ʃ101-x 2d x =π4, 所以ʃ10(2+1-x 2)d x =2+π4. 12.已知f (x )是一次函数,其图象过点(3,4)且ʃ10f (x )d x =1,则f (x )的解析式为________. 考点 定积分几何意义的应用题点 定积分几何意义的应用答案 f (x )=65x +25解析 设f (x )=ax +b (a ≠0),∵f (x )图象过(3,4)点,∴3a +b =4.又ʃ10f (x )d x =ʃ10(ax +b )d x =a ʃ10x d x +ʃ10b d x =12a +b =1. 解方程组⎩⎪⎨⎪⎧3a +b =4,12a +b =1, 得⎩⎨⎧ a =65,b =25.∴f (x )=65x +25.三、解答题 13.已知f (x )=⎩⎪⎨⎪⎧ x ,x ∈[0,2),4-x ,x ∈[2,3),52-x 2,x ∈[3,5],求f (x )在区间[0,5]上的定积分.考点 定积分几何意义的应用题点 定积分几何意义的应用解 如图画出函数f (x )的图象.由定积分的几何意义得ʃ20x d x =12×2×2=2, ʃ32(4-x )d x =12×(1+2)×1=32, ʃ53⎝⎛⎭⎫52-x 2d x =12×2×1=1. 所以ʃ50f (x )d x =ʃ20x d x +ʃ32(4-x )d x +ʃ53⎝⎛⎭⎫52-x 2d x =2+32+1=92. 四、探究与拓展14.若定积分ʃm -2-x 2-2x d x =π4,则m 等于( ) A .-1B .0C .1D .2 考点 定积分几何意义的应用题点 定积分几何意义的应用答案 A解析 根据定积分的几何意义知,定积分ʃm -2-x 2-2x d x 的值就是函数y =-x 2-2x 的图象与x 轴及直线x =-2,x =m 所围成的图形的面积.y =-x 2-2x 是一个以(-1,0)为圆心,1为半径的半圆,其面积等于π2,而ʃm -2-x 2-2x d x =π4,所以m =-1. 15.如图所示,抛物线y =12x 2将圆x 2+y 2≤8分成两部分,现在向圆上均匀投点,这些点落在圆中阴影部分的概率为14+16π, 求ʃ20⎝⎛⎭⎫8-x 2-12x 2d x . 考点 定积分几何意义的应用题点 定积分几何意义的应用解 解方程组⎩⎪⎨⎪⎧x 2+y 2=8,y =12x 2, 得x =±2.∴阴影部分的面积为ʃ2-2⎝⎛⎭⎫8-x 2-12x 2d x . ∵圆的面积为8π, ∴由几何概型可得阴影部分的面积是8π·⎝⎛⎭⎫14+16π=2π+43. 由定积分的几何意义得,ʃ20⎝⎛⎭⎫8-x 2-12x 2d x =12ʃ2-2⎝⎛⎭⎫8-x 2-12x 2d x =π+23.。
浙江人教A版数学高二选修2-2学案第一章导数及其应用习题课导数的应用
学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用.知识点一 函数的单调性与其导数的关系 定义在区间(a ,b )内的函数y =f (x )f ′(x )的正负 f (x )的单调性 f ′(x )>0 单调递增 f ′(x )<0单调递减知识点二 求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时,(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值. (2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. 知识点三 函数y =f (x )在[a ,b ]上最大值与最小值的求法 (1)求函数y =f (x )在(a ,b )内的极值.(2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.类型一 构造法的应用 命题角度1 比较函数值的大小例1 已知定义在(0,π2)上的函数f (x ),f ′(x )是它的导函数,且恒有sin x ·f ′(x )>cos x ·f (x )成立,则( ) A.2f (π6)>f (π4)B.3f (π6)>f (π3)C.6f (π6)>2f (π4)D.3f (π6)<f (π3)答案 D解析 由f ′(x )sin x >f (x )cos x , 则f ′(x )sin x -f (x )cos x >0, 构造函数g (x )=f (x )sin x,则g ′(x )=f ′(x )sin x -f (x )cos xsin 2x .当x ∈(0,π2)时,g ′(x )>0,即函数g (x )在(0,π2)上单调递增,∴g (π6)<g (π3),∴3f (π6)<f (π3),故选D.反思与感悟 此类题目的关键是构造出恰当的函数,利用函数的单调性确定函数值的大小. 跟踪训练1 已知定义域为R 的奇函数f (x )的导函数为f ′(x ),当x ≠0时,f ′(x )+f (x )x <0,若a =12f (12),b =-2f (-2),c =(ln 12)f (ln 12),则a ,b ,c 的大小关系正确的是( )A .a <c <bB .b <c <aC .a <b <cD .c <a <b答案 B解析 令g (x )=xf (x ), 则g (-x )=-xf (-x )=xf (x ),∴g (x )是偶函数.g ′(x )=f (x )+xf ′(x ), ∵f ′(x )+f (x )x<0,∴当x >0时,xf ′(x )+f (x )<0, 当x <0时,xf ′(x )+f (x )>0. ∴g (x )在(0,+∞)上是减函数. ∵12<ln 2<1<2, ∴g (2)<g (ln 2)<g (12).∵g (x )是偶函数,∴g (-2)=g (2),g (ln 12)=g (ln 2),∴g (-2)<g (ln 12)<g (12).故选B.命题角度2 求解不等式例2 定义域为R 的可导函数y =f (x )的导函数f ′(x ),满足f (x )>f ′(x ),且f (0)=2,则不等式f (x )<2e x 的解集为( ) A .(-∞,0) B .(-∞,2) C .(0,+∞) D .(2,+∞)答案 C解析 设g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x.∵f (x )>f ′(x ),∴g ′(x )<0,即函数g (x )在定义域上单调递减. ∵f (0)=2,∴g (0)=f (0)=2, 则不等式等价于g (x )<g (0). ∵函数g (x )单调递减,∴x >0,∴不等式的解集为(0,+∞),故选C.反思与感悟 构造恰当函数并判断其单调性,利用单调性得到x 的取值范围.跟踪训练2 定义在R 上的函数f (x )满足f (1)=1,且对任意的x ∈R 都有f ′(x )<13,则不等式f (lg x )>lg x +23的解集为________. 答案 (0,10)解析 ∵f ′(x )<13,∴f ′(x )-13<0,∴f (x )-x +23在R 上为减函数.设F (x )=f (x )-x +23,则F (x )在R 上为减函数.∵f (1)=1,∴F (1)=f (1)-1=1-1=0.由f (lg x )>lg x +23,得f (lg x )-lg x +23>0,∴F (lg x )>F (1).∵F (x )在R 上单调递减,∴lg x <1,∴0<x <10, ∴原不等式的解集为(0,10).类型二 利用导数研究函数的极值与最值例3 已知函数f (x )=x 3+ax 2+b 的图象上一点P (1,0),且在点P 处的切线与直线3x +y =0平行.(1)求函数f (x )的解析式;(2)求函数f (x )在区间[0,t ](0<t <3)上的最大值和最小值;(3)在(1)的结论下,关于x 的方程f (x )=c 在区间[1,3]上恰有两个相异的实根,求实数c 的取值范围.解 (1)因为f ′(x )=3x 2+2ax ,曲线在P (1,0)处的切线斜率为f ′(1)=3+2a ,即3+2a =-3,a =-3.又函数过(1,0)点,即-2+b =0,b =2. 所以a =-3,b =2,f (x )=x 3-3x 2+2. (2)由f (x )=x 3-3x 2+2,得f ′(x )=3x 2-6x . 由f ′(x )=0,得x =0或x =2.①当0<t ≤2时,在区间(0,t )上,f ′(x )<0,f (x )在[0,t ]上是减函数,所以f (x )max =f (0)=2,f (x )min =f (t )=t 3-3t 2+2.②当2<t <3时,当x 变化时,f ′(x ),f (x )的变化情况如下表:f (x )min =f (2)=-2,f (x )max 为f (0)与f (t )中较大的一个. f (t )-f (0)=t 3-3t 2=t 2(t -3)<0, 所以f (x )max =f (0)=2.(3)令g (x )=f (x )-c =x 3-3x 2+2-c , 则g ′(x )=3x 2-6x =3x (x -2).在x ∈[1,2)上,g ′(x )<0;在x ∈(2,3]上,g ′(x )>0. 要使g (x )=0在[1,3]上恰有两个相异的实根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (3)≥0,解得-2<c ≤0. 反思与感悟 (1)求极值时一般需确定f ′(x )=0的点和单调性,对于常见连续函数,先确定单调性即可得极值点,当连续函数的极值点只有一个时,相应的极值点必为函数的最值点. (2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值可不再作判断,只需要直接与端点的函数值比较即可获得.跟踪训练3 已知a ,b 为常数且a >0,f (x )=x 3+32(1-a )x 2-3ax +b .(1)函数f (x )的极大值为2,求a ,b 间的关系式;(2)函数f (x )的极大值为2,且在区间[0,3]上的最小值为-232,求a ,b 的值.解 (1)f ′(x )=3x 2+3(1-a )x -3a =3(x -a )(x +1),令f ′(x )=0,解得x 1=-1,x 2=a , 因为a >0,所以x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1)-1 (-1,a ) a (a ,+∞)f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗所以当x =-1时,f (x )有极大值2,即3a +2b =3.(2)当0<a <3时,由(1)知,f (x )在[0,a )上为减函数,在(a ,3]上为增函数, 所以f (a )为最小值,f (a )=-12a 3-32a 2+b .即-12a 3-32a 2+b =-232.又由b =3-3a 2,于是有a 3+3a 2+3a -26=0, 即(a +1)3=27,所以a =2,b =-32.当a >3时,由(1)知f (x )在[0,3]上为减函数,即f (3)为最小值,f (3)=-232,从而求得a =10748,不合题意,舍去.综上,a =2,b =-32.类型三 数形结合思想的应用例4 已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),给出以下说法:①函数f (x )在区间(1,+∞)上是增函数; ②函数f (x )在区间(-1,1)上单调递增;③函数f (x )在x =-12处取得极大值;④函数f (x )在x =1处取得极小值. 其中正确的说法是________. 答案 ①④解析 对于①,由图象知,当x ∈(1,+∞)时,xf ′(x )>0,故f ′(x )>0,∴f (x )在区间(1,+∞)上单调递增.对于②,当x ∈(-1,0)时,xf ′(x )>0,故f ′(x )<0;当x ∈(0,1)时,xf ′(x )<0,故f ′(x )<0.所以当x ∈(-1,0)∪(0,1)时,f ′(x )<0,故f (x )在(-1,0),(0,1)上是减函数.对于③,由②知f (x )在(-1,0)上单调递减,∴x =-12不是极值点,由①②知④是正确的,故填①④.反思与感悟 解决函数极值与函数、导函数图象的关系时,应注意(1)对于导函数的图象,重点考查导函数的值在哪个区间上为正,在哪个区间上为负,在哪个点处与x 轴相交,在交点附近导函数值是怎样变化的.(2)对于函数的图象,函数重点考查递增区间和递减区间,进而确定极值点.跟踪训练4 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )答案 A解析 ∵函数f (x )在R 上可导,其导函数为f ′(x ), 且函数f (x )在x =-2处取得极小值, ∴当x >-2时,f ′(x )>0;当x =-2时,f ′(x )=0;当x <-2时,f ′(x )<0. ∴当-2<x <0时,xf ′(x )<0; 当x =-2时,xf ′(x )=0; 当x <-2时,xf ′(x )>0. 由此观察四个选项,故选A.1.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( )A.43B.73 C.83 D.163答案 C解析 由题意可知f (0)=0,f (1)=0,f (2)=0, 可得1+b +c =0,8+4b +2c =0,解得b =-3,c =2, 所以函数的解析式为f (x )=x 3-3x 2+2x . f ′(x )=3x 2-6x +2,令3x 2-6x +2=0,可得x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-2×23=83. 2.已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的正数a ,b ,若a <b ,则必有( ) A .bf (b )≤af (a ) B .bf (a )≤af (b ) C .af (a )≤bf (b ) D .af (b )≤bf (a ) 答案 A解析 设g (x )=xf (x ),x ∈(0,+∞), 则g ′(x )=xf ′(x )+f (x )≤0,∴g (x )在区间(0,+∞)上单调递减或g (x )为常函数. ∵a <b ,∴g (a )≥g (b ),即af (a )≥bf (b ). 故选A.3.函数f (x )的定义域为R ,f (-1)=1,对任意的x ∈R ,f ′(x )>3,则f (x )>3x +4的解集为________. 答案 (-1,+∞)解析 设F (x )=f (x )-(3x +4), 则F (-1)=f (-1)-(-3+4)=1-1=0.又对任意的x ∈R ,f ′(x )>3,∴F ′(x )=f ′(x )-3>0, ∴F (x )在R 上是增函数, ∴F (x )>0的解集是(-1,+∞), 即f (x )>3x +4的解集为(-1,+∞).4.已知函数f (x )=x 3-12x 2-2x +5,若对于任意x ∈[-1,2],都有f (x )<m ,则实数m 的取值范围是________________________________________________________________________. 答案 (7,+∞)解析 f ′(x )=3x 2-x -2,令f ′(x )=0, 得x =-23或x =1.可判断求得f (x )max =f (2)=7. ∴f (x )<m 恒成立时,m >7.导数作为一种重要的工具,在研究函数中具有重要的作用,例如函数的单调性、极值与最值等问题,都可以通过导数得以解决.不但如此,利用导数研究得到函数的性质后,还可以进一步研究方程、不等式等诸多代数问题,所以一定要熟练掌握利用导数来研究函数的各种方法.课时作业一、选择题1.函数y =f (x )=x cos x -sin x 在下面哪个区间内是增函数( ) A.⎝⎛⎭⎫π2,3π2 B .(π,2π) C.⎝⎛⎭⎫3π2,5π2 D .(2π,3π)答案 B解析 y ′=cos x -x sin x -cos x =-x sin x ,若y =f (x )在某区间内是增函数,只需在此区间内y ′大于或等于0(不恒为0)即可.∴只有选项B 符合题意,当x ∈(π,2π)时,y ′>0恒成立. 2.已知函数f (x )=x +ln x ,则有( ) A .f (2)<f (e)<f (3) B .f (e)<f (2)<f (3) C .f (3)<f (e)<f (2) D .f (e)<f (3)<f (2)答案 A解析 f (x )的定义域为(0,+∞), f ′(x )=12x +1x >0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递增, ∴f (2)<f (e)<f (3).3.若函数f (x )=-x 3+3x 2+9x +a 在区间[-2,-1]上的最大值为2,则它在该区间上的最小值为( )A .-5B .7C .10D .-19 答案 A解析 ∵y ′=-3x 2+6x +9=-3(x +1)(x -3), ∴函数在[-2,-1]内单调递减, ∴最大值为f (-2)=2+a =2. ∴a =0,最小值为f (-1)=a -5=-5.4.已知定义在R 上的函数f (x )的图象如图,则x ·f ′(x )>0的解集为( )A .(-∞,0)∪(1,2)B .(1,2)C .(-∞,1)D .(-∞,1)∪(2,+∞) 答案 A解析 不等式x ·f ′(x )>0等价于当x >0时,f ′(x )>0,即当x >0时,函数递增,此时1<x <2;或者当x <0时,f ′(x )<0,即当x <0时,函数递减,此时x <0,综上,1<x <2或x <0,即不等式的解集为(-∞,0)∪(1,2).5.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1)答案 C解析 由题意知f ′(x )=-x +bx +2≤0,x ∈(-1,+∞), 即f ′(x )=-x 2-2x +bx +2≤0,即-x 2-2x +b =-(x +1)2+1+b ≤0, ∴1+b ≤0,b ≤-1.6.已知函数f (x )=ax 3+bx 2+c ,其导函数的图象如图所示,则函数f (x )的极小值是( )A .a +b +cB .8a +4b +cC .3a +2bD .c 答案 D解析 由f ′(x )图象知,f (x )在(-∞,0)上递减,在(0,2)上递增,所以函数f (x )在x =0时取得极小值c .7.定义在R 上的函数f (x )满足f (1)=1,且对任意x ∈R ,都有f ′(x )<12,则不等式f (x )>x +12的解集为( ) A .(1,2) B .(-∞,1) C .(1,+∞) D .(-1,1)答案 B解析 ∵f ′(x )<12,∴f ′(x )-12<0.设h (x )=f (x )-12x ,则h ′(x )=f ′(x )-12<0,∴h (x )是R 上的减函数,且h (1)=f (1)-12=1-12=12.不等式f (x )>x +12,即为f (x )-12x >12,即h (x )>h (1),得x <1,∴原不等式的解集为(-∞,1). 二、填空题8.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递增区间为________. 答案 (-∞,-1)和(1,+∞)解析 令f ′(x )=3x 2-3a =0,得x =±a . 由题意得f (a )=2,f (-a )=6,得a =1,b =4.由f ′(x )=3x 2-3>0,得f (x )的单调递增区间为(-∞,-1)和(1,+∞).9.已知函数f (x )=x -a x +1·e x在定义域内有极值点,则实数a 的取值范围是____________.答案 (-∞,-1)∪(3,+∞)解析 f ′(x )=x +1-x +a (x +1)2·e x +x -a x +1·e x =x 2+(1-a )x +1(x +1)2·e x.因为x 2+(1-a )x +1=0有两个不相等且不等于-1的实数根,所以(1-a )2-4>0且a ≠-1,解得a <-1或a >3.10.设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意的x ∈(0,1]都有f (x )≥0成立,则实数a 的取值范围为______. 答案 [4,+∞)解析 ∵x ∈(0,1],∴f (x )≥0可化为a ≥3x 2-1x 3. 令g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 令g ′(x )=0,得x =12. 当0<x <12时,g ′(x )>0; 当12<x ≤1时,g ′(x )<0, ∴g (x )在(0,1]上有极大值g (12)=4,也是最大值. ∴a ≥4.11.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f (12),c =f (3),则a ,b ,c 的大小关系为____________. 答案 c <a <b解析 依题意得,当x <1时,f ′(x )>0,f (x )为增函数.又f (3)=f (-1),且-1<0<12<1, 因此有f (-1)<f (0)<f (12), 即f (3)<f (0)<f (12),即c <a <b . 三、解答题12.设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴. (1)求a 的值;(2)求函数f (x )的极值.解 (1)f ′(x )=a x -12x 2+32. 由题意,曲线在x =1处的切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1. (2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x 2. 令f ′(x )=0,解得x 1=1,x 2=-13(舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数.故f (x )在x =1处取得极小值,极小值为f (1)=3.13.已知函数f (x )=x 3-2ax 2+3x ,若x =a 是f (x )的极值点,求f (x )在[-2,a ]上的最大值和最小值.解 由题意知f ′(a )=3a 2-4a 2+3=0,∴a =± 3.①当a =3时,x ∈[-2,3],f ′(x )=3x 2-43x +3=3(x -3)(x -33), 此时,由f ′(x )>0,可得-2≤x <33; 由f ′(x )<0,可得33<x <3, ∴函数f (x )的单调递增区间为[-2,33), 函数f (x )的单调递减区间为(33,3). 又∵f (-2)=-14-83,f (3)=0,极大值为f (33)=439. ∴函数f (x )的最小值为-14-83;函数f (x )的最大值为439. ②当a =-3时,x ∈[-2,-3],f ′(x )=3x 2+43x +3=3(x +3)(x +33), 此时,f ′(x )≥0,∴f (x )在[-2,-3]上为增函数,∴f (x )min =f (-2)=-14+83,∴f (x )max =f (-3)=0.四、探究与拓展14.已知f (x ),g (x )都是定义在R 上的函数,且f (x )g (x )=a x (a >0且a ≠1),f ′(x )g (x )<f (x )g ′(x ),f (1)g (1)+f (-1)g (-1)=52,则a =________.答案 12解析 令h (x )=f (x )g (x ),∵f ′(x )g (x )<f (x )g ′(x ), ∴h ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0, ∴函数y =a x 在R 上单调递减,∴0<a <1.∵f (1)g (1)+f (-1)g (-1)=52,∴a 1+a -1=52, 化为2a 2-5a +2=0,解得a =2或12. ∵0<a <1,∴a =12. 15.已知函数f (x )=x 2-m ln x ,h (x )=x 2-x +a .(1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;(2)当m =2时,若函数k (x )=f (x )-h (x )在区间[1,3]上恰有两个不同零点,求实数a 的取值范围.解 (1)由f (x )≥h (x )在(1,+∞)上恒成立,得m ≤x ln x在(1,+∞)上恒成立. 令g (x )=x ln x ,则g ′(x )=ln x -1(ln x )2,故g ′(e)=0. 当x ∈(1,e)时,g ′(x )<0;当x ∈(e ,+∞)时,g ′(x )>0.故g (x )在(1,e)上单调递减,在(e ,+∞)上单调递增,故当x =e 时,g (x )的最小值为g (e)=e.所以m ≤e.(2)由已知可知k (x )=x -2ln x -a ,函数k (x )在[1,3]上恰有两个不同零点,相当于函数φ(x )=x -2ln x 与直线y =a 有两个不同的交点.φ′(x )=1-2x =x -2x,故φ′(2)=0. 所以当x ∈[1,2)时,φ′(x )<0,所以φ(x )单调递减,当x ∈(2,3]时,φ′(x )>0,所以φ(x )单调递增.所以φ(1)=1,φ(3)=3-2ln 3,φ(2)=2-2ln 2,且φ(1)>φ(3)>φ(2)>0,所以2-2ln 2<a ≤3-2ln 3.所以实数a 的取值范围为(2-2ln 2,3-2ln 3].。
人教版数学高二A版选修2-2学案 第一章 导数及其应用 1.3.2(一)
1.3.2函数的极值与导数(一)学习目标 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.知识点一函数的极值点和极值思考观察函数y=f(x)的图象,指出其极大值点和极小值点及极值.答案极大值点为e,g,i,极大值为f(e),f(g),f(i);极小值点为d,f,h,极小值为f(d),f(f),f(h).梳理(1)极小值点与极小值若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,就把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)极大值点与极大值若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,就把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极大值点、极小值点统称为极值点;极大值、极小值统称为极值.知识点二函数极值的求法与步骤(1)求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,①如果在x0附近的左侧函数单调递增,即f′(x)>0,在x0的右侧函数单调递减,即f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧函数单调递减,即f′(x)<0,在x0的右侧函数单调递增,即f′(x)>0,那么f(x0)是极小值.(2)求可导函数f (x )的极值的步骤 ①确定函数的定义区间,求导数f ′(x ); ②求方程f ′(x )=0的根; ③列表;④利用f ′(x )与f (x )随x 的变化情况表,根据极值点左右两侧单调性的变化情况求极值.1.导数为0的点一定是极值点.( × ) 2.函数的极大值一定大于极小值.( × ) 3.函数y =f (x )一定有极大值和极小值.( × ) 4.极值点处的导数一定为0.( × )类型一 求函数的极值点和极值 命题角度1 不含参数的函数求极值 例1 求下列函数的极值. (1)f (x )=2xx 2+1-2;(2)f (x )=ln x x. 考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 解 (1)函数f (x )的定义域为R .f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2.令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1)-1 (-1,1) 1 (1,+∞) f ′(x ) - 0 + 0 - f (x )↘极小值↗极大值↘由上表可以看出,当x =-1时,函数有极小值,且极小值为f (-1)=-3;当x =1时,函数有极大值,且极大值为f (1)=-1. (2)函数f (x )=ln xx 的定义域为(0,+∞),且f ′(x )=1-ln xx 2.令f ′(x )=0,解得x =e.当x 变化时,f ′(x )与f (x )的变化情况如下表:↗因此,x =e 是函数的极大值点,极大值为f (e)=1e ,没有极小值.反思与感悟 函数极值和极值点的求解步骤 (1)确定函数的定义域. (2)求方程f ′(x )=0的根.(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并列成表格. (4)由f ′(x )在方程f ′(x )=0的根左右的符号,来判断f (x )在这个根处取极值的情况. 特别提醒:当实数根较多时,要充分利用表格,使极值点的确定一目了然. 跟踪训练1 求下列函数的极值点和极值. (1)f (x )=13x 3-x 2-3x +3;(2)f (x )=x 2e -x .考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 解 (1)f ′(x )=x 2-2x -3. 令f ′(x )=0,得x 1=-1,x 2=3,当x 变化时,f ′(x ),f (x )的变化情况如下表:↘由上表可以看出,当x =-1时,函数有极大值,且极大值f (-1)=143,当x =3时,函数有极小值,且极小值f (3)=-6. (2)函数f (x )的定义域为R . f ′(x )=2x e -x -x 2e -x =x (2-x )e -x . 令f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可以看出,当x =0时,函数有极小值,且极小值为f (0)=0. 当x =2时,函数有极大值,且极大值为f (2)=4e -2. 命题角度2 含参数的函数求极值例2 已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),当实数a ≠23时,求函数f (x )的单调区间与极值.考点 函数在某点处取得极值的条件 题点 含参数求极值问题解 f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x . 令f ′(x )=0,解得x =-2a 或x =a -2, 由a ≠23知-2a ≠a -2.分以下两种情况讨论: ①若a >23,则-2a <a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,-2a ),(a -2,+∞)上是增函数,在(-2a ,a -2)上是减函数,函数f (x )在x =-2a 处取得极大值f (-2a ),且f (-2a )=3a e -2a ,函数f (x )在x =a -2处取得极小值f (a -2),且f (a -2)=(4-3a )e a -2. ②若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,a -2),(-2a ,+∞)上是增函数,在(a -2,-2a )上是减函数,函数f (x )在x =a -2处取得极大值f (a -2),且f (a -2)=(4-3a )e a -2,函数f (x )在x =-2a 处取得极小值f (-2a ),且f (-2a )=3a e -2a .反思与感悟 讨论参数应从f ′(x )=0的两根x 1,x 2相等与否入手进行. 跟踪训练2 已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.考点 函数在某点处取得极值的条件 题点 含参数求极值问题解 函数f (x )的定义域为(0,+∞),f ′(x )=1-ax .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因而f (1)=1,f ′(1)=-1.所以曲线y =f (x )在点A (1,f (1))处的切线方程为 y -1=-(x -1),即x +y -2=0. (2)由f ′(x )=1-a x =x -ax,x >0,知①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值. 类型二 利用函数的极值求参数例3 (1)已知函数f (x )的导数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取到极大值,则a 的取值范围是( ) A .(-∞,-1) B .(0,+∞) C .(0,1)D .(-1,0)(2)已知函数f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a =________,b =________. 考点 利用导数研究函数的极值 题点 已知极值点求参数 答案 (1)D (2)2 9解析 (1)若a <-1,因为f ′(x )=a (x +1)(x -a ),所以f (x )在(-∞,a )上单调递减,在(a ,-1)上单调递增, 所以f (x )在x =a 处取得极小值,与题意不符;若-1<a <0,则f (x )在(-1,a )上单调递增,在(a ,+∞)上单调递减,从而在x =a 处取得极大值.若a >0,则f (x )在(-1,a )上单调递减,在(a ,+∞)上单调递增,与题意不符,故选D. (2)因为f (x )在x =-1时有极值0,且f ′(x )=3x 2+6ax +b ,所以⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, 所以f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-3,-1)时,f (x )为减函数, 当x ∈(-1,+∞)时,f (x )为增函数,所以f (x )在x =-1处取得极小值,因此a =2,b =9. 反思与感悟 已知函数的极值求参数时应注意两点(1)待定系数法:常根据极值点处导数为0和极值两个条件列出方程组,用待定系数法求解. (2)验证:因为导数值为0不一定此点就是极值点,故利用上述方程组解出的解必须验证. 跟踪训练3 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由. 考点 利用导数研究函数的极值 题点 已知极值点求参数 解 (1)∵f (x )=a ln x +bx 2+x , ∴f ′(x )=ax+2bx +1,∴f ′(1)=f ′(2)=0,∴a +2b +1=0且a2+4b +1=0,解得a =-23,b =-16.(2)由(1)可知f (x )=-23ln x -16x 2+x ,且定义域是(0,+∞),f ′(x )=-23x -1-13x +1=-(x -1)(x -2)3x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,2)时,f ′(x )>0; 当x ∈(2,+∞)时,f ′(x )<0.故x =1是函数f (x )的极小值点,x =2是函数f (x )的极大值点.1.函数f (x )的定义域为R ,它的导函数y =f ′(x )的部分图象如图所示,则下面结论错误的是( )A .在(1,2)上函数f (x )为增函数B .在(3,4)上函数f (x )为减函数C .在(1,3)上函数f (x )有极大值D .x =3是函数f (x )在区间[1,5]上的极小值点 考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 D解析 根据导函数图象知,x ∈(1,2)时,f ′(x )>0,x ∈(2,4)时,f ′(x )<0,x ∈(4,5)时,f ′(x )>0.∴f (x )在(1,2),(4,5)上为增函数,在(2,4)上为减函数,x =2是f (x )在[1,5]上的极大值点,x =4是极小值点.故选D.2.设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 D解析 函数f (x )=2x +ln x 的定义域为(0,+∞).f ′(x )=1x -2x2,令f ′(x )=0,即1x -2x2=0得,x =2,当x ∈(0,2)时,f ′(x )<0,当x ∈(2,+∞)时,f ′(x )>0. 因为x =2为f (x )的极小值点,故选D.3.函数f (x )=ax -1-ln x (a ≤0)在定义域内的极值点的个数为________. 考点 函数在某点处取得极值的条件 题点 判断极值点的个数 答案 0解析 因为x >0,f ′(x )=a -1x =ax -1x ,所以当a ≤0时,f ′(x )<0在(0,+∞)上恒成立, 所以函数f (x )在(0,+∞)上单调递减, 所以f (x )在(0,+∞)上没有极值点.4.已知曲线f (x )=x 3+ax 2+bx +1在点(1,f (1))处的切线斜率为3,且x =23是y =f (x )的极值点,则a +b =________. 考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -2解析 f ′(x )=3x 2+2ax +b ,由题意知⎩⎪⎨⎪⎧ f ′(1)=3,f ′⎝⎛⎭⎫23=0,即⎩⎪⎨⎪⎧3+2a +b =3,43+43a +b =0, 解得⎩⎪⎨⎪⎧a =2,b =-4,则a +b =-2.5.已知函数f (x )=ax 2+b ln x 在x =1处有极值12.(1)求a ,b 的值;(2)判断f (x )的单调区间,并求极值.考点 利用导数研究函数的极值 题点 已知极值(点)求参数 解 (1)f ′(x )=2ax +bx,由题意得⎩⎪⎨⎪⎧ f ′(1)=0,f (1)=12, 即⎩⎪⎨⎪⎧2a +b =0,a =12,∴a =12,b =-1.(2)由(1)得,f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x.又f (x )的定义域为(0,+∞), 令f ′(x )=0,解得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )↘极小值↗∴f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). f (x )极小值=f (1)=12.1.求函数极值的步骤 (1)确定函数的定义域; (2)求导数f ′(x );(3)解方程f ′(x )=0得方程的根;(4)利用方程f ′(x )=0的根将定义域分成若干个小开区间,列表,判定导函数在各个小开区间的符号;(5)确定函数的极值,如果f ′(x )的符号在x 0处由正(负)变负(正),则f (x )在x 0处取得极大(小)值.2.已知函数极值,确定函数解析式中的参数时,注意两点(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证充分性.一、选择题1.下列函数中存在极值的是( ) A .y =1xB .y =x -e xC .y =2D .y =x 3考点 利用导数研究函数的极值 题点 极值存在性问题 答案 B解析 对于y =x -e x ,y ′=1-e x ,令y ′=0,得x =0. 在区间(-∞,0)上,y ′>0; 在区间(0,+∞)上,y ′<0.故x =0为函数y =x -e x 的极大值点.2.函数f (x )=ln x -x 在区间(0,e)上的极大值为( ) A .-e B .1-e C .-1D .0 考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 C解析 f (x )的定义域为(0,+∞), f ′(x )=1x -1.令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )>0,当x ∈(1,e)时,f ′(x )<0, 故f (x )在x =1处取得极大值f (1)=ln 1-1=0-1=-1.3.已知函数f(x)=2x3+ax2+36x-24在x=2处有极值,则该函数的一个递增区间是() A.(2,3) B.(3,+∞)C.(2,+∞) D.(-∞,3)考点利用导数研究函数的极值题点已知极值(点)求参数答案B解析因为f′(x)=6x2+2ax+36,且在x=2处有极值,所以f′(2)=0,即24+4a+36=0,解得a=-15,所以f′(x)=6x2-30x+36=6(x-2)(x-3),由f′(x)>0,得x<2或x>3.4.设三次函数f(x)的导函数为f′(x),函数y=xf′(x)的图象的一部分如图所示,则()A.f(x)极大值为f(3),极小值为f(-3)B.f(x)极大值为f(-3),极小值为f(3)C.f(x)极大值为f(-3),极小值为f(3)D.f(x)极大值为f(3),极小值为f(-3)考点函数极值的综合应用题点函数极值在函数图象上的应用答案D解析当x<-3时,y=xf′(x)>0,即f′(x)<0;当-3<x<3时,f′(x)≥0;当x>3时,f′(x)<0.∴f(x)的极大值是f(3),f(x)的极小值是f(-3).5.已知函数f(x)=x3-px2-qx的图象与x轴切于点(1,0),则f(x)的()A.极大值为427,极小值为0B.极大值为0,极小值为427C.极小值为-427,极大值为0D.极大值为-427,极小值为0考点 函数某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 A解析 f ′(x )=3x 2-2px -q .由函数f (x )的图象与x 轴切于点(1,0),得p +q =1, ∴q =1-p ,① 3-2p -q =0,②联立①②,解得p =2,q =-1, ∴函数f (x )=x 3-2x 2+x ,则f ′(x )=3x 2-4x +1,令f ′(x )=0得x =1或x =13.当x ≤13时,f ′(x )≥0,f (x )单调递增,当13<x <1时,f ′(x )<0,f (x )单调递减, 当x ≥1时,f ′(x )≥0,f (x )单调递增, ∴f (x )极大值=f ⎝⎛⎭⎫13=427, f (x )极小值=f (1)=0.故选A.6.设a <b ,函数y =(x -a )2(x -b )的图象可能是( )考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 C解析 y ′=(x -a )(3x -a -2b ),由y ′=0得x 1=a ,x 2=a +2b 3.当x =a 时,y 取得极大值0,当x =a +2b 3时,y 取得极小值且极小值为负,故选C.7.已知函数f (x )=e x (sin x -cos x ),x ∈(0,2 017π),则函数f (x )的极大值之和为( ) A.e 2π(1-e 2 018π)e 2π-1B.e π(1-e 2 016π)1-e 2πC.e π(1-e 1 008π)1-e 2πD.e π(1-e 1 008π)1-e π考点 函数某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 B解析 f ′(x )=2e x sin x ,令f ′(x )=0得sin x =0, ∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增, 当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减, ∴当x =(2k +1)π时,f (x )取到极大值, ∵x ∈(0,2 017π),∴0<(2k +1)π<2 017π, ∴0≤k <1 008,k ∈Z . ∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2 015π) =e π+e 3π+e 5π+…+e 2 015π=e π[1-(e 2π)1 008]1-e 2π=e π(1-e 2 016π)1-e 2π,故选B.二、填空题8.函数y =x e x 在其极值点处的切线方程为________. 考点 函数某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 y =-1e解析 令y ′=e x +x e x =(1+x )e x =0, 得x =-1,∴y =-1e,∴在极值点处的切线方程为y =-1e.9.若函数f (x )=(x -2)(x 2+c )在x =2处有极值,则函数f (x )的图象在x =1处的切线的斜率为________.考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -5解析 ∵函数f (x )=(x -2)(x 2+c )在x =2处有极值, ∴f ′(x )=(x 2+c )+(x -2)×2x ,令f ′(2)=0,∴(c +4)+(2-2)×2×2=0,∴c =-4, ∴f ′(x )=(x 2-4)+(x -2)×2x .∴函数f (x )的图象在x =1处的切线的斜率为 f ′(1)=(1-4)+(1-2)×2=-5. 10.若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为________.考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -1解析 函数f (x )=(x 2+ax -1)e x -1, 则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·e x -1 =e x -1·[x 2+(a +2)x +a -1]. 由x =-2是函数f (x )的极值点,得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)e -3=0, 所以a =-1.所以f (x )=(x 2-x -1)e x -1, f ′(x )=e x -1·(x 2+x -2).由e x -1>0恒成立,得当x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.11.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则f (-1)=________. 考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 30解析 由题意知⎩⎪⎨⎪⎧ f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,解得⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.经检验知,当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )≥0,不合题意.∴f (x )=x 3+4x 2-11x +16,则f (-1)=30. 三、解答题12.设函数f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值; (2)求函数f (x )的极值.考点 函数在某点处取得极值的条件 题点 不含参数函数求极值 解 (1)f ′(x )=a x -12x 2+32.由题意知,曲线在x =1处的切线斜率为0,即f ′(1)=0, 从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x 2.令f ′(x )=0,解得x 1=1,x 2=-13(舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为单调递减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为单调递增函数.故f (x )在x =1处取得极小值,极小值为f (1)=3.13.已知函数f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值.考点 利用导数研究函数的极值 题点 已知极值(点)求参数解 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ), 令f ′(x )=0,得x =-m 或x =23m .当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-m )-m ⎝⎛⎭⎫-m ,23m23m ⎝⎛⎭⎫23m ,+∞ f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗∴f (x )有极大值f (-m )=-m 3+12m 3+2m 3-4=-52,∴m =1. 四、探究与拓展14.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 C解析由题意可得f′(-2)=0,而且当x∈(-∞,-2)时,f′(x)<0,此时xf′(x)>0;排除B,D,当x∈(-2,+∞)时,f′(x)>0,此时若x∈(-2,0),xf′(x)<0,若x∈(0,+∞),xf′(x)>0,所以函数y=xf′(x)的图象可能是C.15.已知函数f(x)=(x2+ax+a)e x(a≤2,x∈R).(1)当a=1时,求f(x)的单调区间;(2)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存在,请说明理由.考点利用导数研究函数的极值题点已知极值(点)求参数解(1)f(x)=(x2+x+1)e x,f′(x)=(2x+1)e x+(x2+x+1)e x=(x2+3x+2)e x.当f′(x)>0时,解得x<-2或x>-1,当f′(x)<0时,解得-2<x<-1,所以函数的单调递增区间为(-∞,-2),(-1,+∞);单调递减区间为(-2,-1).(2)令f′(x)=(2x+a)e x+(x2+ax+a)e x=[x2+(2+a)x+2a]e x=(x+a)(x+2)e x=0,得x=-a或x=-2.当a=2时,f′(x)≥0恒成立,函数无极值,故舍去;当a<2时,-a>-2.当x变化时,f′(x),f(x)的变化情况如下表:由表可知,f(x)极大值=f(-2)=(4-2a+a)e-2=3,解得a=4-3e2<2,所以存在实数a<2,使f(x)的极大值为3,此时a=4-3e2.。
人教A版(理)选修2-2第一章(文)选修1-1第三章《导数及其应用》教学指导意见解读
二、文理科教学内容与要求比较 1、课时分配 理科(24课时) (24课时 理科(24课时): 1.1 变化率与导数 1.2 导数的计算 1.3 导数在研究函数中的应用 1.4 生活中的优化问题举例 1.5 定积分的概念 1.6 微积分基本定理 1.7 定积分的简单应用 小结
约4课时 约4课时 约3课时 约4课时 约4课时 约2课时 约2课时 约1课时
文科(16课时): 文科(16课时): 课时 3.1 变化率与导数 约4课时 3.2 导数的计算 约3课时 3.3 导数在研究函数中的应用 约3课时 3.4 生活中的优化问题举例 约4课时 实习作业 约1课时 约1课时 小结
2、文科理科内容相同要求不同的地方有:1.3 文科理科内容相同要求不同的地方有: 导数在研究函数中的应用一节中, 导数在研究函数中的应用一节中,理科还要求体会 导数方法在研究函数性质中的一般性和有效性. 导数方法在研究函数性质中的一般性和有效性. 理科比文科增加的地方主要有: 3、理科比文科增加的地方主要有:在导数的 运算中,能根据导数定义求函数y= 的导数; 运算中,能根据导数定义求函数y= 的导数;能 求简单的复合函数( 的导数; 求简单的复合函数(仅限于形如f(ax+b)的导数; 定积分的概念、微积分基本定理及定积分的简单应 定积分的概念、 用。
人教a版数学【选修2-2】1.3.3《函数的最大(小)值与导数》ppt课件
当x变化时,f ′(x),f(x)的变化情况如下表: x f ′( x) f ( x) -2 -1 (-1,0) + 0 0 1 4 (0,3) - 4 3 0 5 -27 4 (3,2) + 1 2
故f(x)最大值=1,f(x)最小值=-2.
[方法规律总结] 1.求可导函数y=f(x)在[a,b]上的最大(小) 值步骤如下: (1)求f(x)在开区间(a,b)内所有极值点; (2)计算函数f(x)在极值点和端点的函数值,其中最大的一个 为最大值,最小的一个为最小值.
3.已知f(x)=2x3-6x2+m(m是常数)在[-2,2]上有最大值3, 那么此函数在[-2,2]上的最小值为( ) A.-37 B.-29 C.-5 D.-11 [答案] A [解析] f ′(x)=6x2-12x=6x(x-2). 令f ′(x)=0,解得x=0或x=2 ∵f(0)=m,f(2)=-8+m,f(-2)=-40+m. ∴f(0)>f(2)>f(-2) ∴m=3,最小值为f(-2)=-37,故应选A.
2.正确理解“在闭区间[a,b]上连续的函数f(x)必有最 值.” (1)给定的区间必须是闭区间,f(x)在开区间上虽然连续但 1 不能保证有最大值或最小值.如f(x)= x ,x∈(0,1),f(x)在区间 (0,1)连续,但没有最大值和最小值(如图).
(2) 在闭区间上的每一点必须连续,即在闭区间上有间断 点 , 也 不 能 保 证 f ( x) 有 最 大 值 和 最 小 值 , 如 函 数 f ( x) =
|x|,-1≤x≤1且x≠0 1,x=0
.
在[-1,1]上有间断点,没有最小值(如图).
3.若连续函数在区间(a,b)内只有一个极值,那么极大值 就是最大值,极小值就是最小值.
高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。
新人教A版选修2-2《1.3.3函数的最值与导数》同步练习及答案
选修2-2 1.3.3 函数的最值与导数一、选择题1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0D .以上都有可能[答案] A[解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A.2.设f (x )=14x 4+13x 3+12x 2在[-1,1]上的最小值为( )A .0B .-2C .-1D.1312[答案] A[解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0.∴f (-1)=512,f (0)=0,f (1)=1312∴f (x )在[-1,1]上最小值为0.故应选A.3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.2227B .2C .-1D .-4[答案] C[解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =13或x =-1当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =2227;当x =1时,y =2.所以函数的最小值为-1,故应选C.4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为34B .最大值为1,最小值为4C .最大值为13,最小值为1D .最大值为-1,最小值为-7 [答案] A[解析] ∵y =x 2-x +1,∴y ′=2x -1,令y ′=0,∴x =12,f (-3)=13,f ⎝ ⎛⎭⎪⎫12=34,f (0)=1.5.函数y =x +1-x 在(0,1)上的最大值为( ) A. 2 B .1 C .0D .不存在[答案] A[解析] y ′=12x -121-x =12·1-x -xx ·1-x由y ′=0得x =12,在⎝ ⎛⎭⎪⎫0,12上y ′>0,在⎝ ⎛⎭⎪⎫12,1上 y ′<0.∴x =12时y 极大=2,又x ∈(0,1),∴y max = 2.6.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值 D .既无最大值,也无最小值 [答案] D[解析] f ′(x )=4x 3-4=4(x -1)(x 2+x +1). 令f ′(x )=0,得x =1.又x ∈(-1,1) ∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D.7.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是( ) A .5,-15B .5,4C .-4,-15D .5,-16[答案] A[解析] y ′=6x 2-6x -12=6(x -2)(x +1), 令y ′=0,得x =2或x =-1(舍). ∵f (0)=5,f (2)=-15,f (3)=-4, ∴y max =5,y min =-15,故选A.8.已知函数y =-x 2-2x +3在[a,2]上的最大值为154,则a 等于( )A .-32B.12 C .-12D.12或-32[答案] C[解析] y ′=-2x -2,令y ′=0得x =-1. 当a ≤-1时,最大值为f (-1)=4,不合题意. 当-1<a <2时,f (x )在[a,2]上单调递减, 最大值为f (a )=-a 2-2a +3=154,解得a =-12或a =-32(舍去).9.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A .k ≤-3或-1≤k ≤1或k ≥3B .-3<k <-1或1<k <3C .-2<k <2D .不存在这样的实数 [答案] B[解析] 因为y ′=3x 2-12,由y ′>0得函数的增区间是(-∞,-2)和(2,+∞),由y ′<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以有k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3,故选B.10.函数f (x )=x 3+ax -2在区间[1,+∞)上是增函数,则实数a 的取值范围是( ) A .[3,+∞) B .[-3,+∞) C .(-3,+∞)D .(-∞,-3)[答案] B[解析] ∵f (x )=x 3+ax -2在[1,+∞)上是增函数,∴f ′(x )=3x 2+a ≥0在[1,+∞)上恒成立即a ≥-3x 2在[1,+∞)上恒成立 又∵在[1,+∞)上(-3x 2)max =-3 ∴a ≥-3,故应选B. 二、填空题11.函数y =x 32+(1-x )32,0≤x ≤1的最小值为______.[答案]22由y ′>0得x >12,由y ′<0得x <12.此函数在⎣⎢⎡⎦⎥⎤0,12上为减函数,在⎣⎢⎡⎦⎥⎤12,1上为增函数,∴最小值在x =12时取得,y min =22.12.函数f (x )=5-36x +3x 2+4x 3在区间[-2,+∞)上的最大值________,最小值为________.[答案] 不存在;-2834[解析] f ′(x )=-36+6x +12x 2,令f ′(x )=0得x 1=-2,x 2=32;当x >32时,函数为增函数,当-2≤x ≤32时,函数为减函数,所以无最大值,又因为f (-2)=57,f ⎝ ⎛⎭⎪⎫32=-2834,所以最小值为-2834.13.若函数f (x )=xx 2+a(a >0)在[1,+∞)上的最大值为33,则a 的值为________. [答案]3-1[解析] f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2令f ′(x )=0,解得x =a 或x =-a (舍去) 当x >a 时,f ′(x )<0;当0<x <a 时,f ′(x )>0; 当x =a 时,f (x )=a 2a =33,a =32<1,不合题意. ∴f (x )max =f (1)=11+a =33,解得a =3-1.14.f (x )=x 3-12x +8在[-3,3]上的最大值为M ,最小值为m ,则M -m =________. [答案] 32[解析] f ′(x )=3x 2-12 由f ′(x )>0得x >2或x <-2, 由f ′(x )<0得-2<x <2.∴f (x )在[-3,-2]上单调递增,在[-2,2]上单调递减,在[2,3]上单调递增. 又f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1,∴最大值M =24,最小值m =-8, ∴M -m =32. 三、解答题15.求下列函数的最值:(1)f (x )=sin2x -x ⎝ ⎛⎭⎪⎫-π2≤x ≤π2;(2)f (x )=x +1-x 2.[解析] (1)f ′(x )=2cos2x -1. 令f ′(x )=0,得cos2x =12.又x ∈⎣⎢⎡⎦⎥⎤-π2,π2,∴2x ∈[-π,π], ∴2x =±π3,∴x =±π6.∴函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的两个极值分别为f ⎝ ⎛⎭⎪⎫π6=32-π6,f ⎝ ⎛⎭⎪⎫-π6=-32+π6. 又f (x )在区间端点的取值为f ⎝ ⎛⎭⎪⎫π2=-π2,f ⎝ ⎛⎭⎪⎫-π2=π2. 比较以上函数值可得f (x )max =π2,f (x )min =-π2.(2)∵函数f (x )有意义,∴必须满足1-x 2≥0,即-1≤x ≤1, ∴函数f (x )的定义域为[-1,1].f ′(x )=1+12(1-x 2)-12·(1-x 2)′=1-x 1-x2. 令f ′(x )=0,得x =22. ∴f (x )在[-1,1]上的极值为f ⎝⎛⎭⎪⎫22=22+1-⎝⎛⎭⎪⎫222= 2. 又f (x )在区间端点的函数值为f (1)=1,f (-1)=-1,比较以上函数值可得f (x )max =2,f (x )min =-1.16.设函数f (x )=ln(2x +3)+x 2.求f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值和最小值.[解析] f (x )的定义域为⎝ ⎛⎭⎪⎫-32,+∞. f ′(x )=2x +22x +3=4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当-32<x <-1时,f ′(x )>0;当-1<x <-12时,f ′(x )<0;当x >-12时,f ′(x )>0,所以f (x )在⎣⎢⎡⎦⎥⎤-34,14上的最小值为 f ⎝ ⎛⎭⎪⎫-12=ln2+14.又f ⎝ ⎛⎭⎪⎫-34-f ⎝ ⎛⎭⎪⎫14=ln 32+916-ln 72-116=ln 37+12=12⎝ ⎛⎭⎪⎫1-ln 499<0, 所以f (x )在区间⎣⎢⎡⎦⎥⎤-34,14上的最大值为 f ⎝ ⎛⎭⎪⎫14=ln 72+116.17.(2010·安徽理,17)设a 为实数,函数f (x )=e x-2x +2a ,x ∈R . (1)求f (x )的单调区间及极值;(2)求证:当a >ln2-1且x >0时,e x>x 2-2ax +1.[分析] 本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力.解题思路是:(1)利用导数的符号判定函数的单调性,进而求出函数的极值.(2)将不等式转化构造函数,再利用函数的单调性证明.[解析] (1)解:由f (x )=e x-2x +2a ,x ∈R 知f ′(x )=e x-2,x ∈R . 令f ′(x )=0,得x =ln2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递减单调递增故f (x )(ln2,+∞),f (x )在x =ln2处取得极小值,极小值为f (ln2)=e ln 2-2ln2+2a =2(1-ln2+a ).(2)证明:设g (x )=e x-x 2+2ax -1,x ∈R ,于是g ′(x )=e x-2x +2a ,x ∈R .由(1)知当a >ln2-1时,g ′(x )最小值为g ′(ln2)=2(1-ln2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 18.已知函数f (x )=4x 2-72-x ,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1].若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.[解析] (1)对函数f (x )求导,得f ′(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2令f ′(x )=0解得x =12或x =72.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x ∈(0,2)时,f (x )是减函数;当x ∈⎝ ⎛⎭⎪⎫12,1时,f (x )是增函数. 当x ∈[0,1]时,f (x )的值域为[-4,-3]. (2)g ′(x )=3(x 2-a 2).因为a ≥1,当x ∈(0,1)时,g ′(x )<0.因此当x ∈(0,1)时,g (x )为减函数,从而当x ∈[0,1]时有g (x )∈[g (1),g (0)]. 又g (1)=1-2a -3a 2,g (0)=-2a ,即x ∈[0,1]时有g (x )∈[1-2a -3a 2,-2a ]. 任给x 1∈[0,1],f (x 1)∈[-4,-3],存在x 0∈[0,1]使得g (x 0)=f (x 1)成立, 则[1-2a -3a 2,-2a ]⊇[-4,-3].即⎩⎪⎨⎪⎧1-2a -3a 2≤-4,①-2a ≥-3.②解①式得a ≥1或a ≤-53;解②式得a ≤32.又a ≥1,故a 的取值范围为1≤a ≤32.。
人教a版数学【选修2-2】1.1.3《导数的概念》ppt课件
重点:导数的几何意义及曲线的切线方程. 难点:对导数几何意义的理解.
导数的几何意义
新知导学 1.曲线的切线:过曲线y=f(x)上一点P作曲线的割线PQ,当
Q点沿着曲线无限趋近于P时,若割线PQ趋近于某一确定的 直线PT,则这一确定的直线PT称为曲线y=f(x)在点P的 __________.
[解析] (1)将x=2代入曲线C的方程得y=4,
∴切点P(2,4).
y′|x=2=Δlixm→0
ΔΔyx=Δlixm→0
132+Δx3+43-13×23-43 Δx
=Δlixm→0[4+2·Δx+13(Δx)2]=4. ∴k=y′|x=2=4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y
)
A.1
B.π4
C.54π
D.-π4
[答案] B
[解析] ∵y=12x2-2,
∴y′= lim Δx→0
12x+Δx2-2-12x2-2 Δx
= lim Δx→0
12ΔxΔ2+x x·Δx=Δlixm→0
x+12Δx=x.
∴y′|x=1=1.
∴点P1,-32处切线的斜率为1,则切线的倾斜角为45°.
数f(x)的导函数__________.
(3)函数y=f(x)在点x0处的导数f ′(x0)就是导函数f ′(x)在点x=x0 处的函数值,f即′(xf)′(x0)=__________.
f′(x)|x=x0
牛刀小试
1.(2014·三峡名校联盟联考)曲线y=x2在点P(1,1)处的切线 方程为( )
A.y=2x
B.y=2x-1
C.y=2x+1 D.y=-2x
[答案] B
浙江人教A版数学高二选修2-2学案第一章导数及其应用1.1.3
1.1.3导数的几何意义学习目标 1.了解导函数的概念,理解导数的几何意义.2.会求简单函数的导函数.3.根据导数的几何意义,会求曲线上某点处的切线方程.4.正确理解曲线“过某点”和“在某点”处的切线,并会求其方程.知识点一导数的几何意义如图,P n的坐标为(x n,f(x n))(n=1,2,3,4,…),P的坐标为(x0,y0),直线PT为在点P处的切线.思考1割线PP n的斜率k n是多少?答案割线PP n的斜率k n=f(x n)-f(x0) x n-x0.思考2当点P n无限趋近于点P时,割线PP n的斜率k n与切线PT的斜率k有什么关系?答案k n无限趋近于切线PT的斜率k.梳理(1)切线的定义:设PP n是曲线y=f(x)的割线,当P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为曲线y=f(x)在点P处的切线.(2)导数f′(x0)的几何意义:导数f′(x0)表示曲线y=f(x)在点(x0,f(x0))处的切线的斜率k,即k=f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(3)切线方程:曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).知识点二导函数对于函数y=f(x),当x=x0时,f′(x0)是一个确定的数,则当x变化时,f′(x)便是一个关于x的函数,我们称它为函数y=f(x)的导函数(简称为导数), 即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.特别提醒区别联系f ′(x 0)f ′(x 0)是具体的值,是数值 在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这一点的函数值f ′(x )f ′(x )是f (x )在某区间I 上每一点都存在导数而定义的一个新函数,是函数类型一 求切线方程命题角度1 曲线在某点处的切线方程例1 已知曲线C :y =13x 3+43.求曲线C 在横坐标为2的点处的切线方程.解 将x =2代入曲线C 的方程得y =4,∴切点P (2,4).y ′|x =2=lim Δx →0ΔyΔx=lim Δx →0 13(2+Δx )3+43-13×23-43Δx =lim Δx →0[4+2Δx +13(Δx )2]=4,∴k =y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0. 反思与感悟 求曲线在某点处的切线方程的步骤跟踪训练1 曲线y =x 2+1在点P (2,5)处的切线与y 轴交点的纵坐标是________. 答案 -3解析 ∵y ′|x =2=lim Δx →0 Δy Δx =lim Δx →0 (2+Δx )2+1-22-1Δx=lim Δx →0 (4+Δx )=4, ∴k =y ′|x =2=4.∴曲线y =x 2+1在点(2,5)处的切线方程为y -5=4(x -2),即y =4x -3. ∴切线与y 轴交点的纵坐标是-3. 命题角度2 曲线过某点的切线方程例2 求过点(-1,0)与曲线y =x 2+x +1相切的直线方程.解 设切点为(x 0,x 20+x 0+1), 则切线的斜率为k =lim Δx →0 (x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx =2x 0+1.又k =(x 20+x 0+1)-0x 0-(-1)=x 20+x 0+1x 0+1,∴2x 0+1=x 20+x 0+1x 0+1.解得x 0=0或x 0=-2.当x 0=0时,切线斜率k =1,过(-1,0)的切线方程为 y -0=x +1,即x -y +1=0.当x 0=-2时,切线斜率k =-3,过(-1,0)的切线方程为y -0=-3(x +1),即3x +y +3=0. 故所求切线方程为x -y +1=0或3x +y +3=0.反思与感悟 过点(x 1,y 1)的曲线y =f (x )的切线方程的求法步骤 (1)设切点(x 0,f (x 0)). (2)建立方程f ′(x 0)=y 1-f (x 0)x 1-x 0.(3)解方程得k =f ′(x 0),x 0,y 0,从而写出切线方程.跟踪训练2 求函数y =f (x )=x 3-3x 2+x 的图象上过原点的切线方程.解 设切点坐标为(x 0,y 0),则y 0=x 30-3x 20+x 0,∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3-3(x 0+Δx )2+(x 0+Δx )-(x 30-3x 20+x 0) =3x 20Δx +3x 0(Δx )2-6x 0Δx +(Δx )3-3(Δx )2+Δx ,∴Δy Δx=3x 20+3x 0Δx -6x 0+1+(Δx )2-3Δx , ∴f ′(x 0)=lim Δx →0Δy Δx=3x 20-6x 0+1. ∴切线方程为y -(x 30-3x 20+x 0)=(3x 20-6x 0+1)·(x -x 0). ∵切线过原点,∴x 30-3x 20+x 0=3x 30-6x 20+x 0,即2x 30-3x 20=0,∴x 0=0或x 0=32, 故所求切线方程为x -y =0或5x +4y =0. 类型二 求切点坐标例3 已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,求x 0的值.解 对于曲线y =x 2-1, k 1=lim Δx →0ΔyΔx=2x 0.对于曲线y =1-x 3, k 2=lim Δx →0ΔyΔx=lim Δx →0 1-(x 0+Δx )3-(1-x 30)Δx =-3x 20. 由题意得2x 0=-3x 20, 解得x 0=0或-23.引申探究1.若本例3条件中的“平行”改为“垂直”,求x 0的值.解 ∵k 1=2x 0,k 2=3x 20. 根据曲线y =x 2-1与y =1-x 3在x =x 0处的切线互相垂直,知2x 0·(-3x 20)=-1,解得x 0=3366. 2.若本例3条件不变,试求出两条平行的切线方程. 解 由例3知x 0=0或-23.当x 0=0时,两平行切线方程为y =-1或y =1.当x 0=-23时,曲线y =x 2-1的切线方程为12x +9y +13=0.曲线y =1-x 3的切线方程为36x +27y -11=0.∴所求两平行切线方程为y =-1与y =1或12x +9y +13=0与36x +27y -11=0. 反思与感悟 根据切线斜率求切点坐标的步骤 (1)设切点坐标(x 0,y 0). (2)求导函数f ′(x ). (3)求切线的斜率f ′(x 0).(4)由斜率间的关系列出关于x 0的方程,解方程求x 0.(5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0,得切点坐标.跟踪训练3 已知直线l :y =4x +a 与曲线C :y =f (x )=x 3-2x 2+3相切,求a 的值及切点坐标.解 设直线l 与曲线C 相切于点P (x 0,y 0). ∵f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx=lim Δx →0 (x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx =3x 2-4x ,由题意可知k =4,即3x 20-4x 0=4,解得x 0=-23或x 0=2,∴切点坐标为(-23,4927)或(2,3).当切点坐标为(-23,4927)时,有4927=4×(-23)+a ,∴a =12127.当切点坐标为(2,3)时,有3=4×2+a ,∴a =-5.∴当a =12127时,切点坐标为(-23,4927);当a =-5时,切点坐标为(2,3).类型三 导数几何意义的应用例4 (1)已知函数f (x )在区间[0,3]上的图象如图所示,记k 1=f ′(1),k 2=f ′(2),k 3=f (2)-f (1),则k 1,k 2,k 3之间的大小关系为________.(请用“>”连接)(2)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处的切线倾斜角为α,则α的取值范围为________.答案 (1)k 1>k 3>k 2 (2)⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫23π,π 解析 (1)由导数的几何意义,可得k 1>k 2. ∵k 3=f (2)-f (1)2-1表示割线AB 的斜率,∴k 1>k 3>k 2. (2)设P (x 0,y 0). ∵f ′(x )=lim Δx →0 (x +Δx )3-3(x +Δx )+23-x 3+3x -23Δx =3x 2-3,∴切线的斜率k =3x 20-3, ∴tan α=3x 20-3≥-3, ∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫23π,π.反思与感悟导数几何意义的综合应用问题的解题关键还是对函数进行求导,利用题目所提供的诸如直线的位置关系、斜率最值范围等关系求解相关问题时常与函数、方程、不等式等知识相结合.跟踪训练4(1)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是()(2)已知曲线y=f(x)=2x2+a在点P处的切线方程为8x-y-15=0,则实数a的值为________.答案(1)A(2)-7解析(1)依题意,y=f′(x)在[a,b]上是增函数,则在函数f(x)的图象上,各点的切线的斜率随着x的增大而增大,观察四个选项的图象,只有A满足.(2)设点P(x0,2x20+a).由导数的几何意义可得f′(x0)=limΔx→0Δy Δx=limΔx→02(x0+Δx)2+a-(2x20+a)Δx=4x0=8.∴x0=2,∴P(2,8+a).将x=2,y=8+a,代入8x-y-15=0,得a=-7.1.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则() A.a=1,b=1 B.a=-1,b=1C.a=1,b=-1 D.a=-1,b=-1答案A解析由题意,知k=y′|x=0=limΔx→0(0+Δx)2+a(0+Δx)+b-bΔx=1,∴a=1.又(0,b)在切线上,∴b=1,故选A.2.已知y=f(x)的图象如图所示,则f′(x A)与f′(x B)的大小关系是()A.f′(x A)>f′(x B)B.f′(x A)<f′(x B)C.f′(x A)=f′(x B)D.不能确定答案B解析由导数的几何意义,f′(x A),f′(x B)分别是切线在点A,B处切线的斜率,由图象可知f′(x A)<f′(x B).3.如图,函数y=f(x)的图象在点P(2,y)处的切线是l,则f(2)+f′(2)等于()A.-4 B.3C.-2 D.1答案D解析由图象可得函数y=f(x)的图象在点P处的切线是l,与x轴交于(4,0),与y轴交于(0,4),则可知l:x+y=4,∴f(2)=2,f′(2)=-1,∴代入可得f(2)+f′(2)=1,故选D.4.已知曲线y=f(x)=2x2+4x在点P处的切线斜率为16,则P点坐标为________.答案(3,30)解析设点P(x0,2x20+4x0).则f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx=limΔx→02(Δx)2+4x0·Δx+4ΔxΔx=4x0+4,令4x0+4=16,得x0=3,∴P(3,30).5.已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(a ),B =f (a +1)-f (a )(a +1)-a ,C =f ′(a +1),则由导数的几何意义和斜率公式可得A ,B ,C 的大小关系是________. 答案 A >B >C解析 记M (a ,f (a )),N (a +1,f (a +1)), 则由于B =f (a +1)-f (a )(a +1)-a ,表示直线MN 的斜率,A =f ′(a )表示函数f (x )=log a x 在点M 处的切线斜率,C =f ′(a +1)表示函数f (x )=log a x 在点N 处的切线斜率.所以A >B >C .1.导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =lim Δx →0 f (x 0+Δx )-f (x 0)Δx=f ′(x 0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f (x )在点x 0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f ′(x 0)是其导数y =f ′(x )在x =x 0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y -f (x 0)=f ′(x 0)(x -x 0);若已知点不在切线上,则设出切点(x 0,f (x 0)),表示出切线方程,然后求出切点.课时作业一、选择题1.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程为2x +y +1=0,则( ) A .f ′(x 0)>0 B .f ′(x 0)=0 C .f ′(x 0)<0 D .f ′(x 0)不存在答案 C解析 由导数的几何意义,可得f ′(x 0)=-2<0. 2.曲线y =12x 2-2在点(1,-32)处切线的倾斜角为( )A .1 B.π4 C.54π D .-π4答案 B解析∵y′|x=1=limΔx→012(1+Δx)2-2-(12-2)Δx=limΔx→0(1+12Δx)=1,∴倾斜角为π4.3.曲线y=x3-3x2+1在点P处的切线平行于直线y=9x-1,则切线方程为() A.y=9x B.y=9x-26C.y=9x+26 D.y=9x+6或y=9x-26答案D解析设P(x0,x30-3x20+1),k=y′|x=x0=limΔx→0Δy Δx=limΔx→0(x0+Δx)3-3(x0+Δx)2+1-(x30-3x20+1)Δx=3x20-6x0=9,即x20-2x0-3=0,解得x0=-1或3.∴点P的坐标为(-1,-3)或(3,1).∴切线方程为y+3=9(x+1)或y-1=9(x-3),即y=9x+6或y=9x-26.4.已知函数y=f(x)的图象如图所示,则函数y=f′(x)的图象可能是()答案B解析由y=f(x)的图象及导数的几何意义可知,当x<0时,f′(x)>0,当x=0时,f′(x)=0,当x>0时,f′(x)<0,故选B.5.设f(x)为可导函数,且满足limx→0f(1)-f(1-x)2x=-1,则曲线y=f(x)在点(1,f(1))处的切线斜率为()A.2 B.-1 C.1 D.-2答案D解析∵limx→012·f(1)-f(1-x)x=12lim x →0 f (1)-f (1-x )x =12f ′(1)=-1, ∴f ′(1)=-2.由导数的几何意义,知曲线y =f (x )在点(1,f (1))处的切线斜率为-2.6.设P 为曲线C :y =f (x )=x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为[π4,π2],则点P 的横坐标的取值范围为( ) A .(-∞,12]B .[-1,0]C .[0,1]D .[-12,+∞)答案 D解析 设点P 的横坐标为x 0,则点P 处的切线倾斜角α与x 0的关系为 tan α=f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx=2x 0+2.∵α∈[π4,π2],∴tan α∈[1,+∞),∴2x 0+2≥1,即x 0≥-12.∴x 0的取值范围为[-12,+∞).二、填空题7.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba =________.答案 2解析 由题意知a +b =3,又y ′|x =1=lim Δx →0 a (1+Δx )2+b -(a +b )Δx =2a =2, ∴a =1,b =2,故b a=2.8.已知曲线y =f (x )=2x 2+1在点M 处的瞬时变化率为-4,则点M 的坐标为________. 答案 (-1,3)解析 设点M (x 0,y 0), f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx=4x 0=-4,∴x 0=-1,则y 0=3,∴M (-1,3).9.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.答案 3解析 由在M 点处的切线方程是y =12x +2, 得f (1)=12×1+2=52, f ′(1)=lim Δx →0 12(1+Δx )+2-12-2Δx=lim Δx →0 12Δx Δx =12. ∴f (1)+f ′(1)=52+12=3. 10.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.答案 4解析 设在P 点处切线的斜率为k ,则k =y ′|x =-2=lim Δx →0 (-2+Δx )2-(-2+Δx )+c -(6+c )Δx=-5, ∴切线方程为y =-5x .∴点P 的纵坐标为y =-5×(-2)=10,将P (-2,10)代入y =x 2-x +c ,得c =4.三、解答题11.若曲线y =f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴、直线x =a 所围成的三角形的面积为16,求a 的值. 解 ∵f ′(a )=lim Δx →0 (a +Δx )3-a 3Δx=3a 2, ∴曲线在(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ),切线与x 轴的交点为(23a,0). ∴三角形的面积为12|a -23a |·|a 3|=16,得a =±1. 12.已知抛物线y =f (x )=2x 2+1分别满足下列条件,求出切点的坐标.(1)切线的倾斜角为45°;(2)切线平行于直线4x -y -2=0;(3)切线垂直于直线x +8y -3=0.解 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2,∴y ′|0x x =lim Δx →0 Δy Δx=4x 0,即f ′(x 0)=4x 0. (1)∵抛物线的切线的倾斜角为45°,∴斜率为tan 45°=1,即f ′(x 0)=4x 0=1,解得x 0=14, ∴切点坐标为(14,98). (2)∵抛物线的切线平行于直线4x -y -2=0,∴k =4,即f ′(x 0)=4x 0=4,解得x 0=1,∴切点坐标为(1,3).(3)∵抛物线的切线与直线x +8y -3=0垂直,∴k ·(-18)=-1,即k =8, ∴f ′(x 0)=4x 0=8,解得x 0=2,∴切点坐标为(2,9).13.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.解 ∵f ′(x 0)=lim Δx →0 Δy Δx=lim Δx →0[3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2] =3x 20+2ax 0-9,即f ′(x )=3(x 0+a 3)2-9-a 23, 当x 0=-a 3时,f ′(x 0)取到最小值,为-9-a 23. ∵斜率最小的切线与12x +y =6平行,∴该切线斜率为-12.∴-9-a 23=-12,解得a =±3, 又a <0,∴a =-3.四、探究与拓展14.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))=________;lim Δx →0 f (1+Δx )-f (1)Δx=______.(用数字作答) 答案 2 -2解析 ∵f (0)=4,∴f (f (0))=f (4)=2,f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx =0-42-0=-2. 15.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求直线l 1,l 2和x 轴所围成的三角形的面积.解 (1)∵y ′=lim Δx →0 Δy Δx=lim Δx →0 (x +Δx )2+(x +Δx )-2-(x 2+x -2)Δx=2x +1,∴y ′|x =1=3,∴直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点P (x 0,x 20+x 0-2),则直线l 2的方程为y -(x 20+x 0-2)=(2x 0+1)(x -x 0).∵l 1⊥l 2,∴3(2x 0+1)=-1,解得x 0=-23. ∴直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧ y =3x -3,y =-13x -229,得⎩⎨⎧ x =16,y =-52.又∵直线l 1,l 2与x 轴的交点坐标分别为(1,0),(-223,0), ∴所求三角形的面积为S =12×|-52|×(1+223)=12512.。
人教a版数学【选修2-2】练习:1.3.3函数的最大(小)值与导数(含答案)
选修2-2 第一章 1.3 1.3.3一、选择题1.函数y =2x 3-3x 2-12x +5在[-2,1]上的最大值、最小值分别是( ) A .12;-8 B .1;-8 C .12;-15 D .5;-16[答案] A[解析] y ′=6x 2-6x -12,由y ′=0⇒x =-1或x =2(舍去).x =-2时y =1;x =-1时y =12;x =1时y =-8.∴y max =12,y min =-8.故选A.2.(2014·北京东城区联考)如图是函数y =f (x )的导函数f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在(1,3)上f (x )是减函数C .在(4,5)上f (x )是增函数D .当x =4时,f (x )取极大值[答案] C[解析] 由导函数y =f ′(x )的图象知,f (x )在(-2,1)上先减后增,在(1,3)上先增后减,在(4,5)上单调递增,x =4是f (x )的极小值点,故A 、B 、D 错误,选C.3.(2014·安徽程集中学期中)已知函数f (x )(x ∈R )满足f ′(x )>f (x ),则( ) A .f (2)<e 2f (0) B .f (2)≤e 2f (0) C .f (2)=e 2f (0) D .f (2)>e 2f (0)[答案] D[分析] 所给四个选项实质是比较f (2)与e 2f (0)的大小,即比较f (2)e 2与f (0)e 0的大小,故构造函数F (x )=f (x )ex 解决.[解析] 设F (x )=f (x )e x ,则F ′(x )=f ′(x )-f (x )e x>0, ∴F (x )在R 上为增函数,故F (2)>F (0), ∴f (2)e 2>f (0)e 0即f (2)>e 2f (0).4.函数f (x )=x (1-x 2)在[0,1]上的最大值为( ) A .239 B .229C .329D .38[答案] A[解析] f ′(x )=1-3x 2=0,得x =33∈[0,1], ∵f ⎝⎛⎭⎫33=239,f (0)=f (1)=0. ∴f (x )max =239. 5.(2014·河南淇县一中模拟)设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13[答案] B[解析] y ′=a e ax +3,由条件知,方程a e ax+3=0有大于零的实数根,∴0<-3a <1,∴a <-3.6.(2014·开滦二中期中)若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)[答案] D[解析] f ′(x )=3x 2-6b ,∵f (x )在(0,1)内有极小值,∴在(0,1)内存在点x 0,使得在(0,x 0)内f ′(x )<0,在(x 0,1)内f ′(x )>0,由f ′(x )=0得,x 2=2b >0,∴⎩⎪⎨⎪⎧b >02b <1,∴0<b <12.7.(2014·抚顺市六校联合体期中)已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)f ′(x )>0的解集为( )A.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,-1)∪(-1,0)∪(2,+∞)D.(-∞,-1)∪(-1,1)∪(3,+∞)[答案] D[解析]由f(x)的图象知,在(-∞,-1)上f′(x)>0,在(-1,1)上f′(x)<0,在(1,+∞)上f′(x)>0,又x2-2x-3>0的解集为(-∞,-1)∪(3,+∞),x2-2x-3<0的解集为(-1,3).∴不等式(x2-2x-3)f′(x)>0的解集为(-∞,-1)∪(-1,1)∪(3,+∞).二、填空题8.(2014·三亚市一中月考)曲线y=x2x-1在点(1,1)处的切线为l,则l上的点到圆x2+y2+4x+3=0上的点的最近距离是________.[答案]22-1[解析]y′|x=1=-1(2x-1)2|x=1=-1,∴切线方程为y-1=-(x-1),即x+y-2=0,圆心(-2,0)到直线的距离d=22,圆的半径r=1,∴所求最近距离为22-1.9.已知函数f(x)=x(x-c)2在x=2处取极大值,则常数c的值为________.[答案] 6[解析]f(x)=x(x-c)2=x3-2cx2+c2x,f′(x)=3x2-4cx+c2,令f′(2)=0解得c=2或6.当c=2时,f′(x)=3x2-8x+4=(3x-2)(x-2),故f(x)在x=2处取得极小值,不合题意舍去;当c=6时,f′(x)=3x2-24x+36=3(x2-8x+12)=3(x-2)(x-6),故f(x)在x=2处取得极大值.三、解答题10.(2014·淄博市临淄中学学分认定考试)已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.(1)求a、b的值;(2)求y=f(x)在[-3,1]上的最大值.[解析](1)依题意可知点P(1,f(1))为切点,代入切线方程y=3x+1可得,f(1)=3×1+1=4,∴f(1)=1+a+b+5=4,即a+b=-2,又由f(x)=x3+ax2+bx+5得,f′(x)=3x2+2ax+b,而由切线y =3x +1的斜率可知f ′(1)=3, ∴3+2a +b =3,即2a +b =0, 由⎩⎪⎨⎪⎧a +b =-2,2a +b =0.解得⎩⎪⎨⎪⎧a =2,b =-4,∴a =2,b =-4.(2)由(1)知f (x )=x 3+2x 2-4x +5, f ′(x )=3x 2+4x -4=(3x -2)(x +2), 令f ′(x )=0,得x =23或x =-2.当x 变化时,f (x ),f ′(x )的变化情况如下表:∴f (x )的极大值为f (-2)=13,极小值为f (3)=27又f (-3)=8,f (1)=4, ∴f (x )在[-3,1]上的最大值为13.一、选择题11.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值 D .既无最大值,也无最小值[答案] D[解析] f ′(x )=4x 3-4=4(x -1)(x 2+x +1). 令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1), ∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D.12.(2013·海淀区高二期中)函数f (x )在其定义域内可导,其图象如图所示,则导函数y =f ′(x )的图象可能为( )[答案] C[解析] 由图象知,f (x )在x <0时,图象增→减→增,x >0时,单调递增,故f ′(x )在x <0时,其值为+→-→+,在x >0时为+,故选C.13.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A .k ≤-3或-1≤k ≤1或k ≥3B .-3<k <-1或1<k <3C .-2<k <2D .不存在这样的实数[答案] B[解析] 因为y ′=3x 2-12,由y ′>0得函数的增区间是(-∞,-2)和(2,+∞),由y ′<0得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以有k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3,故选B.14.函数f (x )=x 3+ax -2在区间[1,+∞)上是增函数,则实数a 的取值范围是( ) A .[3,+∞) B .[-3,+∞) C .(-3,+∞) D .(-∞,-3)[答案] B[解析] ∵f (x )=x 3+ax -2在[1,+∞)上是增函数,∴f ′(x )=3x 2+a ≥0在[1,+∞)上恒成立,即a ≥-3x 2在[1,+∞)上恒成立, 又∵在[1,+∞)上(-3x 2)max =-3, ∴a ≥-3,故应选B. 二、填空题15.(2013·苏州五中高二期中)已知函数f (x )是定义在R 上的奇函数,f (1)=0,当x >0时,有xf ′(x )-f (x )x2>0,则不等式x 2f (x )>0的解集是________. [答案] (-1,0)∪(1,+∞)[解析] 令g (x )=f (x )x (x ≠0),∵x >0时,xf ′(x )-f (x )x2>0, ∴g ′(x )>0,∴g (x )在(0,+∞)上为增函数,又f (1)=0,∴g (1)=f (1)=0,∴在(0,+∞)上g (x )>0的解集为(1,+∞),∵f (x )为奇函数,∴g (x )为偶函数,∴在(-∞,0)上g (x )<0的解集为(-1,0),由x 2f (x )>0得f (x )>0,∴f (x )>0的解集为(-1,0)∪(1,+∞).三、解答题16.(2013·陕西师大附中一模)设函数f (x )=e x -k22-x .(1)若k =0,求f (x )的最小值; (2)若k =1,讨论函数f (x )的单调性.[解析] (1)k =0时,f (x )=e x-x ,f ′(x )=e x-1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0,所以f (x )在(-∞,0)上单调减小,在(0,+∞)上单调增加,故f (x )的最小值为f (0)=1.(2)若k =1,则f (x )=e x -12x 2-x ,定义域为R .∴f ′(x )=e x -x -1,令g (x )=e x -x -1,则g ′(x )=e x -1, 由g ′(x )≥0得x ≥0,所以g (x )在[0,+∞)上单调递增, 由g ′(x )<0得x <0,所以g (x )在(-∞,0)上单调递减, ∴g (x )min =g (0)=0,即f ′(x )min =0,故f ′(x )≥0. 所以f (x )在R 上单调递增.17.(2014·沈阳市模拟)设函数f (x )=x 3+ax 2+x +1,a ∈R .(1)若x =1时,函数f (x )取得极值,求函数f (x )的图像在x =-1处的切线方程; (2)若函数f (x )在区间(12,1)内不单调,求实数a 的取值范围.[解析] (1)f ′(x )=3x 2+2ax +1,由f ′(1)=0, 得a =-2,∴f (x )=x 3-2x 2+x +1,当x =-1时,y =-3, 即切点(-1,-3),k =f ′(x 0)=3x 20-4x 0+1令x 0=-1得k =8, ∴切线方程为8x -y +5=0.(2)f (x )在区间(12,1)内不单调,即f ′(x )=0在(12,1)有解,所以3x 2+2ax +1=0,2ax =-3x 2-1,由x ∈(12,1),2a =-3x -1x ,令h (x )=-3x -1x,∴h ′(x )=-3+1x 2<0,知h (x )在(33,1)单调递减,在(12,33]上单调递增,所以h (1)<h (x )≤h (33), 即h (x )∈[-4,-23],-4≤2a ≤-23, 即-2<a ≤-3,而当a =-3时,f ′(x )=3x 2-23x +1=(3x -1)2≥0,∴舍去, 综上a ∈(-2,-3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.3函数的最大(小)值与导数学习目标 1.理解函数最值的概念,了解其与函数极值的区别与联系.2.会求某闭区间上函数的最值.知识点函数的最大(小)值与导数如图为y=f(x),x∈[a,b]的图象.思考1观察[a,b]上函数y=f(x)的图象,试找出它的极大值、极小值.答案极大值为f(x1),f(x3),极小值为f(x2),f(x4).思考2结合图象判断,函数y=f(x)在区间[a,b]上是否存在最大值,最小值?若存在,分别为多少?答案存在,f(x)min=f(a),f(x)max=f(x3).思考3函数y=f(x)在[a,b]上的最大(小)值一定是某极值吗?答案不一定,也可能是区间端点的函数值.思考4怎样确定函数f(x)在[a,b]上的最小值和最大值?答案比较极值与区间端点的函数值,最大的是最大值,最小的是最小值.梳理(1)函数的最大(小)值的存在性一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数y=f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.类型一求函数的最值命题角度1不含参数的函数求最值例1已知函数f(x)=x3-3x,x∈R.(1)求f(x)的单调区间;(2)当x∈[-3,3]时,求f(x)的最大值与最小值.解 (1)f ′(x )=3x 2-3=3(x +1)(x -1), 当x <-1或x >1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0,所以f (x )的单调递增区间为(-∞,-1)和(1,+∞), 单调递减区间为(-1,1).(2)由(1)可知,x ∈[-3,3]时,f (x )的极大值为f (-1)=2,f (x )的极小值为f (1)=-2, 又f (-3)=0,f (3)=18,所以当x ∈[-3,3]时,f (x )的最大值为18,f (x )的最小值为-2. 反思与感悟 求解函数在固定区间上的最值,需注意以下几点 (1)对函数进行准确求导,并检验f ′(x )=0的根是否在给定区间内. (2)研究函数的单调性,正确确定极值和端点函数值. (3)比较极值与端点函数值的大小,确定最值.跟踪训练1 (1)函数f (x )=x 2-cos x ,x ∈[-π2,π2]的值域是________.答案 [-1,π24]解析 f ′(x )=2x +sin x ,令f ′(x )=0,即2x +sin x =0,得x =0, f (0)=-cos 0=-1,f (π2)=f (-π2)=π24,∴f (x )的最大值为π24,f (x )的最小值为-1.则f (x )的值域为[-1,π24].(2)已知函数f (x )=x 3-ax 2+3x ,若x =3是f (x )的极值点,求f (x )在x ∈[1,a ]时的最值. 解 f ′(x )=3x 2-2ax +3,由题意知f ′(3)=0,即27-6a +3=0,解得a =5, ∴f ′(x )=3x 2-10x +3.令f ′(x )=0,即3x 2-10x +3=0, 解得x =3或x =13(舍去).∵f (3)=-9,f (1)=-1,f (5)=15,∴当x ∈[1,5]时,f (x )的最小值为-9,最大值为15. 命题角度2 含参数的函数求最值例2 已知a 为常数,求函数f (x )=-x 3+3ax (0≤x ≤1)的最大值. 解 f ′(x )=-3x 2+3a =-3(x 2-a ).若a ≤0,则f ′(x )≤0,函数f (x )单调递减, 所以当x =0时,f (x )有最大值f (0)=0; 若a >0,则令f ′(x )=0,解得x =±a . 由x ∈[0,1],则只考虑x =a 的情况. ①当0<a <1,即0<a <1时,当x 变化时,f ′(x ),f (x )的变化情况如下表:f (x )max =f (a )=2a a .②当a ≥1,即a ≥1时,f ′(x )≥0,函数f (x )在[0,1]上单调递增,当x =1时,f (x )有最大值,f (1)=3a -1.综上,当a ≤0,x =0时,f (x )有最大值0; 当0<a <1,x =a 时,f (x )有最大值2a a ; 当a ≥1,x =1时,f (x )有最大值3a -1.反思与感悟 对参数进行讨论,其实质是讨论导函数大于0,等于0,小于0三种情况.若导函数恒不等于0,则函数在已知区间上是单调函数,最值在端点处取得;若导函数可能等于0,则求出极值点后求极值,再与端点值比较后确定最值. 跟踪训练2 已知函数f (x )=ax 3-32x 2+b (x ∈R ).(1)若曲线y =f (x )在点(2,f (2))处的切线方程为y =6x -8,求a ,b 的值; (2)若a >0,b =2,当x ∈[-1,1]时,求f (x )的最小值. 解 (1)f ′(x )=3ax 2-3x ,由f ′(2)=6,得a =1. 由切线方程为y =6x -8,得f (2)=4. 又f (2)=8a -6+b =b +2,所以b =2, 所以a =1,b =2.(2)f ′(x )=3ax 2-3x =3x (ax -1).令f ′(x )=0,解得x =0或x =1a,分以下两种情况讨论:①若1a>1,即0<a <1,当x 变化时,f ′(x ),f (x )的变化情况如下表:f (-1)=-a -32+2,f (1)=a -32+2,所以f (x )min =f (-1)=12-a .②若0<1a<1,即a >1,当x 变化时,f ′(x ),f (x )的变化情况如下表:f (-1)=12-a ,f (1a )=2-12a 2.而f (1a )-f (-1)=2-12a 2-(12-a )=32+a -12a 2>0, 所以f (x )min =f (-1)=12-a .综合①和②知,f (x )min =f (-1)=12-a .类型二 由函数的最值求参数例3 已知函数f (x )=ax 3-6ax 2+b ,x ∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值. 解 由题设知a ≠0,否则f (x )=b 为常函数,与题设矛盾. 求导得f ′(x )=3ax 2-12ax =3ax (x -4), 令f ′(x )=0,得x 1=0,x 2=4(舍去).①当a >0,且当x 变化时,f ′(x ),f (x )的变化情况如下表:由表可知,当x =0时,f (x )取得极大值b ,也就是函数在[-1,2]上的最大值,∴f (0)=b =3. 又f (-1)=-7a +3,f (2)=-16a +3<f (-1), ∴f (2)=-16a +3=-29,解得a =2.②当a <0时,同理可得,当x =0时,f (x )取得极小值b ,也就是函数在[-1,2]上的最小值,∴f (0)=b =-29.又f (-1)=-7a -29,f (2)=-16a -29>f (-1), ∴f (2)=-16a -29=3,解得a =-2. 综上可得,a =2,b =3或a =-2,b =-29.反思与感悟 已知函数在某区间上的最值求参数的值(范围)是求函数最值的逆向思维,一般先求导数,利用导数研究函数的单调性及极值点,探索最值点,根据已知最值列方程(不等式)解决问题.其中注意分类讨论思想的应用.跟踪训练3 (1)若函数f (x )=3x -x 3在区间(a 2-12,a )上有最小值,则实数a 的取值范围是( )A .(-1,11)B .(-1,4)C .(-1,2]D .(-1,2)答案 C解析 由f ′(x )=3-3x 2=0,得x =±1. 当x 变化时,f ′(x )及f (x )的变化情况如下表:由此得a 2-12<-1<a ,解得-1<a <11. 又当x ∈(1,+∞)时,f (x )单调递减, 且当x =2时,f (x )=-2.∴a ≤2. 综上,-1<a ≤2.(2)已知函数f (x )=x -ln(x +a )的最小值为0,其中a >0,求a 的值. 解 f (x )的定义域为(-a ,+∞), f ′(x )=1-1x +a =x +a -1x +a .由f ′(x )=0,解得x =1-a >-a .当-a <x <1-a 时,f ′(x )<0,f (x )在(-a,1-a )上单调递减; 当x >1-a 时,f ′(x )>0,f (x )在(1-a ,+∞)上单调递增. 因此,f (x )在x =1-a 处取得最小值, 由题意知f (1-a )=1-a =0,故a =1. 类型三 与最值有关的恒成立问题例4 已知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立,求a 的取值范围. 解 由2x ln x ≥-x 2+ax -3, 则a ≤2ln x +x +3x.设h (x )=2ln x +3x +x (x >0).则h ′(x )=(x +3)(x -1)x 2,当x ∈(0,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增. ∴h (x )min =h (1)=4. ∴a ≤h (x )min =4.反思与感悟 分离参数求解不等式恒成立问题的步骤跟踪训练4 设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值.(2)求a 的取值范围,使得g (a )-g (x )<1a 对任意x >0成立.解 (1)由题设知f (x )的定义域为(0,+∞), f ′(x )=1x ,g (x )=ln x +1x ,所以g ′(x )=x -1x 2.令g ′(x )=0,得x =1. 当x ∈(0,1)时,g ′(x )<0, 故(0,1)是g (x )的单调递减区间; 当x ∈(1,+∞)时,g ′(x )>0, 故(1,+∞)是g (x )的单调递增区间.因此,x =1是g (x )在(0,+∞)上的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g (1)=1.(2)g (a )-g (x )<1a 对任意x >0成立,即ln a <g (x )对任意x >0成立. 由(1)知,g (x )的最小值为1,所以ln a <1,解得0<a <e.1.函数f (x )=x 3-3x (x <1)( ) A .有最大值,无最小值 B .有最大值,最小值 C .无最大值,最小值 D .无最大值,有最小值答案 A解析 令f ′(x )=3x 2-3=0,得x =-1或1(舍去), 当x ∈(-∞,-1)时,f ′(x )>0,f (x )单调递增; 当x ∈(-1,1)时,f ′(x )<0,f (x )单调递减. 故f (x )有最大值而无最小值.2.函数f (x )=x 2·e x +1,x ∈[-2,1]的最大值为( ) A .4e -1 B .1 C .e2 D .3e 2答案 C解析 f ′(x )=x e x +1(x +2), 令f ′(x )=0,得x =-2或x =0. 当f ′(x )>0时,x <-2或x >0; 当f ′(x )<0时,-2<x <0.当x =-2时,f (-2)=4e ;当x =0时,f (0)=0;当x =1时,f (1)=e 2,所以函数的最大值为e 2.故选C.3.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m 的值为( ) A .16 B .12 C .32 D .6答案 C解析 因为函数f (x )=x 3-12x +8, 所以f ′(x )=3x 2-12.令f ′(x )>0,解得x >2或x <-2; 令f ′(x )<0,解得-2<x <2.故函数在[-2,2]上是减函数,在[-3,-2),(2,3]上是增函数, 所以函数在x =2时取到最小值f (2)=8-24+8=-8, 在x =-2时取到最大值f (-2)=-8+24+8=24.即M =24,m =-8, 所以M -m =32.故选C.4.函数f (x )=12e x (sin x +cos x )在区间[0,π2]上的值域为__________.答案 [12,21e 2π]解析 f ′(x )=12e x (sin x +cos x )+12e x (cos x -sin x )=e x cos x .当0≤x ≤π2时,f ′(x )≥0,∴f (x )是[0,π2]上的增函数.∴f (x )的最大值在x =π2处取得,f (π2)=21e 2π,f (x )的最小值在x =0处取得,f (0)=12.∴函数值域为[12,21e 2π].5.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上有最小值-37,求a 的值,并求f (x )在[-2,2]上的最大值.解 f ′(x )=6x 2-12x =6x (x -2). 由f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x -2 (-2,0) 0 (0,2) 2 f ′(x ) + 0 - 0 f (x )-40+a↗极大值a↘-8+a所以当x =-2时,f (x )min =-40+a =-37,所以a =3. 所以当x =0时,f (x )取到最大值3.1.求函数在闭区间上的最值,只需比较极值和端点处的函数值即可;若函数在一个开区间内只有一个极值,这个极值就是最值.2.已知最值求参数时,可先确定参数的值,用参数表示最值时,应分类讨论. 3.“恒成立”问题可转化为函数最值问题.课时作业一、选择题1.函数y =ln xx 的最大值为( )A .e -1 B .e C .e2 D.103答案 A解析 令y ′=(ln x )′x -ln x ·x ′x 2=1-ln xx 2=0,解得x =e.当x >e 时,y ′<0;当0<x <e 时,y ′>0.y 极大值=f (e)=1e ,且函数在定义域内只有一个极值,所以y max =1e.2.已知函数f (x ),g (x )均为[a ,b ]上的可导函数,在[a ,b ]上连续且f ′(x )<g ′(x ),则f (x )-g (x )的最大值为( ) A .f (a )-g (a ) B .f (b )-g (b ) C .f (a )-g (b ) D .f (b )-g (a )答案 A解析 令F (x )=f (x )-g (x ),∵f ′(x )<g ′(x ), ∴F ′(x )=f ′(x )-g ′(x )<0, ∴F (x )在[a ,b ]上单调递减, ∴F (x )max =F (a )=f (a )-g (a ).3.已知函数f (x )=-23x 3+2ax 2+3x (a >0)的导数f ′(x )的最大值为5,则在函数f (x )图象上的点(1,f (1))处的切线方程是( ) A .3x -15y +4=0 B .15x -3y -2=0 C .15x -3y +2=0 D .3x -y +1=0 答案 B解析 ∵f ′(x )=-2x 2+4ax +3 =-2(x -a )2+3+2a 2, ∴f ′(x )max =3+2a 2=5, ∵a >0,∴a =1.∴f ′(x )=-2x 2+4x +3, f ′(1)=-2+4+3=5. 又f (1)=-23+2+3=133,∴所求切线方程为y -133=5(x -1).即15x -3y -2=0.4.已知a ≤4x 3+4x 2+1对任意x ∈[-2,1]都成立,则实数a 的取值范围是( ) A .(-∞,-15] B .(-∞,1] C .(-∞,15) D .(0,1)答案 A解析 根据题意,a ≤4x 3+4x 2+1对任意x ∈[-2,1]都成立,设函数f (x )=4x 3+4x 2+1,x ∈[-2,1].求出导数f ′(x )=12x 2+8x ,由f ′(x )=0,得x =0或-23.所以在区间(-2,-23)上,f ′(x )>0,函数为增函数,在区间(-23,0)上,f ′(x )<0,函数为减函数,在区间(0,1)上,f ′(x )>0,函数为增函数,因此函数在闭区间[-2,1]上,在x =-23处取得极大值f (-23),在x =0时函数取得极小值,且f (0)=1,f (1)=9,f (-2)=-15,所以f (-2)=-15是最小值,所以实数a ≤-15.故选A.5.已知函数y =-x 2-2x +3在区间[a,2]上的最大值为154,则a 等于( ) A .-32B.12 C .-12D.12或-32答案 C解析 当a ≤-1时,最大值为4,不符合题意.当-1<a <2时,f (x )在[a,2]上是减函数,f (a )最大,-a 2-2a +3=154,解得a =-12或a =-32(舍去).6.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B .[-6,-98]C .[-6,-2]D .[-4,-3] 答案 C解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3, ∴a ≥⎣⎡⎦⎤x 2-4x -3x 3max . 设φ(x )=x 2-4x -3x 3,φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0, ∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6,∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3, ∴a ≤⎣⎡⎦⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4. 当x ∈[-2,-1)时,φ′(x )<0,当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2. 综上知-6≤a ≤-2.二、填空题7.函数f (x )=4x x 2+1(x ∈[-2,2])的最大值是________,最小值是________. 答案 2 -2解析 f ′(x )=4(x 2+1)-4x ×2x (x 2+1)2=4(1-x 2)(x 2+1)2=4(1+x )(1-x )(x 2+1)2, 令f ′(x )=0,得x 1=-1,x 2=1.由f (-2)=-85,f (-1)=-2,f (1)=2,f (2)=85, ∴f (x )max =2,f (x )min =-2.8.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a 的值等于________.答案 1解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1.令f ′(x )=1x -a =0,得x =1a, 当0<x <1a时,f ′(x )>0;当x >1a时,f ′(x )<0. ∴f (x )max =f (1a)=-ln a -1=-1, 解得a =1.9.已知a ≤1-x x +ln x 对任意x ∈[12,2]恒成立,则实数a 的最大值为________. 答案 0解析 令f (x )=1-x x +ln x ,则f ′(x )=x -1x 2, 当x ∈[12,1)时,f ′(x )<0,当x ∈(1,2]时,f ′(x )>0, ∴f (x )在[12,1)上单调递减,在(1,2]上单调递增, ∴f (x )min =f (1)=0,∴a ≤0,a 的最大值为0.10.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是__________.答案 (-∞,2ln 2-2]解析 由题意知e x -2x +a =0有根,即a =2x -e x ,令g (x )=2x -e x ,则g ′(x )=2-e x =0,解得x =ln 2.而g (x )在(-∞,ln 2)上单调递增,在(ln 2,+∞)上单调递减,∴g (x )max =2ln 2-e ln 2=2ln 2-2,∴a ≤2ln 2-2.11.若函数f (x )=x 3-3x 在(a,6-a 2)上有最小值,则实数a 的取值范围是________. 答案 [-2,1)解析 令f ′(x )=3x 2-3=0,得x =±1,且x =1为函数的极小值点,x =-1为函数的极大值点.函数f (x )在区间(a,6-a 2)上有最小值,则函数f (x )的极小值点必在区间(a,6-a 2)内,即实数a 满足a <1<6-a 2,且f (a )=a 3-3a ≥f (1)=-2.解a <1<6-a 2,得-5<a <1.不等式a 3-3a ≥f (1)=-2,即a 3-3a +2≥0,即a 3-1-3(a -1)≥0,即(a -1)(a 2+a -2)≥0,即(a -1)2(a +2)≥0,即a ≥-2.故实数a 的取值范围是[-2,1).三、解答题12.设函数f (x )=e x sin x .(1)求函数f (x )的单调递增区间;(2)当x ∈[0,π]时,求函数f (x )的最大值和最小值.解 (1)f ′(x )=e x (sin x +cos x )=2e x sin(x +π4). 由f ′(x )≥0,得sin(x +π4)≥0, 所以2k π≤x +π4≤2k π+π,k ∈Z , 即2k π-π4≤x ≤2k π+3π4,k ∈Z . 所以f (x )的单调增区间为[2k π-π4,2k π+3π4],k ∈Z . (2)由(1)知,当x ∈[0,π]时,[0,3π4]是单调增区间,(3π4,π]是单调减区间. 且f (0)=0,f (π)=0,f (3π4)=22e 3π4, 所以f (x )max =f (3π4)=22e 3π4, f (x )min =f (0)=f (π)=0.13.已知函数f (x )=x ln x .(1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1+ln x ,令f ′(x )>0,解得x >1e, 令f ′(x )<0,解得0<x <1e, 所以当x =1e 时取得最小值,最小值为-1e. (2)依题意,得f (x )≥ax -1在[1,+∞)上恒成立,即不等式a ≤ln x +1x对于x ∈[1,+∞)恒成立. 令g (x )=ln x +1x ,则g ′(x )=1x -1x 2=x -1x2, 当x >1时,g ′(x )>0,故g (x )在(1,+∞)上是增函数,所以g (x )的最小值是g (1)=1.因此a ≤g (x )min =g (1)=1,故a 的取值范围为(-∞,1]. 四、探究与拓展14.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22答案 D解析 由题意画出函数图象如图所示,由图可以看出|MN |=y =t 2-ln t (t >0).y ′=2t -1t=2t 2-1t =2(t +22)(t -22)t . 当0<t <22时,y ′<0,可知y 在此区间内单调递减; 当t >22时,y ′>0,可知y 在此区间内单调递增. 故当t =22时,|MN |有最小值. 15.已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a处取得极大值且为最大值,最大值为f ⎝⎛⎭⎫1a =ln ⎝⎛⎭⎫1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1.因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).。