第十七章周环反应练习
周环反应
![周环反应](https://img.taocdn.com/s3/m/8e67b054be23482fb4da4cc8.png)
关于2,4-己二烯的电环化反应总结如下:
CH3 H H CH3 CH3
顺旋
CH3 H H CH3
hν
对旋
CH3
顺旋
H CH3 H
H CH3 H
hν
对旋
总:若开链共轭烯有4个或4m个Π电子,加热顺旋关环, 加热顺旋开环。光照对旋关环,光照对旋开环。 练习:写出下列反应的产物或中间产物
Ph
Ph
Ph H H
[1,5] H迁移
H D CH 3 C2H5 (2)
D CH3 H (3) CH3
H H 3C
CH3 D C2H5 (1)
H3C
CH3 D C2H5 H
CH3
[1,5] H迁移
C2H5
2. [ 3,3 ]迁移 结论: 在加热时[ 3,3 ]迁移是轨道对称性允许的 。
以1, 5--己二烯为例:在加热时发生[ 3,3 ]迁移 2 3 1 2 3 1 CH2 CH CH2 CH2 CH CH2
i= 1 Z C 5
注:[ i, j]表示迁移后σ键所连接的两个原子的位置。 i, j 的编号分别从反应物中以σ键连接的两个原子开始编号。
1 H CD2 5 CH 4 CH 3 CH 2 CH2 1 H CD2 CH CH CH CH2
[1, 5] H 迁移
C--H键σ迁移
CH3 3 2 CH CH CH2 3 CH 2
9
℃
40 ℃
CH3
Br
(3)
Br
RMgX
R
R
(
)
R R
Br
(4)
Br
2C6H5S-
Sφ Sφ
二. 环加成 在光或热的作用下在两个 Π电子共轭体系的两端同 时生成两个σ键而闭合成环的反应叫环加成反应。 分类:由两个Π电子体系中参与反应的Π电子的数 目分类。
周环反应
![周环反应](https://img.taocdn.com/s3/m/d743c7f40242a8956bece479.png)
例1
CH3 H CH3 CH3
非键张力小 比
H H H
快 103倍
H
CH3 H3C C (H3C)3C
反 -1.3-戊 二 烯
例3
H3C H
比
快 27倍
例2
Ph H
H Ph
H
S-顺 式 构 象 ( 稳 定 )
S-反 式 构 象
快 102-103倍
H
比
H H H
反 -1-苯 基 -1.3-丁 二 烯
其 HOMO为 1
C C C
△
对旋
即:
例:1967年Kirmse发现下列实例
断裂
Ph H
△ -N2
N
Ph H H
H C Ph C
CH2
H
CH2OCH3 C C H
CH3OH Ph
H
N
4. 戊二烯基正负离子的电环化(正离子顺旋开环,负离子对旋开环)
O OH O
H3PO4
CHH 3 3C CHH 3 3C
四. 电环化反应
1.定义:在一定条件下,链状共轭多烯分子的两端构成一个 键形成 环状分子的反应及其逆反应,称电环化反应。 2.电环化反应的一般选择性规则
含偶数碳原子共轭体系的电环化反应的选择性规则 共轭体系的π电子数 4n(n=1、2、3……) 4n+2(n=0、1、2……) 例1
Ph CD3 Ph CH3 Ph Ph Ph
v
HOMO π( S) <2> 对称性匹配(允许)易反应
v
例3 (2+2)环加成,基态时
LUMO
π*( A)
HOMO
v
有机化学协同反应
![有机化学协同反应](https://img.taocdn.com/s3/m/4ea47b9c2cc58bd63086bd22.png)
四 前线轨道理论对电环化反应选择规则的解释
前线轨道理论认为: 一个共轭多烯分子在发生电环合反应时,必须掌握二项原则: (1)电环化反应中,起决定作用的分子轨道是共轭多烯的
HOMO,反应的立体选择主要取决于HOMO的对称 性。 (2)当共轭多烯两端的碳原子的p轨道旋转关环生成σ键 时,必须发生同位相的重叠(因为发生同位相重叠使 能量降低)。
光照条件下,到处于激发态的乙烯分子中的一个电子跃迁π*轨道 上去,因此,乙烯的HOMO是π*,另一乙烯分子基态的LUMO也 是π*,两者的对称性匹配是允许的,故环加成允许。
24
[4+2] 环加成 以乙烯与丁二烯为例
从前线轨道来看,乙烯与丁二烯HOMO和LUMO如下图:
LUM Oπ* HOM π O 乙 烯 的 前 线 轨 道 图
+
a b - c
a + = b - c
例如:
+
-C N -C
+
-CN -O
+
N N -C
+
-C = N -C (腈叶利德) -C += N -O(氧化腈)
N += N -C(重氮烷)
31
1,3-偶极化合物的结构特点
这类化合物都具有“在三个原子范围内包括4个电子的体系”
O3
-OO-O CH2N2
2C-H N-N RN3
1,3-偶极化合物的分子轨道的特点:
-N-RN-N
LUMO HOMO
与烯丙基负离
子具有类似的分
子轨道的特点。
32
2. 1,3-偶极环加成反应
定义:1,3-偶极化合物和烯烃、炔烃或相应衍生物生成五元 环状化合物的环加成反应称为1,3-偶极环加成反应。
第十七章周环反应
![第十七章周环反应](https://img.taocdn.com/s3/m/2611a3896529647d27285218.png)
3、[3,3]σ键迁移
由碳-碳σ键发生的[3,3]迁移称为Cope重排。
Cope重排中“类双自由基”过渡态
ψ3b ψ3a
HOMOb ψ2b
ψ2a HOMO a
ψ1b
ψ1a
反应的过渡状态为椅式构象。
Cope重排的应用:
Claisen重排
是碳-氧键参加的[3,3]迁移反应。
2
2 2 2
2
3
3 2
[2+2]
[4+2]
一、分子间进行协同反应的原则
①两个分子发生环加成反应时,起决定作用的轨道是一 个分子的HOMO和另一个分子的LUMO,反应过程中电 子由一个分子的HOMO流入另一个分子的LUMO。 ②当两个分子相互作用形成σ键时,两个起决定作用的 轨道必须发生同位相重叠。 ③相互作用的两个轨道,能量必须接近,能量越接近, 反应越易进行。
二、[2+2]环加成
乙烯的π分子轨道:
基态(加热):
乙烯B的LUMOψ2 乙烯A的HOMOψ1
加热条件下的[2+2]环加成是轨道对称性禁阻的途径。
激发态(光照):
乙烯B的LUMOψ2 乙烯A的HOMOψ2
光照条件下的[2+2]环加成是轨道对称性允许的。
三、[4+2]环加成
基态时乙烯与丁二烯的FMO:
}
前线轨道FMO
前线轨道理论的中心思想 分子中的前线电子类似于单个原子的价电子,因此 在化学反应过程中,最先作用的分子轨道是前线轨 道,起关键作用的电子是前线电子。
第二节 电环化反应
电环化反应的理论基础
Woodward-Hoffmann 规则
4n体系的分子轨道
注意: 基态: HOMO LUMO
第十七章 周环反应练习
![第十七章 周环反应练习](https://img.taocdn.com/s3/m/38d2e82525c52cc58bd6bef9.png)
第十七章 周环反应1. 推测下列化合物的电环时产物的方法。
(1)(2)HHH 3C CH3H HH 3C CH 3(3)(4)(5)C 3HHC3H H答案:(2)HHCH 3CH3(3)HHCH 3CH 3对旋hv(4)(5)CH 3HCH 3H3332.推测下列化合物的环加成时产物的结构:(1)+O O(2)R+X(3)+O(4)NC +N -PbPh+CCPhPhHH答案:+OO(1)OO(2)R+XRX+(3)+O(主)( 次)O(4)NC +N -PhPh+PhPhNNPhPhPhPh3.马来酸酐和环庚三烯反应的产物如下,请说明这个产物的合理性。
+OOOOOOHHHH答案:OOOHH4.说明下列反应过程所需的条件:(1)HHH(2)答案:H H HH(2)5.说明下列反应从反应物到产物的过程:RHDD?D HDR答案:DHDR1,3HDDR1,36.自选原料通过环加成反应合成下列化合物。
O(1)OCHO(2)答案:OO(1)OCHO(2)+OOO+O7.加热下列化合物会发生什么样的变化?R(2)答案:R(2)8.下面的反应按光化学进行时,反应产物可得到哪一种(Ⅰ或Ⅱ)?(1)hv或(2)hv或IIII I答案:(1)hv(2)hvII I对旋9.通过怎样的过程和条件,下列反应能得到给出的结果。
PhPh答案:PhPhPhPh10.通过什么办法把反-9,10-二氢萘转化为-9,-10-二氢萘。
反-9,10-二氢萘顺-9,10-二氢萘答案:反-9,10-二氢萘顺-9,10-二氢萘hv11.确定下列反应在加热反应时所涉及的电子数:(1)H-H-(2)3CH 3CH 3+(3)NCH 2N+_H 3CCH 3+HCH 2CCH CHH CCH 3CH 3(4)+NCCNCNCN CNCNNC答案:(1). 涉及的π电子数为6个(2). 涉及的π电子数为4个(3). 涉及的π电子数为6个(4). 涉及的π电子数为16个12.解释下列现象:(1).在狄尔斯-阿尔德反应中,2-丁叔基-,1,3-丁二烯反应速率比1,3-丁二烯快许多。
17周环反应
![17周环反应](https://img.taocdn.com/s3/m/aa0a4f2fccbff121dd3683bd.png)
3、若亲双烯体上有吸电子基时,反应更易。
环加成反应
Diels-Alder反应的定向作用
Ph Ph CHO
三.[4+2]环加成
CH
O
Ph CHO
CH3 CHO
H3C CH O
H3C CHO
环加成反应
Diels-Alder反应的应用 H CO2Me C
CH2
O O O
三.[4+2]环加成
H COOR 76%
1 2 3 (碳碳键迁移)
口诀:1,1 断;3,3 连;1,2、1 , 2 成双键。
σ –迁移
cope重排
Cope重排通常认为经过椅式过渡态
H3C
H
H3C H3C
H3C H3C
H3C
H
σ –迁移
cope重排
?
CH=CH2 CH=CH2
?
σ –迁移
Claise 重排
* O-CH2-CH=CH2 200℃
h
+
顺旋
-
-
-
-
+
-
h 对旋
+ +
不成键
结论:光照下,对旋成键
电环化反应 6
5 4 3 2
(HOMO)
(LUMO)
二、4n+2电子体系
(HOMO)
(HOMO) (LUMO)
(HOMO)
1
电环化反应
一、4n电子体系
1.加热下分子处于基态,其HOMO为2
+
顺旋
+
-
+
对旋
-
-
-
-
+
-
有机化学 第17章 周环反应
![有机化学 第17章 周环反应](https://img.taocdn.com/s3/m/2cce59c19ec3d5bbfd0a74d6.png)
Diels-Alder反应
W +
W
W
例:
+
O
O O
H H O O O + H H
O O O
顺式加成
endo(内型) 动力学控制产物
exo(外型) 热力学控制产物
[3, 3]s迁移(Claisen重排、Cope重排)
X H X
X
X=O or CH2
例:
H CH3 H CH3 225oC
Z型 CH3 E 型 CH3 CH3 H CH3 H 椅式构象过渡态 H
The Nobel Prize in Chemistry 1981
"for their theories, developed independently, concerning the course of chemical reactions"
Kenichi Fukui
Japan Kyoto University Kyoto, Japan (1918 – 1998)
CH3 hv
对旋 a
3 H H 1 CH3
H
a b
H hv CH3 CH3 2 H
1与2为 对映体
CH3 H
cis, trans
对旋 b
trans-二取代
trans-二取代
CH3 H CH3 H 3
cis-二取代
CH3 hv H H CH3
a
b hv
H
对旋 a
对旋 b
4
CH3 H CH3
3与4 相同
Roald Hoffmann USA Cornell University Ithaca, NY, USA 1937 -
曾昭琼第四版有机化学下册习题答案
![曾昭琼第四版有机化学下册习题答案](https://img.taocdn.com/s3/m/3b5acb18a76e58fafab003ad.png)
第十二章羧酸 (答案)1.解:(1)3-甲基丁酸(2)3-对氯苯基丁酸(3)间苯二甲酸(4)9,12-十八二烯酸3.解:4.解:6.解:7.按lewis酸碱理论:凡可接受电子对的分子、离子或基团称为酸,凡可给予电子对的分子、离子或基团成为碱。
8.解:9.解:9.解:C n H2n+1COOH=46。
所以n=0。
所以一元酸为甲酸(液体物质)。
若为二元酸,则M分子量=45*2=90, C n H2n(COOH)2=90。
所以n=0,故二元酸为乙二酸(固体物质)。
10.解:根据题意,B为二元酸,C可与苯肼作用,为羰基化合物,D为烃。
故A可能为环醇或环酮。
依分子式只能为环醇。
所以11.解:(1)由题意:该烃氧化成酸后,碳原子数不变,故为环烯烃,通式为C n H2n-2。
(2)该烃有旋光性,氧化后成二元酸,所以分子量=66*2=132。
故二元酸为。
12.由题意:m/e=179,所以马尿酸的分子量为179,它易水解得化合物D和E,D的IR谱图:3200-2300cm-1为羟基中O-H 键的伸缩振动。
1680为共扼羧酸的>C=O 的伸缩振动;1600-1500cm-1是由二聚体的O-H键的面内弯曲振动和C-O 键的伸缩振动之间偶合产生的两个吸收带;750cm –1和700cm-1是一取代苯的C-H键的面外弯曲振动。
再由化学性质知D为羟酸,其中和当量为121±1,故D的分子量为122,因此,。
又由题意:E为氨基酸,分子量为75,所以E的结构为H2NCH2COOH。
第十三章羧酸衍生物(答案)1. 说明下列名词:(答案)酯、油脂、皂化值、干性油、碘值、非离子型洗涤剂。
• 酯:由酸和醇脱水后形成的化合物;• 油脂:有有机酸酯和无机酸酯。
油脂是高级脂肪酸甘油酯的总称。
• 皂化值:工业上把1g 油脂完全皂化所需要的KOH 的毫克数叫做这种油脂的皂化值。
• 干性油:干结成膜快;• 碘值:100g 油脂所能吸收的碘的克数称为碘值(又称碘价)。
李景宁《有机化学》(第五版)笔记和课后习题(含考研真题)详解-周环反应【圣才出品】
![李景宁《有机化学》(第五版)笔记和课后习题(含考研真题)详解-周环反应【圣才出品】](https://img.taocdn.com/s3/m/1f65014e998fcc22bcd10dee.png)
HOMO 决定。
17.2 课后习题详解
1.推测下列化合物电环化反应产物的结构。
((11))
(2) HH
(1)
(2)(1)
(2)
HH
((12))
(2)
)
H H3C
H CH3
H
(3)
H3C
CH3
hv
(2)
HH
H CH3
hv
(3) H(4) H
(3) H3HC HCH3
(3) H3CHH3C CHHC3H3 (5)
8 / 18
圣才电子书
答:
十万种考研考证电子书、题库视频学习平台
9.通过什么反应和条件,完成下面的反应。
Ph
O
O
O
Ph
O
O
Ph
Ph
O
答:通过光照和加热能得到给出的结果,反应过程如下:
Ph
hv
对旋
Ph
Ph
O
O
O
Ph
Ph
Ph
O
O O
10.如何使反-9,10-二氢萘转化为顺-9,10-二氢萘?
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 17 章 周环反应
17.1 复习笔记
一、电环化反应 1.电环化反应 (1)电环化反应的概念 电环化反应是指在加热或光照条件下,共轭多烯烃环合形成环烯烃的反应及其逆反应。 (2)电环化反应的规律性 共轭多烯烃电环化反应有高度的立体选择性,反应与共轭体系的π电子数目有关,主要 分为 4n 型共轭多烯和 4n+2 型共轭多烯。其关系见表 17-1。
子的 HOMO 与另一个反应分子的 LUMO 对称性符合正正重叠或者负负重叠,形成化学键,
chapt17周环反应中科大有机化学
![chapt17周环反应中科大有机化学](https://img.taocdn.com/s3/m/3c68d102453610661ed9f472.png)
顺旋
CH3 CH3
175℃
顺旋
H
HCH3 (Z,E)-2,4-己二烯
CH3 CH3
结果一样
H CH3
(Z,E)-2,4-己二烯
H
电环合与开环 是逆反应
遵守同一 规则
CH3 175℃
CH3
顺旋
CH3 175℃
顺旋
CH3
H
CCHH33(Z,Z)-2,4-己二烯
H
极少
CH3
H H
(E,E)-2,4-己二烯
原
子
的
CC CC CC NN NC
双
O O, N C, O C, C C, C C
烯
亲
CN
双
CN , CC ,CO,NN ,NO
烯
体
Organic Chem
University of Science and Technology of China
反应实例:
O 180℃ +
CH2
O 66%
+ N C6H5 乙 醇 , 0 ℃
有 机 化 学
第十七章
周环反应
Pericyclic reaction
University of Science and Technology of China
University of Science and Technology of China
一、概述
对溶剂极化不敏感
反应过程中不能证
不能被酸碱催化
从实验事实发现这类反应有以下的特点:
① 反应进行的动力是加热或者光照 ② 有两个以上的键同时断裂或形成
多中心一步完成 ③ 有突出的立体选择性
Organic Chem
经典:有机化学-第17章-协同反应
![经典:有机化学-第17章-协同反应](https://img.taocdn.com/s3/m/b000c7185022aaea988f0f71.png)
CH3
基态 激发态
相同
15
例:
CH3 H H CH3
hv
CH3
CH3
CH3 H CH3 H
H 3C H H
CH3
H 3C H H
CH3
LUM O
LUMO HOMOLeabharlann H 3C H HCH3
hv 顺旋
H 3C H H
CH3
HOM O
对旋
H 3C H H
CH3
1
H 3C H H
CH3
基态 激发态
外消旋体
H H 3C
8
四 直链共轭多烯的分子轨道的一些特点
1. π分子轨道的数目与参与共轭体系的碳原子数是一致 的。
2. 对镜面(δv)按对称--反对称--对称交替变化。对二 重对称轴(C2)按反对称--对称--反对称交替变化。
3. 结(节)面数由0→1→2…逐渐增多。 4 轨道数目n为偶数时,n /2为成键轨道,n /2为反键
第十七章 周环反应 (协同反应)
1
第一节 周环反应和分子轨道对称守恒原理 一 周环反应概况简介 二 分子轨道对称守恒原理简介 三 前线轨道理论的概念和中心思想 四 直链共轭多烯π分子轨道的一些特点
2
一 周环反应概况简介
1. 定义
周环反应 在化学反应过程中,能形成环状过渡态的协同反应。
协同反应 协同反应是指在反应过程中有两个或两个以上的化学 键破裂和形成时,它们都相互协调地在同一步骤中完成。
4n+2电子体系?
HH
18
第三节 环加成反应
一 环加成反应的定义、分类和表示方法 二 环加成反应的选择规则 三 前线轨道理论对环加成反应选择规则的
有机化学 第17章_协同反应
![有机化学 第17章_协同反应](https://img.taocdn.com/s3/m/a11db34ffe4733687e21aa07.png)
的能级最高的轨道中只有一个电子,这样的轨道称为单
占轨道,用SOMO表示,单占轨道既是HOMO,又是 LUMO。
7
2. 前线轨道理论的中心思想
前线轨道理论认为:分子中有类似于单个原子的
“价电子”的电子存在,分子的价电子就是前线电子,
因此在分子之间的化学反应过程中,最先作用的分子 轨道是前线轨道,起关键作用的电子是前线电子。 这是因为分子的HOMO对其电子的束缚较为松弛, 具有电子给予体的性质,而LUMO则对电子的亲和力
+
环状过渡态
3
2. 周环反应的特点:
1. 反应过程中没有自由基或离子这一类活性中间体产生; 2. 反应速率极少受溶剂极性和酸,碱催化剂的影响,也 不受自由基引发剂和抑制剂的影响;
3. 反应条件一般只需要加热或光照,而且在加热条件下
得到的产物和在光照条件下得到的产物具有不同的立 体选择性,是高度空间定向反应。
禁阻
禁阻
h
允许
共轭体系电子数是指链型共轭烯烃的电子数。
允许是指对称性允许,其含义是反应按协同机理进行时活化能较低。 禁阻是指对称性禁阻,其含义是反应按协同机理进行时活化能很高。
13
四 前线轨道理论对电环化反应选择规则的解释
前线轨道理论认为:
一个共轭多烯分子在发生电环合反应时,必须掌握二项原则:
R"
35
实例二
分子内也能发生1,3-偶极环加成反应
O+N S S N O
-
O-N C-CH2-S
+
36
实例三
1,3-偶极环加成反应是立体专一的同向反应
CH3 CH3O2C CH3 CO2CH3
N N CH3 CH3O2C CH3 CO2CH3
周环反应
![周环反应](https://img.taocdn.com/s3/m/b1a2e629b4daa58da0114a82.png)
激发态(光照):
乙烯B的LUMOψ 2
乙烯A的HOMOψ 2
光照条件下的[2+2]是轨道对称性允许的。
3 [4+2]环加成
基态时乙烯与丁二烯的FMO:
LUMO
ψ2
ψ3
HOMO
ψ1
ψ2
乙烯
丁二烯
基态(加热):
丁二烯: ψ2
HOMO
ψ3
LUMO
乙烯:
ψ2
LUMO
ψ1
HOMO
加热条件下的[4+2]是轨道对称性允许的途径。
电环化反应,是在加热或光照的条件下,共轭多烯烃 末端两个碳原子上的π电子环合成一个σ键,形成环烯 烃的反应,或环烯烃开环变成共轭多烯烃的反应。 反应中形成环烯烃比原来的分子少一个双键,且双键位移
1 含4个π电子的体系
CH3 H H CH3
C Δ
顺旋
H H CH3
ψ6
ψ6
ψ 5
LUMO
ψ 5
LUMO
ψ 4
ψ4 HOMO
ψ HOMO 3
ψ2
ψ3
ψ2
基态
己三烯的π分子轨道图形
ψ1
激发态 电子分布
ψ1
基态(加热):
Δ
Δ
顺旋 禁阻
HOMOψ 3
对旋 允许
激发态(光照):
hν
hν
对旋 禁阻
HOMOψ 4
顺旋 允许
(E,Z,E)-2,4,6-辛三烯的电环化反应
苯酚的烯丙醚在加热时,烯丙基迁移到邻位碳原子上, 这个反应叫做Claisen重排。
是碳-氧键参加的[3,3]迁移反应。
O C H 2C H CH2 Δ OH C H 2C H CH2
周环反应 大学有机化学
![周环反应 大学有机化学](https://img.taocdn.com/s3/m/b8dbba48fe4733687e21aace.png)
1
2
3
1
2
3
CH2 CH CH2 CH2 CH CH2
1' 2' 3'
CH2 CH CH2 CH2 CH CH2
1' 2' 3'
ψ2
ψ2 柯普(Cope)重排,加热时是对称允许的
(2)克莱森(Claisen)重排
在热的作用下,烯丙基苯基醚分子中的烯丙基 CH CH=CH CH2 2 CH=CH2 2 CH CH HH2C CH CH2 2 2C 从氧原子转移到苯环碳原子上生成烯丙基酚的反应。
C C C
基态
C
加热时,同 面[1,5]σ 键 氢迁移允许
二、碳σ键迁移
1. [1,3 ]碳σ键迁移
H 1' CH3 3 2 1 1500C 2 3
H 1' CH3
1
2. [1,5 ]碳σ键迁移
CH3 1
2 3 4 5
CH3 2 1 5 CH3 4 3
CH3
3. [ 3,3 ]σ键迁移
(1)柯普(Cope)重排 在热的作用下,1,5-己二烯及其衍生物经过 六元环过渡态发生的重排。
CH CH2 3' CH2 H
CH2CH=CH2
1'
2'
CH2 CH=CH-CH 3 CH2 CH=CH-CH 3 1O
3 2 3
3' 1'
2'
3'
1 OH 2 3
2' 3' 1 OH 1' 2' 3' 2 CH-CH=CH 2 CH-CH=
CH3
3
CH3
OH CH2 CH2 CH=CH2 CH=CH2 OH OH OH O O Me Me Me Me Me Me Me Me Me e Me CH2-CH=CH2 CH2-CH=CH2 CH -CH=CH
有机化学 第十七章 周环反应
![有机化学 第十七章 周环反应](https://img.taocdn.com/s3/m/18ef3917f12d2af90242e62e.png)
下面我们采用前线轨道理论进行讲解。
Organic Chemistry
© 2015 05 11
第十八章 周环反应
§18.1 电环化反应
在加热或光照条件下,共轭多烯烃转变成环烯烃或 环烯烃转变成共轭多烯烃的反应叫电环化反应。
例1
CH3
例2
CH3 H
第十八章 周环反应
3. 3,3-C 迁移 假定在加热条件下,C-C键断裂后生成自由基,其HOMO为
π2 ,反对称A。
例
· ·
Organic Chemistry
© 2015 05 11
第十八章 周环反应 例
例
Organic Chemistry
© 2015 05 11
4
第十八章 周环反应
例 Claisen 重排
π2
(HOMO)
简称
化性
问。
π1
题
Ground
state
基态 △
Organic Chemistry
分子轨道
A
S
(HOMO)
A
S
Excited state
激发态 hv 对称性
© 2015 05 11
第十八章 周环反应
CH3
CH3 H
HH CH3
H
CH3
hv
H
H CH3
CH3
加热,基态,HOMO π2 对称性 A 顺旋。
Organic Chemistry
© 2015 05 11
外型
Organic Chemistry
6+4
内型
© 2015 05 11
化学竞赛辅导17--周环反应
![化学竞赛辅导17--周环反应](https://img.taocdn.com/s3/m/e38f2452ad02de80d4d840cd.png)
17--周环反应一周环反应1.定义:在最近的五十年里,有机化学家研究有机化学机理,主要有两种。
一种是游离基型反应,一种是离子型反应,它们都生成稳定或不稳定的中间体。
离子型或游离基型反应:反应物→中间体→产物另一种机理是,在反应中不形成离子或游离基的中间体,而认为是有电子重新组织经过四或六中心环的过渡态而进行的。
这类反应不受溶剂极性的影响,不被碱或酸所催化,没有发现任何引发剂对反应有什么关系。
这类反应似乎表明化学键的断裂和生成是同时发生的。
这种一步完成的多种心反应叫周环反应。
周环反应:反应物→产物2.周环反应的特征:①反应进行的动力,是加热或光照。
②反应进行时,有两个以上的键同时断裂或形成,是多中心一步反应。
③反应时作用物的变化有突出的立体选择性。
④在反应过渡态中原子排列是高度有序的。
二. 分子轨道理论几个原子轨道线性组合,形成几个分子轨道,比原子轨道能量低的为成键轨道,比原子轨道能量高的为反键轨道。
其电子填充符合Pauli原理和Hund规则。
σ轨道:Л轨道:丁二烯的分子轨道:镜面节面直链共轭多烯烃分子轨道特点:①节面数:若共轭多烯烃有几个原子,它的n个轨道就有n-1个节面。
②轨道的节面越多,能量越高。
③高一能级的轨道和低一能级的轨道的对称性是相反的。
④图中的共轭多烯烃的对称性都是指类顺型(像顺型)的。
三.前线轨道福井认为最高的已占分子轨道(HOMO)上的电子被束缚得最松弛,最容易激发到能量最低的空轨道(LUMO)中去。
这些轨道是处于前线轨道(FMO),前线轨道理论认为:化学键的形成主要是由FMO的相互作用决定的。
分子的HOMO与LUMO 能量接近,容易组成新轨道。
§1.电环化反应1.定义:在n个Л电子的线型共轭体系中,在其两端点之间生成一个单键的反应及其逆过程称为电环化反应。
电环化反应中,多烯烃的一个Л键变成环烯烃里的一个σ键。
如:(Z,E)2,4-己二烯根据微观可逆性原则,正反应和逆反应所经过的途径是相同的。
曾昭琼《有机化学》(第4版)章节题库(周环反应)【圣才出品】
![曾昭琼《有机化学》(第4版)章节题库(周环反应)【圣才出品】](https://img.taocdn.com/s3/m/aac9a52483d049649a66587c.png)
第17章 周环反应简答题1.下列化合物之一进行分子内环化得一三环酮,(Me 3Si)2NNa 作为缩合剂,另一则不能。
试写出产物的结构。
解释这一差别。
答:活性的差别主要是由于在环化时,原菠酮B 的3位不容易受到亲电试剂的进攻,因此不能环化。
2.答:3.指出下列周环反应过程中的机理名称。
答:(1)[1,5]氢原子的同面迁移(2)[1,3]碳原子的同面迁移(3)[1,5]碳原子的同面迁移(4)[5,5]σ迁移4.下列化合物在100℃时,其谱中只有一个信号,δ=4.22ppm(s ,10H ),给出合理解释。
答:在瞬烯分子中,由于三元环张力较大,分子有通过相邻π键经[3,3]σ迁移反应打开三元环释放张力的趋势。
但由于分子结构的特殊性,一旦[3,3]σ迁移反应完成,在分子的另一端恰巧又产生一个三元环,重新回到起点,使得分子始终不停地进行[3,3]σ迁移:在此过程中,由于所有氢原子都在轮流扮演顶角氢、烯键氢和三元环氢原子的角色,使得它们的信号平均化,因此谱中只在δ=4.22ppm 处出现单峰。
5.解释下列实验事实:答:首先是原料中环丁烯部分发生4π顺旋开环反应,得到己三烯衍生物。
然后发生6π体系对旋成环反应,生成环己二烯衍生物。
具体反应如下:6.解释下列实验事实:答:首先是两个原料之间发生光照条件下的[2+2]环加成反应,生成氧杂环丁烯衍生物,然后该衍生物再发生光照条件下的4π对旋开环反应,生成最终产物。
7.解释下列实验事实:答:原料首先发生逆第尔斯-阿尔德反应,生成邻苯二甲酸二甲酯和环丁烯衍生物,环丁烯衍生物再发生4π顺旋开环反应得到产物。
具体反应如下:8.按题意要求选择正确答案。
(1)下列分子轨道中,哪个是丁二烯的HOMO?(2)下列分子轨道中.哪个是己三烯的LUMO?(3)烯丙基自由基的非键轨道是(4)烯丙基负离子的LUMO是(5)下列四个分子轨道中,能级最高的是(6)戊二烯正离子的HOMO是答:(1)(c)(2)(d)(3)(d)(4)(b)(5)(b)轨道中节面越多,能级越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章周环反应
1.推测下列化合物的电环时产物的方法。
C 3H
答案:
⑵
⑷
对旋
3
△
顺旋
3
△
顺旋
△
对旋
CH3 CH 3
3 2•推测下列化合物的环加成时产物的结构:
(1)
+ O
△
⑵
X
Pb
C
+
Ph
△
N-H ------- C
Ph
Ph
7 +
答案:
△
O ⑶
⑷
Ph Ph
3•马来酸酐和环庚三烯反应的产物如下, 请说明这个产物的合理性。
答案:
n
4•说明下列反应过程所需的条件:
答案:
H
5•说明下列反应从反应物到产物的过程:
H H
答案:
D
1,31,3 R
D
6•自选原料通过环加成反应合成下列化合物。
答案:
⑵
O
CHO O
△
O
CHO
⑵
△-
+
^^0、丿
7•加热下列化合物会发生什么样的变化?
R
答案:
4
答案:
8•下面的反应按光化学进行时,反应产物可得到哪一种(i 或n ) ⑴
答案:
(1)
R
R
9•通过怎样的过程和条件,下列反应能得到给出的结果。
Ph
O
Ph O
Ph
或
Ph
11.确定下列反应在加热反应时所涉及的电子数:
O Ph
Ph
答案:
反-9,10-二氢萘顺-9,10-二氢萘
(1)
、
CH — CH3
NC CN
NC
H2C —CH-CH
CN
答案:
(1).涉及的n电子数为6个(2).涉及的n电子数为4个
(3).涉及的n电子数为6个(4).涉及的n电子数为16个12.解释下列现象:
(1) •在狄尔斯-阿尔德反应中,
答案:
在狄尔斯-阿尔德反应中,1,3-丁烯为双烯体。
研究表明,双烯体上连接给电子取代基时,可以提高其HOMO轨道的能量。
从而使HOMO轨道与亲双烯体的LUMO能量更加接近,反应速递加快。
答案:
反应(a)属于环加成[2+2]的逆反应,而反应(b)属于[2+4]环加成的逆反应。
根据前线轨道理论,[2+2]环加成的热反应是禁阻的,而[4+2]环加成的热反应是允许的。
因此,在-78 C下反应(b)反应速递要比反应(a)的快很多。
CH2
重排成甲笨放出大量的热,但它本身却相当稳定。
CH2
为线性共轭多烯,不具有芳香性,分子的能量水平要远比芳香分子甲苯的高,因此它重排成甲苯时会释放出大量的热能。
另一方面,该烯烃重排成甲苯时,主要通过分子内[1, 3]或[1 , 7]b迁移反应来实现的。
根据b迁移反应的轨道对称性原理,1, 3]和[1 , 7]同面迁移属于禁不住阴反应,异面迁移则会受到分子的环状结构的限制,因此,该重排反应的活化能很高,所以化
合物CH2
本身相当稳定。
2-丁叔基-,1,3-丁二烯反应速率比1,3-丁二烯快许多。
N2
倍。
(3).化合物。