平面直角坐标系与一次函数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系与函数

知识点一、平面直角坐标系

1.平面直角坐标系

在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2.点的坐标的概念

点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征

1.各象限内点的坐标的特征

(1)点P(x,y)在第一象限0,0>>⇔y x (2)点P(x,y)在第二象限0,0><⇔y x (3)点P(x,y)在第三象限0,0<<⇔y x (4)点P(x,y)在第四象限0,0<>⇔y x

2.坐标轴上的点的特征

(1)点P(x,y)在x 轴上0=⇔y ,x 为任意实数. (2)点P(x,y)在y 轴上0=⇔x ,y 为任意实数. (3)点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0).

3.两条坐标轴夹角平分线上点的坐标的特征

(1)点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等. (2)点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数.

4.和坐标轴平行的直线上点的坐标的特征

(1)位于平行于x 轴的直线上的各点的纵坐标相同。

(2)位于平行于y 轴的直线上的各点的横坐标相同。

5.关于x 轴、y 轴或远点对称的点的坐标的特征

(1)点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数. (2)点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数.(3)点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数.

6.点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +

知识点三、函数及其相关概念

1.变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2.函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3.函数的三种表示法及其优缺点

(1)解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,

这种表示法叫做解析法。

(2)列表法:把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法:用图像表示函数关系的方法叫做图像法。

4.由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值。(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点.(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点四、正比例函数和一次函数

1.正比例函数和一次函数的概念

一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。这时,y 叫做x 的正比例函数。

2.一次函数的图像 所有一次函数的图像都是一条直线

3.一次函数、正比例函数图像的主要特征:

一次函数b kx y +=的图像是经过点(0,b )的直线;

正比例函数kx y =的图像是经过原点(0,0)的直线。

4.正比例函数的性质

一般地,正比例函数kx y =有下列性质:

(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大,图像从左之右上升; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小,图像从左之右下降。

5.一次函数的性质

一般地,一次函数b kx y +=有下列性质:

(1)当k>0时,y 随x 的增大而增大。 (2)当k<0时,y 随x 的增大而减小。 (3)当b>0时,直线与y 轴交点在y 轴正半轴上。 (4)当b<0时,直线与y 轴交点在y 轴负半轴上。

6.正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。确定一个一次

b>0b<0b=0

k>0

经过第一、二、三象限经过第一、三、四象限

经过第一、三象限图象从左到右上升,y 随x 的增大而增大

k<0

经过第一、二、四象限经过第二、三、四象限经过第二、四象限

图象从左到右下降,y 随x 的增大而减小

函数,需要确定一次函数定义式b

=(k≠0)中的常数k和b。解这类问题的一般方法是待定

y+

kx

系数法

对应练习:

1.在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()

A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2)

2.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标(2,4)或(8,4).

3.直线沿轴平移个单位,则平移后直线与轴的交点坐标为.

4.使式子有意义的x取值范围是.13.(2分)(2014•西宁)二次根式在实数范围内有意义,则

x的取值范围为x≥﹣.

5.若点(a,1)与(﹣2,b)关于原点对称,则a b=.

6.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()

A. B.C.D.

7.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()

A.B.C.D.

8.同一直角坐标系中,一次函数y

1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2

的x取值范围是

相关文档
最新文档