2020高考数学(理)三轮复习每日一卷试题+参考答案+评分标准 (13)
高考理科数学(3卷):答案详细解析(客观题,最新)
【答案】D
11.(解析几何)设双曲线
C:
x2 a2
y2 b2
1 (a>0,b>0)的左、右焦点分别为
F1,F2,离心率为 5 .P 是 C 上一点,且 F1P⊥F2P.若△PF1F2 的面积为 4,
则 a=
A.1
B.2
C.4
D.8
S
1 2
mn
4
【解析】设
PF1
m
,
PF2
n
,根据题意可得,
m2 n2 m n
C.4
D.6
【解析】∵ A B {(1, 7), (2, 6), (3,5), (4, 4)} ,∴A∩B 中元素的个数为 4.
【答案】C
2.(复数)复数
1 1 3i
的虚部是
A. 3 10
B. 1 10
1 C. 10
3 D. 10
【解析】
1 1 3i
(1
1 3i
3i) 1
3i
1 3i 10
即 2 2 2 p 2 p 0 ,解得 p 1,∴C 的焦点坐标为 ( 1 , 0) . 2
图 A5
第2页共8页
解法二: DE 4 p , OD OE 4 4 p ,
∵OD⊥OE,∴ OD 2 OE 2 DE 2 ,即 2(4 4 p) 16 p ,解得 p 1,
∴C 的焦点坐标为 ( 1 , 0) . 2
19 57
19 35
.
【答案】D
7.(三角函数,类文 11)在△ABC 中, cos C= 2 , AC 4 , BC 3 ,则 cos B 3
1
2 D. 3
【解析】由余弦定理得, AB2 AC2 BC2 2AC BC cos C 9 ,
2020年全国高考三轮复习信息卷 理科数学(附答案+全解全析)01
2020年全国高考三轮复习信息卷数 学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合A ={x ∈N||x −1|≤1 }, B ={x|y =√1−x 2},则A ∩B 的真子集的个数为( ) A .3 B .4 C .7 D .82.若复数22252x 2i 2x x x x -++---()为纯虚数,则x 的值为( ) A .2. B .-1. C .12-. D .12. 3.若347log log log 2x y z ==<-,则( )A .347x y z <<B .743z y x <<C .437y x z <<D .734z x y <<4.“上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是( )A .13B .16C .14D .1125.埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )A .128.5米B .132.5米C .136.5米D .110.5米 6.函数1()log 1a x f x x x +=+(01a <<)的图象的大致形状是( ) A . B .C .D .7.记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .128.在平行四边形ABCD 中,3AB =,2AD =,13AP AB =u u u r u u u r ,12AQ AD =u u u r u u u r ,若12CP CQ ⋅=u u u r u u u r ,则BAD ∠=( )A .4πB .3πC .2πD .23π 9.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十“的推论.主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个判断框中,可以先后填入( )A .n 是偶数?,100n ≥?B .n 是奇数?,100n ≥?C .n 是偶数?, 100n >?D .n 是奇数?,100n >?10.中国古代数学家名著《九章算术》中记载了一种名为“堑堵”的几何体,其三视图如图所示,则其外接球的表面积为( )A .43πB .4πC .8πD .64π11.已知F 是椭圆22221(0)x y a b a b+=>>的右焦点,A 是椭圆短轴的一个端点,若F 为过AF 的椭圆的弦的三等分点,则椭圆的离心率为( )A .13B .3C .12D .212.已知f(x)={e x ,x ≤01−x,0<x <1√x −1,x ≥1 ,若a <b <c,f(a)=f(b)=f(c),则实数a +3b +c 的取值范围是。
2020高考数学(理)三轮复习每日一卷试题+参考答案+评分标准 (20)
2020高考数学三轮每日一卷满分150分 时间120分钟一、选择题(本大题共12题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数2zi =+,则1zi+在复平面上对应的点所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合1{|0}xA x x-=≥, {|lg(21)}B x y x ==-,则=B A I ( ) A .),(210 B . ),(121 C .]121,( D .]121[, 3.若4log 3a=,0.33b =,3log cos19π20c =,则a ,b ,c 的大小关系为( )A .a c b <<B .c b a <<C .b c a <<D .c a b <<4.dx x x ))1(1(212---⎰的值是()A.314-πB.14-πC.312-πD.12-π5.已知5sin 26cos()0,(0,),2παπαα+-=∈则2cos ()24απ+=( )A.45B.15-C. 35D.156.给出下列四个命题: ①命题“若π4α=,则tan 1α=”的逆否命题为假命题; ②命题:p x ∀∈R ,sin 1x ≤.则0:p x ⌝∃∈R ,使0sin 1x >;③在ABC △中,若A B >,则sin sin A B >;④命题:“0x ∃∈R ,使003sin cos 2x x +=”.其中正确的个数是( )A .1B .2C .3D .47.在中,,,,为边上一点,且,则()A.B.C.D.8.函数f (x )=21x x 的图象大致是( )A .B .C .D .9.已知:1p a =±,:q 函数22()()f x ln x a x =+为奇函数,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件10.使函数)cos(3)sin()(ϕϕ+-+=x x x f 为偶函数,且在区间π0,4⎡⎤⎢⎥⎣⎦上是减函数的ϕ的一个值为( ) A .3π-B .π32 C .π65 D .6π-11.关于函数()cos cos 2f x x x =+有下列三个结论:①π是f(x)的一个周期;②f(x)在35[,]44ππ上单调递增;③f(x)的值域为[-2,2].则上述结论中,正确的个数为( ) A.0 B.1 C.2 D.312.函数22()()e x f x x ax ax a =--+(e 为自然对数的底数,R a ∈,a 为常数)有三个不同零点,则a 的取值范围是( ) A .1(,0)e-B .(,0)-∞C .1(,)e-+∞ D .(0,)+∞二、填空题(本大题共4小题,每小题5分,共20分)13.已知(),2Pm 为角α终边上一点,且tan 34πα⎛⎫+= ⎪⎝⎭,则cos α=________. 14.设曲线ln 1xy x =+在点(1,0)处的切线与直线10x ay -+=垂直,则=a .15.已知定义在R 上的函数()f x 在区间)[0,+∞上单调递增,且()1y f x =-的图象关于1x =对称,若实数a满足()()2log 2f a f <,则a 的取值范围是 .16.已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,a=1,且(1)(sin sin ))sin ,b A Bc b C +-=-(则ABC ∆面积的最大值为____________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,已知(a -b)2=c 2-ab . (1)求角C ; (2)若4cos()sin 02c A b C π++=,a =1,求△ABC 的面积.18.(本小题满分12分)如图所示,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,点D ,E 分别在线段AA 1,CC 1上,且AD =13AA 1,DE//AC ,F 是线段AB 的中点. (1)求证:EF//平面B 1C 1D ;(2)若AB ⊥AC ,AB =AC ,AA 1=3AB ,求直线BC 与平面B 1DE 所成角的正弦值.19.(本小题满分12分) 函数)2()232sin cos 30f x x x x ωωωω=+->,其图象上相邻两个最高点之间的距离为2π3.(1)求ω的值; (2)将函数()y f x =的图象向右平移π6个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到()y g x =的图象,求()g x 在4π0,3⎡⎤⎢⎥⎣⎦上的单调增区间.20.(本小题满分12分)2019年某饮料公司计划从,A B 两款新配方饮料中选择一款进行新品推介,现对这两款饮料进行市场调查,让接受调查的受访者同时饮用这两种饮料,并分别对,A B 两款饮料进行评分,现对接受调查的100万名受访者的评分进行整理得到如下统计图.从对以往调查数据分析可以得出如下结论:评分在[0,60)的受访者中有20%会购买,评分在[60,80)的受访者中有60%会购买,评分在[80,100]的受访者中有90%会购买. (Ⅰ)在受访的100万人中,求对A 款饮料评分在60分以下的人数(单位:万人); (Ⅱ)现从受访者中随机抽取1人进行调查,试估计该受访者购买A 款饮料的可能性高于购买B 款饮料的可能性的概率; (Ⅲ)如果你是决策者,新品推介你会主推哪一款饮料,并说明你理由.21.(错题再现)已知函数2()ln ()2a f x x x x x a a R =--+∈,在其定义域内有两个不同的极值点. (1)求a 的取值范围;(2)记两个极值点为12,x x ,且12x x >,证明:212e x x ⋅>.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系,曲线C :2=2sin 3ρρθ+,直线l :sin()23πρθ+=.(1)求曲线C 和直线l 的直角坐标方程;(2)设点P 的直角坐标为(0,4),直线l 与曲线C 相交于M N 、两点,求22PM PN +的值23.设()311f x x x =-++的最小值为k . (1)求实数k 的值;(2)设m ,n ∈R ,224m n k +=,求证:2211312m n +≥+.答案一一、1-5 DCDAD 6-10 BBCCC 11-12 BA二、13.552 14. 21 15. ),(44116.43三、17.19.18.(1)函数()223cos 2sin cos 33cos2sin22sin 2(0)3πf x x x x x x ωωωωωωω⎛⎫=+-=+=+> ⎪⎝⎭,其图象上相邻两个最高点之间的距离为2π2π23ω=,32ω∴=,()2sin 3π3f x x ⎛⎫=+ ⎪⎝⎭.(2)将函数()y f x =的向右平移π6个单位,可得π2sin 32sin 36π36πy x x ⎡⎤⎛⎫⎛⎫=-+=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦的图象;再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到()32sin 2π6y g x x ⎛⎫==- ⎪⎝⎭的图象.由4π0,3x ⎡⎤∈⎢⎥⎣⎦,可得311π,266π6πx ⎡⎤-∈-⎢⎥⎣⎦,令32π2π2262πππx k k -≤-≤+,求得4π2π4π4π3939k k x -≤≤+, 故()gx 在4π0,3⎡⎤⎢⎥⎣⎦上的单调增区间为4π0,9⎡⎤⎢⎥⎣⎦和10π4π,93⎡⎤⎢⎥⎣⎦20.依题意,函数的定义域为(1,+∞). (1)当m =4时,()()2154ln 1622f x x x x =-+--.()()()22547106111x x x x f x x x x x ---+=+-==---', 令,解得或;令,解得.可知函数()f x 的单调递增区间为(1,2)和(5,+∞),单调递减区间为.(2)()()()2364211x m x m f x x m x x -+++=+-+='--. 若函数()y f x =有两个极值点,则()()()234601360312Δm m m m m =-+-+>⎡⎤⎣⎦-+++⎧⎪⎪⎪⎨>+>⎪⎪⎪⎩,解得3m >. 20.(Ⅰ)由对A 款饮料的评分饼状图,得对A 款饮料评分在60分以下的频率为为0.050.150.2+=,∴对A 款饮料评分在60分以下的人数为1000.220⨯=(万人)(Ⅱ)设受访者购买A 款饮料的可能性高于购买B 款饮料的可能性为事件C .记购买A 款饮料的可能性为20%为事件1A ;购买A 款饮料的可能性为60%为事件2A ;购买A 款饮料的可能性为90%为事件3A ;购买B 款饮料的可能性为20%为事件1B ;购买B 款饮料的可能性为60%为事件2B .购买B 款饮料的可能性为90%为事件3B .则()10.050.150.2PA =+=,()20.10.20.3P A +==,()30.150.350.5P A +==,由用频率估计概率得:()1550.1100PB +==,()215200.35100P B +==,()315400.55100P B +== Q 事件i A 与j B 相互独立,其中,1,2,3i j =.()()213132P C P A B A B A B ∴=++()()()()()()213132P A P B P A P B P A P B =++0.30.10.50.10.50.350.255=⨯+⨯+⨯=∴该受访者购买A 款饮料的可能性高于购买B 款饮料的可能性的概率为0.255 ;(Ⅲ)从受访者对A ,B 两款饮料购买期望角度看:A 款饮料购买期望X 的分布列为:B 方案“选择倾向指数”Y 的分布列为:()0.20.20.60.30.90.50.67E X ∴=⨯+⨯+⨯=,()0.20.10.60.350.90.550.725E Y =⨯+⨯+⨯=,根据上述期望可知()()EX E Y <,故新品推介应该主推B 款饮料.21解:(1)由题意知,函数()f x 的定义域为(0,)+∞,方程()0f x '=在(0,)+∞有两个不同根;即方程ln 0x ax -=在(0,)+∞有两个不同根;转化为函数ln y x =与函数y ax =的图象在(0,)+∞上有两个不同交点,如图.可见,若令过原点且切于函数ln y x =图象的直线斜率为k ,只须0a k <<.令切点()00,ln A x x ,故01x x ky x=='=,又00ln x kx =故00ln 1x x x =,解得,0x e =,故1k e =,故a 的取值范围为10,e ⎛⎫⎪⎝⎭(2)由(1)可知12,x x 分别是方程ln 0x ax -=的两个根,即11ln x ax =, 22ln x ax =,作差得()1122ln x a x x x =-,即1212ln xx a x x =-对于212e x x ⋅>,取对数得12ln 2x x >,即12ln ln 2x x +>又因为()111122ln ln x x x a ax x x a =+=++,所以122a x x >+,得()1212122lnx x x x x x ->+令12x t x =,则1t >,()1212122ln x x x x x x ->+,即2(1)ln 1t t t ->+ 设2(1)()ln 1t g t t t -=-+, 1t >,22(1)()0(1)t g t t t '-=>+,所以函数()g t 在(1,)+∞上单调递增, 所以()(1)0g t g >=,即不等式2(1)ln 1t tt ->+成立,故所证不等式212e x x ⋅>成立.22(1)由曲线C :2=2sin 3ρρθ+得直角坐标方程为22+y =23x y +, 即C 的直角坐标方程为:22+(1)=4x y -. 由直线l :sin()23πρθ+=展开的sin cos 4ρθθ=,40y +-=.(2)由(1)得直线l 的倾斜角为23π.所以l的参数方程为1,24,2x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入曲线C得:250t ++=.设交点M N 、所对应的参数分别为12t t 、,则1212+=5t t t t -⋅=22222121212+=(+)217PM PN t t t t t t +=-⋅=.23.(1)()42,1,31124,11,42,1,x x f x x x x x x x -+≤-⎧⎪=-++=-+-<<⎨⎪-≥⎩当1x =时,()f x 取得最小值,即()12k f ==.(2)证明:依题意,2242m n +=,则()22416m n ++=.所以22111m n ++()22221114116m n mn ⎛⎫⎡⎤=+++⨯ ⎪⎣⎦+⎝⎭()2222411561n m m n ⎡⎤+⎢⎥=+++⎢⎥⎣⎦(13562≥+=,当且仅当()2222411n m m n +=+,即22m =,20n =时,等号成立. 所以2211312m n +≥+.。
2020高考数学(理)三轮复习每日一卷试题+参考答案+评分标准 (27)
2020高考数学三轮每日一卷满分150分 时间120分钟一、 填空题:(本大题共4小题,每小题5分,共20分)1.已知集合则( )2.已知向量()1,2a =r ,()1,0b =r ,()3,4c =r,若λ为实数,()//a b c λ+r r r ,则λ=( )A. 2B. 1C.12D. 2-3.设,且,则( )4. 函数 ),0()0,(,sin 2)(ππY -∈+=-x xe e xf xx 的图像大致为( )5.在ΔABC 中,a x =,2,45b B ==︒,若ΔABC 有两解,则x 的取值范围是( ) A. (2,2)B. (0,2)C. (2,)+∞D.2,2)6. 如图是函数sin()0.02y x πωϕωϕ⎛⎫=+><<⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图像,将该图像向右平移(0)m m >个单位长度后,所得图像关于直线4x π=对称,则m 的最小值为 ()A.12π B.6π C.4π D.3π 7.已知命题,命题:双曲线的离心率,则是的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.在ABC ∆ 中,内角A,B,C 所对的边分别是a,b,c ,已知()()32sin B A sin B A sin A -++=,且 7c =,3C π=,则ABC ∆ 的面积是 ( )A.33 B. 73 C. 21 D. 33 或 739.若N*的展开式中含有常数项,且n 的最小值为a ,则10(错题重现).已知函数()f x 是R 上的偶函数, ()g x 是R 上的奇函数,且()(1)g x f x =-,若(2)2f =,则(2020)f 的值为( )11.已知函数的一个零点是函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是( )12.若函数f(x)满足'()(()ln )f x x f x x =-,且,则+1的解集为A .(一1,+∞)B .C .(0,)D .(一∞,一1)二、 解答题:(本大题共6小题,共70分) 13.已知平面向量a ,b 的夹角为π3,且1=a ,12=b ,则2-=a b _____14.对于实数a 和b ,定义运算(1),{(1),a b a b a b b a a b +≥*=+<,则式子1221ln ()9e -*的值为 .15.已知向量,a b rr 满足20a b =≠r r ,且函数在()()321132f x x a x a b x =++⋅r r r 在R 上有极值,则向量,a b rr 的夹角的取值范围是_______________.16.ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若b 是a 与c 的等比中项,且sin A 是()sin B A -与sin C 的等差中项,则C =________ ,cos B =__________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.) 17.(10分)(错题重现)在平面直角坐标系xOy 中,直线l 的参数方程为(其中t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点A 的极坐标为,直线l 经过点A .曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)过点作直线l 的垂线交曲线C 于D ,E 两点(D 在x 轴上方),求PEPD 11-的值. 18.在中,角,,的对边分别为,,,已知.(I )求; (II )若,,求的面积.19.已知向量(2sin ,1)a x =,(2cos(),1)6b x π=+,函数()f x a b x R =⋅∈,.(1)若2=a ,(,0)x π∈-,求x ; (2)求()f x 在[0,)2π上的值域;(3)将()f x 的图象向左平移6π个单位得到()g x 的图象,设2()(1)2h x g x x x =-+-,判断()h x 的图象是否关于直线1x =对称,请说明理由.20.若函数()f x 对定义域中任意x 均满足()(2)2f x f a x b +-=,则称函数()y f x =的图象关于点(,)a b 对称.(1)已知函数2()x mx mf x x++=的图象关于点(0,1)对称,求实数m 的值;(2)已知函数()g x 在(,0)(0,)-∞⋃+∞上的图象关于点(0,1)对称,且当(0,)x ∈+∞时,2()1g x x ax =++,求函数()g x 在(,0)-∞上的解析式;(3)在(1)(2)的条件下,当0t >时,若对任意实数(,0)x ∈-∞,恒有()()g x f t <成立,求实数a 的取值范围.21.如图所示,石城中学积极开展美丽校园建设,现拟在边长为0.6千米的正方形地块ABCD 上划出一片三角形地块CMN 建设小型生态园,点,M N 分别在边,AB AD 上. (1)当点,M N 分别时边AB 中点和AD 靠近D 的三等分点时, 求MCN ∠的余弦值;(2)实地勘察后发现,由于地形等原因,AMN ∆的周长必须为1.2千米,请研究MCN ∠是否为定值,若是,求此定值,若不是,请说明理由. 22.已知函数()cos f x x x =-.(1)若21cos11f m ⎛⎫<- ⎪-⎝⎭,求实数m 的取值范围; (2)若不等式cos x e a x ax +≥对22x ππ⎡⎤∀∈-⎢⎥⎣⎦,恒成立,求实数a 的取值范围.数学参考答案一、选择题:本大题共12个小题,每小题5分,共60分.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C C D A B A D C C B D13. 1 14. 9 15.,3ππ⎛⎤⎥⎝⎦ 16. (1). 2π(2).51-三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17【解答】解:(1)由题意得点A的直角坐标为,将点A代入得,则直线l的普通方程为.由ρsin2θ=4cosθ得ρ2sin2θ=4ρcosθ,即y2=4x.故曲线C的直角坐标方程为y2=4x.(2)设直线DE的参数方程为(t为参数),代入y2=4x得.设D对应参数为t1,E对应参数为t2.则,,且t1>0,t2<0.∴.18【详解】(1)因为,所以,故,所以,因为,所以,又,且0 < C< π,解得,. (2)由(1)得所以,由,设,由余弦定理得:,所以,所以的面积.19解:(1)24sin 12a x =+=Q 21sin 4x ∴=,1sin 2x =± 又(),0x π∈-,6x π∴=-或56π-. (2)()314sin cos 14sin sin 1622f x x x x x x π⎛⎫⎛⎫=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭()23sin22sin 13sin21cos212sin 26x x x x x π⎛⎫=-+=--+=+ ⎪⎝⎭.0,2x π⎡⎫∈⎪⎢⎣⎭Q ,72,666x πππ⎡⎤∴+∈⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎛⎤∴+∈- ⎪ ⎥⎝⎭⎝⎦, 故()f x 在0,2π⎡⎫⎪⎢⎣⎭上的值域为(]1,2-. (3)()g 2sin 22cos262x f x x x Q ππ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,()()()2cos 2211h x x x ∴=-+--.()()()()()()222cos 2211cos 2211h x x x x x h x -=-+--=-+--=Q ,()h x ∴的图象关于直线1x =对称.20试题解析:(1)由题设可得()()2f x f x +-=,即222x mx m x mx m x x++-++=-,解得1m =.(2)当0x <时,0x ->且()()2g x g x +-=, ∴2()2()1g x g x x ax =--=-++. (3)由(1)得1()1(0)f t t t t=++>, 其最小值为(1)3f =.222()1()124a a g x x ax x =-++=--++, ①当02a <,即0a <时,2max ()134a g x =+<,得(22,0)a ∈-; ②当02a≥,即0a ≥时,,得[0,)a ∈+∞;由①②得(2,)a ∈-+∞.21【详解】(1)由题意可知11tan ,tan 32DCN MCB ∠=∠=, 所以()11tan tan 32tan 1111tan tan 132DCN MCB DCN MCB DCN MCB +∠+∠∠+∠===-∠⋅∠-⨯, 由题意可知0,2DCN MCB π⎛⎫∠+∠∈ ⎪⎝⎭,所以4DCN MCB π∠+∠=,所以4MCN π∠=.(2)设,AM x AN y ==,所以 1.2MN x y =-- 在直角三角形AMN 中,222MN x y =+ 所以()222 1.2x y x y +=--,整理得()1.20.72xy x y =+-0.6tan 0.6DN y DCN CN -∠==,0.6tan 0.6MB xMCB BC -∠== 所以()tan tan tan 1tan tan DCN MCBDCN MCB DCN MCB∠+∠∠+∠=-∠⋅∠()()()()1.20.720.60.60.60.60.610.36x yx y y x x y xy ---+==--+--将()1.20.72xy x y =+-代入上式可得()tan 1DCN MCB ∠+∠=, 所以4DCN MCB π∠+∠=,所以4MCN π∠=为定值.22【详解】(1)()cos f x x x =-,所以()1sin 0f x x '=+≥,()f x 在R 上单调递增 不等式21cos11f m ⎛⎫<-⎪-⎝⎭转化为()211f f m ⎛⎫< ⎪-⎝⎭则211m <-,解得()(),13,-∞⋃+∞ (2)()()cos xex x af x a -=≥函数()f x 为单调增函数,且()00,02f f π⎛⎫<>⎪⎝⎭, 故存在唯一00,2x π⎛⎫∈ ⎪⎝⎭,有()00f x =①当0,2x x π⎡⎫∈-⎪⎢⎣⎭时,有()0f x < 所以()cos x xe e af x x x=-≥,令()cos xe g x x x =-,则()max a g x ≥()()()2cos sin 1cos x e x x x g x x x ---'=-()cos 0,sin 10f x x x x =-<--<,所以()0g x '<所以()g x 单调递减,()2max22g x g e πππ-⎛⎫=-=- ⎪⎝⎭,所以22a eππ--≥②当0,2x x π⎡⎤∈⎢⎥⎣⎦时,有()0f x ≥ 则()cos x xe e af x x x ≤=-,即()min ag x ≤ ()()()2cos sin 1cos x e x x x g x x x ---'=-,cos sin 1x x x ---14x x π⎛⎫=-+- ⎪⎝⎭,0,2x x π⎡⎤∈⎢⎥⎣⎦03,444x x πππ⎛⎫+∈+ ⎪⎝⎭,044x ππ+>14x π⎛⎫+> ⎪⎝⎭, 所以cos sin 1222x x x x π≤---<--所以()0g x '<所以()g x 单调递减,()2min22g x g e πππ⎛⎫== ⎪⎝⎭所以22a e ππ≤,综上所述,2222,a e e ππππ-⎡⎤∈-⎢⎥⎣⎦。
2020年高考三轮冲刺卷理数答案
)!.! 命 题
立
意
考
查
充
分条
件
必
要
条
件
的判
定
一
元
二-
观 想 象 数 学 运 算 等 核 心 素 养 !
次不等式恒成立问题!体现了逻辑推理的核心素养! - 试题解析由约束条件作出可行域 如 图 中 阴 影 部 分 所
试题解析不 等 式 $" '$*E+# 在 0 上 恒 成 立#则 "-
8 4
#"#J8#"4#
J 半 焦 距5#
槡4"
*8"
#槡%4#JM#
5 4
#槡%!
参 考 答 案 槡%
,9!故选 $! !"!.! 命 题 立 意 考 查 空 间 几 何 体 的 折 叠 问 题 线 面
的性 质!体 现 了 逻 辑 推 理直 观 想 象数 学 运 算 等
垂 核
直心----!%!推命试理题题立解数
-
试
题
解
析
把
函
数
(%$&#槡)4'5$674$*674"$'
! "
-
所 以 数 列 !4? '<?"为 等 差 数 列 #设8? #4? '<?# 故0?#0% 对任意的?//; 恒成立#可化为8%'##8/###
$ #槡")4'5"$*
!"674"$#4'5%"$*
/
&图 象
上
各
点
向
右--
)674$!设曲线 (%$&上 任 意 一 点 "%$!#+!&#曲 线=%$& 上存在 一 点 %%$"#+" &#则 ()%$! &=)%$" &# '!#且 ()%$!&# '+$! '!/%' D #'!&#=)%$"&#E')674$"
2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理及答案解析
2020年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}解析:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},∴A∩B={x|x≥1}∩{0,1,2}={1,2}.答案:C2.(1+i)(2﹣i)=( )A.﹣3﹣iB.﹣3+iC.3﹣iD.3+i解析:(1+i)(2﹣i)=3+i.答案:D3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A.B.C.D.解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.答案:A4.若sinα=13,则cos2α=( ) A.89 B.79C.﹣79D.﹣89解析:∵sinα=13,∴cos2α=1﹣2sin 2α=192719-⨯=. 答案:B5.(x 2+2x )5的展开式中x 4的系数为( )A.10B.20C.40D.80解析:由二项式定理得(x 2+2x )5的展开式的通项为:()()5210315522rrr rr rr xT Cx C x--+==,由10﹣3r=4,解得r=2,∴(x 2+2x )5的展开式中x 4的系数为5222C =40.答案:C6.直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x ﹣2)2+y 2=2上,则△ABP 面积的取值范围是( ) A.[2,6] B.[4,8]232,D.[2232,] 解析:∵直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点, ∴令x=0,得y=﹣2,令y=0,得x=﹣2,∴A(﹣2,0),B(0,﹣2),4+4=22∵点P 在圆(x ﹣2)2+y 2=2上,∴设P ()2co 2s sin 2θθ+,,∴点P 到直线x+y+2=0的距离:()2sin 42cos sin 242222d πθθθ+++++==,∵()sin 4πθ+∈[﹣1,1],∴d= ()22sin 44πθ++∈[232,], ∴△ABP 面积的取值范围是:[11222223222⨯⨯⨯⨯,,6].答案:A7.函数y=﹣x 4+x 2+2的图象大致为( )A.B.C.D.解析:函数过定点(0,2),排除A ,B.函数的导数f′(x)=﹣4x 3+2x=﹣2x(2x 2﹣1),由f′(x)>0得2x(2x 2﹣1)<0,得x <﹣或0<x <,此时函数单调递增,排除C.答案:D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 解析:某群体中的每位成员使用移动支付的概率都为p ,看做是独立重复事件,满足X ~B(10,p),P(x=4)<P(X=6),可得()()644466101011C p p C p p --<,可得1﹣2p <0.即12p >. 因为DX=2.4,可得10p(1﹣p)=2.4,解得p=0.6或p=0.4(舍去). 答案:B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为2224a b c +-,则C=( )A.2πB.3πC.4πD.6π解析:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.△ABC 的面积为2224a b c +-,∴S △ABC =222s 1in 42a b c ab C +-=,∴sinC=2222a b c bc +-=cosC ,∵0<C <π,∴C=4π.答案:C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为则三棱锥D ﹣ABC 体积的最大值为( )A.B.C.D.543解析:△ABC 为等边三角形且面积为93,可得2393AB ⨯=,解得AB=6,球心为O ,三角形ABC 的外心为O′,显然D 在O′O 的延长线与球的交点如图:()222362342323O C OO '=='=-=,,则三棱锥D ﹣ABC 高的最大值为:6,则三棱锥D ﹣ABC 体积的最大值为:31361833=答案:B11.设F 1,F 2是双曲线C :22221y x a b -=(a >0.b >0)的左,右焦点,O 是坐标原点.过F 2作C的一条渐近线的垂线,垂足为P ,若|PF 1|=6|OP|,则C 的离心率为( )A.5B.2C.3D.2解析:双曲线C :22221y x a b -=(a >0.b >0)的一条渐近线方程为b y x a =, ∴点F 2到渐近线的距离22bcd b a b ==+,即|PF 2|=b ,∴2222222cos bOP OF PF c b a PF O c =-=-=∠=,, ∵|PF 16|OP|,∴|PF 16a ,在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2﹣2|PF 2|·|F 1F 2|COS ∠PF 2O ,∴6a 2=b 2+4c 2﹣2×b ×2c ×bc =4c 2﹣3b 2=4c 2﹣3(c 2﹣a 2),即3a 2=c 2, 即3a=c ,∴3c e a ==.答案:C12.设a=log 0.20.3,b=log 20.3,则( ) A.a+b <ab <0 B.ab <a+b <0 C.a+b <0<ab D.ab <0<a+b解析:∵a=log 0.20.3=lg 0.3lg 5-,b=log 20.3=lg 0.3lg 2,∴()5lg 0.3lg lg 0.3lg 5lg 2lg 0.3lg 0.32lg 2lg 5lg 2lg 5lg 2lg 5a b -+-===,10lg 0.3lg lg 0.3lg 0.33lg 2lg 5lg 2lg 5ab ⋅-⋅==,∵105lg lg 32>,lg 0.3lg 2lg 5<,∴ab <a+b <0.答案:B二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(1,2),b =(2,﹣2),c =(1,λ).若c ∥(2a b +),则λ=____. 解析:∵向量a =(1,2),b =(2,﹣2), ∴2a b +=(4,2),∵c =(1,λ),c ∥(2a b +),∴142λ=, 解得λ=12.答案: 1214.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=____.解析:曲线y=(ax+1)e x ,可得y′=ae x +(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2, 可得:a+1=﹣2,解得a=﹣3. 答案:﹣315.函数f(x)=cos(3x+6π)在[0,π]的零点个数为____.解析:∵f(x)=cos(3x+6π)=0, ∴362x k πππ+=+,k ∈Z ,∴x=193k ππ+,k ∈Z ,当k=0时,x=9π,当k=1时,x=49π,当k=2时,x=79π,当k=3时,x=109π,∵x ∈[0,π],∴x=9π,或x=49π,或x=79π,故零点的个数为3. 答案:316.已知点M(﹣1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k=____.解析:∵抛物线C :y 2=4x 的焦点F(1,0), ∴过A ,B 两点的直线方程为y=k(x ﹣1),联立()241y x y k x ⎪-⎧⎪⎨⎩==可得,k 2x 2﹣2(2+k 2)x+k 2=0, 设A(x 1,y 1),B(x 2,y 2),则212242k x x k ++=,x 1x 2=1, ∴y 1+y 2=k(x 1+x 2﹣2)=4k ,y 1y 2=k 2(x 1﹣1)(x 2﹣1)=k 2[x 1x 2﹣(x 1+x 2)+1]=﹣4,∵M(﹣1,1),∴MA =(x 1+1,y 1﹣1),MB =(x 2+1,y 2﹣1), ∵∠AMB=90°=0,∴0MA MB ⋅= ∴(x 1+1)(x 2+1)+(y 1﹣1)(y 2﹣1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2﹣(y 1+y 2)+2=0,∴24124420k k ++--+=,即k 2﹣4k+4=0,∴k=2. 答案:2三、解答题:共70分。
2020年高考数学全国卷3-高考理科数学试题参考答案
×
130 26
×
130
=
5 2
.
21 . 解: (1 )f ' (x ) = 3x 2 +b .
依题意得f '
1 2
=0 ,
即3 4
+b
=0 .
故b = -
3 4
.
(2 ) 由(1 ) 知f
(x ) = x 3 -
3 4
x
+c
,f '
(x ) = 3x 2 -
3 4
.
令f '
(x ) = 0 , 解得x = -
y
=
1 3
x
, 点A (-
5 ,0 )
到直线P 1Q 1
的距离为
10 2
, 故△A P 1Q 1
的面积为1 2
×
10 2
×
10
=
5 2
.
| P 2Q 2| =
130 , 直线 P 2Q 2
的方程为y
=
7 9
x
+
10 3
,
点A
到直线P 2Q 2
的距离为
130 , 26
故△A P 2Q 2
的面积为1 2
2020年普通高等学校招生全国统一考试 ( 理科) 数 学 试题参考答案
1 . C 2 . D 3 . B 4 . C 5 . B 6 . D 7 . A 8 . C 9 . D 10 . D 11 . A 12 . A
13 .7
14 .240
15 .
2 3
π
16 . ②③
17 . 解: (1 )a 2 = 5 ,a 3 = 7 . 猜想a n = 2n + 1 . 由已知可得 a n + 1 - (2n + 3 ) = 3 [a n - (2n + 1 ) ] , a n - (2n + 1 ) = 3 [a n - 1 - (2n - 1 ) ] , ……
2020年高考第三模拟考试数学(理)试题(全国新课标1卷)-含答案
2020年⾼考第三模拟考试数学(理)试题(全国新课标1卷)-含答案2020年⾼考第三模拟考试数学(理)试题(全国新课标1卷)注意事项:1.答卷前,考⽣务必将⾃⼰的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上⽆效。
3.考试结束后,将本试卷和答题卡⼀并交回。
⼀、选择题:本⼤题共12⼩题,每⼩题5分,满分60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.设集合{1,2,4}A =,2{|40}B x x x m =-+=,若}1{=B A ,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 2.设复数1z ,2z 在复平⾯内的对应点关于虚轴对称,13z i =+,则12z z =A .10B .9i --C .9i -+D .-103.已知向量)4,(),3,2(x b a ==,若)(b a a -⊥,则x =A .21B .1C .2D .34.设等差数列{}n a 的前n 项和为n S ,若3623a a +=,535S =,则{}n a 的公差为A .2B .3C .6D .95.已知m ,n 是空间中两条不同的直线,α,β是两个不同的平⾯,则下列说法正确的是()A .若βαβα//,,??n m ,则n m //B .若βαα//,?m ,则β//mC. 若βαβ⊥⊥,n ,则α//nD .若βα??n m ,,l =βα,且l n l m ⊥⊥,,则βα⊥6.某学校计划在周⼀⾄周四的艺术节上展演《雷⾬》,《茶馆》,《天籁》,《马蹄声碎》四部话剧,每天⼀部,受多种因素影响,话剧《雷⾬》不能在周⼀和周四上演,《茶馆》不能在周⼀和周三上演,《天籁》不能在周三和周四上演,《马蹄声碎》不能在周⼀和周四上演,那么下列说法正确的是A .《雷⾬》只能在周⼆上演B .《茶馆》可能在周⼆或周四上演C .周三可能上演《雷⾬》或《马蹄声碎》D .四部话剧都有可能在周⼆上演7.函数x e x f xcos )112()(-+=(其中e 为⾃然对数的底数)图象的⼤致形状是A B C D8.被誉为“中国现代数学之⽗”的著名数学家华罗庚先⽣倡导的“0.618优选法”在⽣产和科研实践中得到了⾮常⼴泛的应⽤,0.618就是黄⾦分割⽐m =的近似值,黄⾦分割⽐还可以表⽰成2sin18?= A .4 B1 C .2 D19.已知y x ,满⾜约束条件??≤+≤--≥++00202m y y x y x ,若⽬标函数y x z -=2的最⼤值为3,则实数m 的值为A .-1B .0C .1D .210.如图是某⼏何体的三视图,正视图是等边三⾓形,侧视图和俯视图为直⾓三⾓形,则该⼏何体外接球的表⾯积为A .193πB .8πC .9πD .203π 11.已知函数)0(sin )42(cos sin 2)(22>--=ωωπωωx x x x f 在区间]65,32[ππ-上是增函数,且在区间],0[π上恰好取得⼀次最⼤值,则ω的范围是A .]53,0(B .]53,21[C .]43,21[D .)25,21[12.若,,x a b 均为任意实数,且22(2)(3)1a b ++-=,则22()(ln )x a x b -+-的最⼩值为A.B .18 C.1 D.19-⼆、填空题:本⼤题共4⼩题,每⼩题5分,共20分.13.ABC ?的内⾓C B A ,,的对边分别为c b a ,,,若1,135cos ,54cos ===a B A ,则=b __________.14.已知函数1)1ln()(2+++=x x x f ,若2)(=a f ,则=-)(a f __________.15.已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则1220...a a a +++=_______.16.已知四边形ABCD 为矩形,AB=2AD=4,M 为AB 的中点,将ADM ?沿DM 折起,得到四棱锥DMBC A -1,设C A 1的中点为N ,在翻折过程中,得到如下三个命题:①DM A //1平⾯BN ,且BN 的长度为定值5;②三棱锥DMC N -的体积最⼤值为322;③在翻折过程中,存在某个位置,使得C A DM 1⊥其中正确命题的序号为__________.三、解答题:共70分,解答时应写出必要的⽂字说明、演算步骤.第17~21题为必考题,第22、23题为选考题.(⼀)必考题:共60分17.(12分)已知函数()sin ()3f x A x π=+,x R ∈,0A >,0π?<<.()y f x =的部分图像,如图所⽰,P 、Q 分别为该图像的最⾼点和最低点,点P 的坐标为(1,)A .(1)求()f x 的最⼩正周期及?的值;(2)若点R 的坐标为(1,0),23PRQ π∠=,求18.(12分)已知数列}{n a 满⾜)1(2)1(,211+++==+n n S n nS a n n .(1)证明数列}{nS n 是等差数列,并求出数列}{n a 的通项公式;(2)设n a a a a b n 2842++++=,求n b .。
2020年高考数学全国卷3-高考理科数学试题参考答案
×
130 26
×
130
=
5 2
.
21 . 解: (1 )f ' (x ) = 3x 2 +b .
依题意得f '
1 2
=0 ,
即3 4
+b
=0 .
故b = -
3 4
.
(2 ) 由(1 ) 知f
(x ) = x 3 -
3 4
x
+c
,f '
(x ) = 3x 2 -
3 4
.
令f '
(x ) = 0 , 解得x = -
a 2 - 5 = 3 (a 1 - 3 ) . 因为a 1 = 3 , 所以a n = 2n + 1 . (2 ) 由(1 ) 得2na n = (2n + 1 )2n . 所以 S n = 3 ×2 + 5 ×2 2 + 7 ×2 3 + …+ (2n + 1 ) ×2n . ① 从而2S n = 3 ×2 2 + 5 ×2 3 + 7 ×2 4 + …+ (2n + 1 ) ×2n + 1 . ② ①- ②得- S n = 3 ×2 + 2 ×2 2 + 2 ×2 3 + …+ 2 ×2n - (2n + 1 ) ×2 (n + 1 ) . 所以S n = (2n - 1 )2n + 1 + 2 . 18 . 解: (1 ) 由所给数据, 该市一天的空气质量等级为1 , 2 ,3 ,4 的概率的估计值如下表:
ab +bc +ca
=
1 2
2020高考数学(理)三轮复习每日一卷试题+参考答案+评分标准 (19)
2020高考数学三轮每日一卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集U = {1,2,3,4,5,6,7,8,9},集合 A = {2,4,6,7},B = {3,5,6,7,8},则()()U U C A C B =IA .{1,9}B .{2,3,4,5,6,7,8}C .{1,2,3,4,5,8,9}D .{1.6.7.9}2. 设21(1z i i =++是虚数单位), 则z = A .2 B .3 C .5 D .323. 已知等差数列{}n a 的前n 项和为S n ,a 3=7, S 3=9,则a 10= A .25 B .35 C .40 D .454. 已知函数)(x f 的图象如图所示,则)(x f 可以为A .3()x x f x e =B .()x x x f x e e -=-C .()x x f x e =D .=)(x f x xe 5. 某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照[70, 80),[80,90) ,[90, 100]分组,绘成频率分布直方图如下:嘉宾评分的平均数为1x ,场内外的观众评分的平均数为2x :,所有嘉宾与场内外的观众评分的平均数为x ,则下列选项正确的是A .122x x x +=B .122x x x +> C .122x x x +< D .12122x x x x x +>>> 6. 已知角α的终边在直线2y x =上,则tan()4πα+=A .322--B .3+22C .322-+D .3-227. 四棱锥V-ABCD 的底面是正方形,且各条棱长均相等,点P 是VC 的中点,则异面直线AP 与CD 所成角的余弦值为A .35B .55C .510D .35108.若两个非零向量ba,满足0)()(=-⋅+baba,且baba-=+2,则a与b夹角的余弦值为A.35B.35±C.12D.12±9.已知F1、F2分别是双曲线C:22221(0,0)x ya ba b-=>>的左,有焦点,过F2作双曲线C的一条渐近线的垂线,分别交两条渐近线于点A,B,过点B作x轴的垂线,垂足恰为F1.则双曲线C的离心率为A.2 B3C.3D510.已知32)32(32)32(,32,32=⎪⎭⎫⎝⎛==cba,则A.cba<<B.abc<<C.bac<<D.bca<<11.过抛物线22(0)y px p=>的焦点F的直线与抛物线交于A,B两点,且FBAF2=,抛物线的准线l与x轴交于ACFC∆,的面积为2则AB=A.6 B.9 C.92D.6212.在四面体ABCD中,AB=AC= BC= BD= CD=2,AD6,则四面体ABCD的外接球的表面积为A.163πB.5π C.20π D.203π二、填空题:本题共4小题,每小题5分,共20分.13.若x、y满足约束条件3236yx yx y≤⎧⎪+≥⎨⎪-≤⎩,则2z x y=+的最小值为________14.已知函数1()ln1xf xax-=-为奇函数,则a=_____________.15.如图是一个不规则的几何图形,为了求它的面积,在图形中画了一个边长为1 m的正方形,现向图形中随机投掷石子,并记录如下:请估计该不规则的几何图形的面积约为_____ m2(保留整数).16.如图,在∆ABC中,AC=2,∠A=3π,点D在线段AB上,且AD= 2DB,sin∠ACD7sin∠BCD,则∆ABC的面积为_____。
2020高考数学(理)三轮复习每日一卷试题+参考答案+评分标准 (26)
2020高考数学三轮每日一卷第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知{}{}55|,03|2≤≤-=∈>-=x x B N x x x x A ,,则=B A C R I )(( ) A . {1, 2} B. {1, 2, 3} C. {0, 1, 2} D. {1, 2, 3 , 4,}2. 设复数z 满足i z i 341+=+)(,则复数z 所对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 如下图的茎叶图为某次10名学生100米跑步的成绩(s ),由茎叶图可知这次成绩的平均数,中位数,众数分别为( )A . 51.9 52 60B .52 54 60C . 51.9 53 60D .52 53 624. 已知随机变量X 服从正态分布(),4N a ,且()10.5P X >=,()20.3P X >=,()0P X <等于( )A. 0.2 B .0.3 C .0.7D .0.85. 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺, 竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n 等于( )A .4B .2C .3D .56. 太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被3sin 6y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A .118B .136C .19D .1127. 若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )A B C D8. 已知一个几何体的三视图如图所示,则该几何体的体积为()A.323B. 163C. 83D. 439. 设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则yxz2-=的最大值为A.31B.31- C. -3 D. 310. 将函数()2π2cos16g x x⎛⎫=+-⎪⎝⎭的图象,向右平移π4个单位长度,再把纵坐标伸长到原来的2倍,得到函数()f x,则下列说法正确的是()A.函数()f x的最小正周期为2πB.π3x=是函数()f x的一条对称轴C.函数()f x在区间7π5π,124⎡⎤⎢⎥⎣⎦上单调递增D.函数()f x在区间2π5π,34⎡⎤⎢⎥⎣⎦上的最小值为3-11. 定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90o的正角.已知双曲线E:()222210,0x ya ba b-=>>,当其离心率2,2e⎡⎤∈⎣⎦时,对应双曲线的渐近线的夹角的取值范围为()A.0,6π⎡⎤⎢⎥⎣⎦B.,32ππ⎡⎤⎢⎥⎣⎦C.,43ππ⎡⎤⎢⎥⎣⎦D.,63ππ⎡⎤⎢⎥⎣⎦12. 已知定义在R上的函数f(x)满足f(x-1)=f(x+1),且当x∈[-1,1]时,)121()(+-=x e x x f ,则( ) A .)2()3()25(f f f <-< B .)25()3()2(f f f <-<C .)3-()25()2(f f f <<D .)25()2()3-(f f f <<第Ⅱ卷二.填空题:本大题共4小题,每小题5分。
2020年普通高等学校招生全国统一考试 理科数学 (全国卷III) 解析版
2020年普通高等学校招生全国统一考试(III 卷) 理科数学一、选择题1.已知集合*{(,)|,,}A x y x y N y x =∈≥,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A.2 B.3 C.4 D.6 答案: C 解答:{(4,4),(3,5),(2,6)(1,7)}AB =,有4个元素,故选C.2.复数113i-的虚部是( ) A.310- B.110- C.110 D.310答案: D 解答:1131313(13)(13)10i i i i i ++==--+,故选D. 3.在一组样本数据中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且411ii p==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A.140.1p p ==,230.4p p == B.140.4p p ==,230.1p p ==C.140.2p p ==,230.3p p ==D.140.3p p ==,230.2p p ==答案: B 解答:根据每个选项中都有14p p =,23p p =,且411i i p ==∑,∴各选项中样本平均值相等,都为2.5,数值离其平均值之间的差异越大,标准差越大.显然,B 选项中,大部分数值与平均值之间的差异较大,∴选B.4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()1t K I t e --=+,其中K 为最大确诊病例数.当*()0.95I t K =时,标志着已初步遏制疫情,则*t 约为( )(ln193≈) A.60 B.63 C.66 D.69 答案: C 解答: 令*0.23(53)0.951tK K e --=+,∴*0.23(53)119te --=,*10.23(53)ln319t --=≈-,∴*66t ≈. 5.设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( )A.1(,0)4B.1(,0)2C.(1,0)D.(2,0) 答案: B 解答:不妨设D ,(2,4)E p -,∵OD OE ⊥,∴440OD OE p ⋅=-=,解得1p =, 故抛物线C 的方程为22yx =,其焦点坐标为1(,0)2.6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,a a b <+>=( ) A.3135- B.1935- C.1735 D.1935答案: D 解答:由2()||25619a a b a a b ⋅+=+⋅=-=,又22||27a b a a b b +=+⋅+=,所以()1919cos ,5735||||a ab a a b a a b ⋅+<+>===⨯⋅+,故选D. 7.在ABC ∆中,2cos ,4,33C AC BC ===,则cos B =( ) A.19 B.13 C.12 D.23答案: A 解答:由余弦定理可知:2222222||||||34||cos 32||||234BC AC AB AB C BC AC +-+-===⋅⨯⨯,可得|| 3 AB =,又由余弦定理可知222222||||||3341cos 2||||2339AB BC AC B AB BC +-+-===⋅⨯⨯. 故选A.8.如图为某几何体的三视图,则该几何体的表面积是( )A.642+B.442+C.623+D.423+答案: C 解答:由题可知该几何体是如图所示三棱锥P ABC -,底面ABC 为等腰直角三角形,侧棱PC ⊥底面ABC ,其表面积为:113222222sin6062322S =⨯⨯⨯+⨯⨯⨯=+︒,故选C.9.已知2tan tan()74πθθ-+=,则tan θ=( )A.2-B.1-C.1D.2 答案: D 解答:由题可知1tan 2tan 71tan θθθ+-=-,化解得:22tan 2tan 1tan 77tan θθθθ---=-,解得tan 2θ=.故选D.10.若直线l与曲线y 2215xy +=都相切,则l 的方程为( ) A.21y x =+ B.122y x =+ C.112y x =+ D.1122y x =+ 答案: D 解答:由y =y '=,假设直线l与曲线y相切于点0(x ,则直线l的方程为0)y x x =-,即00x x -+=.由直线l 与圆2215x y +==,解得01x =,故直线l 的方程为210x y -+=,即1122y x =+. 11.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,离心率为P 是C 上一点,且12F P F P ⊥.若12PFF ∆的面积为4,则a =( ) A.1 B.2 C.4 D.8A 解答: 法一:设1PF m =,2PF n =,则12142PF F S mn ∆==,2m n a -=,2224m n c +=,可得224c a =+,又ce a==,求得1a =. 法二:由题意知双曲线的焦点三角形面积为122tan 2PF F b S θ∆=. 所以24tan45b ︒=,解得2b =,又因为c e a ===,所以1a =.12.已知5458<,45138<.设5log 3a =,8log 5b =,13log 8c =,则( ) A.a b c << B.b a c << C.b c a << D.c a b << 答案: A 解答:易知,,(0,1)a b c ∈,由2225555558log 3(log 3log 8)(log 24)2log 3log 8log 54144a b +==⋅<==<知a b <, 因为8log 5b =,13log 8c =,所以85,138b c ==,即554485,138b c ==, 又因为544558,138<<,所以445541385813c b b =>=>,即b c <, 综上所述:a b c <<.故选:A. 二、填空题13.若x ,y 满足约束条件0201x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则32z x y =+的最大值为________.7解答:作出可行域如图所示,由32z x y =+知3122y x z =-+, 由图可知,当目标函数过点(1,2)A 时,取得最大值,即max7z =.14.262()x x+的展开式中常数项是________(用数字作答). 答案:240解答: 因为2(6)12316622r r rr r r r r T C xx C x ---+==,由1230r -=得4r =,所以常数项为240.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案:23解答:分析知圆锥内半径最大的球的应为该圆锥的内切球,如下图,由题可知该圆 锥的母线长为3BS =,底面半径为1BC =,高为2222SC BS BC =-,不妨设该内切圆与母线BS 切于D 点,令OD OC r ==,则由SOD SBC ∆∆∽,可得OD BC OS BS =1322r =-得2r =,此时3423V r π==.16.关于函数1()sin sin f x x x=+. ①()f x 的图像关于y 轴对称;②()f x 的图像关于原点对称; ③()f x 的图像关于直线2x π=对称; ④()f x 的最小值为2.其中所有真命题的序号是________. 答案: ②③ 解答:对于①,由sin 0x ≠可得函数的定义域为{|,}x x k k Z π≠∈,故定义域关于原点对称,由11()sin()sin ()sin()sin f x x x f x x x-=-+=--=--,所以该函数为奇函数,关于原点对称,①错②对;对于③,11()sin()sin ()sin()sin f x x x f x x xπππ-=-+=+=-,所以()f x 关于2x π=对称,③对;对于④,令sin t x =,则[1,0)(0,1]t ∈-,由双勾函数1()f t t t=+的性质,可知()(,2][2,)f t ∈-∞-⋃+∞,所以()f x 无最小值,④错.三、解答题17.设数列{}n a 满足13a =,134n n a a n +=-. (1)计算23,a a .猜想的通项公式并加以证明; (2)求数列{2}nn a 的前n 项和n S .答案: 见解析 解答:(1)由13a =,134n n a a n +=-,21345a a =-=﹐323427a a =-⨯=,…猜想{}n a 的通项公式为21n a n =+.利用数学归纳法证明:(i )当1,2,3n =时,显然成立;(ii )假设()n k k N *=∈时猜想成立,即21k a k =+,则1n k =+时,1343(21)42(1)1k ka a k k k k +=-=+-=++,所以1n k =+时猜想也成立, 综上(i )(ii ),所以21n a n =+.(2)令2(21)2n n n n b a n ==+⨯,则12123252(21)2n nn S b b b n =+++=⨯+⨯+++⨯……①,23123252(21)2(21)2n n n S n n +=⨯+⨯++-++⨯……②,由①-②得,312112(12)322222(21)26(21)212n n n n n S n n -++--=⨯+⨯++⨯-+⨯=+-+⨯-,化简得1(21)22n nS n +=-⨯+.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻的人次,整理数据得到下表(单位:天):(1)分別估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的值计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”,根据所给数据.完成下面的22⨯列联表.并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,.答案: 见解析 解答:(1)根据上面的统计数据,可得: 该市一天的空气质量等级为1的概率为2162543100100++=该市一天的空气质量等级为2的概率为5101227100100++=,该市一天的空气质量等级为3的概率为67821100100++=, 该市一天的空气质量等级为4的概率为7209100100++=. (2)由题意,计算得1000.203000.355000.45350x =⨯+⨯+⨯=, 即一天中到该公园锻炼的平均人次的值计值为350. (3)22⨯列联表如下:由表中数据可得:22100(3383722) 5.820 3.84170305545K ⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 19.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上且112,2DE ED BF FB ==.(1)证明:点1C 在平面AEF 内:(2)若12,1,3AB AD AA ===,求二面角1A EF A --的正弦值.答案: 见解析 解答:(1)在1AA 上取一点M ,使得12AM AM =,分别连接EM ,1B M ,1EC ,1FC .在长方体1111ABCD A B C D -中,有111////DD AA BB ,且111 DD AA BB ==,又12DE ED =,12AM AM =,12BF FB =,所以1DE AM FB ==,所以四边形1B FAM 和四边形EDAM 都是平行四边形. 所以1//AF MB 且1AFMB =,//AD ME 且AD ME =,又在长方体1111ABCD A B C D -中,有11//AD B C ,且11AD B C =, 所以11//B C ME 且11B C ME =,则四边形11B C EM 为平行四边形,所以11//EC MB , 所以1//AF EC ,所以点1C ,在平面AEF 内.(2)在长方形1111ABCD ABC D -中,以1C 为原点,11C D 所在直线为x 轴,11C B 的直线为y 轴,1C C 所在直线为z 轴,建立如图所示的空间直角坐标系1C xyz -,因为2AB =,1AD =,13AA =,12DE ED =,12BF FB =,所以(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,则(2,1,1)EF =--,(0,1,1)AE =--,1(0,1,2)AE =-,设平面AEF 的一个法向量为1111(,,)n x y z =, 则111111102000n EF x y z y z n AE ⎧⋅=-+-=⎧⎪⇒⎨⎨--=⋅=⎩⎪⎩,取法向量1(1,1,1)n =-,设平面1AEF 的一个法向量为2222(,,)n x y z =,则22222221020200n EF x y z y z n A E ⎧⋅=-+-=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩,取法向量2(1,4,2)n =,所以1212127cos ,||||321n n n n n n ⋅<>===⋅⋅,设二面角1A EF A --为θ,则142sin 177θ=-=, 即二面角1A EF A --的正弦值为427.20.已知椭圆222:1(05)25x y C m m +=<<4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ ∆的面积. 答案: 见解析 解答:(1)54c e a ===,∴22516m =,∴C 的方程:221612525x y +=. (2)设直线BP :(5)y k x =-, 与椭圆C 联立可得:2222(116)160400250kx k x k +-+-=.设00(,)P x y ,则202400255116k x k -=+,∴202805116k x k-=+,∴0210||5|116PB x k =-=+.∵BP BQ ⊥,∴直线BQ :1(5)y x k=--.令6x =,1y k =-,∴1(6,)Q k -,||BQ ==∵||||BP BQ =,∴214k =或2164k =. 根据椭圆的对称性,只需讨论12k =和18k =的情况, 当12k =时,03x =,01y =-,∴(3,1)P -,(6,2)Q -.||PQ ,直线316321x y PQ -+==--+.即:30x y +=.点A 到直线PQ 的距离1d ==11152222APQ S PQ d ∆=.||⋅==.当18k =时,03x =-,01y =-,∴(3,1)P --,(6,8)Q -,||PQ =,直线31:6381x y PQ ++=+-+,即79300x y ++=, ∴点A 到直线PQ 的距离2d ==,∴2115|222APQS PQ d ∆=.|⋅==. 综上52APQ S ∆=. 21.设函数3()f x x bx c =++,曲线()y f x =在点11(,())22f 处的切线与y 轴垂直.(1)求b ;(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 答案: 见解析 解答: (1)2()3f x x b '=+,又曲线()y f x =在点11(,())22f 处的切线与y 轴垂直,∴13()024f b '=+= ,解得34b =-.(2)设0x 为()f x 的一个零点,且011x -≤≤, 由题意可知30034c x x =-+, 令33()(11)4x x x x ϕ=-+-≤≤, 则11()3()()22x x x ϕ'=-+,此时1(1,)2x ∈--,()0x ϕ'<,()x ϕ单调递减;11(,)22x ∈-,()0x ϕ'>,()x ϕ单调递增;1(,1)2x ∈,()0x ϕ'<,()x ϕ单调递减,则1(1)4f -=,11()24f -=-,11()24f =,1(1)4f =-,此时1144c -≤≤,再设1x 为()f x 的零点,则31113()04f x x x c =-+=,311131444x x -≤-+≤,整理得2111211(1)(1)01(1)()02x x x x x ⎧-++≤⎪⎨+-≥⎪⎩,解得111x -≤≤, 则()f x 的所有零点的绝对值都不大于1. 四、选做题(2选1)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t ty t t⎧=--⎪⎨=-+⎪⎩,(t 为参数且1t ≠),C 与坐标轴交于,A B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 答案: 见解析 解答:(1)当0x =时,求得2t =-或1t =(舍)代入223 y t t =-+中,求得12y =;当0y =时,求得2t =或1t =(舍)代入22x t t =--中,求得4x =-,所以曲线与坐标轴交于(0,12)和(4,0)-,||AB ==(2)由(1)得直线AB 过点(0,12)和(4,0)-,所以直线AB 的解析式为3120x y -+=,故直线AB 的极坐标方程为3cos sin 120ρθρθ-+=. 23.设a ,b ,c R ∈,0a b c ++=,1abc =. (1)证明:0ab bc ca ++<;(2)用max{,,}a b c 表示a ,b ,c的最大值,证明:max{,,}a b c ≥答案: 见解析 解答:(1)∵0a b c ++=,∴()c a b =-+,222()()2cb bc ca ab a b c ab a b ab a b ab ++=++=-+=---223()024b a b =-+-<.(2)∵0a b c ++=,∴()c a b =-+,∵1abc =,∴()1ab a b -+=,即:2210ba b a ++=,∵0b ≠,则440b b ∆=-≥. 不妨设b 为max{,,}a b c ,则340b -≥,即b ≥∴max{,,}a b c ≥。
【精品】2020年江苏高考数学第三轮复习训练试题含答案
【精品】2020年江苏高考数学第三轮复习精典试题巩固训练(1)1. 已知函数f(x)是奇函数,且当x>0时,f(x)=x 3+2x +1,则当x<0时,f(x)的解析式为__f(x)=x 3+2x -1__.解析:因为函数f(x)是奇函数,所以f(-x)=-f(x).当x<0时,-x>0.因为当x>0时,f(x)=x 3+2x +1,所以f(-x)=(-x)3-2x +1=-x 3-2x +1,所以-f(x)=-x 3-2x +1,所以f(x)=x 3+2x -1.2. 下列四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x ∈R ).其中结论正确的个数是__1__.解析:偶函数的图象关于y 轴对称,但不一定与y 轴相交,①错误,③正确;奇函数关于原点对称,但不一定经过原点,②错误;若y =f(x)既是奇函数又是偶函数,由定义可得f(x)=0,但不一定x ∈R ,只要定义域关于原点对称即可,④错误.3. 已知定义在R 上的函数f(x),对任意x ∈R 都有f(x +3)=f(x),当x ∈(-3,0)时,f(x)=3x ,则f(2 018)=__13__.解析:由题意,得f(x)是周期为3的函数,所以f(2 018)=f(3×673-1)=f(-1).因为当x ∈(-3,0)时,f(x)=3x ,所以f(2 018)=f(-1)=3-1=13.4. 定义两种运算:a b =a 2-b 2,a b =(a -b )2,则函数f(x)=2x 2-(x 2)是__奇__函数(填“奇”或“偶”). 解析:由题意,得f(x)=4-x 22-(x -2)2,由4-x 2≥0且2-(x -2)2≠0,得-2≤x<0或0<x ≤2,所以(x -2)2=|x -2|=2-x ,所以f(x)=4-x 22-(2-x )=4-x 2x ,x ∈[-2,0)∪(0,2].因为f(-x)=4-x 2-x=-4-x 2x =-f(x),所以函数f(x)是奇函数. 5. 已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x -a -x+2(其中a>0,且a ≠1).若g(2)=a ,则f(2)=__154__.解析:由题意得f(-2)=-f(2),g(-2)=g(2),由已知f(2)+g(2)=a 2-a -2+2①,f(-2)+g(-2)=-f(2)+g(2)=a -2-a 2+2②,由①②解得g(2)=2=a ,f(2)=a 2-a -2=154.6. 已知y =f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g(-1)=__3__.解析:由g(1)=f(1)+2=1,得f(1)=-1.因为函数f(x)是奇函数,所以f(-1)=-f(1),所以g(-1)=f(-1)+2=-f(1)+2=3.7. 已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是__⎝ ⎛⎭⎪⎫13,23__. 解析:偶函数f(x)=f(|x|),所以f(2x -1)<f ⎝ ⎛⎭⎪⎫13,即f(|2x -1|)<f ⎝ ⎛⎭⎪⎫13.又函数f(x)在区间[0,+∞)上单调递增,所以|2x -1|<13,解得13<x<23.8. 已知函数f(x)=-x 2+ax +b 2-b +1(a ,b ∈R )对任意实数x 都有f(1-x)=f(1+x)成立,若当x ∈[-1,1]时,f(x)>0恒成立,则实数b 的取值范围是__(-∞,-1)∪(2,+∞)__.解析:由题意,得函数f(x)图象的对称轴为直线x =1=a 2,即a=2.因为对称轴为直线x =1,且图象开口向下,所以函数f(x)在区间[-1,1]上是单调增函数.又f(x)>0恒成立,则f(x)min =f(-1)=b 2-b -2>0,解得b<-1或b>2,故实数b 的取值范围是(-∞,-1)∪(2,+∞).9. 对于函数y =f(x)(x ∈R ),给出下列命题:①在同一平面直角坐标系中,函数y =f(1-x)与y =f(x -1)的图象关于直线x =0对称;②若f(1-x)=f(x -1),则函数y =f(x)的图象关于直线x =1对称; ③若f(1+x)=f(x -1),则函数y =f(x)是周期函数;④若f(1-x)=-f(x -1),则函数y =f(x)的图象关于点(0,0)对称. 其中正确命题的序号是__③④__.解析:y =f(1-x)与y =f(x -1)的图象关于直线x =1对称,①错;函数y =f(x)的图象关于直线x =0对称,②错;若f(1+x)=f(x -1),则f(x +2)=f[(x +1)+1]=f(x +1-1)=f(x),函数y =f(x)是周期为2的函数,③正确;由f(1-x)=-f(x -1)可得f(-t)=-f(t),函数f(x)为奇函数,即图象关于点(0,0)对称,④正确.10. 设函数f(x)=(x +1)2+sinx x 2+1的最大值为M ,最小值为m ,则M +m =__2__.解析:f(x)=(x +1)2+sinx x 2+1=1+2x +sinx x 2+1.设g(x)=2x +sinx x 2+1,因为g(-x)=-g(x),所以g(x)为奇函数.由奇函数图象的对称知g(x)max +g(x)min =0,所以M +m =[g(x)+1]max +[g(x)+1]min =2+g(x)max +g(x)min =2.11. 设函数f(x)=-2x +a 2x +1+b(a>0,b>0). (1) 当a =b =2时,求证:函数f(x)不是奇函数;(2) 设函数f(x)是奇函数,求a 与b 的值;(3) 在(2)条件下,判断并证明函数f(x)的单调性,并求不等式f(x)>-16的解集.解析:(1) 当a =b =2时,f(x)=-2x +22x +1+2, 所以f(-1)=12,f(1)=0,所以f(-1)≠-f(1),所以函数f(x)不是奇函数.(2) 由函数f(x)是奇函数,得f(-x)=-f(x),即-2-x +a 2-x +1+b =--2x +a 2x +1+b对定义域内任意实数x 都成立,化简整理得(2a -b)·22x +(2ab -4)·2x +(2a -b)=0对定义域内任意实数x 都成立,所以⎩⎪⎨⎪⎧2a -b =0,2ab -4=0,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =1,b =2, 因为a>0,b>0,所以⎩⎪⎨⎪⎧a =1,b =2.经检验⎩⎪⎨⎪⎧a =1,b =2符合题意. 故a 与b 的值分别为1,2.(3) 由(2)可知f(x)=-2x +12x +1+2=12(-1+22x +1). 设x 1,x 2∈R ,且x 1<x 2,则f(x 1)-f(x 2)=12(-1+22x 1+1)-12(-1+22x 2+1)=2x 2-2x 1(2x 1+1)(2x 2+1). 因为x 1<x 2,所以0<2x 1<2x 2,所以f(x 1)>f(x 2),所以函数f(x)在R上是减函数.由f(1)=-16,f(x)>-16,得f(x)>f(1).由函数f(x)在R 上是减函数可得x<1,所以不等式f(x)>-16的解集为(-∞,1).12. (1) 已知函数f(x)的定义域为{x|x ∈R 且x ≠0},且2f(x)+f ⎝ ⎛⎭⎪⎫1x =x ,试判断函数f(x)的奇偶性;(2) 已知函数f(x)的定义域为R ,且对于一切实数x ,y 都有f(x +y)=f(x)+f(y),试判断函数f(x)的奇偶性.解析:(1) 因为函数f(x)的定义域为{x|x ∈R 且x ≠0},且2f(x)+f ⎝ ⎛⎭⎪⎫1x =x , ① 所以2f ⎝ ⎛⎭⎪⎫1x +f(x)=1x .② 由①②解得f(x)=2x 2-13x .因为定义域为{x|x ∈R 且x ≠0},关于原点对称,f(-x)=2(-x )2-13(-x )=-2x 2-13x =-f(x), 所以函数f(x)=2x 2-13x 是奇函数.(2) 因为定义域关于原点对称,令x =y =0得f(0)=f(0)+f(0),则f(0)=0.令y =-x 得f(0)=f(x)+f(-x),所以f(-x)=-f(x),所以函数f(x)为奇函数.13. 已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的函数,对定义域上的任意x 1,x 2,都有f(x 1x 2)=f(x 1)+f(x 2),且当x>1时,f(x)>0,f(2)=1.(1) 求证:函数f(x)是偶函数;(2) 求证:函数f(x)在区间(0,+∞)上是增函数;(3) 解不等式:f(2x 2-1)<2.解析:(1) 令x 1=x 2=1,所以f(1)=f(1)+f(1),所以f(1)=0. 令x 1=x 2=-1,所以f[(-1)×(-1)]=f(-1)+f(-1),所以0=2f(-1),所以f(-1)=0.令x 1=x ,x 2=-1,所以f[x ×(-1)]=f(x)+f(-1),所以f(-x)=f(x),所以函数f(x)是偶函数.(2) 设x 1>x 2>0,则f(x 1)-f(x 2)=f ⎝ ⎛⎭⎪⎫x 2·x 1x 2-f(x 2)=f(x 2)+f ⎝ ⎛⎭⎪⎫x 1x 2-f(x 2)=f ⎝ ⎛⎭⎪⎫x 1x 2. 因为x 1>x 2>0,所以x 1x 2>1. 因为当x>1时,f(x)>0,所以f ⎝ ⎛⎭⎪⎫x 1x 2>0,所以f(x 1)-f(x 2)>0, 所以函数f(x)在区间(0,+∞)上是增函数.(3) 令x 1=x 2=2,所以f(2×2)=f(2)+f(2)=2,所以f(4)=2. 因为f(2x 2-1)<2=f(4),且函数f(x)是偶函数,在区间(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧2x 2-1≠0,|2x 2-1|<4,解得-102<x<102且x ≠±22. 巩固训练(2)1. 若二次函数f(x)=ax 2+bx +c 图象的顶点坐标为(2,-1),与y 轴的交点坐标为(0,11),则a ,b ,c 的值为__3,-12,11__.解析:由题意得⎩⎨⎧-b 2a =2,4a +2b +c =-1,c =11,解得⎩⎪⎨⎪⎧a =3,b =-12,c =11.故a ,b ,c 的值分别为3,-12,11.2. 函数f(x)=x 2-2x -2(x ∈[-2,2])的最小值是__-3__. 解析:因为f(x)=x 2-2x -2=(x -1)2-3,所以函数f(x)在区间[-2,1]上单调递减,在区间[1,2]上单调递增,所以f(x)min =f(1)=1-2-2=-3.3. 如果函数f(x)=x 2+px +q 对任意的x 均有f(1+x)=f(1-x)成立,那么f(0)、f(-1)、f(1)从小到大的顺序为__f(1)<f(0)<f(-1)__.解析:由题意得函数f(x)的图象关于直线x =1对称,所以函数在区间(-∞,1]上是减函数,所以f(1)<f(0)<f(-1).4. 若f(x)=x 2+bx +c ,且f(1)=0,f(3)=0,则f(-1)=__8__.解析:由题意得⎩⎪⎨⎪⎧1+b +c =0,9+3b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =3,所以f(x)=x 2-4x +3,所以f(-1)=1+4+3=8.5. 若f(x)=-x 2+(b +2)x +3,x ∈[b ,c]的图象关于直线x =1对称,则c =__2__.解析:由题意,得⎩⎨⎧-b +22×(-1)=1,b +c 2=1,解得⎩⎪⎨⎪⎧b =0,c =2,故c 的值为2. 6. 函数f(x)=2x 2-6x +1在区间[-1,1]上的最小值为__-3__,最大值为__9__.7. 已知函数f(x)=|x 2-2ax +b|(x ∈R ),给出下列命题:①f(x)必是偶函数;②当f(0)=f(2)时,f(x)的图象必关于直线x =1对称;③f(x)有最大值|a 2-b|;④若a 2-b ≤0,则f(x)在区间[a ,+∞)上是增函数.其中正确的序号是__④__.解析:当a =0时,函数f(x)为偶函数;当a ≠0时,函数f(x)既不是偶函数,也不是奇函数,故①错误;若f(0)=f(2),则|b|=|4-4a +b|,所以4-4a +b =b 或4-4a +b =-b ,即a =1或b =2a -2.当a =1时,函数f(x)图象的对称轴为直线x =1;当b =2a -2时,函数f(x)图象的对称轴为直线x =a ,故②错误;若a 2-b ≤0,则f(x)=|(x -a)2+b -a 2|=(x -a)2+b -a 2,所以函数在区间[a ,+∞)上是增函数,此时有最小值b -a 2,故③错误,④正确.8. 已知函数f(x)=ax 2+(a 3-a)x +1在区间(-∞,-1]上单调递增,则实数a 的取值范围是.解析:当a =0时,函数f(x)=1,不符合题意,舍去;当a ≠0时,⎩⎨⎧a<0,-a 3-a 2a ≥-1,解得-3≤a<0,故实数a 的取值范围是[-3,0).9. 已知二次函数f(x)=ax 2+(a 2+b)x +c 的图象开口向上,且f(0)=1,f(1)=0,则实数b 的取值范围是__(-∞,-1)__.解析:由题意得a>0,c =1,a +a 2+b +c =0,所以b =-(a 2+a)-1=-⎝ ⎛⎭⎪⎫a +122-34.因为a>0,所以b<-1,故实数b 的取值范围为(-∞,-1).10. 函数y =(x +1)(x +2)(x +3)(x +4)+5在区间[-3,3]上的最小值为__4__.解析:因为y =(x +1)(x +2)(x +3)(x +4)+5=[(x +1)(x +4)][(x +2)(x +3)]+5=(x 2+5x +4)(x 2+5x +6)+5=(x 2+5x +5-1)(x 2+5x +5+1)+5=(x 2+5x +5)2+4.设t =x 2+5x +5,则y =t 2+4.因为t =x 2+5x +5=⎝ ⎛⎭⎪⎫x +522-54,x ∈[-3,3],所以y =t 2+4,t ∈⎣⎢⎡⎦⎥⎤-54,29,抛物线开口向上,对称轴为直线t =0,所以y min =4,故y =(x +1)(x +2)(x +3)(x +4)+5在区间[-3,3]上的最小值是4.11. 已知二次函数f(x)=ax 2+bx +c.(1) 若f(-1)=0,试判断函数f(x)的零点个数;(2) 若对x 1,x 2∈R ,且x 1<x 2,f(x 1)≠f(x 2),证明方程f(x)=12[f(x 1)+f(x 2)]必有一个实数根属于(x 1,x 2).解析:(1) 因为f(-1)=0,所以a -b +c =0,即b =a +c. 因为Δ=b 2-4ac =(a +c)2-4ac =(a -c)2,所以当a =c 时,Δ=0,函数f(x)有一个零点;当a ≠c 时,Δ>0,函数f(x)有两个零点.(2) 令g(x)=f(x)-12[f(x 1)+f(x 2)],则g(x 1)=f(x 1)-12[f(x 1)+f(x 2)]=f (x 1)-f (x 2)2, g(x 2)=f(x 2)-12[f(x 1)+f(x 2)]=f (x 2)-f (x 1)2, 所以g(x 1)·g(x 2)=-14[f(x 1)-f(x 2)]2.因为f(x 1)≠f(x 2),所以g(x 1)·g(x 2)<0,所以g(x)=0在区间(x 1,x 2)上必有一个实数根,即方程f(x)=12[f(x 1)+f(x 2)]必有一个实数根属于(x 1,x 2).12. 已知函数f(x)=ax 2-1,a ∈R ,x ∈R ,集合A ={x|f(x)=x},B ={x|f(f(x))=x}且A =B ≠,求实数a 的取值范围.解析:①若a =0,则A =B ={-1};②若a ≠0,由A ={x|ax 2-x -1=0}≠,得a ≥-14且a ≠0.集合B 中元素为方程a(ax 2-1)2-1=x ,即a 3x 4-2a 2x 2-x +a -1=0的实数根,所以a 3x 4-2a 2x 2-x +a -1=(ax 2-x -1)(a 2x 2+ax -a +1)=0. 因为A =B ,所以a 2x 2+ax -a +1=0无实数根或其根为ax 2-x -1=0的根.由a 2x 2+ax -a +1=0无实数根,得a<34,故a ∈⎣⎢⎡⎭⎪⎫-14,0∪⎝ ⎛⎭⎪⎫0,34; 当a 2x 2+ax -a +1=0有实数根且为ax 2-x -1=0的根时, 因为ax 2-x -1=0,所以ax 2=x +1,所以a 2x 2+ax -a +1=a(x +1)+ax -a +1=0,解得x =-12a ,代入ax 2-x -1=0得a =34.综上所述,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,34. 13. 已知二次函数f(x)=ax 2+bx +1,若f(1)=0,且函数f(x)的值域为[0,+∞).(1) 求a ,b 的值;(2) 若h(x)=2f(x +1)+x|x -m|+2m ,求h(x)的最小值. 解析:(1) 显然a ≠0,因为f(1)=0,所以a +b +1=0.又f(x)的值域为[0,+∞),所以Δ=b 2-4a =0.由⎩⎪⎨⎪⎧a +b +1=0,b 2-4a =0,解得⎩⎪⎨⎪⎧a =1,b =-2. (2) 由(1)知f(x)=x 2-2x +1,h(x)=2x 2+x|x -m|+2m ,即h(x)=⎩⎪⎨⎪⎧3x 2-mx +2m ,x ≥m ,x 2+mx +2m , x<m. ①若m ≥0,则h(x)min =min ⎩⎨⎧⎭⎬⎫h (m ),h ⎝ ⎛⎭⎪⎫-m 2, 即h(x)min =min ⎩⎨⎧⎭⎬⎫2m 2+2m ,-m 24+2m . 又2m 2+2m -⎝ ⎛⎭⎪⎫-m 24+2m =9m 24≥0,所以当m ≥0时,h(x)min =-m 24+2m ;②若m<0,则h(x)min =h ⎝ ⎛⎭⎪⎫m 6=2m -m 212. 综上所述,h(x)min =⎩⎪⎨⎪⎧2m -m 24, m ≥0,2m -m 212, m<0.巩固训练(3)1. 已知n ∈{-1,0,1,2,3},若⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-15n ,则n =__-1或2__.解析:根据幂函数的性质知y =x -1或y =x 2在区间(-∞,0)上是减函数,故满足⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-15n 的值只有-1和2. 2. 已知幂函数f(x)=k·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则f(x)=__x 12__. 解析:由幂函数的定义得k =1,再将点⎝ ⎛⎭⎪⎫12,22代入f(x)=x α,得⎝ ⎛⎭⎪⎫12α=22,解得α=12,故f(x)=x 12. 3. 已知幂函数f(x)=k·x α满足f (9)f (3)=3,则f(x)=__x 12__. 解析:由幂函数的定义得k =1.因为f (9)f (3)=3,所以9α3α=3,解得α=12,故f(x)=x 12.4. 若点(a ,9)在函数y =3x 的图象上,则tan aπ6的值为.解析:由题意,得3a=9,解得a =2,所以tan aπ6=tan π3= 3.5. 已知点⎝ ⎛⎭⎪⎫12,2在幂函数y =f(x)的图象上,点⎝ ⎛⎭⎪⎫-2,14在幂函数y =g(x)的图象上,则f(2)+g(-1)=__32__.6. 已知函数f(x)=x α(0<α<1),对于下列命题:①若x>1,则f(x)>1;②若0<x<1,则0<f(x)<1;③当x>0时,若f(x 1)>f(x 2),则x 1>x 2;④若0<x 1<x 2,则f (x 1)x 1<f (x 2)x 2.其中正确的命题有__①②③__.(填序号)7. 已知幂函数y =x nm ,其中m ,n 是取自集合{1,2,3}中的两个不同值,则该函数为偶函数的概率为__13__.解析:由题意得n m 所有值的集合为{12,13,2,23,3,32},当n m 为2或23时,函数y =x n m 为偶函数,所以该函数为偶函数的概率为13.8. 已知函数:①y =x 43;②y =x 32;③y =x -2;④y =x -14,其中既是偶函数又在区间(-∞,0)上为增函数的是__③__.(填序号)解析:①y =x 43=3x 4在区间(-∞,0)上是减函数;②y =x 32=x 3的定义域为[0,+∞),既不是奇函数也不是偶函数;③y =x -2=1x 2的定义域为(-∞,0)∪(0,+∞),在区间(-∞,0)上为增函数且为偶函数;④y =x -14=14x的定义域为(0,+∞),既不是奇函数也不是偶函数,故选③.9. 如图所示的是幂函数y =x a ,y =x b ,y =x c ,y =x d ,y =x 的图象,则实数a ,b ,c ,d 的大小关系为__c>a>b>d__.解析:根据幂函数y =x n 的性质,在第一象限内的图象,当n>0时,n 越大,y 递增速度越快,所以c>a>b>0,d<0,故c>a>b>d.10. 已知f(x)=x 1-n 2+2n +3(n =2k ,k ∈Z )的图象在区间[0,+∞)上单调递增,解不等式f(x 2-x)>f(x +3).解析:由题意知1-n 2+2n +3>0,即-n 2+2n +3>0, 解得-1<n<3.又n =2k ,k ∈Z ,所以n =0,2.当n =0或2时,f(x)=x 13,所以函数f(x)在R 上单调递增,所以由f(x 2-x)>f(x +3)得x 2-x>x +3,解得x<-1或x>3,所以原不等式的解集为(-∞,-1)∪(3,+∞).11. 已知一个幂函数y =f(x)的图象过点(3,427),另一个幂函数y =g(x)的图象过点(-8,-2).(1) 求这两个幂函数的解析式; (2) 判断这两个函数的奇偶性; (3) 作出这两个函数的图象,观察图象直接写出f(x)<g(x)的解集. 解析:(1) 设幂函数f(x)=x a ,g(x)=x b .因为幂函数f(x)与g(x)的图象分别过点(3,427),(-8,-2), 所以427=3a ,-2=(-8)b ,解得a =34,b =13,所以两个函数的解析式为f(x)=x 34与g(x)=x 13.(2) 因为函数f(x)=x 34的定义域是[0,+∞), 所以函数f(x)是非奇非偶函数.因为函数g(x)=x 13的定义域为R ,g(-x)=(-x)13=-x 13=-g(x), 所以函数g(x)是奇函数.(3) 作出这两个函数的图象如下,由图象可知,f(x)<g(x)的解集为{x|0<x<1}.12. 已知函数f(x)=x -k 2+k +2(k ∈Z )满足f(2)<f(3). (1) 求k 的值并求出相应的f(x)的解析式;(2) 对于(1)中得到的函数f(x),试判断是否存在q>0,使得函数g(x)=1-qf(x)+(2q -1)x 在区间[-1,2]上的值域为⎣⎢⎡⎦⎥⎤-4,178?若存在,求出实数q 的值;若不存在,请说明理由.解析:(1) 因为f(2)<f(3),所以2-k 2+k +2<3-k 2+k +2,所以lg 2-k 2+k +2<lg 3-k 2+k +2, 即(-k 2+k +2)(lg 2-lg 3)<0. 因为lg 2<lg 3,所以-k 2+k +2>0,解得-1<k<2. 又因为k ∈Z ,所以k =0或k =1. 当k =0或k =1时,-k 2+k +2=2, 所以f(x)=x 2.(2) 假设存在q>0满足题意,则由(1)知g(x)=-qx 2+(2q -1)x +1,x ∈[-1,2].因为g(2)=-1,所以两个最值点只能在端点(-1,g(-1))和顶点⎝ ⎛⎭⎪⎫2q -12q ,4q 2+14q 处取得.又4q 2+14q -g(-1)=4q 2+14q -(2-3q)=(4q -1)24q≥0, 所以g(x)max =4q 2+14q =178,g(x)min =g(-1)=2-3q =-4, 解得q =2.所以存在q =2满足题意.巩固训练(4)1. 已知n ∈{-1,0,1,2,3},若⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-15n,则n =__-1或2__.解析:根据幂函数的性质知y =x -1或y =x 2在区间(-∞,0)上是减函数,故满足⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-15n的值只有-1和2.2. 已知幂函数f(x)=k·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则f(x)=__x 12__.解析:由幂函数的定义得k =1,再将点⎝ ⎛⎭⎪⎫12,22代入f(x)=x α,得⎝ ⎛⎭⎪⎫12α=22,解得α=12,故f(x)=x 12. 3. 已知幂函数f(x)=k·x α满足f (9)f (3)=3,则f(x)=__x 12__.解析:由幂函数的定义得k =1.因为f (9)f (3)=3,所以9α3α=3,解得α=12,故f(x)=x 12.4. 若点(a ,9)在函数y =3x 的图象上,则tan aπ6的值为. 解析:由题意,得3a=9,解得a =2,所以tan aπ6=tan π3= 3.5. 已知点⎝ ⎛⎭⎪⎫12,2在幂函数y =f(x)的图象上,点⎝ ⎛⎭⎪⎫-2,14在幂函数y =g(x)的图象上,则f(2)+g(-1)=__32__.6. 已知函数f(x)=x α(0<α<1),对于下列命题:①若x>1,则f(x)>1;②若0<x<1,则0<f(x)<1;③当x>0时,若f(x 1)>f(x 2),则x 1>x 2;④若0<x 1<x 2,则f (x 1)x 1<f (x 2)x 2.其中正确的命题有__①②③__.(填序号)7. 已知幂函数y =x nm ,其中m ,n 是取自集合{1,2,3}中的两个不同值,则该函数为偶函数的概率为__13__.解析:由题意得n m 所有值的集合为{12,13,2,23,3,32},当nm 为2或23时,函数y =x n m 为偶函数,所以该函数为偶函数的概率为13.8. 已知函数:①y =x 43;②y =x 32;③y =x -2;④y =x -14,其中既是偶函数又在区间(-∞,0)上为增函数的是__③__.(填序号)解析:①y =x 43=3x 4在区间(-∞,0)上是减函数;②y =x 32=x 3的定义域为[0,+∞),既不是奇函数也不是偶函数;③y =x -2=1x 2的定义域为(-∞,0)∪(0,+∞),在区间(-∞,0)上为增函数且为偶函数;④y =x -14=14x的定义域为(0,+∞),既不是奇函数也不是偶函数,故选③.9. 如图所示的是幂函数y =x a ,y =x b ,y =x c ,y =x d ,y =x 的图象,则实数a ,b ,c ,d 的大小关系为__c>a>b>d__.解析:根据幂函数y =x n 的性质,在第一象限内的图象,当n>0时,n 越大,y 递增速度越快,所以c>a>b>0,d<0,故c>a>b>d.10. 已知f(x)=x 1-n 2+2n +3(n =2k ,k ∈Z )的图象在区间[0,+∞)上单调递增,解不等式f(x 2-x)>f(x +3).解析:由题意知1-n 2+2n +3>0,即-n 2+2n +3>0,解得-1<n<3.又n =2k ,k ∈Z ,所以n =0,2.当n =0或2时,f(x)=x 13, 所以函数f(x)在R 上单调递增,所以由f(x 2-x)>f(x +3)得x 2-x>x +3, 解得x<-1或x>3,所以原不等式的解集为(-∞,-1)∪(3,+∞).11. 已知一个幂函数y =f(x)的图象过点(3,427),另一个幂函数y =g(x)的图象过点(-8,-2).(1) 求这两个幂函数的解析式; (2) 判断这两个函数的奇偶性; (3) 作出这两个函数的图象,观察图象直接写出f(x)<g(x)的解集. 解析:(1) 设幂函数f(x)=x a ,g(x)=x b .因为幂函数f(x)与g(x)的图象分别过点(3,427),(-8,-2), 所以427=3a ,-2=(-8)b ,解得a =34,b =13,所以两个函数的解析式为f(x)=x 34与g(x)=x 13.(2) 因为函数f(x)=x 34的定义域是[0,+∞), 所以函数f(x)是非奇非偶函数.因为函数g(x)=x 13的定义域为R ,g(-x)=(-x)13=-x 13=-g(x), 所以函数g(x)是奇函数.(3) 作出这两个函数的图象如下,由图象可知,f(x)<g(x)的解集为{x|0<x<1}.12. 已知函数f(x)=x -k 2+k +2(k ∈Z )满足f(2)<f(3). (1) 求k 的值并求出相应的f(x)的解析式;(2) 对于(1)中得到的函数f(x),试判断是否存在q>0,使得函数g(x)=1-qf(x)+(2q -1)x 在区间[-1,2]上的值域为⎣⎢⎡⎦⎥⎤-4,178?若存在,求出实数q 的值;若不存在,请说明理由.解析:(1) 因为f(2)<f(3),所以2-k 2+k +2<3-k 2+k +2,所以lg 2-k 2+k +2<lg 3-k 2+k +2, 即(-k 2+k +2)(lg 2-lg 3)<0. 因为lg 2<lg 3,所以-k 2+k +2>0,解得-1<k<2. 又因为k ∈Z ,所以k =0或k =1. 当k =0或k =1时,-k 2+k +2=2, 所以f(x)=x 2.(2) 假设存在q>0满足题意,则由(1)知g(x)=-qx 2+(2q -1)x +1,x ∈[-1,2].因为g(2)=-1,所以两个最值点只能在端点(-1,g(-1))和顶点⎝ ⎛⎭⎪⎫2q -12q ,4q 2+14q 处取得.又4q 2+14q -g(-1)=4q 2+14q -(2-3q)=(4q -1)24q≥0, 所以g(x)max =4q 2+14q =178,g(x)min =g(-1)=2-3q =-4, 解得q =2.所以存在q =2满足题意.随堂巩固训练(5)1. 计算:(π-4)2+π=__4__. 解析:原式=|π-4|+π=4-π+π=4.2. 求值:(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5+10-2=__110__.解析:原式=9100+53-53+1100=110.3. 化简:a 12b b -123a-2÷⎝⎛⎭⎪⎪⎫a -1b -1b a -23=. 解析:原式=a 12b 12b -12a -23÷⎝ ⎛⎭⎪⎪⎫a -1b -12ba 12-23=(a 12+23·b 12+12)÷(a -1-12b -12-1)-23=a 76b÷(ab)=6a. 4. 化简:(a 23b 12)×(-3a 12b 13)÷⎝ ⎛⎭⎪⎪⎫13a 16b 56=__-9a__. 解析:原式=-9a 23+12-16b 12+13-56=-9a.5. 关于x 的不等式2x 2+x ≤4的解集为__[-2,1]__.解析:由题意得2x 2+x ≤22,所以x 2+x ≤2,解得-2≤x ≤1,故原不等式的解集为[-2,1].6. 计算:⎝ ⎛⎭⎪⎫142+⎝ ⎛⎭⎪⎫166-13+3+23-2-(1.03)0×⎝ ⎛⎭⎪⎫-623=16. 解析:原式=116+(6-32)-13+(3+2)2(3)2-(2)2-⎝⎛⎭⎪⎫-668=116+6+5+26+364=81+60616. 7. 给出下列等式:36a 3=2a ;3-2=6(-2)2;-342=4(-3)4×2,其中一定成立的有__0__个.解析:36a 3=a 36≠2a ,故错误;6(-2)2=622=322=32≠3-2,故错误;4(-3)4×2=434×2=342≠-342,故错误,所以一定成立的有0个.8. 方程22x +3·2x -1-1=0的解是__x =-1__.解析:令2x =t(t>0),则原方程化为t 2+32t -1=0,解得t =12或t=-2(舍去),所以2x=12,解得x =-1,故原方程的解是x =-1.9. 已知a ,b 是方程x 2-6x +4=0的两根,且a>b>0,则a -b a +b=5.10. 计算:⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫338-23-⎝ ⎛⎭⎪⎫5490.5+(0.008)-23÷(0.02)-12×(0.32)12÷0.062 50.25.解析:原式=[(827)23-(499)12+(1 0008)23÷50×4210]÷⎝ ⎛⎭⎪⎫62510 00014 =⎝ ⎛⎭⎪⎫49-73+25×152×4210÷12=⎝ ⎛⎭⎪⎫-179+2×2=29.11. 化简:a 43-8a 13b 4b 23+23ab +a 23÷⎝⎛⎭⎪⎪⎫a -23-23b a ×a ×3a 25a ×3a.(式中字母都是正数)解析:原式=a 13[(a 13)3-(2b 13)3](a 13)2+a 13×(2b 13)+(2b 13)2÷a 13-2b 13a×(a ×a 23)12(a 12×a 13)15=a 13(a 13-2b 13)×a a 13-2b 13×a 56a 16=a 13×a ×a 23=a 2. 12. 解下列方程:(1) 1+3-x 1+3x =3;(2) ⎝ ⎛⎭⎪⎫14x-2-x +1-8=0.解析:(1) 令3x =t(t>0),则原方程为1+1t1+t=3,解得t =13或t =-1(舍去),所以3x =13,即x =-1.(2) 令⎝ ⎛⎭⎪⎫12x=t(t>0),则原方程为t 2-2t -8=0,解得t =4或t =-2(舍去),所以⎝ ⎛⎭⎪⎫12x=4,即x =-2.13. 利用指数的运算法则,解下列方程: (1) 43x +2=256×81-x ; (2) 2x +2-6×2x -1-8=0.解析:(1) 因为43x +2=256×81-x , 所以26x +4=28×23-3x , 所以6x +4=11-3x ,所以x =79.(2) 因为2x +2-6×2x -1-8=0, 所以4×2x -3×2x -8=0, 所以2x =8,所以x =3.巩固训练(6)1. 已知a =⎝ ⎛⎭⎪⎫34-13,b =⎝ ⎛⎭⎪⎫34-14,c =⎝ ⎛⎭⎪⎫32-34,则a 、b 、c 的大小关系为__c<b<a__.解析:因为y =⎝ ⎛⎭⎪⎫34x 在R 上单调递减,且-13<-14<0,所以⎝ ⎛⎭⎪⎫34-13>⎝ ⎛⎭⎪⎫34-14>⎝ ⎛⎭⎪⎫340,即a>b>1.又0<c<1,所以c<b<a. 2. 已知函数y =|2x -1|在区间(k -1,k +1)上不单调,则实数k 的取值范围为__(-1,1)__.解析:易知函数y =|2x -1|在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,因为函数在区间(k -1,k +1)上不单调,所以k -1<0<k +1,解得-1<k<1.3. 已知集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x|12<2x +1<4,x ∈Z ,则M ∩N =__{-1}__.解析:由题意得⎩⎨⎧2x +1>12,2x+1<4,解得-2<x<1.又因为x ∈Z ,所以N ={-1,0},所以M ∩N ={-1}.4. 定义运算:a b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a>b ,则函数f(x)=12x 的值域为__(0,1]__.解析:当x<0时,0<2x <1,此时f(x)=2x ∈(0,1);当x ≥0时,2x ≥1,此时f(x)=1,所以f(x)=12x =⎩⎪⎨⎪⎧2x , x<0,1, x ≥0,其值域为(0,1].5. 若关于x 的方程|a x -1|=2a(a>0且a ≠1)有两个不相等的实数根,则实数a 的取值范围为__⎝ ⎛⎭⎪⎫0,12__.解析:方程|a x -1|=2a 有两个不相等的实数根可转化为函数y =|a x -1|与函数y =2a 的图象有两个不同的交点,作出函数y =|a x -1|的图象,当a>1时,如图1;当0<a<1,如图2.由图象可知当0<2a<1时,符合题意,即0<a<12.图1 图2 6. 已知函数f(x)=⎩⎪⎨⎪⎧-x +3a ,x<0,a x , x ≥0(a>0且a ≠1)是R 上的减函数,则实数a 的取值范围为__⎣⎢⎡⎭⎪⎫13,1__. 解析:根据单调性定义,函数f(x)为减函数应满足⎩⎪⎨⎪⎧0<a<1,3a ≥a 0,即13≤a<1.7. 设函数f(x)=x(e x +ae -x )(x ∈R )是偶函数,则实数a =__-1__. 解析:设g(x)=e x +ae -x ,则f(x)=xg(x)是偶函数.所以g(x)=e x +ae -x (x ∈R )是奇函数,所以g(0)=e 0+ae -0=1+a =0,即a =-1.8. 若函数f(x)=a x -1(a>0且a ≠1)的定义域和值域都是[0,2],则实数a 的值为__3__.解析:易知函数f(x)是单调函数,所以当a>1时,f(2)=2,所以a 2-1=2,解得a =3,经验证符合题意;当0<a<1时,f(0)=2,即1-1=2,无解.所以a = 3.9. 函数y =2x2x -1的值域为__(-∞,0)∪(1,+∞)__.解析:由题意得2x -1≠0,解得x ≠0,所以函数的定义域为{x|x ≠0},y =2x x 2x -1=1+12x -1,因为2x >0,所以2x -1>-1且2x -1≠0,所以12x -1∈(-∞,-1)∪(0,+∞),所以y =1+12x -1∈(-∞,0)∪(1,+∞),故所求的值域为(-∞,0)∪(1,+∞).10. 设a >0,f(x)=3x a +a3x 是R 上的偶函数.(1) 求a 的值;(2) 判断并证明函数f(x)在区间[0,+∞)上的单调性;(3) 求函数f(x)的值域.解析:(1) 因为f(x)为偶函数,故f(1)=f(-1),于是3a +a 3=13a +3a ,即9+a 23a =9a 2+13a .因为a >0,故a =1.(2) 由(1)可知f(x)=3x +13x .设x 2>x 1≥0,则f(x 1)-f(x 2)=3x 1+13x 1-3x 2-13x 2=(3x 2-3x 1)⎝ ⎛⎭⎪⎫13x 1+x 2-1. 因为y =3x 为增函数,且x 2>x 1,故3x 2-3x 1>0.因为x 2>0,x 1≥0,故x 2+x 1>0,于是13x 2+x 1<1,即13x 2+x 1-1<0,所以f(x 1)-f(x 2)<0,所以f(x)在区间[0,+∞)上为单调增函数.(3) 因为f(x)为偶函数,且f(x)在区间[0,+∞)上为增函数,所以f(0)=2为函数的最小值,故函数的值域为[2,+∞).11. 已知函数f(x)=3x ,f(a +2)=18,g(x)=λ·3ax -4x 的定义域为[0,1].(1) 求实数a 的值;(2) 若函数g(x)在区间[0,1]上是单调减函数,求实数λ的取值范围.解析:(1) 由已知得3a +2=18,解得a =log 32.故实数a 的值为log 32.(2) 方法一:由(1)知g(x)=λ·2x -4x ,设0≤x 1<x 2≤1.因为函数g(x)在区间[0,1]上是单调减函数,所以g(x 1)-g(x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是(-∞,2].方法二:由(1)知g(x)=λ·2x -4x .因为g(x)在区间[0,1]上是单调减函数,所以g′(x)=λln 2·2x -ln 4·4x =2x ln 2(-2·2x +λ)≤0在区间[0,1]上恒成立,所以λ≤2·2x 在区间[0,1]上恒成立,所以实数λ的取值范围是(-∞,2].12. 已知函数y =1+2x +4x ·a 在x ∈(-∞,1]上恒大于零,求实数a 的取值范围.解析:由题意得1+2x +4x ·a>0在x ∈(-∞,1]上恒成立,即a>-1+2x4x 在x ∈(-∞,1]上恒成立.令f(x)=-1+2x 4x =-⎝ ⎛⎭⎪⎫122x -⎝ ⎛⎭⎪⎫12x , 设t =⎝ ⎛⎭⎪⎫12x ,t ≥12,则f(t)=-t 2-t =-⎝ ⎛⎭⎪⎫t +122+14⎝ ⎛⎭⎪⎫t ≥12, 所以当t =12,即x =1时,函数f(t)取到最大值-34,所以a>-34,即实数a 的取值范围为⎝ ⎛⎭⎪⎫-34,+∞. 13. 已知函数f(x)=⎝ ⎛⎭⎪⎫13ax 2-4x +3. (1) 若a =-1,求函数f(x)的单调区间;(2) 若函数f(x)有最大值3,求实数a 的值;(3) 若函数f(x)的值域为(0,+∞),求实数a 的值.解析:(1) 当a =-1时,f(x)=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g(x)=-x 2-4x +3=-(x +2)2+7,因为函数g(x)在区间(-∞,-2)上单调递增,在区间(-2,+∞)上单调递减,又y =⎝ ⎛⎭⎪⎫13t 在R 上单调递减, 所以函数f(x)在区间(-∞,-2)上单调递减,在区间(-2,+∞)上单调递增,即函数f(x)的单调增区间是(-2,+∞),单调减区间是(-∞,-2).(2) 令h(x)=ax 2-4x +3,则y =⎝ ⎛⎭⎪⎫13h (x ), 因为函数f(x)有最大值3,所以函数h(x)有最小值-1,所以3a -4a =-1,且a>0,解得a =1,即当函数f(x)有最大值3时,实数a 的值为1.(3) 由指数函数的性质可知,若函数f(x)的值域为(0,+∞),则h(x)=ax 2-4x +3的值域为R .若a ≠0,则h(x)=ax 2-4x +3为二次函数,其值域不可能为R , 所以a =0.随堂巩固训练(7)1. 已知a 23=49(a>0),则log 32a =__-3__.解析:因为a 23=49(a>0),所以a 13=23,所以a =827,所以log 32827=-3.2. (lg 2)2+lg 2×lg 50+lg 25=__2__.解析:原式=lg 2×(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 100=2.3. 2lg 5+23lg 8+lg 5×lg 20+(lg 2)2=__3__.解析:原式=2lg 5+2lg 2+lg 5×(2lg 2+lg 5)+(lg 2)2=2+(lg5)2+2lg 2×lg 5+(lg 2)2=2+(lg 5+lg 2)2=3.4. log 2748+log 212-12log 242-1=__-32__.解析:原式=log 2748+log 212-log 242-log 22=log 27×1248×42×2=log 212 2=log 22-32=-32. 5. lg 14-2lg 73+lg 7-lg 18=__0__.解析:原式=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.6. 12lg 3249-43lg 8+lg 245=__12__.解析:原式=12(lg 32-lg 49)-43lg 812+12lg 245=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg7+12lg 5=12lg 2+12lg 5=12lg 10=12.7. 已知log 37×log 29×log 49a =log 412,则实数a 的值为2. 解析:原等式可化为lg 7lg 3·lg 9lg 2·lg a lg 49=-12,即lg a lg 2=-12,所以log 2a =-12,所以a =22.8. log 2(2+3-2-3)=__12__. 解析:原式=12log 2(2+3-2-3)2=12log 2[4-2(2+3)(2-3)]=12log 2(4-2)=12log 22=12.9. 已知log 189=a ,18b =5,求log 3645=__a +b 2-a__.(用字母a ,b 表示)解析:因为18b =5,所以b =log 185,所以log 3645=log 1845log 1836=log 185+log 189log 181829=log 185+log 1892-log 189=a +b2-a .10. 计算:(1) lg 2+lg 5-lg 8lg 50-lg 40; (2) 2(lg 2)2+lg 2×lg 5+(lg 2)2-lg 2+1.解析:(1) 原式=lg 2×58lg 5040=lg 54lg 54=1.(2) 原式=lg 2×(2lg 2+lg 5)+(lg 2)2-2lg 2+1=lg 2×(lg 2+lg 5)+|lg 2-1|=lg 2+1-lg 2=1.11. 已知log a x +log c x =2log b x ,且x ≠1,求证:c 2=(ac)log a b.解析:因为log a x +log a x log a c =2log a x log ab ,且x ≠1, 所以log a x ≠0,所以1+1log a c =2log a b , 所以2log a c =(log a c +1)log a b ,所以log a c 2=log a b·log a (ac)=log a (ac)log a b ,所以c 2=(ac)log a b.12. 已知loga 1b 1=loga 2b 2=…=loga n b n =λ,a 1a 2…a n ≠0,n ∈N *,求证:loga 1a 2…a n (b 1b 2…b n )=λ.解析:由换底公式,得lg b 1lg a 1=lg b 2lg a 2=…=lg b n lg a n=λ, 由等比定理得lg b 1+lg b 2+…+lg b n lg a 1+lg a 2+…+lg a n=λ, 所以lg (b 1b 2…b n )lg (a 1a 2…a n )=λ, 所以loga 1a 2…a n (b 1b 2…b n )=lg (b 1b 2…b n )lg (a 1a 2…a n )=λ. 13. 已知2lg x -y 2=lgx +lgy ,求x y 的值.解析:由2lg x -y 2=lgx +lgy 得lg (x -y )24=lg(xy),x>y , 所以x 2-2xy +y 2=4xy ,即x 2-6xy +y 2=0,所以x 2y 2-6x y +1=0,所以x y =3+22或x y =3-22(舍去), 所以x y =3+22=(2+1)2=2+1.随堂巩固训练(8)1. 设M =⎩⎨⎧⎭⎬⎫y|y =⎝ ⎛⎭⎪⎫12x ,x ∈[0,+∞),N ={y|y =log 2x ,x ∈(0,1]},则集合M ∪N =__(-∞,1]____.解析:因为x ≥0,所以y =⎝ ⎛⎭⎪⎫12x ∈(0,1],所以M =(0,1].因为0<x ≤1,所以y =log 2x ∈(-∞,0],即N =(-∞,0],所以M ∪N =(-∞,1].2. 设a =log 32,b =ln 2,c =5-12,则a ,b ,c 的大小关系为__c<a<b__.解析:因为1a =log 23>1,1b =log 2e>1,log 23>log 2e ,所以1a >1b >1,所以0<a<b<1.因为a =log 32>log 33=12,所以a>12.因为b =ln 2>ln e =12,所以b>12.因为c =5-12=15<12,所以c<a<b.3. 设a ,b ,c 均为正数,且2a =log 12a ,⎝ ⎛⎭⎪⎫12b =log 12b ,⎝ ⎛⎭⎪⎫12c =log 2c ,则a ,b ,c 的大小关系为__a<b<c__.解析:因为a ,b ,c 均为正数,所以log 12a =2a >1,log 12b =⎝ ⎛⎭⎪⎫12b ∈(0,1),log 2c =⎝ ⎛⎭⎪⎫12c ∈(0,1),所以0<a<12,12<b<1,1<c<2,故a<b<c. 4. 已知0<a<b<1<c ,m =log a c ,n =log b c ,则m 与n 的大小关系为__m>n__.解析:由题意得1m =log c a ,1n =log c b.因为0<a<b<1<c ,所以log c a<log c b<0,即1m <1n <0,所以n<m.5. 已知函数f(x)=a x +log a x(a>0,a ≠1)在区间[1,2]上的最大值与最小值之和为log a 2+6,则实数a 的值为__2__.解析:当x>0时,函数y =a x 与y =log a x 的单调性相同,因此函数f(x)=a x +log a x 是区间(0,+∞)上的单调函数,所以函数f(x)在区间[1,2]上的最大值与最小值之和为f(1)+f(2)=a +a 2+log a 2.由题意得a +a 2+log a 2=6+log a 2,即a 2+a -6=0,解得a =2或a =-3(舍去).故实数a 的值为2.6. 已知函数f(x)=⎩⎨⎧log 2x , x>0,log 12(-x ), x<0,若f(a)>f(-a),则实数a 的取值范围为__(-1,0)∪(1,+∞)__.解析:①当a>0时,f(a)=log 2a ,f(-a)=log 12a.因为f(a)>f(-a),即log 2a>log 12a =log 21a ,所以a>1a ,解得a>1;②当a<0时,f(a)=log 12(-a),f(-a)=log 2(-a).因为f(a)>f(-a),即log 12(-a)>log 2(-a)=log 12⎝ ⎛⎭⎪⎫-1a ,所以-a<-1a ,解得-1<a<0.由①②得-1<a<0或a>1.7. 已知f(3x )=4xlog 23+233,则f(2)+f(4)+f(8)+…+f(28)=__2__008__. 解析:令3x =t ,则f(t)=4log 2t +233,所以f(2)+f(4)+f(8)+…+f(28)=4×(1+2+…+8)+8×233=4×36+1 864=2 008.8. 下列命题为真命题的是__①②③__.(填序号)①若函数f(x)=lg(x +x 2+a)为奇函数,则a =1;②若a>0,则关于x 的方程|lg x|-a =0有两个不相等的实数根; ③方程lg x =sinx 有且只有三个实数根;④对于函数f(x)=lg x ,若0<x 1<x 2,则f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2. 解析:①因为f(x)为奇函数,所以f(-x)+f(x)=0,所以lg(-x +x 2+a)+lg(x +x 2+a)=lg [(x 2+a)-x 2]=lg a =0,所以a =1.故①正确;②因为|lg x|-a =0,所以|lg x|=a.作出y =|lg x|,y =a 的图象,由图象可知,当a>0时两函数图象有两个交点,所以方程有两个不相等的实数根.故②正确;③作出y =lg x ,y =sin x 的图象,由图象可知在y 轴的右侧有三个交点,故方程有三个实数根.故③正确;④对于f(x)=lg x ,如图,当0<x 1<x 2时,y A >y B ,即f ⎝ ⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2.故④错误. 9. 若函数f(x)=log -(ax +4)在区间[-1,1]上是单调增函数,则实数a 的取值范围是__(-2,-3)∪(2,4)__.解析:由题意,得⎩⎪⎨⎪⎧a 2-3>1,-a +4>0,a>0或⎩⎪⎨⎪⎧0<a 2-3<1,a +4>0,a<0,解得2<a<4或-2<a<-3,所以实数a 的取值范围是(-2,-3)∪(2,4).10. 已知f(x)=2+log 3x ,x ∈[1,9],求y =[f(x)]2+f(x 2)的最大值及y 取最大值时x 的值.解析:因为f(x)=2+log 3x ,所以y =[f(x)]2+f(x 2)=(2+log 3x)2+2+log 3x 2=(log 3x)2+6log 3x +6=(log 3x +3)2-3.因为函数f(x)的定义域为[1,9],所以要使函数y =[f(x)]2+f(x 2)有意义,则有⎩⎪⎨⎪⎧1≤x 2≤9,1≤x ≤9,解得1≤x ≤3,所以0≤log 3x ≤1,所以6≤(log 3x +3)2-3≤13,当log 3x =1,即x =3时,y max =13.所以当x =3时,函数y =[f(x)]2+f(x 2)取最大值13.11. 已知函数f(x)=log a (1-a x )(a>0且a ≠1).(1) 解关于x 的不等式:log a (1-a x )>f(1);(2) 设A(x 1,y 1),B(x 2,y 2)(x 1≠x 2)是f(x)图象上的两点,求证:直线AB 的斜率小于零.解析:(1) 因为f(x)=log a (1-a x ),所以f(1)=log a (1-a),所以1-a>0,所以0<a<1.所以不等式可化为log a (1-a x )>log a (1-a).所以⎩⎪⎨⎪⎧1-a x >0,1-a x <1-a ,即⎩⎪⎨⎪⎧a x <1,a x >a ,解得0<x<1. 所以不等式的解集为(0,1).(2) 设x 1<x 2,则f(x 2)-f(x 1)=log a (1-ax 2)-log a (1-ax 1)=log a 1-ax 21-ax 1. 因为1-a x >0,所以a x <1.所以当a>1时,函数f(x)的定义域为(-∞,0);当0<a<1时,函数f(x)的定义域为(0,+∞).当0<a<1时,因为x 2>x 1>0,所以ax 2<ax 1<1,所以1-ax 21-ax 1>1, 所以log a 1-ax 21-ax 1<0, 所以f(x 2)<f(x 1),即y 2<y 1;同理可证,当a>1时,y 2<y 1.综上,y 2<y 1,即y 2-y 1<0,所以k AB =y 2-y 1x 2-x 1<0, 所以直线AB 的斜率小于零.12. 已知函数f(x)=lg(a x -b x )(a>1>b>0).(1) 求y =f(x)的定义域;(2) 在函数y =f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴?(3) 当a ,b 满足什么条件时,函数f(x)在区间(1,+∞)上恒为正值?解析:(1) 由a x -b x >0,得⎝ ⎛⎭⎪⎫a b x >1.因为a>1>b>0,所以ab>1,所以x>0,即函数f(x)的定义域为(0,+∞).(2) 任取x1>x2>0,a>1>b>0,则ax1>ax2>1,bx1<bx2<1,所以ax1-bx1>ax2-bx2>0,即lg(ax1-bx1)>lg(ax2-bx2),故f(x1)>f(x2).所以函数f(x)在区间(0,+∞)上为增函数.假设函数y=f(x)的图象上存在不同的两点A(x1,y1)、B(x2,y2),使得直线AB平行于x轴,则x1≠x2,y1=y2,这与函数f(x)是增函数矛盾,故函数y=f(x)的图象上不存在不同的两点,使得过这两点的直线平行于x轴.(3) 由(2)知函数f(x)是增函数,所以当x∈(1,+∞)时,f(x)>f(1).因为f(x)在区间(1,+∞)上恒为正值,所以f(1)=lg(a-b)≥0,所以a≥b+1,即当a≥b+1时,函数f(x)在区间(1,+∞)上恒为正值.随堂巩固训练(9)1. 由y =3x 的图象,将其图象向__右__平移__1__单位长度,再向__上__平移__1__个单位长度,即得y =x +2x -1的图象. 解析:由题意得,y =x +2x -1=(x -1)+3x -1=1+3x -1,所以由y =3x 的图象向右平移1个单位长度,再向上平移1个单位长度,即可得到y =3x -1+1的图象,即为y =x +2x -1的图象. 2. 已知函数y =f(x)是R 上的奇函数,则函数y =f(x -3)+2的图象经过定点__(3,2)__.解析:因为函数f(x)是R 上的奇函数,所以函数f(x)的图象必过原点(0,0),而函数y =f(x -3)+2的图象是由函数f(x)的图象向右平移3个单位长度,再向上平移2个单位长度得到的,所以函数y =f(x -3)+2的图象经过定点(3,2).3. 已知f(x)为R 上的奇函数,则F(x)=f(x -a)+b 的图象关于点__(a ,b)__对称.解析:因为函数f(x)为R 上的奇函数,所以函数f(x)的图象关于原点(0,0)对称,而函数F(x)=f(x -a)+b 的图象是由函数f(x)的图象向右平移a 个单位长度,再向上平移b 个单位长度得到的,所以函数F(x)=f(x -a)+b 的图象关于点(a ,b)对称.4. 对任意实数a ,b ,定义min{a ,b}=⎩⎪⎨⎪⎧a ,a ≤b ,b , a>b.设函数f(x)=-x +3,g(x)=log 2x ,则函数h(x)=min{f(x),g(x)}的最大值是__1__.解析:由题意得h(x)=⎩⎪⎨⎪⎧f (x ),f (x )≤g (x ),g (x ),f (x )>g (x ).因为f(x)=-x +3,g(x)=log 2x ,所以画出h(x)的图象如图所示,所以这两个函数的交点的纵坐标,即为h(x)的最大值,所以⎩⎪⎨⎪⎧y =-x +3,y =log 2x ,解得⎩⎪⎨⎪⎧x =2,y =1,故h(x)的最大值为1. 5. 函数f(x)=2lnx 的图象与函数g(x)=x 2-4x +5的图象的交点。
2020年度全国卷Ⅲ理数高专业考试题~文档版(含内容答案)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣ 7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C = A .π2 B .π3 C .π4 D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为锥D ABC -体积的最大值为A .B .C .D .11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为AB .2CD12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若 90AMB =︒∠,则k =________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.学科.网 (一)必考题:共60分. 17.(12分)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:()()()()()22n ad bc K a b c d a c b d -=++++,19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)求α的取值范围;学.科网 (2)求AB 中点P 的轨迹的参数方程. 23.[选修4—5:不等式选讲](10分)设函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b +≤,求a b +的最小值. 参考答案:13.1214.3- 15.3 16.2 17.(12分)解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m=,解得6m =.综上,6m=.18.(12分)解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科*网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知7981802m+==.列联表如下:(3)由于2240(151555)10 6.63520202020K⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.19.(12分)解:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz . 当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M , 设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n , 2sin ,DA =n 所以面MAB 与面MCD . 20.(12分)解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<. 又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =. 于是1||(22x FA x ===-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列. 设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=② 将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||28d =.所以该数列的公差为28或28-. 21.(12分)解:(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1xf x x x'=+-+. 设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+.当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.学#科网又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax ==+-++++.由于当||min{x <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++.如果610a +>,则当6104a x a +<<-,且||min{x <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且||min{x <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-. 22.[选修4—4:坐标系与参数方程](10分)【解析】(1)O 的直角坐标方程为221x y +=.当2απ=时,l 与O 交于两点.当2απ≠时,记tan k α=,则l的方程为y kx =-l 与O交于两点当且仅当1<,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈. 综上,α的取值范围是(,)44π3π.(2)l的参数方程为cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩为参数,44απ3π<<). 设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A BP t t t +=,且A t ,B t满足2sin 10t α-+=.于是A B t t α+=,P t α.又点P 的坐标(,)x y满足cos ,sin .P P x t y t αα=⎧⎪⎨=⎪⎩ 所以点P的轨迹的参数方程是2,2x y αα⎧=⎪⎪⎨⎪=⎪⎩(α为参数,44απ3π<<). 23.[选修4—5:不等式选讲](10分)【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为5.。
2020高考数学(理)三轮复习每日一卷试题+参考答案+评分标准 (21)
2020高考数学三轮每日一卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A.14B.12C.2222.已知全集{1,3,5,7}U =,集合{1,3}A =,}5,3{=B ,则()()U UA B ⋂=痧( )A. {3}B. {7}C. {3,7}D. {1,3,5}3.如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷800个点,其中落入黑色部分的有453个点,据此可估计黑色部分的面积约为( ) A. 11B. 10C. 9D. 84.如图,用与底面成45°角的平面截圆柱得一椭圆截线,则该椭圆的离心率为( ) 233135.一直线l 与平行四边形ABCD 中的两边,AB AD 分别交于点,E F ,且交其对角线AC 于点M ,若()2,3,,AB AE AD AF AM AC R λλ===∈u u u r u u u r u u u r u u u r u u u u r u u u rg ,则λ=( )A.12B.15C.23 D. 56.下列命题错误的是( )A. 命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B. 若p :0x ∀≥,sin 1x ≤.则p ⌝:00x ∃≥,0sin 1x >.C. 若复合命题:“p q ∧”为假命题,则p ,q 均为假命题D. “2x >”是“2320x x -+>”的充分不必要条件 7.若sin 3sin 2x x π⎛⎫=-⎪⎝⎭.则sin cos()x x π⋅+=( )A.103 B. 310-C.34D. 34-8.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,其侧视图中的曲线为14圆周,则该几何体的体积为( ) A. 16πB. 6416π-C. 32643π-D. 16643π- 9.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:相逢时良马比驾马多行( ) A. 1125里B. 920里C. 820里D. 540里10.已知函数()()sin 3cos 0f x x x ωωω=>的零点构成一个公差为2π的等差数列,把函数()f x 的图象沿x 轴向右平移6π个单位,得到函数()g x 的图象.关于函数()g x ,下列说法正确的是( )A. 在,42ππ⎡⎤⎢⎥⎣⎦上是增函数B. 其图象关于直线2x π=对称C. 函数()g x 是偶函数D. 在区间2,63ππ⎡⎤⎢⎥⎣⎦上的值域为3,2⎡⎤⎣⎦ 11.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A. 1B. -1C. -3D. 312.已知抛物线2:2(0)C y px p =>,过其焦点F 的直线l 交抛物线于,A B 两点,若3AF FB =u u u r u u u r,且抛物线C 上存在点M 与x 轴上一点(7,0)N 关于直线l 对称,则该抛物线的焦点到准线的距离为( ) A. 4B. 5C.211 D. 6二、填空题(本大题共4小题,共20.0分)13.函数()()log 322f x a x =-+(0a >且1a ≠)恒过的定点坐标为______.14.已知实数,x y满足3301010x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩,则282x yzx y++=+的最小值为______.14.若曲线xxxf ln)(+=在点(1,1)处的切线与圆222ryx=+(0)r>相切,则r=__________.16.已知函数()()()31ln3ln3xxf x x⎡⎤=-⎢⎥⎢⎥⎣⎦g,且()02>-xf,则实数x的取值范围是()三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知公差不为0的等差数列{}n a的前n项和为n S,且426S=,1a,3a,11a成等比数列.(1)求数列{}n a的通项公式;(2)若数列1nS n⎧⎫⎨⎬+⎩⎭的前n项和为n T,证明:23nT<.18.为推进“千村百镇计划”,某新能源公司开展“电动新余绿色出行”活动,首批投放200台P型新能源车到新余多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对P型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为100分).最后该公司共收回600份评分表,现从中随机抽取40份(其中男、女的评分表各20份)作为样本,经统计得到如下茎叶图:(1)求40个样本数据的中位数m;(2)已知40个样本数据平均数80a=,记m与a的较大值为M.该公司规定样本中试用者的“认定类型”:评分不小于M的为“满意型”,评分小于M的为“需改进型”.① 请根据40个样本数据,完成下面22⨯列联表:认定类型满意型需改进型合计性别女性20男性20合计40并根据22⨯列联表判断能否有99%的把握认为“认定类型”与性别有关?② 为做好车辆改进工作,公司先从样本“需改进型”的试用者中按性别用分层抽样的方法,从中抽取8人进行回访.根据回访意见改进车辆后,再从这8人中随机抽取2人进行二次试用,求这2人中至少有一位女性的概率是多少?附:22()()()()()n ad bcKa b c d a c b d-=++++19.如图,在三棱锥ABCP-中,PA AC⊥,AB BC⊥,2==BCPA,22==ACPB,D为线段AC的中点,将CBD∆折叠至EBD∆,使得ABCEDB平面平面⊥且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥EBCP-的体积.2()P K k…0.050 0.010 0.001k 3.841 6.635 10.82820.在平面直角坐标系xOy ,已知椭圆2222:1xy C a b+=(0)a b >>的离心率21=e ,直线:10l x my --=)(R m ∈过椭圆C 的右焦点F ,且交椭圆C 于A ,B 两点.(1)求椭圆C 的标准方程: (2)已知点5,02D ⎛⎫⎪⎝⎭,连结BD ,过点A 作垂直于y 轴的直线1l ,设直线1l 与直线BD 交于点P ,试探索当m 变化时,是否存在一条定直线2l ,使得点P 恒在直线2l 上?若存在,请求出直线2l 的方程;若不存在,请说明理由.21.已知函数()11ln 12f x x mx x=---. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()()1g x xf x =+存在两个极值点()1212,x x x x <,并且212121ln ln ax x x x x ->-恒成立,求实数a 的取值范围.以下为选做题:共10分请考生从第22、23题中任选一题做答,如果多做,则按所做的第一题计分,作答时请写清题号.22.已如直线C 的参数方程为(12cos 12sin x y θθ=-+⎧⎨=+⎩(θ为参数).以原点O 为极点.x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程:(2)若直线:l θα=([0,)απ∈,R ρ∈)与曲线C 相交于A ,B 两点,设线段AB 的中点为M ,求||OM 的最大值.23.已知函数()12,f x x x m m R =-+-∈. (1)当3m =时,解不等式()3f x ≥.(2)若存在0x 满足()0021f x x <--,求实数m 的取值范围.一选择题:C B C A B C A B D D C D 二、填空题 13.()1,2()(),22,-∞+∞U 17.(1)由1a ,3a ,11a 成等比数列,得21113a a a =,即()()121114626102a d a a d a d +=⎧⎪⎨+=+⎪⎩ ,又0d ≠,解得12a =,3d =,所以()123131a n n =+-=-. (2)()()21131322222n n n n n n nS na d n --=+=+=+, ()21122113313122n n n S n n n n n n ⎛⎫===- ⎪+++⎝⎭++,2111112121 (132231313)n T n n n ⎛⎫⎛⎫=-+-++-=-< ⎪ ⎪++⎝⎭⎝⎭. 18.(1)由茎叶图知中位数8082812m +==, (2)因为81m =,80a =,所以81M =.①由茎叶图知,女性试用者评分不小于81的有15个,男性试用者评分不小于81的有5个,根据题意得22⨯列联表:可得:2240(151555)10 6.63520202020K ⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为“认定类型”与性别有关.②由①知从样本“需改进型”的试用者中按性别用分层抽样的方法, 抽出女性2名,男性6名.记抽出的2名女性为;A ,B ;记抽出的6名男性为:a ,b ,c ,d ,e ,f 从这8人中随机抽取2人进行二次试用的情况有:(,)(,)(,)(,)(,)(,)A B A a A b A c A d A e(,)(,)(,)(,)(,)(,)(,)A f B a B b B c B d B e B f (,)(,)(,)(,)(,)(,)(,)(,)a b a d a d a c b c b d b e b f (,)(,)(,)(,)(,)(,)c d c e c f d e d f e f ,共有28种:其中2人中至少一名女性的情况有:(,)(,)(,)(,)(,)(,)(,)(,)(,)A B A a A b A c A d A e A f B a B b(,)(,)(,)(,)B c B d B e B f ,共有13种:所以2人中至少一名女性的概率是:2813=P 19.(1)证明:Q 在三棱锥P ABC -中,PA AC ⊥, 2PA =, 22AC =∴ 23PC =又Q 2,2PB BC == ∴ 222PB BC PC += 0>ω BC PB ⊥又Q AB BC ⊥ PAB BC ∴⊥平面 BC PA ∴⊥ PA AC ⊥ 0>ω PA ABC ⊥平面BD ABC ⊂Q 又平面 ,2PA BD PA AB AB ∴⊥⊥⇒=D AC Q 又为的中点 BD AC ∴⊥ BD PAC ∴⊥平面 EBD PAC 平面平面∴⊥(2)V P EBC E PBC B APCE P ABC V V V ----==- 由已知,DE ∥AP)11222222222APCE APED EDC S S S ∆∴=+==(1122222233B APCE APCE V S BD -+∴=⋅==11142223323P ABC ABC V S PA -∆=⋅=⨯⨯⨯⨯=22242223P EBC B APCE P ABC V V V ---+-∴=-==20.解:(1)由题意知,112c c a =⎧⎪⎨=⎪⎩解得;12c a =⎧⎨=⎩从而3222=-=c a b ,所以椭圆C 的标准方程为:13422=+y x .(2)令0m =,则31,2A ⎛⎫ ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭或者31,2A ⎛⎫-⎪⎝⎭,31,2B ⎛⎫ ⎪⎝⎭. 当31,2A ⎛⎫ ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭时,34,2P ⎛⎫ ⎪⎝⎭:当31,2A ⎛⎫- ⎪⎝⎭,31,2B ⎛⎫ ⎪⎝⎭时,34,2P ⎛⎫- ⎪⎝⎭,所以,满足题意的定直线2l 只能是4x =.下面证明点P 恒在直线4x =上.设()11,A x y ,()22,B x y ,由于PA 垂直于y 轴, 所以点P 的纵坐标为1y ,从而只要证明()14,P y 在直线BD 上.由2210143x my x y --=⎧⎪⎨+=⎪⎩得()2243690m y my ++-=,Q ()214410m ∆=+>,∴122643m y y m -+=+,122943y y m-=+. Q212220055541222DB DPy y y k k x my ---=-=--+-212233223322y y my my ⎛⎫-- ⎪⎝⎭=⎛⎫- ⎪⎝⎭1212222226293433433322m y y my y m m m my my --+--++==--222664343032m mm m my ---++==-∴0DB DP k k -=,即DB DP k k =.∴点()14,P y 恒在直线BD 上,从而直线1l 、直线BD 与直线2:4l x =三线恒过同一点P ,所以存在一条定直线2:4l x =使得点P 恒在直线2l 上. 21.(Ⅰ)函数()f x 的定义域为{}0x x >,()222221112222222mx x mx x f x m x x x x-++--=-+==-'.当0m ≤时,()0f x '>,函数()f x 在()0,+∞单调递增; 当0m >时,方程2220mx x --=的两根1x =,2x =,且10x <,20x >,则当10,x m ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '>,()f x 单调递增;当1x m ⎛⎫+∈+∞ ⎪ ⎪⎝⎭,()0f x '<,()f x 单调递减. 综上:当0m ≤时,函数()f x 在()0,+∞单调递增;当0m >时,10,x m ⎛⎫+∈ ⎪ ⎪⎝⎭时,()f x 单调递增;当1x m ⎛⎫+∈+∞ ⎪ ⎪⎝⎭时,()f x 单调递减. (Ⅱ)()21ln 2g x x x mx x =--,()ln g x x mx ='-, ∵函数()g x 存在两个极值点1x ,2x ,∴1122lnx mx lnx mx =⎧⎨=⎩,则()2121ln ln x x m x x -=-,2121ln ln x x m x x -=-. ∴()()2212121212121ln ln ln ln 2ln ln 22x x x x x x m x x x x x x --=-=-=--212121ln ln ax x x x x ->-恒成立,即()211212121ln ln 2x x ax x x x x x x -->--恒成立, 即∵210x x >>,∴212112ln x x x a x x -<令211x t x =>,则()21ln a t t <-,令()()21ln g t t t =- ()()112ln 212ln 2g t t t t t t=+-=+-', ∴()2210g t t t +'=>',∴()g t '在()1,+∞单调递增. ∴()()110g t g '='>>.∴()g t 在()1,+∞单调递增,()()10g t g >=,则0a ≤.22.试题分析:(Ⅰ)利用cos ?sin x y ρθρθ==,求极坐标方程即可; (Ⅱ)设()1,A ρα、()2,B ρα,则122OM ρρ+=,联立θα=和22cos 2sin 20ρρθρθ+--=即可.试题解析:(I )曲线C 的普通方程为()()222112x y ++-=, 由{x cos y sin ρθρθ==,得22cos 2sin 20ρρθρθ+--=;(II )解法1:联立θα=和22cos 2sin 20ρρθρθ+--=, 得()22cos sin 20ρραα+--=,设()1,A ρα、()2,B ρα,则()122sin cos 4πρρααα⎛⎫+=-=-⎪⎝⎭,由122OM ρρ+=, 得4OM πα⎛⎫=-≤ ⎪⎝⎭,当34πα=时,|OM |. 23.(1)3m =时,∴()3f x ≥的解集为17|33x x x ⎧⎫≤≥⎨⎬⎩⎭或;(2)若存在0x 满足()0021f x x <--等价于2222x x m -+-<有解, ∵2222x x m m -+-≥-,∴22m -<,解得04m <<, 实数m 的取值范围是(0,4).。
2020江苏高考数学三轮综合试卷3套(PDF版含答案及附加题)
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上. 1.已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂,则实数a 的值为 .2.若复数z 满足()1234zi i +=-+(i 是虚数单位),则复数z 的实部是 . 3.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .4.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为 .5.从0、2中选一个数字,从1、3、5中选两个数字,组成无重复数字的三位数.其中无重复的个数为 .6.已知双曲线22221(00)x y a b a b-=>>,的一条渐近线的倾斜角为45º,且过点(3,1),则双曲线的焦距等于 .7.若圆柱的底面直径和高都与球的直径相等,记圆柱、球的表面积分别为S 1、S 2,则S 1:S 2= . 8.已知函数221()log (1)1x a x f x x x ⎧+≤=⎨->⎩,,,若[(0)]2f f =,则实数a 的值是 . 9.已知函数f (x )=sin (2x +φ)(0≤φ<π)图象的一条对称轴是直线x =π6,则f (2φ)的值为 . 10.已知{}n a 是首项为2,公比为()1q q >的等比数列,且{}n a 的前n 项和为n S ,若2n S +也为等比数列,则q = .11.如图,在平面四边形ABCD 中,π2CAD ∠=,2AD =,4AB BC CA ===,E ,F 分别为边BC ,CD 的中点,则AE AF ⋅=u u u r u u u r.12.在平面直角坐标系xOy 中,直线l :kx -y +5k =0与圆C :x 2+y 2-10x =0交于点A ,B ,M 为弦AB 的中点,则点M 的横坐标的取值范围是 .13.己知△ABC 的面积为2+1,AC =23,且43tan A tan B+=1,则tanA 的值为 .14.己知函数2ln 20()504x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩,,的图象上有且仅有两个不同的点关于直线y =﹣2的对称点在kx ﹣y ﹣3=0的图象上,则实数k 的取值范围是 .AFEDCB(第11题图)7 7 9 0 8 94 8 1 0 35 甲 乙 (第4题图)(第3题图)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)如图,在四棱锥P—ABCD中,底面ABCD是平行四边形,E为棱PD的中点,PA⊥平面ABCD.(1)求证:PB //平而AEC;(2)若四边形ABCD是矩形且PA=AD,求证:AE⊥平面PCD.16.(本小题满分14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,cosB=45.(1)若c=2a,求sin Bsin C的值;(2)若C﹣B=4,求sinA的值.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x∈N*)名员工从事第三产业,调整后他们平均每人每年创造利润为10(a-3x500)万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?如图,己知椭圆C:22221(0)x ya ba b+=>>过点(1,32),离心率为12,A,B分别是椭圆C的左,右顶点,过右焦点F且斜率为k(k>0)的直线线l与椭圆相交于M,N两点.(1)求椭圆C的标准方程;(2)记△AFM,△BFN的而积分别为S1,S2,若1265SS=,求k的值;(3)己知直线AM、BN的斜率分k1,k2,求21kk的值.己知函数2()ln 2x f x a x ax =-+.(1)当a =1时,求()f x 在x =1处的切线方程:(2)当a >0时,讨论()f x 的单调性;(3)若()f x 有两个极值点1x ,2x (1x ≠2x ),且不等式1212()()()f x f x x x λ+<+恒成立,求实数λ的取值范围. 已知无穷数列{}n a 的前n 项中的最大项为n A ,最小项为n B ,设n n n B A b +=.(1)若21n a n =-,求数列{}n b 的通项公式;(2)若nnn a 212-=,求数列{}n b 的前n 项和n S ; (3)若数列{}n b 是等差数列,求证:数列{}n a 是等差数列.21.已知a b c d ∈,,,R ,矩阵20a b -⎡⎤=⎢⎥⎣⎦A 的逆矩阵111c d -⎡⎤=⎢⎥⎣⎦A .若曲线C 在矩阵A 对应的变换作用下得到曲线21y x =+,求曲线C 的方程.B .[选修4-4:坐标系与参数方程](本小题满分10分)在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,()5π224,,曲线C 的方程为r ρ=(0r >).(1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值. 22.(本小题满分10分)某高校的综合评价面试中,考生都要经过三个独立项目A ,B ,C 的测试,如果通过两个或三个项目的测试即可被录取.若甲、乙、丙三人通过A ,B ,C 每个项目测试的概率都是12.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录取的人数为X ,求X 的概率分布和数学期望.23.(本小题满分10分)如图,F 是抛物线y 2=2px (p > 0)的焦点,过点F 且与坐标轴不垂直的直线交抛物线于两点,交抛物线的准线于点H ,其中.过点H 作y 轴的垂线交抛物线于点P ,直线PF 交抛物线于点Q .(1)求p 的值;(2)求四边形APBQ 的而积S 的最小值.盐城中学2020届高三年级第二学期阶段检测数学试题(教师版)一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上. 1.已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂,则实数a 的值为 .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.2.若复数z 满足()1234z i i +=-+(i 是虚数单位),则复数z 的实部是 . 【答案】1【详解】因为复数z 满足(1+2i )z =−3+4i ,所以(1−2i )(1+2i )z =(−3+4i )(1−2i ), 即5z =5+10i ,所以z =1+2i ,实部为1. 故答案为:1.3.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .【答案】8【解析】由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S=4.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为 . 4.6.85.从0、2中选一个数字,从1、3、5中选两个数字,组成无重复数字的三位数.其中无重复的个数为 . 答案:30 考点:计数原理解析:若从0、2中选一个数字是0,则组成三位数有12个,若从0、2中选一个数字是2,则组成三位数有18个,故一共有30个.6.已知双曲线22221(00)x y a b a b-=>>,的一条渐近线的倾斜角为45º,且过点(3,1),则双曲线的焦距等于 . 答案:8考点:双曲线及其性质解析:由题意知:221911ba ab ⎧=⎪⎪⎨⎪-=⎪⎩,解得228a b ==,故216c =,∴焦距2c =8.7.若圆柱的底面直径和高都与球的直径相等,记圆柱、球的表面积分别为S 1、S 2,则S 1:S 2= . 答案:3:2考点:圆柱、球的表面积解析:设球的半径为R ,则S 1:S 2=2(222)RR R ππ+⋅:24R π=3:2.8.已知函数221()log (1)1x ax f x x x ⎧+≤=⎨->⎩,,,若[(0)]2f f =,则实数a 的值是 . 【答案】2【解析】∵0(0)223f =+=,∴[(0)](3)log 2a f f f ==7 7 9 0 8 9 4 8 1 0 3 5 甲 乙 (第4题图)(第3题图)∵[(0)]2f f =,∴log 22a =,解得a.9.已知函数f (x )=sin (2x +φ)(0≤φ<π)图象的一条对称轴是直线x =π6,则f (2φ)的值为 . 9.1210.已知{}n a 是首项为2,公比为()1q q >的等比数列,且{}n a 的前n 项和为n S,若q = .【答案】2 【详解】已知{}n a 是首项为2,公比为()1q q >的等比数列.所以()1122221111nnn na q qq Sqq q q---===+----. 222112n n q q S q=++-+--{}2n S +也为等比数列.所以2201q+=-,即2q =. 故答案为:211.如图,在平面四边形ABCD 中,π2CAD ∠=,2AD =,4AB BC CA ===,E ,F 分别为边BC ,CD 的中点,则AE AF ⋅=u u u r u u u r.【答案】612.在平面直角坐标系xOy 中,直线l :kx -y +5k =0与圆C :x 2+y 2-10x =0交于点A ,B ,M 为弦AB 的中点,则点M 的横坐标的取值范围是 .12.解析:因为直线l :kx -y +5k =0过定点P (-5,0),且CM ⊥MP ,所以点M 在以CP 为直径的圆上.设点M (x ,y ),则x 2+y 2=25.联立⎩⎨⎧x 2+y 2=25x 2+y 2-10x =0,解得x =52.又因为点M 在圆C 内,所以点M 的横坐标的取值范围为(52,5].13.己知△ABC的面积为+1,AC =2,且43tan A tan B+=1,则tanA 的值为 .答案:1考点:三角恒等变换、正弦定理解析:∵43tan A tan B+=1,∴4cos A 3cos B1sin A sin B+=,∴4cosAsinB +3cosBsinA =sinAsinB ,∴3sinC =sinB (sinA ﹣cosA ),故3cb=sinA ﹣cosA , ∵△ABC+1,则1)sin A c b =,代入上式得:21)sin A cos A sin Ab =-,∵b =AC =,∴21sin A sin A cos A 2=-,即221tan A tan A 2tan A 1-=+, AFEDCB(第11题图)解得tan A 21=-.14.己知函数2ln 20()504x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩,,的图象上有且仅有两个不同的点关于直线y =﹣2的对称点在kx ﹣y ﹣3=0的图象上,则实数k 的取值范围是 . 答案:(-∞,34)U (1,+∞) 考点:函数与方程解析:直线kx ﹣y ﹣3=0关于直线y =﹣2的对称直线为y =﹣1﹣kx , 故可将题意转化为直线y =﹣1﹣kx 与函数()y f x =有且仅有两个交点,当x =0时,显然不符合题意,当x ≠0时,参变分离得:1()f x kx--=,即方程1ln 201504x x xk x x x ⎧--+>⎪⎪=⎨⎪---<⎪⎩,,有两个不相等的实数根,通过数形结合即可求得实数k 的取值范围是k >1或k <34,即(-∞,34)U (1,+∞). 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在四棱锥P —ABCD 中,底面ABCD 是平行四边形,E 为棱PD 的中点,PA ⊥平面ABCD . (1)求证:PB //平而AEC ;(2)若四边形ABCD 是矩形且PA =AD ,求证:AE ⊥平面PCD . 证明:(1)连接BD 交AC 于O ,因为ABCD 是平行四边形,所以O 是BD 的中点, 因为E 为PD 的中点,所以OE //PB又因为PB ⊄平面AEC ,OE ⊂平面AEC ,所以PB //平面AEC ………………6分 (2)因为PA AD =且E 是PD 的中点,所以AE PD ⊥又因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥ 因为四边形ABCD 是矩形,所以CD ⊥AD ,因为,PA AD ⊂平面PAD 且PA AD A =I所以CD ⊥平面PAD 又因为AE ⊂平面PAD ,所以CD AE ⊥,PD CD ⊂平面PDC 且PD CD D =I ,所以AE ⊥平面PCD ………………14分16.(本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cosB =45.(1)若c =2a ,求sin Bsin C的值; (2)若C ﹣B =4π,求sinA 的值. 解:(1)解法1:在△ABC 中,因为cos B =45,所以a 2+c 2-b 22ac =45.………………2分因为c =2a ,所以(c2)2+c 2-b 22c ×c 2=45,即b 2c 2=920,所以b c =3510.………………4分又由正弦定理得sin B sin C =b c ,所以sin B sin C =3510.………………6分 解法2:因为cos B =45,B ∈(0,π),所以sin B =1-cos 2B =35.………………2分因为c =2a ,由正弦定理得sin C =2sin A ,所以sin C =2sin (B +C )=65cos C +85sin C ,即-sin C =2cos C .………………4分又因为sin 2C +cos 2C =1,sin C >0,解得sin C =255,所以sin B sin C =3510.………………6分(2)因为cos B =45,所以cos2B =2cos 2B -1=725.………………8分又0<B <π,所以sin B =1-cos 2B =35,所以sin2B =2sin B cos B =2×35×45=2425.………………10分因为C -B =π4,即C =B +π4,所以A =π-(B +C )=3π4-2B ,所以sin A =sin (3π4-2B )=sin 3π4cos2B -cos 3π4sin2B =31250.………………14分17.(本小题满分14分)某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x ∈N *)名员工从事第三产业,调整后他们平均每人每年创造利润为10(a -3x500)万元(a >0),剩下的员工平均每人每年创造的利润可以提高0.2x %.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?17.(1)由题意得,10(1000-x )(1+0.2x %)≥10×1000,………………2分 即x 2-500x ≤0,又x >0,故0<x ≤500.………………4分 即最多调整500名员工从事第三产业.………………5分 (2)从事第三产业的员工创造的年总利润为10(a -3x500)x 万元, 从事原来产业的员工的年总利润为10(1000-x )(1+1500x )万元, 则10(a -3x 500)x ≤10(1000-x )(1+1500x ),………………8分故ax -3x 2500≤1000+2x -x -1500x 2, 故ax ≤2x 2500+1000+x , 即a ≤2x 500+1000x +1恒成立.………………10分因2x 500+1000x≥22x 500·1000x=4, 当且仅当2x 500=1000x,即x =500时等号成立,故a ≤5,………………12分 又a >0,故0<a ≤5.故a 的取值范围为(0,5].………………14分 18.(本小题满分16分)如图,己知椭圆C :22221(0)x y a b a b +=>>过点(1,32),离心率为12,A ,B 分别是椭圆C 的左,右顶点,过右焦点F 且斜率为k (k >0)的直线线l 与椭圆相交于M ,N 两点. (1)求椭圆C 的标准方程;(2)记△AFM ,△BFN 的而积分别为S 1,S 2,若1265S S =,求k 的值; (3)己知直线AM 、BN 的斜率分k 1,k 2,求21k k 的值.解:(1)设椭圆的焦距为2c .312Q 椭圆过点(,),离心率为12∴229141a b +=,12c a =解得2,a b == 则椭圆的方程为22143x y +=.………………4分(2) 设点1122(,),(,)M x y N x yQ 1265s s = ∴12162152AF y BF y ⨯⨯=⨯⨯,整理可得M N 3|y |6|y |5= 即2||||5M N y y =,25FM NF ∴=u u u u r u u u r代入坐标,可得121221(1)525x x y y ⎧-=-⎪⎪⎨⎪=-⎪⎩即1212725525x x y y ⎧=-⎪⎪⎨⎪=-⎪⎩,又Q 点,M N 在椭圆C 上22222222722()()555143143x y x y ⎧--⎪+=⎪∴⎨⎪+=⎪⎩,解得2254x y ⎧=-⎪⎪⎨⎪=⎪⎩∴直线l的斜率8514k ==--………………10分(3)Q 直线l 的方程为(1)y k x =-由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩消去y 得2222(34)84120k x k x k +-+-= 221212228412,3443k k x x x x k k -∴+=⋅=++ 又22221211221111212121212(2)(1)(2)22(2)(1)(2)222y k x y x k x x x x x x y k y x k x x x x x x x -+-++--====-----++ 222222222222222222412812182()234343434128462()2434343k k k x x x k k k k k k x x x k k k ---+---++++==------+++++ 222222463()4334643k x k k x k --++==--++ 213k k ∴=………………16分 19.(本小题满分16分)己知函数2()ln 2x f x a x ax =-+.(1)当a =1时,求()f x 在x =1处的切线方程: (2)当a >0时,讨论()f x 的单调性;(3)若()f x 有两个极值点1x ,2x (1x ≠2x ),且不等式1212()()()f x f x x x λ+<+恒成立,求实数λ的取值范围.解:(1)当1a =时,()2ln 2x f x x x =-+,()112f =- ()1'1f x x x=-+,()'11f =所以()f x 在1x =处的切线方程为112y x ⎛⎫--=- ⎪⎝⎭,即2230x y --= ………………2分(2)()f x 定义域为()0,+∞,()2'a x ax af x a x x x-+=-+=①若04a <<时,240a a -<,()'0f x >,所以()f x 单调递增区间为()0,+∞,无减区间;…………4分②若4a =,则()()22244'x x x f x x x--+==当02x <<时,()'0f x >;当2x >时,()'0f x >所以()f x 单调递增区间为()0,+∞,无减区间;………………6分③若4a >时,由()2'0x ax a f x x-+==,得x =x =当0x <<x >()'0f x >x <<时,()'0f x < 所以()f x单调递增区间为⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭………………8分 (3)由(1)知,4a >,且1212x x ax x a +=⎧⎨=⎩,不等式1212()()()f x f x x x λ+<+恒成立等价于1212()()()()f x f x f x f x λ++>=恒成立又221211122211()()(ln )(ln )22f x f x a x x x a x x x +=-++-+221212121(ln ln )()()2a x x a x x x x =+-+++2121212121ln ()[()2]2a x x a x x x x x x =-+++-221ln (2)2a a a a a =-+- 21ln 2a a a a =--所以1212()()1ln 12f x f x a a x x +=--+,令1ln 12y a a =--(4a >),则11'02y a =-<, 所以1ln 12y a a =--在(4,)+∞上单调递减, 所以2ln 23y <-,所以2ln23λ≥-………………16分20.(本小题满分16分) 已知无穷数列{}n a 的前n 项中的最大项为n A ,最小项为n B ,设n n n B A b +=.(1)若21n a n =-,求数列{}n b 的通项公式;(2)若nnn a 212-=,求数列{}n b 的前n 项和n S ; (3)若数列{}n b 是等差数列,求证:数列{}n a 是等差数列.解:(1)由12-=n a n 得{}n a 是递增数列,所以,1,121==-==a B n a A n n n所以.2n B A b n n n=+=………………2分(2)由n nn a 212-=得-+=-++11212n n n n a a ,2232121+-=-n nnn 当1=n ,01>-+n n a a ,即;21a a <当2≥n ,01<-+n n a a ,即>>>432a a a ┈又,167,85,43,21141321a a a a a a <=>=== 所以,45,45,1321===b b b 当4≥n 时,,21243nn n b -+= 所以,27,49,1321===s s s当4≥n 时,令,22)1(43212431nn n n bkn b n k n b +-+-+=-+=- 则,3,2==b k 即nn n n n n n b 23221243212431+-++=-+=- 所以)232212()213211()21129()3(432715443n n n n s n n +-++⋅⋅⋅+-+-+-+=-n n n 23229)3(43273+-+-+= .23243819nn n +-+=综上所述,27,49,1321===s s s ,当4≥n 时,.23243819nn n n s +-+=…………8分(3)设数列{}n b 的公差为d ,则d B B A A b b n n n n n n =-+-=-+++111,由题意n n n n B B A A ≤≥++11,n n A A d >>+1,0,对任意*∈N n 都成立,即n n n n a A a A =>+=+11,所以{}n a 是递增数列。
2020年高考理科数学新课标Ⅲ三真题及答案
K
累计确诊病例数I(t)(t的单位:天)的Logistic模型: ( )= 0.23( 53) ,其中K为最大确诊病例数.当I(
It
t
*
1 e t
)=0.95K时,标志着已初步遏制疫情,则t* 约为( )(ln19≈3)
A. 60 【答案】C 【解析】 【分析】
B. 63
C. 66
D. 69
K
将 t t 代入函数
(2)若 AB 2 , AD 1 , AA1 3 ,求二面角
的正弦值.
A EF A
1
x y
2
2
20.已知椭圆C
m
:
1(0
25 m
2
的离心率为 5)
15 , A , B 分别为C 的左、右顶点.
4
(1)求C 的方程;
(2)若点 P 在 C 上,点Q 在直线 x 6 上,且| BP || BQ | , BP BQ ,求AAPQ 的面积.
2020年普通高等学校招生全国统一考试
理科数学
注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改 动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本 试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是 符合题目要求的. 1.已知集合 A {(x, y) | x, y N* , y x}, B {(x, y) | x y 8},则 A B 中元素的个数为( )
(1)证明:ab+bc+ca<0;
2020年高考理科数学全国卷3(附答案与解析)
2020年普通高等学校招生全国统一考试·全国Ⅲ卷理科数学答案解析一、选择题 1.【答案】C【解析】采用列举法列举出A B 中元素的即可.由题意,A B 中的元素满足8y x x y ⎧⎨+=⎩≥,且x ,*y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有()17,,()26,,()35,,()44,,故A B 中元素的个数为4.故选:C .【考点】集合的交集运算,交集定义的理解 2.【答案】D【解析】利用复数的除法运算求出z 即可.因为()()113131313131010i z i i i i +===+--+,所以复数113z i=-的虚部为310.故选:D . 【考点】复数的除法运算,复数的虚部的定义 3.【答案】B【解析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大.故选:B . 【考点】标准差的大小比较,方差公式的应用 4.【答案】C【解析】将t t *=代入函数()()0.23531t K I t e --=+结合()0.95I t K *=求得t *即可得解.()()0.23531t K I t e --=+,所以()()0.23530.951t KI t K e**--==+,则()*0.235319t e -=,所以,()0.2353ln193t *-=≈,解得353660.23t *+≈≈.故选:C .【考点】对数的运算,指数与对数的互化 5.【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.因为直线2x =与抛物线()220y px p =>交于E ,D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()22D ,,代入抛物线方程44p =,求得1p =,所以其焦点坐标为102⎛⎫⎪⎝⎭,,故选:B .【考点】圆锥曲线,直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标 6.【答案】D【解析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos a a b +,的值.5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-,因此,()1919cos 5735a a ba ab a a b⋅++===⨯⋅+,.故选:D . 【考点】平面向量夹角余弦值的计算,平面向量数量积的计算,向量模的计算 7.【答案】A【解析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.在ABC △中,2cos 3C =,4AC =,3BC =.根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB =,即3AB =.由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =.故选:A . 【考点】余弦定理解三角形8.【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△,根据勾股定理可得:AB AD DB ===ADB ∴△是边长为,根据三角形面积公式可得:(211sin 6022ADBS AB AD =⋅⋅==△∴该几何体的表面积是:632=⨯++ 故选:C .【考点】根据三视图求立体图形的表面积,根据三视图画出立体图形 9.【答案】D【解析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan t θ=,1t ≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D .【考点】利用两角和的正切公式化简求值 10.【答案】D【解析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.设直线l 在曲线y =(0x,则00x >,函数y导数为y '=,则直线l 的斜率k =,设直线l 的方程为)0y x x =-,即00xx -+=,由于直线l 与圆2215x y +=相切,则=,两边平方并整理得2005410x x --=,解得01x=,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【考点】导数的几何意义的应用,直线与圆的位置的应用 11.【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.5ca=,c ∴,根据双曲线的定义可得122PF PF a -=,1212142PF F PF S PF =⋅=△,即128PF PF ⋅=, 12F P F P ⊥,()222122PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .【考点】双曲线的性质以及定义的应用,勾股定理,三角形面积公式的应用 12.【答案】A【解析】由题意可得a 、b 、()01c ∈,,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、()01c ∈,, ()222528log 3lg3lg81lg3lg8lg3lg8lg 241log 5lg5lg522lg5lg 25lg5a b ⎛⎫⎛⎫++⎛⎫==⋅⋅==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,a b ∴<;由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <;由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<.故选:A .【考点】对数式的大小比较,基本不等式、对数式与指数式的互化,指数函数单调性的应用 二、填空题 13.【答案】7【解析】作出可行域,利用截距的几何意义解决.不等式组所表示的可行域如图.因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,()12A ,,所以max 31227z =⨯+⨯=.故答案为:7.【考点】简单线性规划的应用,求线性目标函数的最大值 14.【答案】240【解析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项:()()()621221236661222rrr r r r r r r r r C xC x C x x T x ---+-⎛⎫⋅⋅⋅⋅=⋅⎭= ⎝=⎪,当1230r -=,解得4r =,622x x ⎛⎫∴+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【考点】二项式定理,利用通项公式求二项展开式中的指定项15. 【解析】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2BC =,3AB AC ==,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC r ,则:()11113322222ABC AOB BOC AOC S S S S AB r BC r AC r r =++=⨯⨯+⨯⨯+⨯⨯=⨯++⨯=△△△△r,其体积:343V r π=.. 16.【答案】②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622fπ⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{}x x k k π≠∈Z ,,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.【考点】正弦型函数的奇偶性、对称性,最值的求解 三、解答题17.【答案】(1)25a =,37a =,21n a n =+,当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立.(2)()12122n n S n +=-⋅+【解析】(1)利用递推公式得出2a ,3a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可.由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;(2)由错位相减法求解即可.由(1)可知,()2212n nn a n ⋅=+⋅,()()231325272212212n n n S n n -=⨯+⨯+⨯++-⋅++⋅,①()()23412325272212212n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②,由-①②得:()()()()()21231112126222221262212122212n n n n n n S n n n -+++--=+⨯+++-+⋅=+⨯-+⋅=⋅⨯---,即()12122n n S n +=-⋅+.【考点】求等差数列的通项公式,利用错位相减法求数列的和18.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09 (2)350(3()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【解析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率.由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=. (2)利用每组的中点值乘以频数,相加后除以100可得结果.由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=.(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论.22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【考点】利用频数分布表计算频率和平均数,独立性检验的应用19.【答案】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内.(2)7【解析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内.在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()213A ,,、()1210A ,,、()202E ,,、()011F ,,,()011AE =--,,,()202AF =--,,,()1012A E =-,,,()1201A F =-,,,设平面AEF 的法向量为()111m x y z =,,,由00m AE m AF ⎧⋅⎪⎨⋅=⎪⎩=,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()111m =-,,,设平面1A EF 的法向量为()222n x y z =,,,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()142n =,,,3cos 3m n m n m n⋅===⨯⋅,,设二面角1A EF A--的平面角为θ,则cos θ=,sinθ∴==.因此,二面角1A EF A --.【考点】点在平面的证明,利用空间向量法求解二面角20.【答案】(1)221612525x y +=(2)52【解析】(1)因为()222:10525x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案.()222:10525x y C m m +=<<,5a∴=,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),C ∴的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=. (2)点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N .根据题意画出图形,如图BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=,又90PBM QBN ∠+∠=,90BQN QBN ∠+∠=,PBM BQN ∴∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=, ()50B ∴,,651PM BN ∴==-=,设P 点为()P P x y ,,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,P ∴点为()31,或()31-,, ①当P 点为()31,时,故532MB =-=,PMB BNQ ≅△△,2MB NQ ∴==,可得:Q 点为()62,,画 出图象,如图()50A -,,()62Q ,,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ =,APQ ∴△面积为:1522⨯=;②当P 点为()31-,时,故5+38MB ==,PMB BNQ ≅△△,8MB NQ ∴==,可得:Q 点为()68,,画出图象,如图()50A -,,()68Q ,,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P到直线AQ 的距离为:d ===AQ ==APQ ∴△面积为:1522=,综上所述,APQ △面积为:52. 【考点】椭圆标准方程,三角形面积,椭圆的离心率定义,数形结合求三角形面积 21.【答案】(1)34b =-(2)由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【解析】(1)利用导数的几何意义得到102f ⎛⎫'= ⎪⎝⎭,解方程即可.因为()23f x x b '=+,由题意,102f ⎛⎫'= ⎪⎝⎭,即21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =-; (2)由(1)可得()231132422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,易知()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,采用反证法,推出矛盾即可.由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1. 【考点】利用导数研究函数的零点,导数的几何意义,反证法22.【答案】(1)(2)3cos sin 120ρθρθ-+=【解析】(1)由参数方程得出A ,B 的坐标,最后由两点间距离公式,即可得出AB 的值.令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即()012A ,.令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即()40B -,.AB ∴=(2)由A ,B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.由(1)可知()120304AB k -==--,则直线AB 的方程为()34y x =+,即3120x y -+=.由cos x ρθ=,sin y ρθ=可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【考点】利用参数方程求点的坐标,直角坐标方程化极坐标方程 23.【答案】(1)()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴ {}3max 4a b c ,,.【解析】(1)由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明.()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++.a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由题意得出0a >,b ,0c <,由()222322b c b c bca aa bcbc+++=⋅==,结合基本不等式,即可得出证明.不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【考点】不等式的基本性质,基本不等式的应用2020年普通高等学校招生全国统一考试·全国Ⅲ卷理科数学答案解析一、选择题 1.【答案】C【解析】采用列举法列举出A B 中元素的即可.由题意,A B 中的元素满足8y x x y ⎧⎨+=⎩≥,且x ,*y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有()17,,()26,,()35,,()44,,故A B 中元素的个数为4.故选:C .【考点】集合的交集运算,交集定义的理解 2.【答案】D【解析】利用复数的除法运算求出z 即可.因为()()113131313131010i z i i i i +===+--+,所以复数113z i=-的虚部为310.故选:D . 【考点】复数的除法运算,复数的虚部的定义 3.【答案】B【解析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大.故选:B . 【考点】标准差的大小比较,方差公式的应用 4.【答案】C【解析】将t t *=代入函数()()0.23531t K I t e --=+结合()0.95I t K *=求得t *即可得解.()()0.23531t K I t e --=+,所以()()0.23530.951t KI t K e**--==+,则()*0.235319t e -=,所以,()0.2353ln193t *-=≈,解得353660.23t *+≈≈.故选:C .【考点】对数的运算,指数与对数的互化 5.【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.因为直线2x =与抛物线()220y px p =>交于E ,D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()22D ,,代入抛物线方程44p =,求得1p =,所以其焦点坐标为102⎛⎫⎪⎝⎭,,故选:B .【考点】圆锥曲线,直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标 6.【答案】D【解析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos a a b +,的值.5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-,因此,()1919cos 5735a a ba ab a a b⋅++===⨯⋅+,.故选:D . 【考点】平面向量夹角余弦值的计算,平面向量数量积的计算,向量模的计算 7.【答案】A【解析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.在ABC △中,2cos 3C =,4AC =,3BC =.根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB =,即3AB =.由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =.故选:A . 【考点】余弦定理解三角形8.【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△,根据勾股定理可得:AB AD DB ===ADB ∴△是边长为,根据三角形面积公式可得:(211sin 6022ADBS AB AD =⋅⋅==△∴该几何体的表面积是:632=⨯++ 故选:C .【考点】根据三视图求立体图形的表面积,根据三视图画出立体图形 9.【答案】D【解析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan t θ=,1t ≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D .【考点】利用两角和的正切公式化简求值 10.【答案】D【解析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.设直线l 在曲线y =(0x,则00x >,函数y =导数为y '=l 的斜率k =,设直线l 的方程为)0y x x =-,即00xx -+=,由于直线l 与圆2215x y +=相切,则=,两边平方并整理得2005410x x --=,解得01x=,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【考点】导数的几何意义的应用,直线与圆的位置的应用 11.【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.5ca=,c ∴,根据双曲线的定义可得122PF PF a -=,1212142PF F PF S PF =⋅=△,即128PF PF ⋅=, 12F P F P ⊥,()222122PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .【考点】双曲线的性质以及定义的应用,勾股定理,三角形面积公式的应用 12.【答案】A【解析】由题意可得a 、b 、()01c ∈,,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、()01c ∈,, ()222528log 3lg3lg81lg3lg8lg3lg8lg 241log 5lg5lg522lg5lg 25lg5a b ⎛⎫⎛⎫++⎛⎫==⋅⋅==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,a b ∴<;由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <;由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<.故选:A .【考点】对数式的大小比较,基本不等式、对数式与指数式的互化,指数函数单调性的应用 二、填空题 13.【答案】7【解析】作出可行域,利用截距的几何意义解决.不等式组所表示的可行域如图.因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,()12A ,,所以max 31227z =⨯+⨯=.故答案为:7.【考点】简单线性规划的应用,求线性目标函数的最大值 14.【答案】240【解析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项:()()()621221236661222rrr r r r r r r r r C xC x C x x T x ---+-⎛⎫⋅⋅⋅⋅=⋅⎭= ⎝=⎪,当1230r -=,解得4r =,622x x ⎛⎫∴+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【考点】二项式定理,利用通项公式求二项展开式中的指定项15. 【解析】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2BC =,3AB AC ==,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC r ,则:()11113322222ABC AOB BOC AOC S S S S AB r BC r AC r r =++=⨯⨯+⨯⨯+⨯⨯=⨯++⨯=△△△△r,其体积:343V r π=.. 16.【答案】②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622fπ⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{}x x k k π≠∈Z ,,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.【考点】正弦型函数的奇偶性、对称性,最值的求解 三、解答题17.【答案】(1)25a =,37a =,21n a n =+,当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立.(2)()12122n n S n +=-⋅+【解析】(1)利用递推公式得出2a ,3a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可.由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;(2)由错位相减法求解即可.由(1)可知,()2212n nn a n ⋅=+⋅,()()231325272212212n n n S n n -=⨯+⨯+⨯++-⋅++⋅,①()()23412325272212212n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②,由-①②得:()()()()()21231112126222221262212122212n n n n n n S n n n -+++--=+⨯+++-+⋅=+⨯-+⋅=⋅⨯---,即()12122n n S n +=-⋅+.【考点】求等差数列的通项公式,利用错位相减法求数列的和18.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09 (2)350(3()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【解析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率.由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=. (2)利用每组的中点值乘以频数,相加后除以100可得结果.由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=.(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论.22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【考点】利用频数分布表计算频率和平均数,独立性检验的应用19.【答案】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内.(2)7【解析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内.在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()213A ,,、()1210A ,,、()202E ,,、()011F ,,,()011AE =--,,,()202AF =--,,,()1012A E =-,,,()1201A F =-,,,设平面AEF 的法向量为()111m x y z =,,,由00m AE m AF ⎧⋅⎪⎨⋅=⎪⎩=,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()111m =-,,,设平面1A EF 的法向量为()222n x y z =,,,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()142n =,,,3cos 3m n m n m n⋅===⨯⋅,,设二面角1A EF A--的平面角为θ,则cos θ=,sinθ∴==.因此,二面角1A EF A --.【考点】点在平面的证明,利用空间向量法求解二面角20.【答案】(1)221612525x y +=(2)52【解析】(1)因为()222:10525x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案.()222:10525x y C m m +=<<,5a∴=,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),C ∴的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=. (2)点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N .根据题意画出图形,如图BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=,又90PBM QBN ∠+∠=,90BQN QBN ∠+∠=,PBM BQN ∴∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=, ()50B ∴,,651PM BN ∴==-=,设P 点为()P P x y ,,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,P ∴点为()31,或()31-,, ①当P 点为()31,时,故532MB =-=,PMB BNQ ≅△△,2MB NQ ∴==,可得:Q 点为()62,,画 出图象,如图()50A -,,()62Q ,,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ =,APQ ∴△面积为:1522⨯=;②当P 点为()31-,时,故5+38MB ==,PMB BNQ ≅△△,8MB NQ ∴==,可得:Q 点为()68,,画出图象,如图()50A -,,()68Q ,,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P到直线AQ 的距离为:d ===AQ ==APQ ∴△面积为:1522=,综上所述,APQ △面积为:52. 【考点】椭圆标准方程,三角形面积,椭圆的离心率定义,数形结合求三角形面积 21.【答案】(1)34b =-(2)由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【解析】(1)利用导数的几何意义得到102f ⎛⎫'= ⎪⎝⎭,解方程即可.因为()23f x x b '=+,由题意,102f ⎛⎫'= ⎪⎝⎭,即21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =-; (2)由(1)可得()231132422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,易知()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,采用反证法,推出矛盾即可.由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1. 【考点】利用导数研究函数的零点,导数的几何意义,反证法22.【答案】(1)(2)3cos sin 120ρθρθ-+=【解析】(1)由参数方程得出A ,B 的坐标,最后由两点间距离公式,即可得出AB 的值.令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即()012A ,.令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即()40B -,.AB ∴=(2)由A ,B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.由(1)可知()120304AB k -==--,则直线AB 的方程为()34y x =+,即3120x y -+=.由cos x ρθ=,sin y ρθ=可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【考点】利用参数方程求点的坐标,直角坐标方程化极坐标方程 23.【答案】(1)()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴ {}3max 4a b c ,,.【解析】(1)由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明.()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++.a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由题意得出0a >,b ,0c <,由()222322b c b c bca aa bcbc+++=⋅==,结合基本不等式,即可得出证明.不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【考点】不等式的基本性质,基本不等式的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考数学三轮每日一卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A.14B.12C.2222.已知全集{1,3,5,7}U =,集合{1,3}A =,}5,3{=B ,则()()U UA B ⋂=痧( )A. {3}B. {7}C. {3,7}D.{1,3,5}3.已知(1,1)a =r,),2(m b =ρ,()a a b ⊥-r r r,则||b =r( ) A. 22C. 1D. 04.如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷800个点,其中落入黑色部分的有453个点,据此可估计黑色部分的面积约为( ) A. 11 B. 10C. 9D. 85.如图,用与底面成45°角的平面截圆柱得一椭圆截线,则该椭圆的离心率为( ) A.223 3 D.136.执行如图所示的程序框图,若输入a 的值为1-,则输出的S 的值是( ) A. 21- B. 12 C. 74D.20637.设0.32a =,23.0=b ,()2log 0.3m c m =+(1)m >,则a ,b ,c 的大小关系是( ) A. c b a <<B. c a b <<C. c b a <<D. a c b <<8.下列命题错误的是( )A. 命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B. 若p :0x ∀≥,sin 1x ≤.则p ⌝:00x ∃≥,0sin 1x >.C. 若复合命题:“p q ∧”为假命题,则p ,q 均为假命题D. “2x >”是“2320x x -+>”的充分不必要条件9.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A. 4πB. 2πC.43π D. π10.已知函数()()sin 3cos 0f x x x ωωω=>的零点构成一个公差为2π的等差数列,把函数()f x 的图象沿x 轴向右平移6π个单位,得到函数()g x 的图象.关于函数()g x ,下列说法正确的是( ) A. 在,42ππ⎡⎤⎢⎥⎣⎦上是增函数 B. 其图象关于直线2x π=对称C. 函数()g x 是偶函数D. 在区间2,63ππ⎡⎤⎢⎥⎣⎦上的值域为3,2⎡⎤⎣⎦ 11.已知函数()f x 为定义在R 上的奇函数,(2)f x +是偶函数,且当(0,2]x ∈时,()f x x =,则(2018)(2019)f f -+=( )A. -3B. -2C. -1D. 012.已知函数()()()31ln 3ln 3xx f x x ⎡⎤=-⎢⎥⎢⎥⎣⎦g ,且()02>-x f ,则实数x 的取值范围是( ) A. ()1,+∞ B. ()2,+∞ C. ()(),22,-∞+∞U D. (),-∞+∞二、填空题(本大题共4小题,共20.0分)13.函数()()log 322f x a x =-+(0a >且1a ≠)恒过的定点坐标为______.13.已知实数x ,y 满足约束条件321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,求目标函数2z x y =+的最小值__________.15.已知直线:l y kx =与圆2268160x y x y +--+=相交于,A B 两点,若42AB =,则k =______.16.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin (2)tan b C a b B =+,23c =,则ABC ∆面积的最大值为__三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知等差数列{}n a 的前n 项和为n S ,2882a a +=,419S S =. (1)求数列{}n a 的通项公式; (2)求n S 的最大值.18.为推进“千村百镇计划”,某新能源公司开展“电动新余绿色出行”活动,首批投放200台P 型新能源车到新余多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对P 型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为100分).最后该公司共收回600份评分表,现从中随机抽取40份(其中男、女的评分表各20份)作为样本,经统计得到如下茎叶图:(1)求40个样本数据的中位数m ;(2)已知40个样本数据平均数80a =,记m 与a 的较大值为M .该公司规定样本中试用者的“认定类型”:评分不小于M 的为“满意型”,评分小于M 的为“需改进型”. ① 请根据40个样本数据,完成下面22⨯列联表:并根据22⨯列联表判断能否有99%的把握认为“认定类型”与性别有关?② 为做好车辆改进工作,公司先从样本“需改进型”的试用者中按性别用分层抽样的方法,从中抽取8人进行回访.根据回访意见改进车辆后,再从这8人中随机抽取2人进行二次试用,求这2人中至少有一位女性的概率是多少?附:22()()()()()n ad bc K a b c d a c b d -=++++19.如图,在三棱柱ABM DCN -中,四边形ABCD 是菱形,四边形MADN 是矩形,E 、F 分别为棱MA 、DC 的中点.(1)求证://EF 平面MNCB ;(2)若2AB AM ==,120ABC ∠=︒,且平面MADN ⊥平面ABCD ,求四棱锥E BCNM -的体积.20.已知,A B 两点在抛物线y x 4:C 2=上,点()0,4M 满足MA BM λ=u u u r u u u u r.(1)若线段122AB =AB 的方程;(2)设抛物线C 过A B 、两点的切线交于点N .求证:点N 在一条定直线上.21.已知函数()11ln 12f x x mx x=---. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()()1g x xf x =+存在两个极值点()1212,x x x x <,并且212121ln ln ax x x x x ->-恒成立,求实数a 的取值范围.以下为选做题:共10分请考生从第22、23题中任选一题做答,如果多做,则按所做的第一题计分,作答时请写清题号.22.已如直线C 的参数方程为(12cos 12sin x y θθ=-+⎧⎨=+⎩(θ为参数).以原点O 为极点.x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程:(2)若直线:l θα=([0,)απ∈,R ρ∈)与曲线C 相交于A ,B 两点,设线段AB 的中点为M ,求||OM 的最大值.23.已知函数()12,f x x x m m R =-+-∈. (1)当3m =时,解不等式()3f x ≥.(2)若存在0x 满足()0021f x x <--,求实数m 的取值范围.答案一、选择题: CBACA CBCBD CC二、填空题 13 ()1,2 14. -1 15.3624+或3624- 16. 3三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)512n a n =-;(2)625 18. 【详解】解:(1)由茎叶图知中位数8082812m +==, (2)因为81m =,80a =,所以81M =. ①由茎叶图知,女性试用者评分不小于81的有15个,男性试用者评分不小于81的有5个,根据题意得22⨯列联表:可得:2240(151555)10 6.63520202020K ⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为“认定类型”与性别有关.②由①知从样本“需改进型”的试用者中按性别用分层抽样的方法, 抽出女性2名,男性6名.记抽出的2名女性为;A ,B ;记抽出的6名男性为:a ,b ,c ,d ,e ,f 从这8人中随机抽取2人进行二次试用的情况有:共有28种:其中2人中至少一名女性的情况有:共有13种: 所以2人中至少一名女性的概率是:2813=P 19.【详解】证明:(1)取NC 的中点G ,连接FG ,MG , 因为//ME ND 且12ME ND =, 又因为F ,G 分别为DC ,NC 的中点,//FG ND 且12FG ND =, 所以FG 与ME 平行且相等,所以四边形MEFG 是平行四边形, 所以//EF MG ,又MG ⊂平面MNCB ,EF ⊄平面MNCB , 所以//EF 平面MNCB .认定类型 性别 满意型需改进型 合计 女性 15 5 20 男性 5 15 20 合计202040(2)取AD 的中点K ,在ABK ∆中,2AB =,1AK =,60BAK ∠=︒, ∴2222cos603BK AB AK AB AK =+-⨯⨯︒=, ∴222AB AK BK =+,∴90AKB ∠=︒,即AK BK ⊥.∵平面MADN ⊥平面ABCD ,平面MADN I 平面ABCD AD =, 又BK ⊂平面ABCD , ∴⊥BK 平面MADN .2E BCNM E BMN A BMN B AMN V V V V ----===11||2333AMN S BK ∆=⋅⋅=⋅=,∴即四棱锥E BCNM -的体积为332. 20.【详解】(1)设()()1122,,,A x y B x y ,:4AB l y kx =+与24x y =联立得24160x kx --=,()()22441616640k k ∆=---=+>, 12124,16x x k x x +==-,AB ==,又AB =,即=,解得:222,7k k ==-(舍),所以直线的方程4y =+ (2)证明:过点A 的切线:()211111111224y x x x y x x x =-+=-,①,过点B 的切线:2221124y x x x =-,②, 联立①②得点12,42x x N +⎛⎫-⎪⎝⎭,所以点N 在定直线4y =-上.21.【详解】(Ⅰ)函数()f x 的定义域为{}0x x >,()222221112222222mx x mx x f x m x x x x-++--=-+==-'. 当0m ≤时,()0f x '>,函数()f x 在()0,+∞单调递增;当0m >时,方程2220mx x --=的两根1x =,2x =,且10x <,20x >,则当10,x m ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '>,()f x 单调递增;当x ⎫∈+∞⎪⎪⎝⎭,()0f x '<,()f x 单调递减. 综上:当0m ≤时,函数()f x 在()0,+∞单调递增;当0m >时,x ⎛∈ ⎝⎭时,()f x 单调递增;当x ⎫∈+∞⎪⎪⎝⎭时,()f x 单调递减. (Ⅱ)()21ln 2g x x x mx x =--,()ln g x x mx ='-, ∵函数()g x 存在两个极值点1x ,2x ,∴1122lnx mx lnx mx =⎧⎨=⎩,则()2121ln ln x x m x x -=-,2121ln ln x x m x x -=-.∴()()2212121212121ln ln ln ln 2ln ln 22x x x x x x m x x x x x x --=-=-=--212121ln ln ax x x x x ->-恒成立,即()211212121ln ln 2x x ax x x x x x x -->--恒成立, 即∵210x x >>,∴212112ln x x x a x x -<令211x t x =>,则()21ln a t t <-,令()()21ln g t t t =- ()()112ln 212ln 2g t t t t t t=+-=+-', ∴()2210g t t t+'=>',∴()g t '在()1,+∞单调递增. ∴()()110g t g '='>>.∴()g t 在()1,+∞单调递增,()()10g t g >=,则0a ≤. 22(I )曲线C 的普通方程为()()222112x y ++-=,由{x cos y sin ρθρθ==,得22cos 2sin 20ρρθρθ+--=;(II )解法1:联立θα=和22cos 2sin 20ρρθρθ+--=, 得()22cos sin 20ρραα+--=,设()1,A ρα、()2,B ρα,则()122sin cos 4πρρααα⎛⎫+=-=- ⎪⎝⎭,由122OM ρρ+=,得4OM πα⎛⎫=-≤ ⎪⎝⎭,当34πα=时,|OM |. 解法2:由(I )知曲线C 是以点P ()1,1-为圆心,以2为半径的圆,在直角坐标系中,直线l 的方程为tan y x α=⋅,则PM =,∵2222||||2OM OP PM =-=- 22tan 11tan αα=-+, 当,2παπ⎛⎫∈⎪⎝⎭时,tan 0α<,21tan 2tan αα+≥,222tan ||121tan OM αα=+≤+,当且仅当tan 1α=-,即34πα=时取等号,∴OM ≤即OM23【详解】(1)3m =时, 解得13x ≤或73x ≥, ∴()3f x ≥的解集为17|33x x x ⎧⎫≤≥⎨⎬⎩⎭或; (2)若存在0x 满足()0021f x x <--等价于2222x x m -+-<有解, ∵2222x x m m -+-≥-,∴22m -<,解得04m <<,。