八年级数学频率与概率的关系PPT优秀课件
合集下载
频率与概率课件
未来研究的方向
展望频率和概率研究的未 来方向。
参考文献
提供相关学术文献和资料的参考。
1 概率的应用
2 概率的局限性
阐述概率在统计学、经济学等领域的实际 应用。
探讨概率模型的局限性及可能的误差。
3 频率的应用
4 频率的局限性
介绍频率在科学实验、调查研究等领域的 应用。
讨论频率在事件发生不规律或难以测量时 的局限性。
总结
频率与概率的关系
总结频率和概率之间的联 系和差异。
应用和局限性
回顾频率和概率在实际生 活中的应用和局限性。
事件发生频率的计算 方法
介绍如何计算事件发生的 频率。
概率
概率的定义
概率是指某事件发生的可能 性。
概率公理介绍概率公理及其应用。概 Nhomakorabea的计算方法
探索如何计算事件的概率。
频率与概率的关系
1
大数定理
解释大数定理及其对频率和概率关系的影响。
2
概率的频率解释
讨论概率的频率解释并与实际案例相结合。
应用和局限性
频率与概率ppt课件
通过本课件,深入了解频率与概率的概念,探索它们之间的联系与差异,并 探讨它们在实际生活中的应用和局限性。
什么是频率与概率
频率是指某事件在一定时间内发生的次数,而概率是指某事件发生的可能性。
频率
频率的定义
频率是指某事件在一定时 间内发生的次数。
基本频率问题
探讨如何统计和比较事件 的频率。
《频率与概率》概率PPT
科学课件:/kejian/kexu e/ 物理课件:/kejian/wuli/
化学课件:/kejian/huaxue/ 生物课件:/kejian/shengwu/
10.3 频率与概率
第十章 概 率
考点
学习目标
核心素养
在具体情境中,了解随机事
件发生的不确定性和频率的 数学抽象、数学运 频率与概率
稳定性,了解概率的意义以 算
及频率与概率的区别
概率的意义解释 会用概率的意义解释生活中 直观想象、数学建
实例
的实例
模
随机模拟
会用随机模拟的方法估计概 率
数学建模
第十章 概 率
P P T素材:www.1ppt.c om /suc a i/
P P T背景:www.1ppt.c om /be ij ing/
P P T图表:www.1ppt.c om /tubia o/
P P T下载:www.1ppt.c om /xia za i/
PPT教程: /powerpoint/
手抄报:www.1ppt.c om /shouc ha oba o/
P P T课件:www.1ppt.c om /ke j ia n/
语文课件:/kejian/y uwen/ 数学课件:/kejian/shuxue/
英语课件:/kejian/y ingy u/ 美术课件:/kejian/meishu/
次抛掷恰好出现“正面向上”的概率为________. PPT模板:/moban/ P P T背景:www.1ppt.c om /be ij ing/ P P T下载:www.1ppt.c om /xia za i/ 资料下载:www.1ppt.c om /zilia o/ 试卷下载:www.1ppt.c om /shiti/
8年级数学 苏科 版下册课件第8单元 《 8.3频率与概率》
频率与概率区别
18世纪以来一些统计学家抛掷硬币的试验结果
试验者 布丰
试验次数n 4 040
正面朝上次数 m 正面朝上的频率 m
n
2 048
0.506 9
德·摩根
4 092
2 048
0.500 5
费勤
10 000
4 797
0.497 9
皮尔逊
12 000
6 019
0.501 6
皮尔逊
24 000
12 012
4.用频率估计概率,可以发现,某种幼树在一定条件下 移植成活的概率为0.9,下列说法正确的是( D ) A. 种植10棵幼树,结果一定是“有9棵幼树成活” B. 种植100棵幼树,结果一定是“90棵幼树成活”和“10棵 幼树不成活” C. 种植10n棵幼树,恰好有“n棵幼树不成活” D. 种植n棵幼树,当n越来越大时,种植成活幼树的频 率会越来越稳定于0.9
0.500 5
罗曼诺夫斯基
80 640
39 699
0.492 3
频率与概率区别
名称 关系
频率
概率
具有随机性,不确 定性,
具确定的,是理论值
区
别
与实验次数有关
与实验次数无关
与实验人、实验时 间、实验地点有关
与实验人、实验时 间、实验地点无关
联
实验次数越多,频率越接近于概率。概率能
系
精确地反映事件出现可能性的大小,而频率
请将转盘按照指针指向红色区域的可能性 从小到大的顺序排列.
飞机失事会给旅客造成意外伤害。一 家保险公司要为购买机票的旅客进行保 险,应该向旅客收取多少保费呢?为此 保险公司必须精确计算出飞机失事的可 能性有多大.
《概率与频率》课件
频率与概率的近似关系
在大量重复试验中,频率可以作为概 率的近似值。
这种近似关系在统计学和概率论中非 常重要,因为在实际应用中,我们通 常无法知道事件的准确概率,只能通 过频率来估计。
随着试验次数的增加,频率会逐渐接 近概率。
大数定律
大数定律是指在大量重复试验中,某一事件的相对频率趋于其概率的极限定理。
概率的取值范围
概率的取值范围是0到1之间,其中0 表示事件不可能发生,1表示事件一 定发生。
概率的取值范围
概率的取值范围是0 到1之间,包括0和1 。
概率的取值对于理解 和预测随机事件的发 生非常重要。
概率的取值表示随机 事件发生的可能性大 小。
概率的基本性质
01
02
03
概率具有非负性
任何事件的概率都大于等 于0。
《概率与频率》PPT课件
目 录
• 概率的基本概念 • 频率与概率的关系 • 概率的运算 • 概率在生活中的应用 • 概率与统计的关系 • 概率在计算机科学中的应用
01
概率的基本概念
概率的定义
概率的定义
概率的基本性质
表示随机事件发生的可能性大小的数 值。
概率具有非负性、规范性、可加性等 基本性质。
随机数生成
在密码学中,随机数是非常重要的,因为它们用于生成加密密钥和初始化向量等 。概率可以用来评估随机数生成器的质量,例如,评估其是否足够随机和不可预 测。
人工智能中的概率
机器学习中的概率
机器学习是人工智能的一个重要分支,其中概率发挥着关键 作用。例如,在分类问题中,概率可以用来计算分类器对某 个实例属于某个类别的信任度。在聚类问题中,概率可以用 来评估聚类结果的稳定性。
3
6.1频率与概率PPT课件
区别:某可能事件发生的概率是一个定值。 而这一事件发生的频率是波动的,当试验次数不 大时,事件发生的频率与概率的差异甚至很大。 事件发生的频率不能简单地等同于其概率,要通 过多次试验,用一事件发生的频率来估计这一事 件发生的概率。
频率的等可能性如何表示
对于前面的摸牌游戏,一次试验中会出现哪些可能的 结果?每种结果出现的可能性相同吗? 会出现四种可能:牌面数字为(1,1),牌面数字为(1,2), 牌面数字为(2,1),牌面数字为(2,2). 每种结果出现的可能性相同.
球,没摸到白球,结论:袋子里只有黑色的球. C.两枚一元的硬币同时抛下,可能出现的情形有:①两枚
均为正;②两枚均为反; ③一正一反.所以出现一正一反的概率 是1/3 .
D.全年级有400名同学,一定会有2人同一天过生日.
频率与概率的既有联系又有区别.
联系:当试验次数很大时,事件发生的频率 稳定在相应概率的附近,即试验频率稳定于理 论概率,因此可以通过多次试验,用一个事件 发生的频率来估计这一事件发生的概率。
想一想
小明认为,抛掷一枚质量均匀的硬币,出 现“正面”和“反面”的概率都是 1 ,因 此抛掷1000次的话,一定有500次 2 “正”,500次“反”.您同意这种看法吗?
下列说法正确的是( ) A. 某事件发生的概率为1/2 ,这就是说:在两次重复试验
中,必有一次发生. B.一个袋子里有100个球,小明摸了8次,每次都只摸到黑
用树状图表示概率
第一张牌的牌 面的数字
第二张牌的牌 面的数字
开始
1
2
1
2
1
2
所有可能出现 的结果
(1,1)
(1,2) (2,1)
(2,2)
用表格表示概率
频率的等可能性如何表示
对于前面的摸牌游戏,一次试验中会出现哪些可能的 结果?每种结果出现的可能性相同吗? 会出现四种可能:牌面数字为(1,1),牌面数字为(1,2), 牌面数字为(2,1),牌面数字为(2,2). 每种结果出现的可能性相同.
球,没摸到白球,结论:袋子里只有黑色的球. C.两枚一元的硬币同时抛下,可能出现的情形有:①两枚
均为正;②两枚均为反; ③一正一反.所以出现一正一反的概率 是1/3 .
D.全年级有400名同学,一定会有2人同一天过生日.
频率与概率的既有联系又有区别.
联系:当试验次数很大时,事件发生的频率 稳定在相应概率的附近,即试验频率稳定于理 论概率,因此可以通过多次试验,用一个事件 发生的频率来估计这一事件发生的概率。
想一想
小明认为,抛掷一枚质量均匀的硬币,出 现“正面”和“反面”的概率都是 1 ,因 此抛掷1000次的话,一定有500次 2 “正”,500次“反”.您同意这种看法吗?
下列说法正确的是( ) A. 某事件发生的概率为1/2 ,这就是说:在两次重复试验
中,必有一次发生. B.一个袋子里有100个球,小明摸了8次,每次都只摸到黑
用树状图表示概率
第一张牌的牌 面的数字
第二张牌的牌 面的数字
开始
1
2
1
2
1
2
所有可能出现 的结果
(1,1)
(1,2) (2,1)
(2,2)
用表格表示概率
频率与概率(课件)
其余均相同,小新从布袋中随机摸出一球,记下颜色后放回,摇匀……如此做大
量摸球试验后,小新发现摸出红球的频率稳定于20%,摸出黑球的频率稳定于
50%,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率
稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸
球100次,必有20次摸出的是红球.其中说法正确的是( B )
所示:
则这个厂生产的瓷砖是合格品的概率估计值是______.(精确到0.01)
0.95
提示:运用频率和概率之间的关系,根据频率的波动情况估算概率.
探究新知
归纳:频率估计概率的一般步骤:
①大量重复试验;
②检验频率是否已表现出_______;
稳定性
③频率的________即为概率.
稳定值
课堂练习
1.明天降雨的概率为0.85,则说明( B )
1
3
A.
2
3
B.
1
4
C.
1
6
D.
课堂练习
4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针
落在数字“Ⅳ”所示区域内的概率是( A)
1
3
A.
1
4
B.
1
6
C.
1
8
D.
5.如图,正方形ABCD内接于☉O,☉O的直径为 2分米,若在这个圆
面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( A)
能是( D )
A.在“石头、剪刀、布”的游戏中,小明随机出的是
“剪刀”
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张
牌,其花色是红桃
C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,
量摸球试验后,小新发现摸出红球的频率稳定于20%,摸出黑球的频率稳定于
50%,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率
稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸
球100次,必有20次摸出的是红球.其中说法正确的是( B )
所示:
则这个厂生产的瓷砖是合格品的概率估计值是______.(精确到0.01)
0.95
提示:运用频率和概率之间的关系,根据频率的波动情况估算概率.
探究新知
归纳:频率估计概率的一般步骤:
①大量重复试验;
②检验频率是否已表现出_______;
稳定性
③频率的________即为概率.
稳定值
课堂练习
1.明天降雨的概率为0.85,则说明( B )
1
3
A.
2
3
B.
1
4
C.
1
6
D.
课堂练习
4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针
落在数字“Ⅳ”所示区域内的概率是( A)
1
3
A.
1
4
B.
1
6
C.
1
8
D.
5.如图,正方形ABCD内接于☉O,☉O的直径为 2分米,若在这个圆
面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( A)
能是( D )
A.在“石头、剪刀、布”的游戏中,小明随机出的是
“剪刀”
B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张
牌,其花色是红桃
C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,
《频率与概率》课件
参考资料
书籍和教材
- 《概率论与数理统计》——郑晓龙 - 《统计学基础》——康建文
课程网站链接
- 大数据分析与应用——机器学习 - 概率与统计——斯坦福大学公开课
其他相关学习资源
- Coursera《Probabilistic Graphical Models》 - Khan Academy Statistics and probability
概率分布
1
随机变量的定义和特征
随机变量通常用来描述随机事件中的数值特征。例如,投掷一枚硬币多次,计算正面 向上的有两种可能结果的试验,例如抛硬币或投篮命中。
3
正态分布
正态分布适用于连续变量的随机事件,例如身高或体重分布。
4
泊松分布
泊松分布适用于估计在一段时间内某事件发生的次数,例如地震发生的次数。
案例分析
本章讲述实际的案例,包括投资组合、医疗保 健和市场营销的例子。
结论
1 频率是概率的估计量
当试验次数足够大时,频率可以用来估计概率。但是,频率只是概率的近似值,并不等 于概率。
2 概率和统计学密切相关
概率和统计学的基本概念广泛应用于科学、工程和行业中的决策和预测。
3 课程总结
本门课程希望能帮助你掌握概率和频率的基本概念,并了解它们在实际生活中的应用。 希望您能在今后的生活和工作中灵活运用它们。
频率
定义和计算
频率是某一事件在多次试验中出现的次数除以总的试验次数。频率越高,意味着事件发生的 可能性越大。
作为概率的估计量
当试验次数足够大时,频率可以作为概率的估计量。但是,频率只是概率的一种估计,而不 是实际的概率值。
样本均值和频率的关系
样本均值是多次试验中所有结果的平均值。当试验次数趋近于无穷时,样本均值将趋近于概 率。
《频率与概率》课件
$P(A|B) = frac{P(B|A) cdot P(A)}{P(B)}$,其中$P(A|B)$表示在 事件B发生的条件下,事件A发生的概率。
贝叶斯定理应用
贝叶斯定理在统计学、机器学习、决策理论等领域有广泛应用, 尤其是在处理不确定性和主观概率方面。
全概率公式
全概率公式定义
全概率公式用于计算一个复杂事件发生的概率,该复杂事件可以分 解为若干个互斥且完备的子事件。
市场调查
在市场调查中,全概率公式可以用于计算某个事件发生的概率,例如消费者购买某产品的概率,可以通过考虑不 同市场细分和购买行为的条件概率来计算。
感谢您的观看
THANKS
概率的乘法性质是指一个事件发生后,另一个事件接着发生的概率等于前一事 件的概率乘以后一事件的概率。
详细描述
如果事件A和事件B有因果关系,即B的发生依赖于A的发生,那么 P(AB)=P(A)P(B)。如果事件A和事件B没有因果关系,那么P(AB)=P(A)P(B)。
条件概率与独立性
总结词
条件概率是指在某个已知条件下,一个事件发生的概率。独立性是指两个事件之 间没有相互影响。
中心极限定理的实例
在投掷骰子实验中,随着投掷次数的增加,出现3.5次朝上的频率 逐渐接近正态分布。
大数定律与中心极限定理的应用
在统计学中的应用01 Nhomakorabea大数定律和中心极限定理是统计学中的基本原理,用于估计样
本均值和方差,以及进行假设检验和置信区间的计算。
在金融领域的应用
02
大数定律和中心极限定理用于金融风险管理和资产定价,例如
方差
方差是随机变量取值与其期望的差的 平方的平均值,表示随机变量取值的 离散程度。
05
大数定律与中心极限定理
贝叶斯定理应用
贝叶斯定理在统计学、机器学习、决策理论等领域有广泛应用, 尤其是在处理不确定性和主观概率方面。
全概率公式
全概率公式定义
全概率公式用于计算一个复杂事件发生的概率,该复杂事件可以分 解为若干个互斥且完备的子事件。
市场调查
在市场调查中,全概率公式可以用于计算某个事件发生的概率,例如消费者购买某产品的概率,可以通过考虑不 同市场细分和购买行为的条件概率来计算。
感谢您的观看
THANKS
概率的乘法性质是指一个事件发生后,另一个事件接着发生的概率等于前一事 件的概率乘以后一事件的概率。
详细描述
如果事件A和事件B有因果关系,即B的发生依赖于A的发生,那么 P(AB)=P(A)P(B)。如果事件A和事件B没有因果关系,那么P(AB)=P(A)P(B)。
条件概率与独立性
总结词
条件概率是指在某个已知条件下,一个事件发生的概率。独立性是指两个事件之 间没有相互影响。
中心极限定理的实例
在投掷骰子实验中,随着投掷次数的增加,出现3.5次朝上的频率 逐渐接近正态分布。
大数定律与中心极限定理的应用
在统计学中的应用01 Nhomakorabea大数定律和中心极限定理是统计学中的基本原理,用于估计样
本均值和方差,以及进行假设检验和置信区间的计算。
在金融领域的应用
02
大数定律和中心极限定理用于金融风险管理和资产定价,例如
方差
方差是随机变量取值与其期望的差的 平方的平均值,表示随机变量取值的 离散程度。
05
大数定律与中心极限定理
25.2.2《频率与概率》ppt课件
2. 频率与概率
观看图片
复习导入
(一)什么是概率? 表示一个事件发生的可能性大小的数, 叫做该事件的概率(probability). P (事件 A ) 事件A发生的概率表示方法为: 例:你投掷手中的一枚普通的六面体骰 子,“出现数字1”的概率是多少? 解:P(出现数字1)=1/6 读作:“出现数字1”的概率为 1/6
n P( A) = m
2、怎样计算事件发生的概率?
计算事件的概率时要弄清以下两 点:
① 要清楚关注的是发生哪个或哪些结果个数; ② 要清楚所有机会均等的结果的个数; 以上两种结果个数之比就是关注的结果发生的概 率. 简单事件的概率公式为: 关注的结果的个数 P(事件发生)= 所有机会均等的结果的个数
解: P(取出取出两枚硬币总值小于1.5元) =
3 = 6
1 2
课堂小结
通过本节课的学习,对本章的知识你 有哪些新的认识和体会? 获得哪些分析概率的方法?你还有哪 些问题?请与同伴交流.
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
学习的敌人是自己的满足,要认真学习 一点东西,必须从不自满开始。对自己, “学而不厌”,对人家,“诲人不倦”, 我们应取这种态度。 —— 毛泽东
0.857
0.892
0.910
0.913
0.893
0.903
0.905
当试验的油菜籽的粒数很多时,油菜籽发芽的频 率 接近于常数0.9,在它附近摆动.
m 在大量重复进行同一试验时,事件A发生的频率 总是接近于 n 某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记做
P(A)
注: (1)求一个事件的概率的基本方法是通过大量的重复试验; (2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A的 概率; (3)概率是频率的稳定值,而频率是概率的近似值;
频率与概率优秀课件ppt
114530.524. 21840
同理可求得2000年、2001年和2002年男婴出生的频率分别为:
0.521,0.512,0.512.
(2)各年男婴出生的频率在0.51~0.53之间,故该市男婴出生
的概率约是0.52.
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
注意点: 1.随机事件A的概率范围 必然事件与不可能事件可看作随机事 件的两种特殊情况.
因此,随机事件发生的概率都满足: 0≤P(A)≤1
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
人们经过大量试验和实际经验的积累逐 渐认识到:在多次重复试验中,同一事件 发生的频率在某一数值附近摆动,而且随 着试验次数的增加,一般摆动幅度越小,
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
概率的意义
像木棒有长度,土地有面积一样,概率 是对随机事件发生的可能性大小的度量, 它反映了随机事件发生的可能性的大小。 但随机事件的概率大,并不表明它在每一 次试验中一定能发生。概率的大小只能说 明随机事件在一次试验中发生的可能性的 大小,即随机性中含有的规律性。认识了 这种随机性中的规律性,就使我们能比较 准确地预测随机事件发生的可能性。
4 所谓天才,只不过是把别人喝咖啡的功夫都用在工作上了。—— 鲁 迅 5 人类的希望像是一颗永恒的星,乌云掩不住它的光芒。特别是在今天,和平不是一个理想,一个梦,它是万人的愿望。—— 巴 金
频率与概率(优秀)课件
率都相等。由 此,我们可以 画出树状图.
综上,共有以下八种机会均等的结果: 正正正 正正反 正反正 反正正 正反反 反正反 反反正 反反反
P(正正正)=P(正正反)学=习交流P1PT
所以,这一说法正确.
9
8
练习
1.小明是个小马虎,晚上睡觉时将两双不同的 袜子放在床头,早上起床没看清随便穿了两只 就去上学,问小明正好穿的是相同的一双袜子 的概率是多少?
P(出现两个正面)=
试验得到的频率与理论分析计 算出的概率有何关系?
列表法:事件包含两步时,用表格列出事件所有可能出现的结果
学习交流PPT
5
也可用如下方法求概率:
开始
硬币1
正
反
硬币2 正 反 正 反
树状图
P(出现两个正面)=
树状图法:按事件发生的次序从上至下每条路径 列出事件的一个可能出现的结果。
(1)满足两个骰子的点数相同的结果有6个,
则
P(点数相同)=
6 36
1
=6
(2)满足两个骰子的点数之和是9的结果有4个, 则
4
P(和为9)= 36
1
=9
(3)满足至少有一个骰子的点数为2的结果有11
个,则
11
P(至少一个点数为2)= 学习交流PPT
36
8
例:抛掷一枚普通的硬币3次.有人说连续掷出三个正面和先掷出
用力旋转图25.2.2所示的转盘甲和转盘乙的 指针,如果你想让指针停在蓝色区域,那么选哪 个转盘成功的概率比较大?
学习交流PPT
12
思考
1、有同学说:转盘乙大,相应地,蓝色区域的面积也大, 所以选转盘乙成功的概率比较大。你同意吗?
成功的概率不由扇形面积的大小决定,而由 扇形面积所占转盘面积的百分比决定的。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机事件:在一定条件下可能发生也可能 不发生的事件
2 分类 :
3 4 事件
确定事件
必然事件 不可能事件
随机事件
考点二
她将盒子里面的在一个不透明的盒子里装有只有颜色不同的黑、白两种 球共10个,小颖做摸球实验,球搅匀后从中随机摸出一个球记下颜色,再把 它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
2008”,则他们就给婴儿奖励.假设婴儿能将字块横着
正 (
排,
1)
那
么
这
个
1
婴
儿
能
得
到
1
奖
励
的
概
1
率
是
A. 6
B. 4
C. 3
D. 2
一般地,如果一个实验有n个等可能的 结果,而事件A包含其中k个结果,我们定义
k
P(A)=
= 事件A包含的可能结果数
n
所有可能结果数
对任何一个事件A,它的概率P(A) 满足
摸球的次数n
100 200 300 500 800 1000 3000
摸到白球的次数m 65 124 178 302 599 599 1803
摸到白球的频率 0.65
0.693 0.604 0.601
0.601
(1) 填全表格,并请估计:当n很大时,摸到白球的频率将会接近
确到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)=
二 探究与总结
1 (2010 无锡)小刚参加上海世博会,由于 只有一天时间,他上午从A-----中国馆,B----日 本馆,C----美国馆中任意选择一处参观,下午从 D----韩国馆,E----英国馆,F----德国馆中任意选 择一处参观
(1)写出小刚所有可能的参观方式 (2)求小刚上午和下午恰好都参观亚洲国家展 馆的概率
0≤ P(A)≤1.必然事件的概率是1,不可能事 件的概率是0.
考点四:几何概率 1 一只小狗在如图的方砖上走来走去,最终 停在阴影方砖上的概率是( )
4
A
B1
C1
C 15 D
3
5
D2 B 15
几何概率:实验可能的结果要用
线段或平面区域表示,事件的概率 定义为部分线段的长度(部分区域 的面积)和整条线段的长度(整个 区域的面积)的比.这些概率与几何 度量有关,数学上称为几何概率.
考点三:概率的计算
1、一个不透明的袋中装有除颜色外均相同的5
个红球和3个黄球,从中随机摸出一个,摸到黄球的
概率是
A. 1
B. 1
C. 3
()
D. 3
8
3
8
1
5
8
2、有一对酷爱运动的年轻夫妇给他们12个月大
的婴儿拼排3块分别写有“20”, “08”和“北京”的字
块 , 如 果 婴 儿 能 够 排 成 “ 2008 北 京 ” 或 者 “ 北 京
2 某校有A、B两个餐厅,甲、 乙、丙三名同学各自随机选择其 中的一个餐厅用餐,求甲、乙、 丙三名同学在同一餐厅用餐的概 率.
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
初三数学第一轮复习
概率
考点一:事件的概念
1.下列事件是必然事件的是 ( ) A 通常加热到100 ℃ ,水沸腾 B 抛一枚硬币,正面向上 C 明天会下雨 D 经过城市中某一有交通信号灯的路口, 恰好遇到红灯.
1 事件的概念
必然事件 :在一定条件下必然发生的事件
不可能事件:在一定条件下不可能发生的 事件
.
(3)试估算盒子里黑、白两种颜色的球各有多少只?
(精
1 频率 :设总共做n次重复实验,而事件
A发生了m次,次数m为频数,称比值 m
为A发生的频率
n
2 概率:在数学上,我们用一个数值来 描述事件发生可能性的大小,这个数值叫 做概率.
3 概率和频率的关系:当试验次数足够 多时,事件的频率稳定到它的概率附近, 我们常用频率估计概率