位错

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)刃型位错应力场
刃型位错周围的应力场
2. 位错的应变能 位错的存在引起点阵畸变,导致能量增高,此增量称为 位错的应变能,包括位错核心能与弹性应变能。其中弹 性应变能约占总能量90%。 由弹性理论可知:弹性体变形时,单位体积内的应变能 等于应力乘以其相应的应变的二分之一。 对于螺型位错,单位长度螺旋位错的弹性应变能为
5.位错密度
源自文库
位错密度是指单位体积内位错线的总长度。 其表达式为 LV L / V
式中:LV是体位错密度; L是位错线的总长度; V是晶体的体积。
经常用穿过单位面积的位错数目来表示位错密度。
A n / A
式中:是穿过截面的位错数;是截面面积。 位错密度的单位是cm-2。
5.3.2 位错的运动
螺型位错的滑移
2. 位错的攀移 刃型位错还可以在垂直滑移面的方向上运动即发生攀移。 攀移的实质是多余半原子面的伸长或缩短。
(a)正攀移
刃型位错的攀移 (b)原始位置
(c)负攀移
讨 论 和 练 习
1. 位错的滑移特征 位错 类型 柏氏 矢量 位错线 运动方向 晶体滑移 切应力 滑移面 方向 方向 数目
刃型 位错
螺型 位错 混合 位错
⊥位错线
∥位错线
⊥位错线本身 与b一致
⊥位错线本身 与b一致
与b一致 唯一 确定 与b一致 多个 与b一致
成角度
⊥位错线本身 与b一致
(1) 可以通过柏氏矢量和位错线的关系来判断位错 特征。b⊥t时为刃型位错,b∥t为螺型位错,对于混合 型位错,b和t的角度在0°和90°。
位错线
正刃型位错
负刃型位错
透射电镜下观察到的位错线
2. 螺型位错 设想在简单立方晶体右端施加一切应力,使右端 ABCD滑移面上下两部分晶体发生一个原子间距的相对切 变,在已滑移区与未滑移区的交界处,AB线两侧的上下 两层原子发生了错排和不对齐现象,它们围绕着AB线连 成了一个螺旋线,而被AB线所贯穿的一组原来是平行的 晶面则变成了一个以AB线为轴的螺旋面。 此种晶格缺陷被称为螺型位错。螺旋位错分为左旋 和右旋。 以大拇指代表螺旋面前进方向,其他四指代表螺旋 面的旋转方向,符合右手法则的称右旋螺旋位错,符合 左手法则的称左旋螺旋位错。
5.4.2 晶界与亚晶界
多晶体由许多晶粒组成,每个晶粒组成是一个小单晶。 相邻的晶粒位向不同,其交界面叫晶粒界,简称晶界。
多晶体中,每个晶粒内部原子也并非十分整齐,会出现 位向差极小的亚结构,亚结构之间的交界为亚晶界。 晶界的结构与性质与相邻晶粒的取向差有关,当取向差 约小于10℃,叫小角度晶界,当取向差大于10℃以上时, 叫大角度晶界。 晶界处,原子排列紊乱,使能量增高,即产生晶界能。
(a)
(b) 刃型位错的滑移
(c)
τ
滑移面
τ
滑移台阶
位错滑移的比喻
螺型位错: 沿滑移面运动时,在切应力作用下,螺型位错使晶 体右半部沿滑移面上下相对低移动了一个沿原子间距。 这种位移随着螺型位错向左移动而逐渐扩展到晶体左半 部分的原子列。 螺型位错的移动方向与b垂直。此外因螺型位错b 与 t平行,故通过位错线并包含b的随所有晶面都可能成为 它的滑移面。当螺型位错在原滑移面运动受阻时,可转 移到与之相交的另一个滑移面上去,这样的过程叫交叉 滑移,简称交滑移。
刃型位错和螺型位错的特征。
柏氏矢量的确定。 理解滑移的过程及刃型位错和螺型位错滑移的 特点。 单位长度位错的应变能表示 U=αGb2。
螺形位错的螺旋面
螺型位错示意图
3. 混合位错 如果局部滑移从晶体的一角开始,然后逐渐扩大滑 移范围,滑移区和未滑移区的交界为曲线AB在A处,位错 线和滑移方向平行,是纯螺型位错;在B处,位错线和滑 方向垂直,是纯刃型位错。其他AB上的各点,曲线和滑 移方向既不垂直又不平行,原子排列介于螺型和刃型位 错之间,所以称为混合型位错。
主要内容
位错:位错的基本类型、位错的运动、位错的弹 性性质、位错的来源和位错的增殖; 面缺陷:晶界与亚晶界。
重点内容
1.位错线、位错移动方向、滑移面、切应力方向、 柏氏矢量之间的关系。 2.柏氏矢量的确定。 3.位错的应变能。 4.位错的来源。
5.3 位错 Dislocation,位错是原子的一种特殊组态,是一种 具有特殊结构的晶格缺陷,也称为线缺陷。 位错概念的提出 用于解释晶体的塑性变形。
练习2 晶面上有一位错环,确定其柏氏矢量,该位错环在切应 力作用下将如何运动?
5.3.3 位错的弹性性质
1. 位错的应力场 晶体中存在位错时,位错线附近的原子偏离了正常 位臵,引起点阵畸变,从而产生应力场。 在位错的中心部,原子排列特别紊乱,超出弹性变 形范围,虎克定律已不适用。中心区外,位错形成的弹 性应力场可用各向同性连续介质的弹性理论来处理。 分析位错应力场时,常设想把半径约为0.5~1nm的 中心区挖去,而在中心区以外的区域采用弹性连续介质 模型导出应力场公式。
5.3.4 位错的来源和位错的增殖 1. 位错的来源 (1)过饱和的空位凝聚,崩塌产生位错环。 (2)晶体结晶过程中形成。 (3)当晶体受到力的作用,局部地区会产生应力集中形 成位错。
2. 位错的增殖 弗兰克-瑞德源(Frank-Read Source).
5.4 面缺陷 5.4.1 外表面 晶体表面结构与晶体内部不同,由于表面是原子排 列的终止面,另一侧无固体中原子的键合,其配位数少 于晶体内部,导致表面原子偏离正常位臵,并影响了邻 近的几层原子,造成点阵畸变,使其能量高于晶内。 晶体表面单位面积能量的增加称为比表面能,数值 上与表面张力σ相等以γ表示。 一般外表面通常是表面能低的密排面。 对于体心立方{100}表面能最低,对于面心立方{111} 表面能最低。
(1)螺型位错的应力场
采用圆柱坐标系。在离开中心r处的切应变为 b Z Z 2r 其相应切应力
Z Z G Z
Gb 2r
式中,G为切变模量。由于圆柱只在Z方向有位移,X,Y方 向无位移,所以其余应力分量为零。 螺型位错应力场是径向对称的,即同一半径上的切 应力相等。且不存在正应力分量。
讨论和练习
位错应变能约为其总能量的90%。
反映了位错的能量与切变模量成正比,与柏氏矢量的模 的平方成反比。 练习3 已知铜晶体的切变模量G=4×1010Nm-2,位错的柏氏 矢量等于原子间距,b=2.5×10-10m,取α=0.75,计算 (1)单位长度位错线的应变能。(2)单位体积的严重 变形铜晶体内部存储的位错应变能。(设位错密度为 1010m/cm3)
1 小角度晶界
最简单的小角度晶界是对称倾侧晶界,由一系列柏 氏矢量互相平行的同号刃型位错垂直排列而成,晶界两 边对称,两晶粒的位相差为θ,柏氏矢量为b,当θ很小 时,求得晶界中位错间距为D=b/θ。
对称倾侧晶界中同号位错垂直排列,刃型位错产生 的压应力场与拉应力场可互相抵消,不产生长程应力场, 其能量最低。
位错的运动有两种基本形式:滑移和攀移。
在一定的切应力的作用下,位错在滑移面上受到垂 至于位错线的作用力。当此力足够大,足以克服位错运 动时受到的阻力时,位错便可以沿着滑移面移动,这种 沿着滑移面移动的位错运动称为滑移。
刃型位错的位错线还可以沿着垂直于滑移面的方向 移动,刃型位错的这种运动称为攀移。
1. 位错的滑移 刃型位错:对含刃型位错的晶体加切应力,切应力方 向平行于柏氏矢量,位错周围原子只要移动很小距离, 就使位错由位臵(a)移动到位臵(b)。 当位错运动到晶体表面时,整个上半部晶体相对 下半部移动了一个柏氏矢量晶体表面产生了高度为b 的台阶。 刃型位错的柏氏矢量b与位错线t互相垂直,故滑 移面为b与t 决定的平面,它是唯一确定的。刃型位 错移动的方向与b方向一致,和位错线垂直。
小角度晶界
2.大角度晶界 每个相邻晶粒的位向不同,由晶界把各晶粒分开。 晶界是原子排列异常的狭窄区域,一般仅几个原子 间距。晶界处某些原子过于密集的区域为压应力,原子 过于松散的区域为拉应力区。 与小角度晶界相比,大角度晶界能较高,大致在 0.5~0.6J/m2,与相邻晶粒取向无关。
大角度晶界示意图
Gb2 R WS ln 4 r0
对于刃型位错,单位长度的弹性应变能为
Gb2 R WE ln 4 (1 ) r0
上述分析表明单位长度位错的位错的应变能可以表示为
W / L Gb2 ( J / m)
其中是α与几何因素有关的系数,约为0.5~1.0。此式 表明由于应变能与柏氏矢量的平方成正比,故柏氏矢量 越小,位错能量越低。
晶界:约三个原子层厚
3.孪晶界 孪晶界是晶界中最简单的一种。 孪晶关系指相邻两晶粒或一个晶粒内部相邻两部分 沿一个公共晶面(孪晶界)构成镜面对称的位向关系。 孪晶界上的原子同时位于两个晶体点阵的结点上, 为孪晶的两部分所共有,这种形式的界面称为共格界面。
铜合金中的孪晶

基本概念:

刃型位错、螺型位错、位错密度、滑移、攀移、 晶界、大角度晶界、小角度晶界、晶界能
O
N
O
N
Q
Q
M
P
P
M
刃型位错柏氏矢量的确定 (a) 有位错的晶体 (b) 完整晶体
柏氏矢量
柏氏矢量
螺型位错柏氏矢量的确定 (a) 有位错的晶体 (b) 完整晶体
(2)柏氏矢量的物理意义及特征
柏氏矢量是描述位错实质的重要物理量。反映出柏 氏回路包含的位错所引起点阵畸变的总累计。通常将柏 氏矢量称为位错强度,它也表示出晶体滑移时原子移动 的大小和方向。 柏氏矢量具有守恒性。 推论:一根不可分叉的任何形状的位错只有一个柏 氏矢量。 利用柏氏矢量b与位错线t的关系,可判定位错类型。 若 b∥t 则为螺型位错。 若 b⊥t 为刃型位错。
混合位错示意图
4. 柏氏矢量 (1)柏氏矢量的确定方法 先确定位错的方向(一般规定位错线垂直纸面时, 由纸面向外为正),按右手法则做柏氏回路,右手大拇 指指位错正方向,回路方向按右手螺旋方向确定。从实 际晶体中任一原子M 出发,避开位错附近的严重畸变区 作一闭合回路 MNOPQ,回路每一步连结相邻原子。按同 样方法在完整晶体中做同样回路,步数,方向与上述回 路一致,这时终点 Q 和起点 M 不重合,由终点Q 到起 点M 引一矢量QM 即为柏氏矢量b。柏氏矢量与起点的选 择无关,也与路径无关。
(2)
(3) (4)
位错的滑移面包含柏氏矢量和位错线。
对于一根位错线而言,柏氏矢量是固定不变的。 位错线不能终止于完整晶体之中。
练习1
如图,位错环的柏氏矢量正好处于滑移面上。(1)判断 各段位错线的性质。(2)在图中所示切应力的作用下, 位错线将如何移动。(3)该位错环运动出晶体后,晶体 的外形将发生怎样的改变。
晶体的理论切变强度:
G m 2
一般金属: τm=104~105MPa
实际金属单晶: 1~10MPa
Geoffrey Taylor爵士1934年提出位错的概念
τ
τ
τ
5.3.1 位错的基本类型 1. 刃型位错 设有一简单立方结构的晶体,在切应力的作用下发 生局部滑移,发生局部滑移后晶体内在垂直方向出现了 一个多余的半原子面,显然在晶格内产生了缺陷,这就 是位错,这种位错在晶体中有一个刀刃状的多余半原子 面,所以称为刃型位错。 通常称晶体上半部多出原子面的位错为正刃型位错,用 符号“┴”表示,反之为负刃型位错,用“┬”表示。
• 5.3 位错 • 位错是原子的一种特殊组态,是一种具有特殊结构的晶格缺 陷,因为它在一个方向上尺寸较长,所以被称为线缺陷。 • 5.3.1 位错的基本类型 • 1. 刃型位错 • 设有一简单立方结构的晶体,在切应力的作用下发生局部滑 移,发生局部滑移后晶体内在垂直方向出现了一个多余的半 原子面,显然在晶格内产生了缺陷,这就是位错,这种位错 在晶体中有一个刀刃状的多余半原子面,所以称为刃型位错。 通常称晶体上半部多出原子面的位错为正刃型位错,用符号 “┴”表示,反之为负刃型位错,用“┬”表示。
相关文档
最新文档