最新初一数学角度试题(1)
七年级上册+专题练习+ 角度问题综合练习
七年级上册数学角度一.解答题(共40小题)1.如图,直线AB和CD相交于O点,OE⊥CD,OC平分∠AOF,∠EOF=56°,(1)求∠BOD的度数;(2)写出图中所有与∠BOE互余的角,它们分别是.2.如图所示,将一副三角板直角顶点O重合,证明∠AOD=∠COB,并求∠AOC+∠BOD的度数.3.观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有对对顶角.(2)如图b,图中共有对对顶角.(3)如图c,图中共有对对顶角(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2000条直线相交于一点,则可形成多少对对顶角?4.如图,直线AB、CD相交于点O,OE⊥AB.(1)若∠BOC=4∠AOC,求∠BOD的度数;(2)若∠1=∠2,问OF⊥CD吗?说明理由.5.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数;(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.6.如图,直线AB与CD相交于点O,OE是∠AOC的平分线OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOF的度数;(2)∠EOF与∠BOG是否相等呢?请说明理由;(3)直接写出图中∠AOE的所有余角.7.如图,直线AB,CD,EF相交于点O,∠AOE:∠AOD=1:3,∠COB:∠DOF=3:4,求∠DOE的度数.8.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请用你所学的知识加以说明.9.如图,直线AB、CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.10.如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠1=∠BOC,求∠AOC和∠MOD的度数.11.如图,直线AB与CD相交于O,OE⊥AB,OF⊥CD.(1)①图中与∠AOF互余的角是;②与∠COE互补的角是.(把符合条件的角都写出来)(2)如果∠AOC比∠EOF的小6°,求∠BOD的度数.12.如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.(1)若∠COM=∠AOC,求∠AOD的度数;(2)若∠COM=∠BOC,求∠AOC和∠MOD.13.如图∠BAC和∠DAE都是70°20′的角.(1)如果∠DAC=27°20′,那么∠BAE等于多少?(2)请写出图①中相等的角.(3)根据上述经验,在图②中,利用三角板的特殊角画一个与∠MON相等的角(请指明你所使用的三角板的角的度数和画出与∠MON相等的角).14.如图,已知直线AB和CD相交于O点,射线OE⊥AB于O,射线OF⊥CD于O,且∠BOF=25°.求:∠AOC与∠EOD的度数.15.如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,判断ON与CD的位置关系,并说明理由.(2)若∠BOC=4∠1,求∠MOD的度数.16.如图,已知点O在直线AB上,将一副直角三角板的直角顶点放在点O处,其中∠OCD=60°,∠OEF=45°.边OC、OE在直线AB上.(1)如图(1),若CD和EF相交于点G,则∠DGF的度数是°;(2)将图(1)中的三角板OCD绕点O顺时针旋转30°至图(2)位置①若将三角板OEF绕点O顺时针旋转180°,在此过程中,当∠COE=∠EOD=∠DOF时,求∠AOE的度数;②若将三角板OEF绕点O以每秒4°的速度顺时针旋转180°,与此同时,将三角板OCD绕点O以每秒1°的速度顺时针旋转,当三角板OEF旋转到终点位置时,三角板OCD也停止旋转.设旋转时间为t秒,当OD⊥EF时,求t的值.17.(1)将一张长方形纸片按如图1所示的方式折叠,BC、BD为折痕,求∠CBD的度数;(2)将一张长方形纸片按如图2所示的方式折叠,BC、BD为折痕,若∠A′BE′=50°,求∠CBD 的度数;(3)将一张长方形纸片按如图3所示的方式折叠,BC、BD为折痕,若∠A′BE′=α,请直接写出∠CBD的度数(用含α的式子表示)18.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE的度数(不必写过程).19.CD是经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF |BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<90°,且满足∠α+∠BCA=180°,请证明图中①的两个结论是否成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想:(不要求证明).20.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,求∠MON的度数.21.如图1,已知A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC.(1)求∠DOE的度数;(2)如图2,在∠AOD内引一条射线OF⊥OC,其他不变,设∠DOF=a o(o o<a<90o).a.求∠AOF的度数(用含a的代数式表示);b.若∠BOD是∠AOF的2倍,求∠DOF的度数.22.∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.(1)如图①,试判断∠AOC与∠BOD的大小关系,并说明理由;(2)如图①,若∠BOC=10°,求∠AOD的度数;(3)如图①,猜想∠AOD与∠BOC的数量关系,并说明理由;(4)若改变∠AOB,∠COD的位置,如图②,则(3)的结论还成立吗?若成立,请证明;若不成立,请直接写出你的猜想.23.已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.若∠AOC=30°.求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置,探究∠AOC和∠DOE的度数之间的关系.写出你的结论,并说明理由.24.已知∠AOB是一个定角,记为α,在∠AOB的内部作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当α=120°,∠AOC=40°时,求∠DOE的度数;(2)如图①,当射线OC在∠AOB内绕点O旋转时,∠DOE的度数是否发生变化?若变化,请说明理由;若不变,猜想∠DOE与α的关系,并证明;(3)当射线OC在∠AOB外绕点O旋转到图②位置时,直接写出∠DOE的度数(用含a的代数式表示).25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC 的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD的度数.26.钟面角是指时钟的时针与分针所成的角.如图,在钟面上,点O为钟面的圆心,图中的圆我们称之为钟面圆.为便于研究,我们规定:钟面圆的半径OA表示时针,半径OB表示分针,它们所成的钟面角为∠AOB;本题中所提到的角都不小于0°,且不大于180°;本题中所指的时刻都介于0点整到12点整之间.(1)时针每分钟转动的角度为°,分针每分钟转动的角度为°;(2)8点整,钟面角∠AOB=°,钟面角与此相等的整点还有:点;(3)如图,设半径OC指向12点方向,在图中画出6点15分时半径OA、OB的大概位置,并求出此时∠AOB的度数.27.如图1,点O为直线AB上的一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针旋转一周,在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转至图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC 之间的数量关系,并说明理由.28.如图,已知∠AOB=90°,射线OC绕点O从OA位置开始,以每秒4°的速度顺时针方向旋转;同时,射线OD绕点O从OB位置开始,以每秒1°的速度逆时针方向旋转.当OC与OA成180°时,OC与OD同时停止旋转.(1)当OC旋转10秒时,∠COD=°.(2)当OC与OD的夹角是30°时,求旋转的时间.(3)当OB平分∠COD时,求旋转的时间.29.回答问题:(1)已知∠AOB的度数为54°,在∠AOB的内部有一条射线OC,满足∠AOC=∠COB,在∠AOB所在平面上另有一条射线OD,满足∠BOD=∠AOC,如图1和图2所示,求∠COD的度数.(2)已知线段AB长为12cm,点C是线段AB上一点,满足AC=CB,点D是直线AB上满足BD=AC.请画出示意图,求出线段CD的长.30.(1)如图1,∠AOB和∠COD都是直角,①若∠BOC=60°,则∠BOD=°,∠AOC=°;②改变∠BOC的大小,则∠BOD与∠AOC相等吗?为什么?(2)如图2,∠AOB=100°,∠COD=110°,若∠AOD=∠BOC+70°,求∠AOC的度数.31.如果两个锐角的和等于90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,O为直线AB上一点,OC丄AB于点O,OE⊥OD于点O,请写出图中所有互为垂角的角有;(2)如果有一个角的互为垂角等于这个角的补角的,求这个角的度数.32.如图①,将笔记本活页一角折过去,使角的顶点A落在A′处,BC为折痕.(1)图①中,若∠1=30°,求∠A′BD的度数;(2)如果将图①的另一角∠A′BD斜折过去,使BD边与BA′重合,折痕为BE,点D的对应点为D′,如图②所示,若∠1=30°,求∠2以及∠CBE的度数;(3)如果将图①的另一角斜折过去,使BD边落在∠1内部,折痕为BE,点D的对应点为D′,如图③所示,若∠1=40°,设∠A′BD′=α,∠EBD=β,请直接回答:①α的取值范围和β的取值范围;②α与β之间的数量关系.33.阅读解题过程,回答问题.如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过O点作射线OM,使点M,O,A在同一直线上.因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°﹣∠BOC=180°﹣30°=150°(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.34.如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP=度.35.如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,∠MON=°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON的度数;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<120),则n=时,∠MON=2∠BOC.36.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,设ON的反向延长线为OD,则∠COD=°,∠AOD=°.(2)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.37.如图(1),将两块直角三角板的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想∠ACB与∠DCE的数量关系,并说明理由;(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)38.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,则∠AOC=;若∠AOC=135°,则∠BOD=;(2)如图(2)若∠AOC=140°,则∠BOD=;(3)猜想∠AOC与∠BOD的大小关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.39.【问题提出】已知∠AOB=70°,∠AOD=∠AOC,∠BOD=3∠BOC(∠BOC<45°),求∠BOC的度数.【问题思考】聪明的小明用分类讨论的方法解决.(1)当射线OC在∠AOB的内部时,①若射线OD在∠AOC内部,如图1,可求∠BOC的度数,解答过程如下:设∠BOC=α,∴∠BOD=3∠BOC=3α,∴∠COD=∠BOD﹣∠BOC=2α,∴∠AOD=∠AOC,∴∠AOD=∠COD=2α,∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,∴α=14°,∴∠BOC=14°问:当射线OC在∠AOB的内部时,②若射线OD在∠AOB外部,如图2,请你求出∠BOC的度数;【问题延伸】(2)当射线OC在∠AOB的外部时,请你画出图形,并求∠BOC的度数.【问题解决】综上所述:∠BOC的度数分别是.40.十九大报告中提出“广泛开展全民健身活动,加快推进体育强国建设”.为了响应号召,提升学生训练兴趣,某中学自编“功夫扇”课间操.若设最外侧两根大扇骨形成的角为∠COD,当“功夫扇”完全展开时∠COD=160°.在扇子舞动过程中,扇钉O始终在水平线AB上.小华是个爱思考的孩子,不但将以上实际问题抽象为数学问题,而且还在抽象出的图中画出了∠BOC 的平分线OE,以便继续探究.(1)当扇子完全展开且一侧扇骨OD呈水平状态时,如图1所示.请在抽象出的图2中画出∠BOC的平分线OE,此时∠DOE的度数为;(2)“功夫扇”课间操有一个动作是把扇子由图1旋转到图3所示位置,即将图2中的∠COD绕点O 旋转至图4所示位置,其他条件不变,小华尝试用如下两种方案探究了∠AOC和∠DOE度数之间的关系.方案一:设∠BOE的度数为x.可得出∠AOC=180°﹣2x,则x=(180°﹣∠AOC)=90°﹣∠AOC.∠DOE=160°﹣x,则x=160°﹣∠DOE.进而可得∠AOC和∠DOE度数之间的关系.方案二:如图5,过点O作∠AOC的平分线OF.易得∠EOF=90°,即∠AOC+∠COE=90°.由∠COD=160°,可得∠DOE+∠COE=160°.进而可得∠AOC和∠DOE度数之间的关系.参考小华的思路可得∠AOC和∠DOE度数之间的关系为;(3)继续将扇子旋转至图6所示位置,即将∠COD绕点O旋转至如图7所示的位置,其他条件不变,请问(2)中结论是否依然成立?说明理由.七年级上册数学角度参考答案与试题解析一.解答题(共40小题)1.如图,直线AB和CD相交于O点,OE⊥CD,OC平分∠AOF,∠EOF=56°,(1)求∠BOD的度数;(2)写出图中所有与∠BOE互余的角,它们分别是∠COF,∠AOC,∠BOD .【分析】(1)根据垂直的定义,角平分线的性质,即可解答;(2)根据互为余角的定义,即可解答.【解答】解:(1)∵OE⊥CD,∴∠COE=90°,∵∠EOF=56°,∴∠COF=90°﹣56°=34°,∵OC平分∠AOF,∴∠AOC=∠COF=34°,∴∠BOD=∠AOC=34°;(2)写出图中所有与∠BOE互余的角,它们分别是:∠COF,∠AOC,∠BOD.故答案为:∠COF,∠AOC,∠BOD.【点评】本题考查了垂线、角平分线、余角,解决本题的关键是熟记相关定义.2.如图所示,将一副三角板直角顶点O重合,证明∠AOD=∠COB,并求∠AOC+∠BOD的度数.【分析】①根据直角三角板可得∠AOB=∠DOC,再利用等式的性质两边同时减去∠BOD可得∠AOD=∠BOC;②首先把∠AOC化为∠AOB+∠BOC,再根据∠AOB=∠DOC=90°可得∴∠AOC+∠BOD=90°+90°=180°,然后再代入∠AOC=145°,可得∠DOB的度数.【解答】①证明:∵∠AOB=∠DOC=90°,∴∠AOB﹣∠DOB=∠DOC﹣∠DOB,∴∠AOD=∠BOC;②解:∵∠AOB=∠DOC=90°,∴∠AOC+∠BOD,=∠AOB+∠BOC+∠BOD,=∠AOB+∠DOC,=90°+90°=180°.【点评】此题主要考查了余角和补角,关键是理清角之间的关系,掌握如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有 2 对对顶角.(2)如图b,图中共有 6 对对顶角.(3)如图c,图中共有12 对对顶角(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2000条直线相交于一点,则可形成多少对对顶角?【分析】(1)根据对顶角的定义找出即可;(2)根据对顶角的定义找出即可;(3)根据对顶角的定义找出即可;(4)根据求出的结果得出规律,即可得出答案;(5)把n=2000代入n(n﹣1),求出即可.【解答】解:(1)如图a,图中共有2对对顶角,故答案为:2;(2)如图b,图中共有6对对顶角.故答案为:6;(3)如图c,图中共有12对对顶角;故答案为;12;(4)2=2×1,3×(3﹣1)=6,4×(4﹣1)=12,所以若有n条直线相交于一点,则可形成n(n﹣1)对对顶角;(5)2000×(2000﹣1)=3998000,若有2000条直线相交于一点,则可形成3998000对对顶角.【点评】本题考查了对顶角的定义,能根据图形和对顶角的定义找出所有的对顶角是解此题的关键.4.如图,直线AB、CD相交于点O,OE⊥AB.(1)若∠BOC=4∠AOC,求∠BOD的度数;(2)若∠1=∠2,问OF⊥CD吗?说明理由.【分析】(1)根据邻补角的定义,可得∠AOC,根据对顶角的性质,可得答案;(2)根据垂直的定义,可得∠AOE,根据余角的性质,可得答案.【解答】解:(1)由邻补角的定义,得∠AOC+∠BOC=180°,∵∠BOC=4∠AOC,∴4∠AOC+∠AOC=180°,∴∠AOC=36°,由对顶角相等,得∠BOD=∠AOC=36°;(2)OF⊥CD,理由如下:∵OE⊥AB,∴∠AOE=90°,∴∠1+∠AOC=90°,∵∠1=∠2,∴∠2+∠AOC=90°,即∠FOC=90°,∴OF⊥CD.【点评】本题考查了垂线,解(1)的关键是利用邻补角的定义得出∠AOC,解(2)的关键是利用余角的性质得出∠2+∠AOC=90°.5.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数;(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE 的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【解答】解:(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.【点评】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键.容易出错的地方是解(3)小题漏掉其中的一种情况.6.如图,直线AB与CD相交于点O,OE是∠AOC的平分线OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOF的度数;(2)∠EOF与∠BOG是否相等呢?请说明理由;(3)直接写出图中∠AOE的所有余角.【分析】(1)直接利用垂直的定义结合对顶角的定义得出∠AOF的度数;(2)分别求出∠EOF与∠BOG的度数进而得出答案.(3)依据OE是∠AOC的平分线,OF⊥CD,OG⊥OE,即可得到图中∠AOE的所有余角.【解答】解:(1)∵OF⊥CD,∴∠COF=90°,又∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∴∠AOF=∠COF﹣∠AOC=90°﹣52°=38°;(2)相等,理由:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=26°,又∵OG⊥OE,∴∠EOG=90°,∴∠BOG=180°﹣∠AOE﹣∠EOG=64°,而∠EOF=∠AOF+∠AOE=38°+26°=64°,∴∠EOF=∠BOG.(3)∵OE是∠AOC的平分线,∴∠AOE=∠COE=26°,又∵OF⊥CD,∴∠EOF+∠COE=90°,即∠EOF+∠AOE=90°,又∵OF⊥CD,OG⊥OE,∴∠COG=∠EOF,∴∠COG+∠AOE=90°,∵∠BOG+∠AOE=90°,∠COG+∠COE=90°,∠AOE=∠COE,∴∠BOG=∠COG,∴∠BOG+∠AOE=90°,∴图中∠AOE的所有余角为∠EOF,∠COG,∠BOG.【点评】此题主要考查了垂线的定义以及角平分线的定义和对顶角定义,正确把握相关定义是解题关键.7.如图,直线AB,CD,EF相交于点O,∠AOE:∠AOD=1:3,∠COB:∠DOF=3:4,求∠DOE的度数.【分析】根据比例设∠AOE=k,∠AOD=3k,根据对顶角相等可得∠COB=∠AOD,然后表示出∠DOF,再根据平角等于180°列式求出k值,然后根据∠DOE=∠AOE+∠AOD计算即可得解.【解答】解:∵∠AOE:∠AOD=1:3,∴设∠AOE=k,∠AOD=3k,则∠COB=∠AOD=3k,∵∠COB:∠DOF=3:4,∴∠DOF=4k,∴∠AOE+∠AOD+∠DOF=k+3k+4k=180°,解得k=22.5°,∴∠DOE=∠AOE+∠AOD=k+3k=4k=4×22.5°=90°,即∠DOE=90°.【点评】本题考查了对顶角相等的性质,平角的定义,利用“设k法”表示出图中各角是可以使计算更加简便.8.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请用你所学的知识加以说明.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.9.如图,直线AB、CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.【分析】(1)直接利用角平分线的定义以及结合邻补角的定义得出答案;(2)结合已知得出∠AOC的度数,再利用角平分线的定义得出答案.【解答】解:(1)OF与OD的位置关系:互相垂直,理由:∵OF平分∠AOE,∴∠AOF=∠FOE,∵∠DOE=∠BOD,∴∠AOF+∠BOD=∠FOE+∠DOE=×180°=90°,∴OF与OD的位置关系:互相垂直;(2)∵∠AOC:∠AOD=1:5,∴∠AOC=×180°=30°,∴∠BOD=∠EOD=30°,∴∠AOE=120°,∴∠EOF=∠AOE=60°.【点评】此题主要考查了角平分线的定义以及邻补角的定义,正确得出各角之间关系是解题关键.10.如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠1=∠BOC,求∠AOC和∠MOD的度数.【分析】(1)根据垂直的定义可得∠1+∠AOC=90°,求出∠2+∠AOC=90°,然后根据平角等于180°列式求解即可;(2)根据垂直的定义可得∠AOM=∠BOM=90°,然后列方程求出∠1,再根据余角和邻补角的定义求解即可.【解答】解:(1)∵OM⊥AB,∴∠AOM=∠1+∠AOC=90°,∵∠1=∠2,∴∠NOC=∠2+∠AOC=90°,∴∠NOD=180°﹣∠NOC=180°﹣90°=90°;(2)∵OM⊥AB,∴∠AOM=∠BOM=90°,∵∠1=∠BOC,∴∠BOC=∠1+90°=3∠1,解得∠1=45°,∠AOC=90°﹣∠1=90°﹣45°=45°,∠MOD=180°﹣∠1=180°﹣45°=135°.【点评】本题考查了垂线的定义,邻补角的定义,熟记概念并准确识图,找准各角之间的关系是解题的关键.11.如图,直线AB与CD相交于O,OE⊥AB,OF⊥CD.(1)①图中与∠AOF互余的角是∠BOD,∠AOC ;②与∠COE互补的角是∠EOD,∠BOF .(把符合条件的角都写出来)(2)如果∠AOC比∠EOF的小6°,求∠BOD的度数.【分析】(1)根据互余及互补的定义,结合图形进行判断即可;(2)设∠AOC=x,则∠EOC=∠AOF=(90﹣x)°,列出方程解答即可.【解答】解:(1)①图中与∠AOF互余的角是∠BOD,∠AOC;②与∠COE互补的角是∠EOD,∠BOF,故答案为:∠BOD,∠AOC;∠EOD,∠BOF;(2)∵OE⊥AB,OF⊥CD∴∠EOC+∠AOC=90°,∠AOF+∠AOC=90°∴∠EOC=∠AOF设∠AOC=x°,则∠EOC=∠AOF=(90﹣x)°依题意,列方程x=解得,x=25∴∠BOD=∠AOC=25°【点评】本题考查了余角和补角的知识,注意结合图形进行求解.12.如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.(1)若∠COM=∠AOC,求∠AOD的度数;(2)若∠COM=∠BOC,求∠AOC和∠MOD.【分析】(1)根据∠COM=∠AOC可得∠AOC=∠AOM,再求出∠AOM的度数,然后可得答案;(2)设∠COM=x°,则∠BOC=4x°,进而可得∠BOM=3x°,从而可得3x=90,然后可得x的值,进而可得∠AOC 和∠MOD的度数.【解答】解:(1)∵∠COM=∠AOC,∴∠AOC=∠AOM,∵∠BOM=90°,∴∠AOM=90°,∴∠AOC=45°,∴∠AOD=180°﹣45°=135°;(2)设∠COM=x°,则∠BOC=4x°,∴∠BOM=3x°,∵∠BOM=90°,∴3x=90,即x=30,∴∠AOC=60°,∠MOD=90°+60°=150°.【点评】此题主要考查了邻补角,关键是掌握邻补角互补.掌握方程思想的应用.13.如图∠BAC和∠DAE都是70°20′的角.(1)如果∠DAC=27°20′,那么∠BAE等于多少?(2)请写出图①中相等的角.(3)根据上述经验,在图②中,利用三角板的特殊角画一个与∠MON相等的角(请指明你所使用的三角板的角的度数和画出与∠MON相等的角).【分析】(1)先求出∠EAC,再根据∠BAE=∠BAC+∠EAC即可解决问题.(2)根据角的和差关系即可得出结论.(3)图2中,利用直角可得∠MOG=∠NOF=90°,利用60°角可得∠MOG=∠NOF=60°,则∠FOG=∠MON.【解答】解:(1)∵∠DAE=70°20′,∠DAC=27°20′,∴∠CAE=∠DAE﹣∠DAC=70°20′﹣27°20′=43°,∴∠BAE=∠BAC+∠CAE=70°20′+43°=113°20′.(2)∵∠BAC=∠BAE,∴∠BAD+∠DAC=∠EAC+∠DAC,∴∠BAD=∠EAC.(3)方法不唯一,下面仅列出两种情况:图中:利用直角可得∠MOG=∠NOF=90°∴图中∠FOG=∠MON;图中:利用60°角可得∠MOG=∠NOF=60°∴图中∠FOG=∠MON.【点评】本题考查角的和差定义,度、分、秒换算等知识,解题的关键是灵活应用这些知识解决问题,运用分类思想进行求解.14.如图,已知直线AB和CD相交于O点,射线OE⊥AB于O,射线OF⊥CD于O,且∠BOF=25°.求:∠AOC与∠EOD的度数.【分析】根据角的和差定义计算即可.【解答】解:∵OF⊥CD,∴∠COF=90°,∴∠BOC=90°﹣∠BOF=65°,∴∠AOC=180°﹣65°=115°,∵OE⊥AB,∴∠BOE=90°,∴∠EOF=90°﹣25°=65°,∴∠EOD=90°﹣65°=25°.【点评】本题考查垂线、对顶角、邻补角的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,判断ON与CD的位置关系,并说明理由.(2)若∠BOC=4∠1,求∠MOD的度数.【分析】(1)根据垂直定义可得∠AOM=90°,进而可得∠1+∠AOC=90°,再利用等量代换可得到∠2+∠AOC=90°,从而可得ON⊥CD;(2)根据垂直定义和条件可得∠1=30°,∠BOC=120°,再根据邻补角定义可得∠MOD的度数.【解答】解:(1)ON⊥CD.理由如下:∵OM⊥AB,∴∠AOM=90°,∴∠1+∠AOC=90°,又∵∠1=∠2,∴∠2+∠AOC=90°,即∠CON=90°,∴ON⊥CD.(2)∵OM⊥AB,∠BOC=4∠1,∴∠1=30°,∠BOC=120°,又∵∠1+∠MOD=180°,∴∠MOD=180°﹣∠1=150°.【点评】此题主要垂直定义,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.16.如图,已知点O在直线AB上,将一副直角三角板的直角顶点放在点O处,其中∠OCD=60°,∠OEF=45°.边OC、OE在直线AB上.(1)如图(1),若CD和EF相交于点G,则∠DGF的度数是15 °;(2)将图(1)中的三角板OCD绕点O顺时针旋转30°至图(2)位置①若将三角板OEF绕点O顺时针旋转180°,在此过程中,当∠COE=∠EOD=∠DOF时,求∠AOE的度数;②若将三角板OEF绕点O以每秒4°的速度顺时针旋转180°,与此同时,将三角板OCD绕点O以每秒1°的速度顺时针旋转,当三角板OEF旋转到终点位置时,三角板OCD也停止旋转.设旋转时间为t秒,当OD⊥EF时,求t 的值.【分析】(1)根据三角形外角的性质即可得到结论;(2)①如图2,根据已知条件求出∠COE=∠EOD=45°,得到∠AOE=∠AOC+∠COE=30°+45°=75°,当∠COE =∠EOD=∠DOF时,求得结论;②根据垂直的定义得到OD⊥EF,得到∠OHE=90,列方程求得结论.【解答】解:(1)∵∠EFO=45°,∠D=30°,∴∠DGF=∠EFO﹣∠D=45°﹣30°=15°,故答案为:15;(2)①如图2,∵∠COE=∠EOD=∠DOF,∠COE+∠EOD=∠COD,∠COD=90°,∴∠COE=∠EOD=45°,∴∠AOE=∠AOC+∠COE=30°+45°=75°,当∠COE=∠EOD=∠DOF时,∠AOE=75°;②∵∠AOE=4t°,∠AOC=30°+t°,如图3,∵OD⊥EF,∴∠OHE=90,∵∠E=45°,∠COD=90°,∴∠COE=45°,∴∠AOE﹣∠AOC=∠COE=45°,即4t﹣(30+t)=45,∴t=25,∴当OD⊥EF时,t的值为25.【点评】本题考查了角的计算,直角三角形的性质,正确的画出图形是解题的关键.17.(1)将一张长方形纸片按如图1所示的方式折叠,BC、BD为折痕,求∠CBD的度数;(2)将一张长方形纸片按如图2所示的方式折叠,BC、BD为折痕,若∠A′BE′=50°,求∠CBD的度数;(3)将一张长方形纸片按如图3所示的方式折叠,BC、BD为折痕,若∠A′BE′=α,请直接写出∠CBD的度数(用含α的式子表示)【分析】(1)根据折叠的性质得到∠ABC=∠A′BC,∠EBD=∠E′BD,再根据平角的定义有∠ABC+∠A′BC+∠EBD+∠E′BD=180°,易得A′BC+∠E′BD=180°×=90°,则∠CBD=90°;(2)根据折叠的性质得到∠A′BC=∠ABA′,∠DBE′=∠EBE′,再根据平角的定义∠CBD=∠CBA′+∠DBE′+∠A′BE′=65°+50°=115°;(3)根据折叠的性质得到∠A′BC=∠ABA′,∠DBE′=∠EBE′,再根据平角的定义∠CBD=(∠ABA′+∠EBE′)﹣∠A′BE′.【解答】解:(1)由题意知∠ABC=∠A′BC,∠DEB=∠MBE′,∴∠A′BC=∠ABA′,∠E′BD=∠E′BE,∴∠CBD=∠ABE=90°;(2)∵∠A′BE′=50°,∴∠ABA′+∠EBE′=180°﹣∠A′BE′=130°,∵∠A′BC=∠ABA′,∠DBE′=∠EBE′,∴∠CBA′+∠DBE′=(∠ABA′+∠EBE′)=65°,∴∠CBD=∠CBA′+∠DBE′+∠A′BE′=65°+50°=115°;(3)∵∠A′BC=∠ABA′,∠DBE′=∠EBE′,∴∠CBA′+∠DBE′=(∠ABA′+∠EBE′),∴∠CBD=∠CBA′+∠DBE′﹣∠A′BE′=(∠ABA′+∠EBE′)﹣∠A′BE′=(180°+α)﹣α=90°﹣.【点评】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应相等相等.也考查了平角的定义.18.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE的度数(不必写过程).【分析】(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出相应的∠DOE的度数(不必写出过程).【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.【点评】本题考查了角的计算,熟练掌握角平分线定义是解本题的关键.19.CD是经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE =CF;EF =|BE﹣AF|(填“>”,“<”或“=”);②如图2,。
初中求角度10题
初中求角度10题
当然,以下是10道适合初中学生的求角度的几何题目:
1.在△ABC中,已知∠A = 40°,∠B = 60°,求∠C的度数。
2.已知等腰三角形的一个底角为50°,求它的顶角的度数。
3.在△ABC中,AB = AC,∠A = 36°,求∠B和∠C的度数。
4.已知一个多边形的内角和为1080°,求这个多边形的边数及每个内角的度数。
5.在矩形ABCD中,若∠A = 60°,求∠B、∠C和∠D的度数。
6.已知菱形的两条对角线互相垂直,且其中一条对角线与菱形的一边的夹角为30°,
求这个菱形的各个内角的度数。
7.在△ABC中,若∠A = ∠B = ∠C,且∠A + ∠B + ∠C = 180°,求∠A、∠B和∠
C的度数。
8.已知等腰梯形ABCD中,AD∥BC,∠A = 60°,∠B = 45°,求∠C和∠D的度
数。
9.在△ABC中,若∠A = 2∠B = 3∠C,求∠A、∠B和∠C的度数。
10.已知一个正n边形的每个外角都等于45°,求这个正n边形的边数n。
新人教版七年级数学上册专题训练:角的计算(含答案)
新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。
1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。
解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。
又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。
2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。
1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。
2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。
解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。
所以 $\angle DAC=4\times18°=72°$。
因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。
2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。
最新七年级数学中的角度计算题(1)
数。
A
D
E O
C
B
9、如图,已知∠ BOC =2∠AOC,OD平分∠ AOB,且∠ COD =29°,求∠ AOB的度数。
D
C
B
A
O
精品文档
10、如图, OB平分∠ AOC,且∠ 2 : ∠3 : ∠4 = 1:3:4 ,求∠ 1、∠ 2、∠ 3、∠ 4。
C
D 4
探究∠ AOC与∠ DOE的度数之间的关系,写出你的结论,并说明理由;
在∠ AOC的内部有一条射线 OF,满足: 2 AOF ∠ AOF与∠ DOE的度数之间的关系。
BOE 1 ( AOC 2
AOF ) ,试确定
8、如图,直线 AB、 CD相交于点 O,OE平分∠ AOC,∠ BOC—∠ BOD =20°,求∠ BOE的度
精品文档
精品文档
7、点 O是直线 AB上一点,∠ COD是直角, OE平分∠ BOC。
( 1)如图 1,若∠ AOC=4°0 ,求∠ DOE的度数;
( 2)在如 1 中,若∠ AOC= ,直接写出∠ DOE的度数(用含 的代数式表示)
( 3)将图 1 中的∠ COD按顺时针方向旋转至图 2 所示的位置。
明理由。 ( 4) 从前三问的结果你发现了什么规律?
2、如图,已知∠ AOB是∠ AOC的余角,∠ AOD是∠ AOC的补角,且 求∠ BOD、∠ AOC的度数
D
BOC
1 BOD 2
CБайду номын сангаас
B
O
A
6、如图,已知 A、 B、 C 是数轴上三点,点 C 表示的数为 6,BC=4,AB=12, (1)写出数轴上点 A、B 表示的数; (2)动点 P、Q分别从 A、C 同时出发,点 P 以每秒 6 个单位长度的速度沿数轴向右匀速运 动,点 Q以每秒 3 个单位长度的速度沿数轴向左匀速运动, M为 AP的中点,点 N在线段 CQ
初一数学角与角的度量试题
初一数学角与角的度量试题1.用三角尺画出120°和15°的角.【答案】【解析】本题考查了学生利用三角尺上的角进行组合后画角的能力(1)用三角尺上30°的角,画一个角,再在这个画的30°角的外部,用三角尺上90°的角同30°角的在顶点重合,一条边重合,画出90°的角.这个图形中的两个角的和就是120°,据此作图解答.(2)用三角尺上45°的角,画一个角,再在这个画的45°角的内部,用三角尺上30°的角同45°角的在、顶点重合,一条边重合,画出30°的角.这个图形中的另一个角就是15°,据此作图解答.根据题意,作图如下:思路拓展:解答本题的关键是掌握好一副直角三角板上的特殊角的度数。
2.下列说法中,正确的是()A.有公共端点的两条射线组成的图形叫做角;B.两条射线组成的图形叫做角;C.两条线段组成的图形叫做角;D.一条射线从一个位置移到另一个位置所形成的图形叫做角。
【答案】A【解析】本题主要考查的是角的定义根据角的定义:有公共端点的两条射线组成的图形叫做角,依次分析各项即可。
A、有公共端点的两条射线组成的图形叫做角,本选项正确;B、有公共端点的两条射线组成的图形叫做角,故本选项错误;C、有公共端点的两条射线组成的图形叫做角,故本选项错误;D、角可以看作由一条射线绕着它的端点旋转而形成的图形,故本选项错误;故选A.思路拓展:有公共端点的两条射线组成的图形叫做角,注意不要忽略“公共端点”.3.用度、分、秒表示32.260;【答案】32º15¹36"【解析】本题考查的是度、分、秒的转化运算进行度、分、秒的转化运算,注意以60为进制.先将度的小数部分乘以60化为分,再将分的小数部分乘以60化为秒.据角的换算可得32.26°=32°+0.26×60′=32°+15.6′=32°+15′+0.6×60″=32°15′36″.思路拓展:此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制即可,由小单位化大单位要除以60,由大单位化小单位要乘以60.4.用度表示35025'48"【答案】35.43º【解析】本题考查的是度、分、秒的转化运算进行度、分、秒的转化运算,注意以60为进制.先将秒的部分除以60化为分,再将分的部分除以60化为度.根据1°=60′,1′=60″得,48″÷60=0.8′,25.8′÷60=0.43°,所以35025'48"用度来表示为35.43º.思路拓展:由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由小单位化大单位要除以60,由大单位化小单位要乘以60.5.下列关于角的描述正确的是:()A.角的边是两条线段;B.角是由两条射线组成的图形C.角可以看成一条射线绕着它的端点旋转而成图形;D.角的大小与边的长短有关【答案】C【解析】本题主要考查的是角的定义根据角的定义:有公共端点的两条射线组成的图形叫做角,角的大小与边的长短无关,只与两边张开的程度有关,依次分析各项即可。
七年级8道角度计算题
七年级8道角度计算题七年级角度计算题是学习几何学的一种重要方式,通过这种方式,能够更好地理解几何问题,解决实际中出现的角度计算问题。
下面将分析8道角度计算题,帮助读者更好地理解角度计算问题。
1、在△ABC中,角A=150°,角B=30°,那么角C的大小是多少?这里需要用到三角形的性质:三角形的所有角之和为180°,根据此性质,可以得出角C的大小为180°-(150°+30°)= 0°。
2、在△ABC中,角A=145°,角B=27°,那么角C的大小是多少?根据三角形的性质,可以得出角C的大小为180°-(145°+27°)= 8°。
3、在△ABC中,角A=110°,角C= 45°,那么角B的大小是多少?根据三角形的性质,可以得出角B的大小为180°-(45°+110°)= 25°。
4、在△ABC中,角A=60°,角B=90°,那么角C的大小是多少?根据三角形的性质,可以得出角C的大小为180°-(60°+90°)= 30°。
5、在△ABC中,角A=100°,角C=80°,那么角B的大小是多少?根据三角形的性质,可以得出角B的大小为180°-(100°+80°)= 0°。
6、在△ABC中,角A=110°,角C= 70°,那么角B的大小是多少?根据三角形的性质,可以得出角B的大小为180°-(110°+70°)= 0°。
7、在△ABC中,角A=120°,角C= 40°,那么角B的大小是多少?根据三角形的性质,可以得出角B的大小为180°-(120°+40°)= 20°。
人教版七年级上册数学 角度的计算专题解析及训练(word版,有答案)
专题6 角一、单选题1.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练习)如图所示,从点O出发的5条射线,可以组成的角的个数是().A. 4B. 6C. 8D. 10【答案】D2.北京时间上午8:30时,时钟上时针和分针之间的夹角(小于平角)是()A. 85°B. 75°C. 70°D. 60°【答案】B【解析】在钟面上,被12小时划分为12大格,每1大格对应的度数是30度,上午8:30的时候,时针指向8时和9时的中间位置,分针指向6时,两针之间刚好间隔2.5格,∴8:30时,时针和分针之间的夹角为:30° 2.5=75°.3.如图,下列说法错误的是()A. OA的方向是北偏东40°B. OB的方向是北偏西75°C. OC的方向是西南方向D. OD的方向是南偏东40°【答案】A【解析】A选项中,由图可知“OA的方向是北偏东50°”,所以本选项说法错误;B选项中,由图可知:“OB的方向是北偏西75°”是正确的;C选项中,由图可知;“OC的方向是西南方向”是正确的;D选项中,由图可知:“OD的方向是南偏东40°”是正确的;故选A.4.下列说法正确的是()A. A在B的南偏东30°的方向上,则B也在A的南偏东30°的方向上;B. A在B的南偏东30°的方向上,则B在A的南偏东60°的方向上;C. A在B的南偏东30°的方向上,则B在A的北偏西30°的方向上;D. A在B的南偏东30°的方向上,则B在A的北偏西60°的方向上【答案】C5.(北师大版数学七年级上册第四章基本平面图形4.3角同步测试题)一个角是70°18′,则这个角等于()A. 70.18° B. 70.3° C. 70.018° D. 70.03°【答案】B【解析】70°18′=70°+18′ 60=70°+0.3°=70.3°.故选B.6.如图,射线OC,OD分别在∠AOB的内部、外部,下列结论错误的是()A. ∠AOB<∠AODB. ∠BOC<∠AOBC. ∠COD>∠AODD. ∠AOB>∠AOC【答案】C【解析】观察图形可知:A.∠AOB<∠AOD正确;B.∠BOC<∠AOB正确;C.∠COD>∠AOD错误;D.∠AOB>∠AOC正确.故选C.7.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练)下列语句中,正确的是().A. 比直角大的角钝角; B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角【答案】C8.(新人教版数学七年级上册第四章几何图形初步4.3.1《角》课时练习)已知α 、β都是钝角,甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,其中只有一个同学计算结果是正确的,则得到正确结果的同学是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,那么这四个同学计算α+β的结果依次为168°、288°、360°、528°,又因为两个钝角的和应大于180°且小于360°,所以只有乙同学的计算正确,故选B.9.(山东省东昌府区梁水镇中心中学2016-2017学年七年级下学期期中考试数学试题)如图,如果∠AOC=∠BOD,则∠AOB与∠DOC的大小关系是()A. ∠AOB>∠DOCB. ∠AOB<∠DOCC. ∠AOB=∠DOCD. 无法比较【答案】C【解析】∵∠AOC=∠BOD,∴∠AOC-∠BOC=∠BOD-∠BOC,∴∠AOB=∠DOC.故选C.10.如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式为( )。
与角度有关的计算问题(35题提分练)(原卷版)—七年级数学上册(北师大版2024)
与角度有关的计算问题(解答题35题)(基础题&提升题&压轴题)题型一基础题1.(2023秋•同安区期末)如图,点O在直线AB上,∠BOC=20°,∠COD=90°,OE是∠BOD的角平分线,求∠COE的度数.2.(2023秋•吉安期末)如图,已知∠1:∠3:∠4=1:2:4,∠2=80°,求∠1、∠3、∠4的度数.3.(2023秋•西峡县期末)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE 的度数.4.(2023秋•天心区期末)如图,O为直线AB上一点,OC平分∠AOD,∠AOC=60°,∠BOD=3∠DOE,求∠DOE的度数.5.(2023秋•泉港区期末)如图,∠COD=45°,∠BOD=13∠COD,OC是∠AOB的平分线,求∠AOD的度数.6.(2023秋•泸县校级期末)如图,OE是∠COA的平分线,∠AOB=∠COD.(1)若∠AOE=50°,∠COD=18°,求∠BOC的度数;(2)比较∠AOC和∠BOD7.(2023秋•南沙区期末)如图,将一副三角尺叠放在一起.三角尺ABC的三个角是45°,45°,90°,三角尺ADE的三个角是30°,60°,90°.(1)若∠CAE=58°,求∠BAE的度数;(2)若∠CAE=2∠BAD,求∠CAD的度数.8.(2023秋•大荔县期末)将一副直角三角板ABC和BDE的一个顶点B重合在一起,按如图所示方式摆放,其中∠ACB=∠DBE=90°,∠ABC=30°,三角板ABC在∠DBE内可任意转动.(1)以点B为顶点的所有锐角有 个.(2)求以点B9.(2023秋•九龙坡区校级期末)如图,∠AOB:∠BOC=1:4,OM平分∠AOB,∠BON:∠NOC=3:1,若∠MON=91°.(1)∠AOB ∠NOC(填“>”或“<”或“=”)(2)求∠AOC的度数.10.(2023秋•娄底期末)如图,点O在直线AB上,∠COD=60°,∠AOE=2∠DOE.(1)若∠BOD=60°,求∠COE的度数;(2)试猜想∠BOD和∠COE的数量关系,并说明理由.11.(2023秋•瑶海区校级期末)已知点O为直线AB上一点,∠MON=90°,在∠MON内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.12.(2023秋•高安市期末)如图,已知∠AOB=80°,OC是∠AOB的平分线,OD是∠BOC的平分线.(1)求∠AOD的度数;(2)若∠COE=14∠COB,求∠的度数.题型二提升题13.(2023秋•福田区校级期末)如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数;(3)如果∠COD:∠COE=3:2,求∠AOE的度数.14.(2023秋•慈溪市期末)如图,直角三角板DOE的直角顶点O在直线AB上,OD平分∠AOF.(1)比较∠EOF和∠EOB的大小,并说明理由;(2)若OF平分∠AOE,求∠的度数.15.(2023秋•武昌区期末)已知∠AOB=50°,∠COD=20°.(1)如图1,若∠AOD=80°,∠COD在OB的左侧,则∠BOC= ;(2)如图2,OP平分∠AOD,OQ平分∠BOC,求∠POQ.16.(2023秋•无为市期末)利用折纸可以作出角平分线,如图1折叠,则OC为∠AOB的平分线,如图2、图3,折叠长方形纸片,OC,OD均是折痕,折叠后,点A落在点A',点B落在点B',连接OA′.(1)如图2,若点B'恰好落在OA′上,且∠AOC=32°,则∠BOD= ;(2)如图3,当点B'在∠COA'的内部时,连接OB′,若∠AOC=44°,∠BOD=61°,求∠A'OB'的度数.17.(2023秋•彭水县期末)已知∠AOB内部有三条射线OD,OC,OE且在同一个平面内,∠AOC=2∠BOC,射线OD始终在射线OE的上方,∠AOB=108°,∠DOE=36°.(1)如图1,当OE平分∠BOC时,求∠AOD的度数;(2)如图2,若∠AOD=5∠COE时,求∠BOE的度数.18.(2023秋•沙坪坝区校级期末)如图1,已知∠AOC=160°,OB是∠AOC内的射线,且∠AOB=3 5∠BOC,射线OD、OE将∠AOC分割,使得∠AOD:∠BOD:∠COE=1:2:3.(1)求∠DOE.(2)如图2,作∠BOD,∠EOC的平分线OM,ON.求∠MON的值.19.(2023秋•渝北区期末)OC ,OD ,OE 在∠AOB 内,∠AOC =2∠BOC ,∠AOB =108°,∠DOE =66°.(1)如图1,当OE 为∠BOC 的角平分线时,求∠AOD 的度数;(2)如图2,当∠AOD =53∠COE ,求∠BOE 的度数.20.(2023秋•汉中期末)如图,已知∠AOB =120°,从∠AOB 的顶点O 引出一条射线OC ,射线OC 在∠AOB 的内部,将射线OC 绕点O 逆时针旋转到OD ,且∠COD =60°.(1)如图①,若∠AOD =90°,试判断∠AOC 与∠BOD 之间的大小关系并说明理由;(2)如图②,作射线OE ,射线OE 为∠AOD 的平分线,设∠AOC =α,当0°<α<60°时,若射线OC 恰好平分∠AOE ,求∠BOD 的度数.21.(2023秋•宿豫区期末)已知,将一副三角板的直角顶点O按如图所式叠放在一起.(1)若∠BOD=55°,则∠BOC= ,∠BOC ∠AOD(填>、<、=);(2)①若∠BOD=50°,则∠AOC= ;若∠AOC=120°,则∠BOD= ;②猜想∠BOD与∠AOC之间的数量关系,并说明理由.22.(2023秋•庄河市期末)如图,点O为直线上AB一点,∠COD=90°,∠BOD=18°,若OE是∠BOC 的平分线,(1)求∠BOE的度数;(2)若点F是平面内一点,连接射线OF,且∠AOF=13∠AOC,求∠COF的度数.23.(2023秋•黄陂区校级期末)将三角板COD的直角顶点O放置在直线AB上.(1)如图,且∠AOC=40°射线OE平分∠BOC,则∠BOE的大小为 ;(2)在(1)的条件下,射线OE平分∠BOC,射线OF平分∠BOD,求∠EOF的度数;(3)若将三角板COD绕点O旋转,射线OE平分∠BOC,射线OF平分∠BOD.请写出∠COD与∠EOF 度数的等量关系: .题型二压轴题24.(2023秋•斗门区期末)如图①,OC是∠AOE内部的一条射线,OB、OD分别平分∠AOC,∠EOC.(1)若∠AOE=140°,∠COD=30°,求∠BOC= ;(2)∠AOE与∠BOD的大小有什么关系,写出你的结论并说明理由.(3)如图②,如果OC是∠AOE外部的一条射线,OB、OD分别平分∠AOC,∠EOC.那么(2)中∠AOE与∠BOD的大小关系还成立吗?请说明理由.25.(2023秋•海陵区校级期末)已知∠AOB=2∠COD=140°,OE平分∠AOD.(1)如图①,若∠COE=10°,求∠AOC的度数;(2)将∠COD绕顶点O按逆时针方向旋转至如图②的位置,∠BOD和∠COE有怎样的数量关系?请说明理由;(3)将∠COD绕顶点O按逆时针方向旋转至如图③的位置,(2)中的关系是否成立?请说明理由.26.(2023秋•思明区校级期末)如图,点M,O,N在同一条直线上,将一直角三角板的60°锐角顶点放在点O处,一边OA在射线OM上,另一边OB在直线MN的上方.OC平分∠BON,OD平分∠CON.(1)求∠BOD的度数;(2)把三角板绕点O沿逆时针方向旋转,当OB转到射线OM上时停止,若在旋转过程中,∠AOM=(x﹣120)°,同时在∠BOC内部有一条射线OE,使得∠BOE=(34x―90)°,试探究在旋转过程中,射线OE始终是哪个角的平分线?27.(2023秋•宝安区期末)将一副三角板如图1放置(∠AOB=90°,∠A=45°,∠OCD=90°,∠COD =30°),在∠BOD、∠AOC(∠BOD≤180°、∠AOC≤180°)内作射线OM、ON,且∠MOB=2∠DOM,∠NOA=2∠NOC,将三角板OCD绕着点O顺时针旋转.(1)如图1,当点O、A、C在一条直线上时,∠MON= ;(2)如图2,若旋转角为α(0°<α<90°),∠MON的度数是否会发生改变?若不变,求其值;若变化,说明理由.(3)如图3,当三角板OCD旋转到∠AOB内部时,求∠MON的值.28.(2024•两江新区校级开学)将一副三角板的两个锐角顶点重合,∠AOB=45°,∠COD=30°,OM,ON分别是∠AOC,∠BOD(1)如图①所示,当OB与OC重合时,则∠MON的大小为 ;(2)当∠COD绕着点O旋转至如图②所示,当∠BOC=14°,则∠MON的大小为多少?(3)当∠COD绕着点O旋转至如图③所示,当∠BOC=α时,求∠MON的大小.29.(2023秋•于洪区期末)【提出问题】已知点O是直线AB上一点,∠COD=90°,射线OE是∠AOD的平分线.(1)如图1,若∠BOD=110°,求∠COE的度数.请补充完成下列解答过程:解:∵∠AOB=180°,∠BOD=110°,∴∠AOD= °.∵∠COD=90°,∴∠AOC=∠COD﹣∠AOD= °.∵OE是∠AOD的平分线,∴∠AOE= ∠AOD= °.∴∠COE=∠AOC+ = °.【类比分析】(2)如图2,设∠COE=α,求∠BOD的度数(用含α的代数式表示).【变式探索】(3)如图3,若3∠COE﹣2∠BOD=78°,求∠COE的度数.30.(2023秋•渑池县期末)如图.已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB.(1)在图①中.若∠AOC=40°,则∠BOC= °.∠NOB= °;(2)在图①中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在图①中,当∠AOB绕着点O顺时针转动到如图②的位置时,(2)中α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.31.(2023秋•青岛期末)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,求∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,尝试发现∠MON与α的数量关系.(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?直接写出结论即可.32.(2024春•高青县期末)【实践活动】如图1,将一副三角板的直角顶点重合摆放.(1)∠ACE与∠BCD的大小关系是∠ACE ∠BCD.(填“>”“=”或“<”)(2)∠ACB与∠DCE之间的数量关系是 .【拓展探究】(3)如图2,若∠ACD≠∠BCE,且∠ACD+∠BCE=180°,探索∠ACB与∠DCE之间的数量关系,并说明理由.33.(2023秋•和平区校级期末)已知∠AOB=120°,从∠AOB的顶点O引出一条射线OC,射线OC在∠AOB的内部,将射线OC绕点O逆时针旋转60°形成∠COD.(1)如图1,若∠AOD=90°,比较∠AOC和∠BOD的大小,并说明理由;(2)作射线OE,射线OE为∠AOD的平分线,设∠AOC=α.①如图2,当0°<α<60°,若射线OC恰好平分∠AOE,求∠BOD的度数;②当α≠60°时,请探究∠EOC与∠BOD之间的数量关系.34.(2023秋•山西期末)综合与探究特例感知:(1)如图1.线段AB=16cm,C为线段AB上的一个动点,点D,E分别是AC,BC的中点.①若AC=4cm,则线段DE的长为 cm.②设AC=a cm,则线段DE的长为 cm.知识迁移:(2)我们发现角的很多规律和线段一样,如图2,若∠AOB=120°,OC是∠AOB内部的一条射线,射线OM平分∠AOC,射线ON平分∠BOC,求∠MON的度数.拓展探究:(3)已知∠COD在∠AOB内的位置如图3所示,∠AOB=α,∠COD=30°,且∠DOM=2∠AOM,∠CON=2∠BON,求∠MON的度数.(用含α的代数式表示)35.(2023秋•青羊区校级期末)如图所示,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=30°,求∠DOE的度数.(2)在图1中,若∠AOC=α,直接写出∠DOE的度数: (用含α的代数式表示).(3)将图1中的∠COD绕顶点O顺时针开始旋转.①当∠COD旋转至如图2的位置时,请探究∠AOD与∠BOE的度数之间的关系,写出你的结论,并说明理由;②过点O的一条射线OF,使得OC恰好平分∠BOF,在图1和图2中分别探究∠AOF与∠DOE的度数之间的关系,请直接写出结论.。
(完整版)七年级数学角练习题及答案
七年级数学角练习题及答案一、选择题1.A.15°B.20°C.85°D.105°答案:A 北A?4题图东西?B 南题图题图6、×=×=11°31′26″×3=33°93′78″=34°34′18″15.AOD25. 如图14,将一副三角尺的直角顶点重合在一起.若∠DOB与∠DOA的比是2∶11,求∠BOC的度数.若叠合所成的∠BOC=n°,则∠AOD的补角的度数与∠BOC的度数之比是多少?26.如图,一个机器人从点O出发,每前进2米就向左转体45°.假设机器人从O点出发时,身体朝向正北方向,试用1厘米代表1米,在图中画出机器人走过6米路程后所处的位置,并指明点A在点O的什么方向上?机器人从出发到首次回到O点,共走过了多远的路程?数学七年级上第4章直线与角检测题一、选择题1.如图,,若∠1=40°,则∠2的度数是AO第1题图A.20°B.40°C.50°D.60°.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是1B第2题图 A BCD3.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,?,那么六条直线最多有A.21个交点B.18个交点C.15个交点D.10个交点.已知=65°,则的补角等于A.125°B.105°C.115°D.95°.下列说法正确的个数是①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形. A.①②B.①③ C.②③ D.①②③6. 如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是 A.∠2=∠B.C.D.以上都不对7. 在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝8. 下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有A. ①②B. ①③C. ②④D. ③④9. 如图,下列关系式中与图不符合的式子是 A.C. B.D.第9题图10. 下列叙述正确的是A.180°的角是补角 B.110°和90°的角互为补角 1C.10°、20°、60°的角互为余角D.120°和60°的角互为补角二、填空题 11.已知=67°,则的余角等于度.12. 如图,∠AOC=∠BOD=78°,∠BOC=35°,则∠AOD=. 13.有下列语句:①在所有连接两点的线中,直线最短;②线段③取直线是点与点的距离;的中点;,得到射线,其中正确的是 .第12题图④反向延长线段14. 要在墙上钉一根木条,至少要用两个钉子,这是因为:. 15. 一个角的补角是这个角的余角的3倍,则这个角的度数是 . 16. 已知直线上有A,B,C三点,其中AB=cm,BC=cm,则AC=_______. 17. 计算:180°2313′6″__________. 18.若线段MN=_______.,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则三、解答题19. 将下列几何体与它的名称连接起来.圆锥三棱锥圆柱正方体球长方体20.如图所示,线段AD=cm,线段AC=BD=cm ,E、F分别是线段AB、CD的中点,求EF.第20题图21.如图,已知画直线画射线三点.;;2找出线段画出的中点,连结的平分线与;相交于,与相交于点.第21题图第22题图22. 如图,的度数.23. 火车往返于A、B两个城市,中途经过4个站点,不同的车站往返需要不同的车票.共有多少种不同的车票?如果共有≥3)个站点,则需要多少种不同的车票?°,°,求、24. 如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?第24题图3第4章直线与角检测题参考答案1.C 解析:∵,∴ ∠∠1∠290°,∴ ∠2=90°∠1=90°40°50°.2.B 解析:选项A和C能折成原几何体的形式,但涂颜色的面是底面与原几何体的涂颜色面的位置不一致;选项B能折叠成原几何体的形式,且涂颜色的面的位置与原几何体一致;选项D不能折叠成原几何体的形式.3.C 解析:由题意,得条直线之间交点的个数最多为,故6条直线最多有=15交点.4.C 解析:∠的补角为180°∠=115°,故选C.5.C 解析:教科书是立体图形,所以①不对,②③都是正确的,故选C.6. C 解析:因为∠1与∠2互补,所以∠1+∠2=180°.又因为∠2与∠3互余,所以∠2+∠3=90°,所以∠1+=180°,所以∠1=90°+∠3.7.D 解析:因为是顺次取的,所以AC=cm,因为O是线段AC的中点,所以OA=OC= cm.OB=AB-OA=5-4=1. 故选D.8.D 解析:①②是两点确定一条直线的体现,③④可以用“两点之间,线段最短”来解释.故选D.9.C 解析:根据线段之间的和差关系依次进行判断即可得出正确答案.正确;,故本选项错误;,正确;,正确.故选C.,而10.D 解析:180°的角是平角,所以A不正确;110°+90°180°,所以B不正确;互为余角是指两个角,所以C不正确;120°+60°=180°,所以D正确. 11.2312. 121° 解析:根据∠AOC=∠BOD=78°,∠BOC=35°,∴∠AOB=∠AOC?∠BOC=78°?35°?43°,故∠AOD=∠AOB+∠BOD=43°+78°=121°.13.④ 解析:∵ 在所有连接两点的线中,线段最短,∴ ①错误;∵ 线段点的距离,∴ ②错误;∵ 直线没有长度,∴ 说取直线向延长线段,得到射线的长是点与的中点错误,∴ ③错误;∵ 反正确,∴ ④正确.故答案为④.14.两点确定一条直线15.45° 解析:设这个角为,所以,根据题意可,所以416.cm或cm 解析:当三点按的顺序排列时,;当三点,按的顺序排列时,.17.156°46′54″ 解析:原式=179°59′60″-23°13′6″156°46′54″.18. 解析:.19.分析:正确区分各个几何体的特征. 解:圆锥三棱锥圆柱正方体球长方体20.解:如题图,∵ 线段AD=cm,线段AC=BD=cm,∴ BC?AC?BD?AD?4?4?6?2. ∴ AB?CD?AD?BC?6?2?4. 又∵ E、F分别是线段AB、CD的中点, ∴ EB?112AB,CF?2CD ,∴ EB?CF?1122CD?12?2.∴ EF?EB?BC?CF?2?2?4. 答:线段EF的长为cm.21.分析:根据直线是向两方无限延长的画出直线即可;根据射线是向一方无限延长的画出射线即可;找出的中点,画出线段即可;画出∠的平分线即可.解:如图所示.5。
人教版七年级数学《角度换算》计算题专项练习(含答案)
人教版七年级数学《角度换算》计算题专项练习学校:班级:姓名:得分:1.计算:13°58′+28°37′×2.2.计算(结果用度、分、秒表示):22°18′20″×5﹣28°52′46″.3.计算:(1)90°﹣36°12'15″(2)32°17'53“+42°42'7″(3)25°12'35“×5;(4)53°÷6.5.计算:(1)27°26′+53°48′(2)90°﹣79°18′6″.6.计算(1)25°34′48″﹣15°26′37″(2)105°18′48″+35.285°.7.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.8.计算:180°﹣48°39′40″.9.计算:26°21′30″+42°38′30″.10.(1)180°﹣(34°55′+21°33′);(2)(180°﹣91°31′24″)÷2.11.计算:72°35′÷2+18°33′×4.12.计算:48°39′+67°41′.13.计算:18°20′32″+30°15′22″.14.计算:180°﹣22°18′×5.15.计算:56°31′+29°43′×6.16.计算:49°28′52″÷4.人教版七年级数学《角度换算》计算题专项练习参考答案1.计算:13°58′+28°37′×2.【解答】解:13°58′+28°37′×2,=13°58′+57°14′,=71°12′.2.计算(结果用度、分、秒表示)22°18′20″×5﹣28°52′46″.【解答】解:22°18'20''×5﹣28°52'46''=110°90'100''﹣28°52'46''=82°38'54''.3.计算:(1)90°﹣36°12'15″(2)32°17'53“+42°42'7″(3)25°12'35“×5;(4)53°÷6.【解答】解:(1)90°﹣36°12'15″=53°′45″;(2)32°17'53“+42°42'7″=74°59′60″=75°(3)25°12'35“×5=125°60′175″=126°2′55″;(4)53°÷6=8°50′.4.计算:(1)27°26′+53°48′(2)90°﹣79°18′6″.【解答】解:(1)原式=80°74′=81°14′;(2)原式=89°59′60″﹣79°18′6″=10°41′54″.5.计算(1)25°34′48″﹣15°26′37″(2)105°18′48″+35.285°.【解答】解:(1)25°34′48″﹣15°26′37″=10°8′11″;(2)105°18′48″+35.285°=105°18′48″+35°17′6″=140°35′54″.6.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.【解答】解:(1)40°26′+30°30′30″÷6=40°26′+5°5′5″=45°31′5″;(2)13°53′×3﹣32°5′31″=41°39′﹣32°5′31″=9°33′29″.7.计算:180°﹣48°39′40″.【解答】解:180°﹣48°39′40″=179°59′60″﹣48°39′40″=131°20′20″8.计算:26°21′30″+42°38′30″.【解答】解:26°21′30″+42°38′30″=68°59′60″=69°.9.(1)180°﹣(34°55′+21°33′);(2)(180°﹣91°31′24″)÷2.【解答】解:(1)原式=180°﹣55°88′=179°60′﹣56°28′=123°32′;(2)原式=(179°59′60″﹣91°31′24″)÷2=88°28′36″÷2=44°14′18″.10.计算:72°35′÷2+18°33′×4.【解答】解:原式=36° 17′30″+74° 12′=110° 29′30″.11.计算:48°39′+67°41′.【解答】解:48°39′+67°41′=115°80′=116°20′.12.计算:18°20′32″+30°15′22″.【解答】解:原式=48°35'54″.(4分)13.计算:180°﹣22°18′×5.【解答】解:原式=180°﹣110°90′=179°60′﹣111°30′=68°30′.14.计算:56°31′+29°43′×6.【解答】解;原式=56°31′+174°258′=230°289′=234°49′.15.计算:49°28′52″÷4.【解答】解:49°28′52″÷4=12°22′13″.。
七年级数学下册角度习题新人教版
七年级数学下册角度习题新人教版介绍
本文档提供了七年级数学下册角度题的解答,教材为新人教版。
通过这些题的练,学生能够深入理解角度的概念和属性,并提高解
题能力。
题列表
第一节:角的定义和角的度量
1. 角的定义是什么?
2. 如何度量一个角的大小?
第二节:角的分类
1. 从几个方面可以对角进行分类?
2. 什么是锐角、直角和钝角?
第三节:角的比较和判断
1. 如何比较两个角的大小?
2. 怎样判断一个角是锐角、直角还是钝角?第四节:角的平分线
1. 什么是角的平分线?
2. 如何求角的平分线?
第五节:角的度数
1. 角的度数有哪些基本性质?
2. 如何计算两个角的和?
第六节:角的辨认与转化
1. 如何辨认角?
2. 如何将角转化为相应的度数和弧度?
第七节:角的运算
1. 怎样进行角的加法运算?
2. 如何进行角的乘法运算?
结论
通过完成以上习题,七年级学生可以充分掌握角的概念、属性和运算方法,为进一步学习数学打下坚实基础。
七年级数学角度的计算(专题)(含答案)
角度的计算(专题)一、单选题(共10道,每道10分)1.如图,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为( )A.30°B.40°C.50°D.60°答案:A解题思路:∵∠AOB=150°,∠AOC=90°,∴∠BOC=∠AOB-∠AOC=150°-90°=60°.∵∠BOD=90°,∴∠DOC=∠BOD-∠BOC=90°-60°=30°.故选A.试题难度:三颗星知识点:余角2.如图,已知直线AB,CD相交于点O,OA平分∠EOC,且∠EOC=110°,则∠AOC的度数为( )A.25°B.35°C.45°D.55°答案:D解题思路:.故选D.试题难度:三颗星知识点:角平分线3.如图,已知∠COD为平角,OA⊥OE,且,则∠DOE的度数为( )A.30°B.45°C.60°D.75°答案:A解题思路:∵∠COD为平角∴∠COD=180°,即∠AOC+∠AOE+∠DOE=180°.∵OA⊥OE∴∠AOE=90°.∴∠AOC+∠DOE=180°-∠AOE=180°-90°=90°.∴∠AOC=2∠DOE,∴2∠DOE+∠DOE=3∠DOE=90°,∴∠DOE=30°.故选A.试题难度:三颗星知识点:平角的定义4.如图,直线AB与EO相交于点O,∠EOB=90°,∠FOD=90°,如果∠AOD=140°,那么∠EOF 的度数为( )A.60°B.50°C.40°D.30°答案:C解题思路:∵∠AOD=140°∴∠BOD=40°∵∠EOB=90°∴∠EOD+∠BOD=90°∵∠FOD=90°∴∠FOE+∠EOD=90°∴∠FOE=∠BOD=40°故选C.试题难度:三颗星知识点:平角5.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为( )A.42°B.98°C.42或98°D.82°答案:C解题思路:如图,当点C与点C1重合时,∠BOC=∠AOB-∠AOC=70°-28°=42°当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°故选C.试题难度:三颗星知识点:角度的计算6.已知从点O出发的三条射线OA,OB,OC,若∠AOB=50°,∠AOC=30°,则∠BOC的度数为( )A.80°或20°B.40°或10°C.40°或20°D.80°或10°答案:A解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOC∠AOB,故需分以下两种情况:①射线OC在射线OA的右边,如图1,求∠BOC,设计方案:∠BOC=∠AOB+∠AOC=50°+30°=80°②射线OC在射线OA的左边,如图2,求∠BOC的度数,设计方案:∠BOC=∠AOB-∠AOC=50°-30°=20°综上,∠BOC的度数为80°或20°.故选A.试题难度:三颗星知识点:角度的计算7.已知∠AOB为直角,∠AOC=40°,若OM平分∠AOB,则∠MOC的度数为( )A.65°或25°B.65°或85°C.5°或65°D.5°或85°答案:D解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOB∠AOC,故需分以下两种情况:①射线OC在射线OA的左边,如图1,求∠MOC的度数,设计方案:②射线OC在射线OA的右边,如图2,求∠MOC的度数,设计方案:综上,∠MOC的度数为5°或85°.故选D.试题难度:三颗星知识点:角平分线8.已知∠AOB=60°,∠AOC=4∠BOC,则∠AOC的度数为( )A.12°或20°B.12°或48°C.48°或80°D.20°或80°答案:C解题思路:由题意,射线OC的位置不确定,需要分类讨论.因为∠AOC=4∠BOC,所以∠AOC∠BOC,则射线OC只能在射线OA的右边,分以下两种情况.①当射线OC在∠AOB的内部时,如图1所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得x+4x=60°,解得x=12°,所以∠AOC=4×12°=48°.①当射线OC在∠AOB的外部时,如图2所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得4x-x=60°,解得x=20°,所以∠AOC=4×20°=80°.综上所述,∠AOC的度数为48°或80°.故选C.试题难度:三颗星知识点:角度的计算9.已知∠AOB=54°,∠AOC=2∠BOC,OM平分∠AOB,则∠MOC的度数为( )A.9°或81°B.72°或54°C.9°或18°D.81°或18°答案:A解题思路:由题意,射线OC的位置不确定,因此需要分类讨论.①当射线OC在∠AOB的内部时,如图1所示,由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=18°,所以.②当射线OC在∠AOB的外部时,如图2所示,求∠MOC的度数,设计方案:由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=54°,所以.综上所述,∠MOC的度数为9°或81°.故选A.试题难度:三颗星知识点:角度的计算10.已知∠AOB=20°,∠AOC=4∠AOB,且∠BOC∠AOC,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数为( )A.30°或50°B.20°或60°C.30°D.50°答案:C解题思路:分析知射线OC的位置不确定,需要分类讨论,又因为∠BOC∠AOC,所以符合题意的只有一种情况.如下图所示,由∠AOB=20°,∠AOC=4∠AOB,得∠AOC=80°,所以.综上所述,∠MOD的度数为30°.故选C.试题难度:三颗星知识点:角度的计算。
2022-2023学年七年级上数学:角(附答案解析)
一.选择题(共5小题)
1.如果A看B的方向是南偏西20°,那么B看A的方向是( )
A.北偏东70°B.南偏西70°C.北偏东20°D.北偏西20°
2.如图,点B在点A的( )方向.
A.北偏东35°B.北偏东55°C.北偏西35°D.北偏西55°
3.如图,∠AOB=50°,则∠AOB的余角的度数是( )
A.北偏东35°B.北偏东55°C.北偏西35°D.北偏西55°
【分析】先求出55°的余角,再根据方向角的定义,即可解答.
【解答】解:由题意得:
90°﹣55°=35°,
∴如图,点B在点A的北偏西35°方向,
故选:C.
【点评】本题考查了方向角,熟练掌握方向角的定义是解题的关键.
3.如图,∠AOB=50°,则∠AOB的余角的度数是( )
∴∠COD=∠AOD,
∵∠AOE+∠BOE=180°,
当∠COD与∠BOE互补时,
∴∠AOE=∠COD,
∴∠COE=3∠COD,
∵∠COE=∠BOE,
∴∠BOE=3∠COD,
∵∠AOE+∠BOE=180°,
∴4∠COD=180°,
∴∠COD=45°,
∴∠AOC=90°.
故答案为:90.
【点评】本题考查有关角的计算,关键是由条件推出∠BOE=3∠COD.
【分析】由图可知∠AOC=∠AOB+∠BOC,根据已知可求出∠AOC,再根据角平分线的性质可求出∠COD.
【解答】解:∵∠AOB=84°,∠BOC=44°,
∴∠AOC=∠AOB+∠BOC=84°+44°=128°,
∵OD平分∠AOC,
∴∠COD=∠AOD= ∠AOC= 128°=64°.
初一数学角度题30道
初一数学角度题30道1. 一个角的补角比这个角大30°,求这个角的度数。
- 咱设这个角是x度哦。
那它的补角就是180 - x度。
题目说补角比这个角大30°,那就可以列方程啦,180 - x=x + 30。
移项可得180 - 30 = x+x,也就是150 = 2x,解得x = 75度。
2. 已知∠A = 50°,它的余角是多少度呢?- 余角的定义就是两个角加起来等于90°嘛。
那∠A的余角就是90 - 50 = 40°,简单吧。
3. 一个角是它的余角的2倍,这个角是多少度?- 设这个角的余角是x度,那这个角就是2x度。
因为它们是余角关系,所以x+2x = 90。
3x = 90,解得x = 30度,那这个角就是2x = 60度。
4. 若∠α和∠β互为补角,且∠α - ∠β = 40°,求∠α和∠β的度数。
- 因为∠α和∠β互为补角,所以∠α+∠β = 180°。
又知道∠α - ∠β = 40°。
把这两个方程相加,就是2∠α=180 + 40 = 220°,所以∠α = 110°,那∠β = 180 - 110 = 70°。
5. 一个角的补角与这个角的余角的和是120°,求这个角。
- 设这个角是x度,它的补角是180 - x度,余角是90 - x度。
根据题意,(180 - x)+(90 - x)=120。
化简一下就是270 - 2x = 120,移项得到2x = 270 - 120 = 150,解得x = 75度。
6. 在一个直角三角形中,一个锐角是另一个锐角的3倍,求这两个锐角的度数。
- 直角三角形里,两个锐角和是90°。
设小的锐角是x度,那大的锐角就是3x度。
x + 3x = 90,4x = 90,解得x = 22.5度,3x = 67.5度。
7. 已知∠AOB = 80°,OC是∠AOB内的一条射线,∠AOC = 30°,求∠BOC的度数。
七年级数学中的角度计算题
七年级数学中的角度计算题知识点:角平分线定义:从一个角的顶点引出一条射线;把这个角分成两个完全相同的角;这条射线叫做这个角的角平分线。
1、如图所示;AB 为一条直线;OC 是∠AOD 的平分线;OE 在∠BOD 内;∠DOE=31∠BOD ;∠COE=72°;求∠EOB 的度数。
2、如图;已知∠AOB 是∠AOC 的余角;∠AOD 是∠AOC 的补角;且BOD BOC ∠=∠21求∠BOD 、∠AOC 的度数3、一条射线OA ;若从点O 再引两条射线OB 、OC ;使∠AOB=60°;∠BOC=20°;求∠AOC 的度数。
4、已知∠AOB=100°;∠BOC=20°;若OM 平分∠AOB ;ON 平分∠BOC ;求∠MON 的度数。
5、已知;如图∠BOC 为∠AOC 内的一个锐角;射线OM 、ON 分别平分∠AOC 、∠BOC 。
(1)若∠AOB=90°;∠BOC=30°;求∠MON 的度数; (2)若∠AOB=α;∠BOC=30°;求∠MON 的度数;(3)若∠AOB=90°;∠BOC=β;还能否求出∠MON 的度数?若能;求出其值;若不能;说明理由。
(4)从前三问的结果你发现了什么规律?6、如图;已知A 、B 、C 是数轴上三点;点C 表示的数为6;BC=4;AB=12; (1)写出数轴上点A 、B 表示的数;(2)动点P 、Q 分别从A 、C 同时出发;点P 以每秒6个单位长度的速度沿数轴向右匀速运动;点Q 以每秒3个单位长度的速度沿数轴向左匀速运动;M 为AP 的中点;点N 在线段CQ上;且CQ CN 31=;设运动时间为)0(>t t 秒。
①求数轴上点M 、N 表示的数(用含t 的式子表示) ②t 为何值时;原点O 恰为线段PQ 的中点。
DO CB A7、点O 是直线AB 上一点;∠COD 是直角;OE 平分∠BOC 。
七年级数学中的角度计算题
七年级数学--角有关的计算问题知识点:角平分线定义:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
1、如图所示,AB 为一条直线,OC 是∠AOD 的平分线,OE 在∠BOD 内,∠DOE=31∠BOD ,∠COE=72°,求∠EOB 的度数。
2、如图,已知∠AOB 是∠AOC 的余角,∠AOD 是∠AOC 的补角,且BOD BOC ∠=∠21求∠BOD 、∠AOC 的度数3、一条射线OA ,若从点O 再引两条射线OB 、OC ,使∠AOB=60°,∠BOC=20°,求∠AOC 的度数。
4、已知∠AOB=100°,∠BOC=20°,若OM 平分∠AOB ,ON 平分∠BOC ,求∠MON 的度数。
5、已知,如图∠BOC 为∠AOC 内的一个锐角,射线OM 、ON 分别平分∠AOC 、∠BOC 。
(1)若∠AOB=90°,∠BOC=30°,求∠MON 的度数; (2)若∠AOB=α,∠BOC=30°,求∠MON 的度数;(3)若∠AOB=90°,∠BOC=β,还能否求出∠MON 的度数?若能,求出其值,若不能,说明理由。
(4)从前三问的结果你发现了什么规律?6、如图,已知A 、B 、C 是数轴上三点,点C 表示的数为6,BC=4,AB=12, (1)写出数轴上点A 、B 表示的数;(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒6个单位长度的速度沿数轴向右匀速运动,点Q 以每秒3个单位长度的速度沿数轴向左匀速运动,M 为AP 的中点,点N 在线段CQ上,且CQ CN 31=,设运动时间为)0(>t t 秒。
①求数轴上点M 、N 表示的数(用含t 的式子表示) ②t 为何值时,原点O 恰为线段PQ 的中点。
DO CBA7、点O 是直线AB 上一点,∠COD 是直角,OE 平分∠BOC 。
七年级数学求角度试卷答案
一、选择题(每题2分,共10分)1. 下列各角中,属于直角的是()A. 45°角B. 90°角C. 135°角D. 180°角答案:B2. 一个三角形的内角和是()A. 180°B. 270°C. 360°D. 540°答案:A3. 在直角三角形中,一个锐角的度数是()A. 30°B. 45°C. 60°D. 90°答案:C4. 一个圆的圆心角是360°,那么这个圆心所对的弧度是()A. 1B. 2C. 3D. 4答案:A5. 在一个等腰三角形中,底角的度数是()A. 45°B. 60°C. 90°D. 120°答案:B二、填空题(每题2分,共10分)6. 一个三角形的两个内角分别是45°和90°,那么第三个内角的度数是______。
答案:45°7. 在一个圆中,圆心角是60°,那么它所对的弧度是______。
答案:π/38. 一个等边三角形的每个内角的度数是______。
答案:60°9. 在一个直角三角形中,如果一个锐角的度数是30°,那么另一个锐角的度数是______。
答案:60°10. 一个圆的半径是5cm,那么这个圆的周长是______cm。
答案:31.4cm三、解答题(每题10分,共30分)11. 已知一个三角形的两个内角分别是40°和60°,求第三个内角的度数。
解答:三角形的内角和为180°,所以第三个内角的度数为180° - 40° - 60° = 80°。
12. 在一个圆中,圆心角是150°,圆的半径是10cm,求这个圆心角所对的弧长。
解答:圆心角所对的弧长公式为L = rθ,其中r是半径,θ是圆心角的弧度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
科迪实验中学初一上数学周末作业
(提示:一定要先从最左边开始写,养成良好习惯)
、如图,OC平分∠AOD,∠BOD=2∠AOB1.若∠AOD=114°,求∠BOC的度数?
AOC.
OD平分∠上一点,∠BOC=130°,2、如图所示,点O是直线AB 的度数.求:∠COD C
D
B O A
. 按下列要求画图并回答问题:上任意一点,OC平分∠AOB是直线3、如图,OAB、、;OE=2)分别在射线OAODOC上截取线段ODOE,且(1 )连接DE;(2EDO DOF;交3()以O
为顶点,画DE于点F,射线OF EOF?的所有余角:(4)写出图中C
ABO
精品文档.
精品文档
1大15°,求这个角的度数. 4、一个角的余角比它的补角的4
1ABAC?、的长 CD=3CM,求.
若点D是BC中点,.5、已知线段,使到点,反向延长ABCAB2分)(要求:正确画图给2
BEAD?为线段AC的中点,,B、如图,线段AC上依次有D,,E三点,其中点B64DE?的长.,求线段若AC
1AB?BC,D为AC的中点,若BD=6cm ,使,到,延长AB7、已知线段ABC4 . AB求的长
精品文档.
精品文档AOB??AOC?20OC?OB?(自己画图)8、已知,求, ,垂足为O的度数.
DOB的度数。
平分∠°,ODCOE。
求∠,9、如图,点A,OE在同一条直线上,∠AOB=40°,∠COD=28
AOB5.求∠的度数。
2AOBBO⊥OD,平分∠AOC,∠︰∠COD =︰OA10、如图,已知BC
A O
D
精品文档.
精品文档
11、.如图,已知OA⊥OB,直线CD经过顶点O,若∠BOD:∠AOC=5:2,求∠AOC和∠BOD.
精品文档.。