八年级(上册)勾股定理复习资料全
勾股定理(知识归纳+题型突破)(原卷版)-2023-2024学年八年级数学上册单元速记巧练
勾股定理(知识归纳+题型突破)1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.要点:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证:22a b +与2c 是否具有相等关系:若222a b c +=,则△ABC 是以∠C 为90°的直角三角形;若222a b c +>时,△ABC 是锐角三角形;若222a b c +<时,△ABC 是钝角三角形.2.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.要点:常见的勾股数:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.四、勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.题型一用勾股定理理解三角形【例1】若一个直角三角形的两条直角边长分别是6和8,则斜边长是()A .6B .7C .8D .101.在直角ABC 中,∠B=90°,3AB =,4AC =,则BC 的长为()A .5B .7C .5或7D .5或32.如图,在Rt ABC △中,90A ∠=︒,2BC =,则222AC AB BC ++的值为()A .8B .2C .4D .223.已知直角三角形的两边长分别为5和12,则斜边长是4.如图所示,已知ABC 中,6AB =,9AC =,AD BC ⊥于D ,M 为AD 上任一点,则22MC MB -等于.题型二勾股数【例2】下列各组数中,是勾股数的是()A .0.3,0.4,0.5B .3,7,4C .52,6,132D .9,40,411.下列各组数,是勾股数的一组是()A .8,15,17B .13,14,15C .3,5,7D .2,34,542.《九章算术》提供了许多勾股数如()3,4,5,()5,12,13等一组勾股数最大的数称为“弦数”.经研究,若m 是大于1的奇数,把它平方后拆成相邻的两个整数,那么m 与这两个数组成勾股数,若m 是大于1的偶数,把它除以2后再平方,然后把这个平方数分别减1,加1,得到两个整数,那么m 与这两个数组成勾股数,根据上面的规律,由10生成的勾股数的“弦数”是()A .16B .24C .26D .32题型三勾股定理的逆定理【例3】a ,b ,c 是ABC 的A ∠,B ∠,C ∠的对边,下列条件中,能判断是直角三角形的有()①222+=a b c ②222a b c =-③A B ∠∠=︒+90④123AB C ∠∠∠=∶∶∶∶A .1个B .2个C .3个D .4个1.在ABC 中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,则下列命题中为假命题的是()A .如果C AB ∠=∠+∠,则ABC 是直角三角形B .如果()()2b c a c a =+-,则ABC 是直角三角形C .如果222a c b -=.则ABC 是直角三角形,且90C ∠=︒D .若523A B C =∠∶∠∶∠∶∶,则ABC 是直角三角形.2.下列由三条线段a 、b 、c 构成的三角形:①2a mn =,22b m n =-,()220c m n m n =+>>,②21a n =+,2221b n n =++,()2220c n n n =+>,③3a k =,4b k =,()50c k k =>,④::1:3:2a b c =,其中能构成直角三角形的有()A .1个B .2个C .3个D .4个题型四勾股定理的逆定理的实际应用【例4】.ABC 的三边分别是a 、b 、c ,且满足2268250a b a b +--+=,5c =,则ABC 的形状是.如图,某住宅小区在施工后留下了一块空地,已知4=AD 米,3CD =米,13AB =米,12BC =米,90ADC ∠=︒,小区为美化环境,欲在空地上铺草坪.若草坪每平方米30元,则用该草坪铺满这块空地需花费多少元?巩固训练:1.为了绿化环境,我市某中学有一块四边形的空地ABCD ,如图所示,学校计划在空地上种植草皮,经测量903m 4m 12m 13m A AB DA BC CD ∠=︒====,,,,.(1)求出空地ABCD 的面积.(2)若每种植1平方米草皮需要300元,问总共需投入多少元?题型五勾股定理与无理数的表示A .7B .8C .9D .101.如图,OA OB =,(1)写出数轴上点A 表示的数;(2)比较点A 表示的数与 1.5-的大小;(3)在数轴上作出5所对应的点.2.如图,在数轴上以1个单位长度画一个正方形,以原点为圆心,以正方形的对角线长为半径画弧,与正半轴的交点为B ,且点B 表示的是一个无理数,因此我们得出一个结论.(1)点B 表示的数为_________;得出的结论是:_________与数轴上的点是一一对应的.(2)若将图中数轴上标的A ,C ,D 各点与所给的三个实数5,3和π-对应起来,则点A 表示的实数为_________,点C 表示的实数为_________,点D 表示的实数为_________.题型六网格问题【例6】.如图,在44⨯的正方形方格图中,小正方形的顶点称为格点,ABC 的顶点都在格点上,则ABC 是三角形.1.如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是ABC 的高,则BD 的长为()A .101313B .191313C .181313D .713132.如图,小正方形边长为1,连接小正方形的三个顶点,可得ABC ,则AC 边上的高长度为()A .355B .3510C .55D .5103.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点A 为顶点画一个面积为5的正方形ABCD ;(2)①在图2中以格点E 为顶点画一个EFG ,使得2EF =,32EG =,25FG =;②求出EFG 的面积.题型七利用勾股定理证明平方关系【例7】.在ABC 中,A ∠、B ∠、C ∠的对应边分别是a 、b 、c ,若90A C ∠+∠=︒,则下列等式中成立的是()A .222+=a b cB .222b c a +=C .222a c b +=D .222c a b -=1.如图,ABC 中,90BAC ∠=︒,点A 向上平移后到A ',得到A BC ' .下面说法错误的是()A .ABC 的内角和仍为180︒B .BAC BAC '∠<∠C .222AB AC BC +=D .222A B A C BC ''+<2.如图,在ABC 中,AB AC >,AH BC ⊥于H ,M 为AH 上异于A 的一点,比较AB AC -与MB MC -的大小,则AB AC -()MB MC -.A .大于B .等于C .小于D .大小关系不确定题型八、九、十一以直角三角形三边的面积问题、勾股树、以弘图为背景的计算题【例8】.如图是一株美丽的勾股树,图中所有四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B 的面积分别为5,3,则正方形C 的面积是.【例9】.“勾股树”是以正方形-边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这-过程所画出来的图形,因为重复数次后的形状好似--棵树而得名.假设下图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第五代勾股树中正方形的个数为()A .31B .63C .65D .67【例10】.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为123S S S 、、.若12318S S S ++=,则2S 的值是()1.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以AB BC CD DA ,,,为一边向外作正方形甲、乙、丙、丁,若用S 甲,S 乙,S 丙,S 丁来表示它们的面积,则S S +甲乙S S +丙丁(填>,<或=).2.毕达哥拉斯树也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树状图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.如图,若正方形A ,B ,C ,D 的边长分别是2,3,1,2,则正方形G 的边长是()A .8B .22C .32D .5A .125B .6C .5D .1543.如图,有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,就变成了如图所示的形状,若继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2023次后形成的图形中所有的正方形的面积和是()A .2024B .2023C .2022D .14.勾股定理是数学定理中证明方法最多的定理之一,也是用代数思想解决几何问题最重要的工具之一.下列图形中可以证明勾股定理的有()A .①③B .②③C .②④D .①④5.如图,在四边形ABDE 中,AB DE ∥,AB BD ⊥,点C 是边BD 上一点,BC DE a ==,CD AB b ==.AC CE c ==.下列结论;①ABC CDE △≌△;②90ACE ∠=︒;③四边形ABDE 的面积是()2212a b +;④()2221112222a b c ab +-=⨯;⑤该图可以验证勾股定理.其中正确的结论个数是()A .5B .4C .3D .26.意大利著名画家达·芬奇用一张纸片剪拼出不一样的空洞,而两个空洞的面积是相等的,如图所示,证明了勾股定理,若设图1中空白部分的面积为1S ,图2中空白部分的面积为2S ,则下列对1S ,2S 所列等式不正确的是()A .2212S a b ab =++B .22S c ab =+C .12S S =D .222+=a b c 7.勾股定理又称毕达哥拉斯定理、商高定理、新娘座椅定理、百牛定理等,是人类早期发现并证明的重要数学定理之一,大约有五百多种证明方法,我国古代数学家赵爽和刘徽也分别利用《赵爽弦图》和《青朱出入图》证明了勾股定理,以下四个图形,哪一个是赵爽弦图()A .B .C .D .题型十一勾股定理的实际应用题【例11】.如图,A ,C 之间隔有一湖,在与AC 方向成90︒角的CB 方向上的点B 处测得500m AB =,400m BC =,则AC 的长为()A .300mB .400mC .500mD .600m巩固训练:1.海洋热浪对全球生态带来了严重影响,全球变暖导致华南地区汛期更长、降水强度更大,使得登录广东的台风减少,但是北上的台风增多.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为()A .10mB .15mC .18mD .20m2.如图,圆柱的底面周长为6,高为4,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是()A .213B .5C .13D .103.将一根长为17cm 的筷子,置于内径为6cm 高为8cm 的圆柱形水杯中,设筷子露在杯子外面的长度为x cm ,则x 的取值范围是()A .68x ≤≤B .79x ≤≤C .810x ≤≤D .911x ≤≤4.一棵高10m 的大树倒在了高8m 的墙上,大树的顶端正好落在墙的最高处,如果随着大树的顶端沿着墙面向下滑动,请回答下列各题.(1)如果大树的顶端沿着墙面向下滑动了2m ,那么大树的另一端点是否也左滑动了2m ?说明理由.(2)如果大树的顶端沿着墙面向下滑动了m a ,那么大树的另一端点是否也左滑动了m a ?说明理由.5.如图,圆柱形玻璃杯高为16cm ,底面周长为40cm ,在杯内壁离杯底4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 且与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为()cm .(杯壁厚度不计)A .20B .25C .30D .406.为了积极响应国家新农村建设的号召,遂宁市某镇政府采用了移动宣讲的形式进行广播宣传.如图,笔直的公路MN 的一侧点A 处有一村庄,村庄到公路MN 的距离为600m ,假使宣讲车P 周围1000m 以内能听到广播宣传,宣讲车P 在公路MN 上沿PN 方向行驶.(1)村庄能否听到广播宣传?请说明理由.(2)已知宣讲车的速度是200m /min ,如果村庄能听到广播宣传,那么总共能听多长时间?7.在海平面上有A ,B ,C 三个标记点,其中A 在C 的北偏西54︒方向上,与C 的距离是800海里,B 在C 的南偏西36︒方向上,与C 的距离是600海里.(1)求点A 与点B 之间的距离;(2)若在点C 处有一灯塔,灯塔的信号有效覆盖半径为500海里,每隔半小时会发射一次信号,此时在点B 处有一艘轮船准备沿直线向点A 处航行,轮船航行的速度为每小时20海里.轮船在驶向A 处的过程中,最多能收到多少次信号?(信号传播的时间忽略不计).题型十二勾股定理的折叠问题【例12】.如图所示,在ABC 中,∠B=90°,3AB =,5AC =,将ABC 折叠,使点C 与点A 重合,折痕为DE ,则ABE 的周长是()A .7B .7.5C .8D .73+1.如图,在Rt ABC △中,90C ∠=︒,5cm AB =,3cm BC =,D 为AC 上的一点,将BCD △沿BD 折叠,使点C 恰好落在AB 上的点E 处,求AD 的长.2.如图,将一张正方形纸片ABCD 对折,使CD 与AB 重合,得到折痕MN 后展开,E 为CN 上一点,将CDE 沿DE 所在的直线折叠,使得点C 落在折痕MN 上的点F 处,连接AF .若2AB =,则CE 的长度为()A .423-B .23-C .12D .31-题型十三勾股定理的解答证明题【例13】.如图,已知在ABC 中,CD AB ⊥于点D ,20AC =,15BC =,9DB =.(1)求AD 的长;(2)求证:ABC 是直角三角形.1.如图,AC 是四边形ABCD 的对角线,25456890.AB BC AD CD B ====∠=︒,,,,(1)试判断ADC △的形状,并说明理由;(2)求四边形ABCD 的面积.2.在ABC 中,90ACB ∠=︒,AC BC =,D ,E 是边AB 上两点,45DCE ∠=︒.(1)求证:222AD BE DE +=;(2)若2EB AD =,求DE AD的值.3.用四个全等的直角三角形拼成如图①所示的大正方形,中间也是一个正方形,它是美丽的弦图,其中四个直角三角形的直角边长分别为a 、()b a b <,斜边长为c .(1)结合图①,求证:222+=a b c .(2)如图②,将这四个全等的直角三角形无缝隙无重叠地拼接在一起,得到图形ABCDEFGH .若该图形的周长为24,3OB =.求该图形的面积.4.如图,ABC 的周长为425+,其中4AB =,53BC =-.(1)AC =______;(2)判断ABC 是否为直角三角形,并说明理由.(3)过点A 作AE AB ⊥,22AE =,在AB 上取一点D ,使得DB DE =,求AD 的长度.5.阅读材料:一般地,设平面上任意两点()11,A x y 和()22,B x y ,可以用AB 表示,A B 两点之间的距离,那么该如何计算AB 呢?作AA x '⊥轴、作BB x '⊥轴,垂足分别是点A B ''、;作AA y ''⊥轴,垂足为点A ''、作BB y ''⊥轴,垂足为点B '',且与AA '交于点C ,则四边形BB A C ACB A ''''''、是矩形.∵2121,BC x x AC y y =-=-∴()()222222121||||||AB AC BC x x y y =+=-+-,∴()()222121AB x x y y =-+-.这就是平面直角坐标系中两点之间的距离公式.如:点()1,4A 和点()5,2B 之间的距离22(51)(24)2025AB =-+-==.(1)请运用公式计算点()4,2M 和点()2,1N -之间的距离;(2)在(1)的条件下,点O 为原点,求MNO 的周长.。
数学八年级上册知识点第一章
数学八年级上册知识点第一章数学八年级上册知识点第一章1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾最短的边、股较长的直角边、弦斜边。
勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:若一个直角三角形三边的.长分别是三个连续的自然数,则这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为解析:可知三边长度为6,8,10,则周长为24例2:已知直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,则斜边为5第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7例3:一个直角三角形中,两直角边长分别为3和4,以下说法正确的是( )A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择C数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式〞。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
第3章 勾股定理(小结与思考)(复习课件)八年级数学上册(苏科版)
解:∵第一代勾股树中正方形有1+2=3(个),
第二代勾股树中正方形有1+2+22=7(个),第
三代勾股树中正方形有1+2+22+23=15(个),
......∴第六代勾股树中正方形有
1+2+22+23+24+25+26=127(个).
巩固练习
4.(2021·四川)如图是“弦图”的示意图,“弦图”最早是由三国时期的
2
∵ S四边形ADCB=S△ACD+S△ABC= b + ab,
2
S四边形ADCB=S△ADB+S△DCB= c + a(b-a),
2
b + ab= c2+ a(b-a).
∴
∴ a2+b2=c2.
请参照上述证法,利用图②完成下面的证明:
将两个全等的直角三角形按图②所示摆放,
勾股定理的简单应用
解决简单的实际问题
求几何体表面上两点间的最短距离
考点分析
考点一
勾股定理的验证
例1 如图,以Rt△ABC的三条边为直径的半圆的面积分别为S1、S2、S3,
已知S1=9,S3=25,求S2.
解:由图形可得
2
2
S1= π( ) =
,S2= π( ) =
c
a
b
a
c b
a
b
b
c
a
c
4个小直角三角形的面积=4× ab=2ab,
∵大正方形的面积=小正方形的面积+4个直角三角形的面积,
19.9勾股定理(第1课时)(教材配套课件)-2024-2025学年八年级数学上册精品教学(沪教版)
练习2
a2+b2=c2
在Rt⊿ABC中,∠C=90°
(1)已知a=8,c=17, 求b=_15___
(2)已知b=5,c=13, 求a=_1_2__
练习3
1. 求下列图中字母所代表的正方形的面积
A =92 32
60
81 B =144
225
课堂小结
1.学习内容方面: 勾股定理及其公式应用;
2.数学思想方面: 数形结合、特殊到一般、面积法。
3.情感方面: 中国人有智慧,数学很有用,数学很美。
“ THANKS ”
八年级上册数学沪教版
第 19 章 几何证明
19.9勾股定理(第1课时)
学习目标
1.体验勾股定理的探索过程,掌握勾股定理并能简单 运用
2.经历“观察—猜想—归纳—验证”的数学过程,体会 数形结合的数学思想和由特殊到一般的研究问题方 法.
3.了解中国古代在勾股定理方面的成就,知道勾股 定理在人类重大科技发现中的地位.
S3 c a S1
a
S2
问题3:一般直角三角形的三边是否也 具有这样的数量关系呢?
F
A
H
E
cb
B aC
G
N
M
能否用四个全等的一般直角三角形拼 成一个大正方形呢?(不能重叠,可以 有空隙)
勾股定理
在直角三角形中, 两条直角边的平方和等于斜边的平方
数学表达式: ∵ 在Rt△ABC中,∠C = 90°
问题1 定理:在在直直角角三三角角形形中中,,斜斜边边与大两于条直直角边
角边之间有怎样的大小关系?为什么?
A
C
B
线段AC是点A到BC的垂线段, 线段AB是点A到BC的斜线段,
(完整)八年级数学上册知识点复习总结(北师大版),推荐文档
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
北师大版八年级数学上册第一章勾股定理复习与小结课件
P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’
∙
是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么
验证方法:面积法
北师大版八年级上册数学第一章勾股定理全章知识点及习题(经典)
cbaD CAB第一章 勾股定理知识点一:勾股定理定义画一个直角边为3cm 和4cm 的直角△ABC ,量AB 的长;一个直角边为5和12的直角△ABC ,量AB 的长 发现32+42与52的关系,52+122和132的关系,对于任意的直角三角形也有这个性质吗? 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2) 1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;(给出证明) ⑷三边之间的关系: 。
知识点二:验证勾股定理知识点三:勾股定理证明(等面积法)例1。
已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
证明:例2。
已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
证明:知识点四:勾股定理简单应用 在Rt △ABC 中,∠C=90°(1) 已知:a=6, b=8,求c bbbbccccaaaabbb ba accaaACBDAB如果三角形的三边长为c b a ,,,满足222c b a =+,那么,这个三角形是直角三角形. 利用勾股定理的逆定理判别直角三角形的一般步骤: ①先找出最大边(如c )②计算2c 与22a b +,并验证是否相等。
若2c =22a b +,则△ABC 是直角三角形。
若2c ≠22a b +,则△ABC 不是直角三角形。
1.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A.a=7,b=24,c=25 B.a=7,b=24,c=24C.a=6,b=8,c=10D.a=3,b=4,c=52.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形3.已知0)10(862=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形. 知识点六:勾股数(1)满足222c b a =+的三个正整数,称为勾股数.(2)勾股数中各数的相同的整数倍,仍是勾股数,如3、4、5是勾股数,6、8、10也是勾股数. (3)常见的勾股数有:①3、4、5②5、12、13;③8、15、17;④7、24、25; ⑤11、60、61;⑥9、40、41.1.设a 、b 、c 是直角三角形的三边,则a 、b 、c 不可能的是( ).A.3,5,4B. 5,12,13C.2,3,4D.8,17,15 1. 若线段a ,b ,c 组成Rt △,则它们的比可以是( )A.2∶3∶4B.3∶4∶6C.5∶12∶13D.4∶6∶7知识点七:确定最短路线1.一只长方体木箱如图所示,长、宽、高分别为5cm 、4cm 、3cm, 有一只甲虫从A 出发,沿表面爬到C ',最近距离是多少?2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π 取3)是 .知识点八:逆定理判断垂直1.在△ABC 中,已知AB 2-BC 2=CA 2,则△ABC 的形状是( )A .锐角三角形;B .直角三角形;C .钝角三角形;D .无法确定. 2.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( )ABCD A 'B 'C 'D 'BC5米3米1.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?2.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.3.一根直立的桅杆原长25m,折断后,桅杆的顶部落在离底部的5m处,则桅杆断后两部分各是多长?4.某中学八年级学生想知道学校操场上旗杆的高度,他们发现旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发现下端刚好触地面,你能帮他们把旗杆的高度和绳子的长度计算出来吗?综合练习一一、选择题1、下面几组数:①7,8,9;②12,9,15;③m 2+ n 2, m 2– n 2, 2mn(m,n 均为正整数,m >n);④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( )A.①②;B.①③;C.②③;D.③④2已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A.25B.14C.7D.7或253.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形;B. 钝角三角形;C. 直角三角形;D. 锐角三角形. 4.△ABC 的三边为a 、b 、c 且(a+b)(a-b)=c 2,则( )A.a 边的对角是直角B.b 边的对角是直角C.c 边的对角是直角D.是斜三角形5.以下列各组中的三个数为边长的三角形是直角三角形的个数有( )①6、7、8,②8、15、17,③7、24、25,④12、35、37,⑤9、40、41 A 、1个 B 、2个 C 、3个 D 、4个6.将直角三角形的三边扩大相同的倍数后,得到的三角形是 ( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不是直角三角形7.若△ABC 的三边a 、b 、c 满足(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( ) A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.如图,∠C =∠B =90°,AB =5,BC =8,CD =11,则AD 的长为 ( )A 、10B 、11C 、12D 、139.如图、山坡AB 的高BC =5m ,水平距离AC =12m ,若在山坡上每隔0.65m 栽一棵茶树,则从上到下共 ( )A 、19棵B 、20棵C 、21棵D 、22棵10.Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,若c =2,则2a +2b +2c 的值是 ( )A 、6B 、8C 、10D 、4 11.下列各组数据中,不能构成直角三角形的一组数是( )A、9,12,15 B 、45,1,43C 、0.2,0.3,0.4D 、40,41,9 12.已知,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A.25海里B.30海里C.35海里D.40海里二、填空题1.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt △ABC =________2.现有长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成直角三角形,则其周长为 cm .3.勾股定理的作用是在直角三角形中,已知两边求 ;勾股定理的逆定理的作用是用来证明 .4.如图中字母所代表的正方形的面积:A = B = . A815.在△ABC 中,∠C =90°,若 a =5,b =12,则 c = .6.△ABC 中,AB=AC=17cm ,BC=16cm ,则高AD= ,S △ABC = 。
八年级数学上册知识点:勾股定理
八年级数学上册知识点:勾股定理八年级数学上册知识点:勾股定理一、勾股定理:1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
4.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
常见考法(1)直接考查勾股定理及其逆定理;(2)应用勾股定理建立方程;(3)实际问题中应用勾股定理及其逆定理。
八年级数学上册 第一章 勾股定理知识点与常见题型总结及练习 (新版)北师大版
第1章 勾股定理一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五〞形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,那么c =b,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比拟,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如假设三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+〔2,n ≥n 为正整数〕; 2221,22,221n n n n n ++++〔n 为正整数〕 2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕 7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线〔通常作垂线〕,构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比拟,切不可不加思考的用两边的平方和与第三边的平方比拟而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴6AC =,8BC =.求AB 的长 ⑵17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC = 题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵直角三角形的两直角边长之比为3:4,斜边长为15,那么这个三角形的面积为 ⑶直角三角形的周长为30cm ,斜边长为13cm ,那么这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴4AC =, 2.4AC BCCD AB⋅==⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,那么17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DECD == 在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影局部面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,那么6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD 答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c = 222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CBAAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=一、 选择题1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,那么以下结论中恒成立的是 ( )A 、2ab<c 2B 、2ab ≥c 2C 、2ab>c 2D 、2ab ≤c22、x 、y 为正数,且│x 2-4│+〔y 2-3〕2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为〔 〕A 、5B 、25C 、7D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,那么满足要求的直角三角形共有〔 〕A 、4个B 、5个C 、6个D 、8个4、以下命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,〔a>b=c 〕,那么a 2∶b 2∶c 2=2∶1∶1。
八年级数学勾股定理全章复习与巩固
《勾股定理》全章复习与巩固 要点一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长,满足,那么这个三角形是直角三角形.要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为;(2)验证:与是否具有相等关系:若,则△ABC 是以∠C 为90°的直角三角形;若时,△ABC 是锐角三角形;若时,△ABC 是钝角三角形.2.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41. a b 、c 222a b c +=a b c 、、222a b c +=c 22a b +2c 222a b c +=222a b c +>222a b c +<222x y z +=x y z 、、知识点如果()是勾股数,当t为正整数时,以为三角形的三边长,此三角形必为直角三角形. 观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.类型一、勾股定理及逆定理的应用例1、如图所示,等腰直角△ABC中,∠ACB=90°,E、F为AB上两点(E左F右),且∠ECF=45°,求证:.a b c、、at bt ct、、a b c、、a b c<<2a b c=+27 29222AE BF EF+=典型例题举一反三:【变式】已知凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,求证:.例2、如图,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PB=1,PC=2,PA=3,求∠BPC 的度数.222BD AB BC =+类型二、勾股定理及逆定理的综合应用例3、如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.例4、如图:正方形ABCD中,E是DC中点,F是EC中点.求证:∠BAF=2∠EAD.【变式】如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ 的面积为多少?类型三、勾股定理的实际应用例5、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD =800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?【变式】如图所示,正方形ABCD的AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短.求EP+BP的最小值.例6、台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图台风中心在我国台湾海峡的B处,在沿海城市福州A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?。
浙教版八年级数学上册第二章勾股定理复习
程进行求解;对于设计平方关系的等式 证明,可根据勾股定理进行论证。
一、勾股“树”模型
c③ ① ab
②
a2 b2 c2
S1 S2 S3
方法
B
C
E
P
A
D
变式练习
如图,C为线段BD上一动点,分别过点B、D作 AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE =1,BD=8,设CD=x. ⑴用含x的代数式表示AC+CE的长; ⑵请问点C满足什么条件时,AC+CE的值最小?
A
B
D
C
E
⑶根据⑵中的规律和结论,请构图求出代数式 x2 4 (12 x)2 9 的最小值
1、如图在△ABC中AB=4,BC=2,BD=1,CD= 3
判断下列结论是否正确,并说明理由.
C
(1) CD ⊥AB; (2) AC⊥BC
解(1)∵12 + ( 3 )2=4
A
DB
即BC2=BD2 +CD2 (2)由(1)得AC2=AD2+CD2
∴∠CDB=90° 3 =32+( )2=12
∴CD⊥AB
BC=3,CD=13,AD=12.求S四边形ABCD.
D A
B
C
变式练习
如图,四边形ABDC中,∠ABD=120°, AB⊥AC,BD⊥CD,AB=4,CD=
则该四边形的面积是_______. E
A B
C
D
3、已知△ABC的三条边长分别为a、b、 c,且满足关系:
八年级上册第一章《勾股定理》复习要点
八年级上册第一章《勾股定理》复习要点知识点一:勾股定理要点:⑴.勾股定理: 直角三角形两直角边的平方和等于斜边的平方如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么,a 2 +b 2 =c 2 ,⑵.历史文化: 勾股定理在西方文献中又称毕达哥拉斯定理。
我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边为弦。
⑶格式: a=8 b=15 解:由勾股定理得 c 2 =a 2 +b 2 =82 +152 =64+225=289 ∵C >0 ∴C=17【典例精析】1.一架2.5m 长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.7m .那么梯子的顶端距墙脚的距离是( ).(A)0.7m (B)0.9m (C)1.5m (D)2.4m2.如图,为了求出湖两岸A 、B 两点之间的距离,一个观测者在点C 设桩,使三角形ABC 恰好为直角三角形.通过测量,得到AC 长160m ,BC 长128m ,则AB 长 m .3.利用四个全等的直角三角形可以拼成如图所示的图形, 这个图形被称为弦图.从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积.因而 c2= + .化简后即为 c 2= .知识点二:直角三角形的判别要点; *如果三角形三边长为a 、b 、c ,c 为最长边,只要符合a 2 +b 2 =c 2 ,这个三角形是直角三角形。
(勾股定理逆定理,是直角三角形的判别条件)【典例精析】1、在下列长度的各组线段中,能组成直角三角形的是( ) A.5、6、7 B.1、4、9 C.5、12、13D.5、11、12A C 160bc图1-1 2、满足下列条件的△ABC ,不是直角三角形的是( )A.b 2=c 2-a 2B.a ∶b ∶c=3∶4∶5C.∠C=∠A -∠BD.∠A ∶∠B ∶∠C=12∶13∶1553、三角形的三边长分别是15,36,39,这个三角形是 三角形。
4、将直角三角形的三条边同时扩大4倍后,得到的三角形为( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定5.有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢 飞到另一棵树的树梢,至少飞了多少米?知识点三:勾股定理的综合应用【典例精析】1、如图1-1,在钝角ABC 中,CB =9,AB =17,AC =10,AD BC ⊥于D ,求AD 的长。
3.1.1 勾股定理 课件(共42张PPT) 苏科版八年级数学上册
c (3)图2的面积为 2 ;
(4)图1和图2的面积是否相等?你知道它们是
通过何种变换得到的吗? 相等
苏科版 八年级数学上册
三、新知讲授
下面我们通过视频动画来看看它们是怎么 变换的:
苏科版 八年级数学上册
三、新知讲授 赵爽所用的这种方法是我
国古代数学家常用的“出入 相补法”。在西方,人们称 勾股定理为毕达哥拉斯定理。 因此“赵爽弦图”这个图案 被选为2002年在北京召开的 国际数学家大会的会徽。
苏科版 八年级数学上册
三、新知讲授
既然等腰直角三角形的三边之间具有 “两直角边的平方和等于斜边的平方” 这一性质,那么一般的直角三角形是否 也有这样的性质呢?
苏科版 八年级数学上册
三、新知讲授
请同学们试着表示出在 下面网格中直角三角形三 边衍生的正方形的面积之 间的关系,看看三个正方 形的面积有着怎样的等量 关系。
苏科版 八年级数学上册
三、新知讲授 古人赵爽的证明思想证实了命题1的正确性,
命题1与直角三角形的边有关,我国把它称作勾 股定理。
勾股定理 如果直角三角形的两直角边长
苏科版 八年级数学上册
三、新知讲授
同学们我们古人赵爽利用“出入相补法” 的原理证明出了勾股定理,体现了我国古 代数学成就之高。纵观中国数学发展史, 中国古代在数学方面的成就足以开一座陈 列馆,体现出我国古人对数学的钻研精神 和聪明才智,是我国古代数学的骄傲。所 以我们要以我国优秀的民族文化感到骄傲。 在这个信息多元的时代依然要保持对我们 中华优秀传统文化的自豪感。
苏科版 八年级数学上册
三、新知讲授
同学们还记得我们刚 刚提到的毕达哥拉斯朋 友家的地面图案嘛?我 们现在来一起研究。
北师大版八年级上册数学《探索勾股定理》勾股定理教学说课复习课件巩固
1.如图,一个长为2.5 m的梯子,一端放在离墙脚
1.5 m处,另一端靠墙,则梯子顶端距离墙脚( C )
A.0.2 m
B.0.4 m
C.2 m
D.4 m
课堂检测
基 础 巩 固 题
2.如图,在边长为1个单位长度的小正方形组成的网
格中,点A,B都是格点,则线段AB的长度为( A )
A.5
B.6
C.7
D.25
课堂检测
基 础 巩 固 题
3.如图,直线l上有三个正方形a,b,c,若a,c的
面积分别为3和4,则b的面积为( D )
A.16
B.12
C.9
D.7
课堂检测
基 础 巩 固 题
4.两棵树之间的距离为8 m,两棵树的高度分别是8 m,2 m,
一只小鸟从一棵树的树顶飞到另一棵树的树顶,这只小鸟至
部分称为“股”.
(在西方称为毕达
哥拉斯定理)
斜边称为 弦 .
弦
勾
股
勾2
+ 股2
= 弦2
a b c
2
2
2
四、探究活动
观察图片,分别求出正方形A,B,C的面
积。
能用直角三角
形的两直角边
的长a,b和斜
边长 c 来表示
图中正方形的
面积吗?
割补法
16
a
Sc c2
2
2
Sc a b
c
25
10
1
4km
所以BC2=9,所以BC=3,
因为20s=
h,
A
所以3÷ =540km.
答:飞机每小时飞行540km.
八年级上册数学总复习资料归纳
八年级上册数学总复习资料归纳通过复习,使学生系统掌握基础知识、基本技能和方法,形成明晰的知识网络和稳定的知识框架。
下面是小编为大家整理的关于八年级上册数学总复习资料,希望对您有所帮助!初二数学上册总复习指导第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
八年级上册 勾股定理
D'C'B'D CBA D'C'B'DC BA 第一章 勾股定理【一】勾股定理的验证与证明1.如图,是由四个全等的Rt △拼成的图形,你能用它证明勾股定理吗?2.如图,是由四个全等的Rt △拼成的图形,你能用它证明勾股定理吗?3.如图,已知∠A =∠B =90°且△AED ≌△BCE ,A 、E 、B 在同一直线上.根据此图证明勾股定理.4.一个直立的火柴盒在桌面上倒下,启发人们发现了勾股定理的一种新的证法。
如图,火柴盒的一个侧面ABCD 倒下到AB ’C ’D ’的位置,连接CC ’,设AB=a ,BC=b ,AC=c ,请利用四边形BCC ’D ’的面积证明勾股定理。
5.如图,直角三角形斜边长c 的长度为7cm ,则图中所有正方形的面积之和为6.如图,直线l 上有三个正方形a,b,c ,若a,c 的面积分别为5和11,则b 的面积为为 。
8.如图所示,分别以直角三角形的三边为直径做半圆,其中两个半圆的面积===321S 2S 825S π,则π, 9.同学们已清楚美丽的勾股树的作法.现将勾股树一段中的正方形全部换成等边三角形,则得右图,若图中最大的直角三角形的斜边为2cm ,则如图中所有的等边三角形的面积之和为 cm 210.如图,以直角三角形a、b 、c 为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S 1+S 2=S 3图形个数有( )11.一个直立的火柴盒在桌面上倒下,启发人们发现了勾股定理的一种新的证法。
如图,火柴盒的一个侧面ABCD 倒下到AB ’C ’D ’的位置,连接CC ’,设AB=a ,BC=b ,AC=c ,请利用四边形BCC ’D ’的面积证明勾股定理。
C cb a cba C Bcba12.如图1是2002年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家赵爽的《勾股圆方图》由四个全等的直角三角形和一个小正方形的拼成的大正方形.(1)如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短边为a,较长边为b,那么(a+b)2的值是;(2)若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是.13.我国古代数学家得出的赵爽弦图是又是个全等的直角三角形和一个小正方形铺成的大正方形。
初二数学课文知识点
初二数学课文知识点初二上学期数学知识点归纳一、勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。
2、勾股定理的逆定理如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
3、勾股数满足的三个正整数,称为勾股数。
常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。
二、证明1、对事情作出判断的句子,就叫做命题。
即:命题是判断一件事情的句子。
2、三角形内角和定理:三角形三个内角的和等于180度。
(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。
一般需要作辅助。
(2)三角形的外角与它相邻的内角是互为补角。
3、三角形的外角与它不相邻的内角关系(1)三角形的一个外角等于和它不相邻的两个内角的和。
(2)三角形的一个外角大于任何一个和它不相邻的内角。
4、证明一个命题是真命题的基本步骤(1)根据题意,画出图形。
(2)根据条件、结论,结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
在证明时需注意:①在一般情况下,分析的过程不要求写出来。
②证明中的每一步推理都要有根据。
如果两条直线都和第三条直线平行,那么这两条直线也相互平行。
八年级上册数学知识点(一)运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册学生辅导材料--勾股定理
1、 勾股定理:
几何语言: 如图,在Rt △ABC 中,∠C= 90° 根据勾股定理:2
2
2
c b a =+
1、在直角三角形中,若两直角边的长分别为3cm ,4cm ,则斜边长为_________ 斜边上的中线长为_____________,斜边上的高长为_________________
2、在Rt △ABC中, AB=c , BC=a , AC =b ,,∠C=90°,(要求画出草图) ①已知a=5,b=12,求c ? ②已知a=15,c=25,求b ? ③若a ∶b=3∶4,c=10求ABC
S ∆?
3、如图,从电杆离地面5米处向地面拉一条7米长的钢缆, 求地面钢缆固定点A 到电杆底部B 的距离.
4、一直角三角形的三边分别为2、3、x ,那么以x 为边长的正方形的面积为 ( ) A 、13 B 、5 C 、13或5 D 、无法确定
5、下图由4个等腰直角三角形组成,其中第1个直角三角形腰长为1cm ,求第4个直角三角形斜边长 度是 cm 练习:
6、正方形的面积是4,则它的对角线长是( ) A 、2 B 、2 C 、22 D 、4
7、如图,在△ABC 中,AD ⊥BC 于D ,AB=3,BD=2,DC=1,则AC=( ) A 、6 B 、6 C 、5 D 、4
8、如图,已知一根长8m 的竹杆在离地3m 处断裂,竹杆顶部 抵着地面,此时,顶部距底部有 m ;
9、如图所示,有一条小路穿过长方形的草地ABCD ,AB=60m,BC=84m,
AE=100m,•则这条小路的面积是多少?
10、如图,在海上观察所A,我边防海警发现正北6km 的B 处有一可疑船只正在向向8km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为40km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?
2、勾股定理的逆定理:______________________________________________________________.
判断一个三角形是否为直角三角形
方法:(1)先确定最大边(如c ) (2)验证2
c 与2
2
b a +是否具有相等关系
(3)若2
c =2
2
b a +,则△ABC 是以∠C 为直角的直角三角形;若2
c ≠2
2
b a + 则△ABC 不是直角三角形。
勾股数: 满足2
2
b a +=2
c 的三个正整数,称为勾股数。
如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41
11、如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形: 从点A
出发画一条线段AB,使它的另一个端点B在格点上,且长度分别为 (1)
3
2;
(2)25; (3) 10 (4)13
12. 在△ABC中,AB=2, BC=4, AC=23, ∠C =30°, 求∠B 的大小.
13. 如图,AD ⊥CD , AB=13,BC=12,CD=4,AD=3, 已知∠C AB=α,求∠B .
14、一个零件的形状如图所示,按规定这个零件中∠A 和∠DBC 都应为直角,工人师傅量得这个零件各边尺寸如图,请问这个零件符合要求吗?
8km
C
A
B 6km
A B
C
D
15、如图,在四边形ABCD中,AC⊥DC, △ADC的面积为30,
DC=12,AB=3,BC=4,求△ABC的面积
练习
1. 若直角三角形的三边长分别为2、4、x,试求出x的所有可能值.
2.如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.求图中阴影部分的面积.
3. 如图,四边形ABCD中,AB=BC=2,CD=3,DA=1,且∠B=90°,求∠DAB的度数.
4. 有一块四边形地ABCD(如图),∠B=90°,AB=4m,BC=3m,CD=12m,DA=13m,求该四边形地的面积.
3、勾股定理的应用:
(一)面积问题:
1.如右图,字母“A”所代表的正方形的面积为________________;
2.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.
3. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A 、 B 、 C 、 D 的面积和=
.
4.如右图, 在Rt △ABC 中,分别以三边为直径向形外作半圆,若三个半圆 的面积分别为S 1、S 2、S 3,则S 1+S 2与S 3的大小关系是…………( ) A. S 1+S 2﹥S 3 B. S 1+S 2=S 3 C. S 1+S 2﹤S 3 D. 无法确定
5. 如图,已知直角三角形ABC的三边分别为6、8、10,分别以它的三 边为直径向上作三个半圆,则图中阴影部分的面积= .
(二)勾股定理在立体图形中的应用:
例1如图14.2.1,一圆柱体的底面周长为20cm ,高AB为4cm ,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.(精确到0.01cm )
图14.2.1
练习1:一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到CD 的中点O ,已知底面周长为8,高为6,试求出爬行的最短路程。
(精确到0.1)
题
第3题
第2题
第1题
第4
D
C
B A N O
M
A
M O
N B
2、如图,是一个三级台阶,它的每一级的长、宽和高分别等于36cm ,10cm 和6cm ,
A 和
B 是这个台阶的两个相对的端点,A 点上有一只小虫子,想到B 点去吃可口的食物。
请你想一想,这只小虫子从A 点出发,沿着台阶面爬到B 点,最短线路是多少?
例2、一种盛饮料的圆柱形杯(如图),测得部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面
至少要露出4.6㎝,问吸管要做多长?
练习3、如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和
10㎝的长方体无盖盒子中,则细木棒露在盒外面的最短长度是多少㎝.(保留1位小数)
(三)方程思想:
一、利用方程求线段长
1.如图,一架长为5米的梯子AB 斜靠在与地面OM 垂直的墙ON 上, 梯子底端距离墙ON 有3米。
①求梯子顶端与地面的距离OA 的长。
②若梯子顶点A 下滑1米到C 点, 求梯子的底端向右滑到D 的距离。
2.已知等腰直角三角形斜边的长为2cm ,这个三角形的周长是_________
3.Rt△ABC 中,∠ C=90°,若两直角边a,b 满足12,7==+ab b a , 则=c
4.直角三角形两直角边和为7,面积为6,则斜边长为( )
A. 5
B.
C. 7
D.
5.国旗杆的绳子垂到地面时,还多了1m ,拉着绳子下端离开旗杆5m 时,绳子被拉直且下端刚好接触地面,试求旗杆的高为_______.
6.如图一棵大树被台风吹倒,树的顶部落在离树跟底部8米且
(1)发现折断的部分长和没倒下的部分长的比值是5:3,求折断的部分多长? (2)发现折断的部分比没倒下的部分长4米,求大树未断前的长度?
7.如图,公路上A ,B 两点相距25km ,C ,D 为两村庄, DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在公路AB 上 建一车站E ,
(1)若使得C ,D 两村到E 站的距离相等,E 站建在离A 站多少km 处?DE 与CE 的位置关系? (2)若使得C ,D 两村到E 站的距离最短,E 站建在离A 站多少km 处?
二、利用方程解决翻折问题
1. 如图,折叠长方形(四个角都是直角,对边相等)的一边AD ,使点D 落在BC 边的点F 处,已知
cm AB 8=,cm BC 10=,求EC 的长;
A D E
B C
2.如图,在矩形ABCD 中,AB=6cm ,AD=10cm,在边CD 上适当选定一点E ,沿直线AE 把△ADE 折叠,使点D 恰好落在边BC上一点F 处。
(1)写出图中相等的线段,看谁写的多! (2)求线段BF 的长。
(3)试着求线段CE 、EF 的长。
3. 如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于_________
4.AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
5.如图,某沿海开放城市A 接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度向D 移动,已知城市A 到BC 的距离AD=100km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时撤离才可脱离危险?
A B
C
D 第13题图。